fbpx
Wikipedia

Gas metal arc welding

Gas metal arc welding (GMAW), sometimes referred to by its subtypes metal inert gas (MIG) and metal active gas (MAG) is a welding process in which an electric arc forms between a consumable MIG wire electrode and the workpiece metal(s), which heats the workpiece metal(s), causing them to fuse (melt and join). Along with the wire electrode, a shielding gas feeds through the welding gun, which shields the process from atmospheric contamination.

Gas Metal Arc Welding "Mig" Welding

The process can be semi-automatic or automatic. A constant voltage, direct current power source is most commonly used with GMAW, but constant current systems, as well as alternating current, can be used. There are four primary methods of metal transfer in GMAW, called globular, short-circuiting, spray, and pulsed-spray, each of which has distinct properties and corresponding advantages and limitations.

Originally developed in the 1940s for welding aluminium and other non-ferrous materials, GMAW was soon applied to steels because it provided faster welding time compared to other welding processes. The cost of inert gas limited its use in steels until several years later, when the use of semi-inert gases such as carbon dioxide became common. Further developments during the 1950s and 1960s gave the process more versatility and as a result, it became a highly used industrial process. Today, GMAW is the most common industrial welding process, preferred for its versatility, speed and the relative ease of adapting the process to robotic automation. Unlike welding processes that do not employ a shielding gas, such as shielded metal arc welding, it is rarely used outdoors or in other areas of moving air. A related process, flux cored arc welding, often does not use a shielding gas, but instead employs an electrode wire that is hollow and filled with flux.

Development edit

The principles of gas metal arc welding began to be understood in the early 19th century, after Humphry Davy discovered the short pulsed electric arcs in 1800.[1] Vasily Petrov independently produced the continuous electric arc in 1802 (followed by Davy after 1808).[1] It was not until the 1880s that the technology became developed with the aim of industrial usage. At first, carbon electrodes were used in carbon arc welding. By 1890, metal electrodes had been invented by Nikolay Slavyanov and C. L. Coffin. In 1920, an early predecessor of GMAW was invented by P. O. Nobel of General Electric. It used direct current with a bare electrode wire and used arc voltage to regulate the feed rate. It did not use a shielding gas to protect the weld, as developments in welding atmospheres did not take place until later that decade. In 1926 another forerunner of GMAW was released, but it was not suitable for practical use.[2]

In 1948, GMAW was developed by the Battelle Memorial Institute. It used a smaller diameter electrode and a constant voltage power source developed by H. E. Kennedy. It offered a high deposition rate, but the high cost of inert gases limited its use to non-ferrous materials and prevented cost savings. In 1953, the use of carbon dioxide as a welding atmosphere was developed, and it quickly gained popularity in GMAW, since it made welding steel more economical. In 1958 and 1959, the short-arc variation of GMAW was released, which increased welding versatility and made the welding of thin materials possible while relying on smaller electrode wires and more advanced power supplies. It quickly became the most popular GMAW variation.[citation needed]

The spray-arc transfer variation was developed in the early 1960s, when experimenters added small amounts of oxygen to inert gases. More recently, pulsed current has been applied, giving rise to a new method called the pulsed spray-arc variation.[3]

GMAW is one of the most popular welding methods, especially in industrial environments.[4] It is used extensively by the sheet metal industry and the automobile industry. There, the method is often used for arc spot welding, replacing riveting or resistance spot welding. It is also popular for automated welding, where robots handle the workpieces and the welding gun to accelerate manufacturing.[5] GMAW can be difficult to perform well outdoors, since drafts can dissipate the shielding gas and allow contaminants into the weld;[6] flux cored arc welding is better suited for outdoor use such as in construction.[7][8] Likewise, GMAW's use of a shielding gas does not lend itself to underwater welding, which is more commonly performed via shielded metal arc welding, flux cored arc welding, or gas tungsten arc welding.[9]

Equipment edit

To perform gas metal arc welding, the basic necessary equipment is a welding gun, a wire feed unit, a welding power supply, a welding electrode wire, and a shielding gas supply.[10]

Welding gun and wire feed unit edit

 
GMAW torch nozzle cutaway image:
  1. Torch handle
  2. Molded phenolic dielectric (shown in white) and threaded metal nut insert (yellow)
  3. Shielding gas diffuser
  4. Contact tip
  5. Nozzle output face
 
GMAW on stainless steel
 
Metal inert gas (MIG) welding station

The typical GMAW welding gun has a number of key parts—a control switch, a contact tip, a power cable, a gas nozzle, an electrode conduit and liner, and a gas hose. The control switch, or trigger, when pressed by the operator, initiates the wire feed, electric power, and the shielding gas flow, causing an electric arc to be struck. The contact tip, normally made of copper and sometimes chemically treated to reduce spatter, is connected to the welding power source through the power cable and transmits the electrical energy to the electrode while directing it to the weld area. It must be firmly secured and properly sized, since it must allow the electrode to pass while maintaining electrical contact. On the way to the contact tip, the wire is protected and guided by the electrode conduit and liner, which help prevent buckling and maintain an uninterrupted wire feed. The gas nozzle directs the shielding gas evenly into the welding zone. Inconsistent flow may not adequately protect the weld area. Larger nozzles provide greater shielding gas flow, which is useful for high current welding operations that develop a larger molten weld pool. A gas hose from the tanks of shielding gas supplies the gas to the nozzle. Sometimes, a water hose is also built into the welding gun, cooling the gun in high heat operations.[11]

The wire feed unit supplies the electrode to the work, driving it through the conduit and on to the contact tip. Most models provide the wire at a constant feed rate, but more advanced machines can vary the feed rate in response to the arc length and voltage. Some wire feeders can reach feed rates as high as 30 m/min (1200 in/min),[12] but feed rates for semiautomatic GMAW typically range from 2 to 10 m/min (75 – 400 in/min).[13]

Tool style edit

The most common electrode holder is a semiautomatic air-cooled holder. Compressed air circulates through it to maintain moderate temperatures. It is used with lower current levels for welding lap or butt joints. The second most common type of electrode holder is semiautomatic water-cooled, where the only difference is that water takes the place of air. It uses higher current levels for welding T or corner joints. The third typical holder type is a water cooled automatic electrode holder—which is typically used with automated equipment.[14]

Power supply edit

Most applications of gas metal arc welding use a constant voltage power supply. As a result, any change in arc length (which is directly related to voltage) results in a large change in heat input and current. A shorter arc length causes a much greater heat input, which makes the wire electrode melt more quickly and thereby restore the original arc length. This helps operators keep the arc length consistent even when manually welding with hand-held welding guns. To achieve a similar effect, sometimes a constant current power source is used in combination with an arc voltage-controlled wire feed unit. In this case, a change in arc length makes the wire feed rate adjust to maintain a relatively constant arc length. In rare circumstances, a constant current power source and a constant wire feed rate unit might be coupled, especially for the welding of metals with high thermal conductivities, such as aluminum. This grants the operator additional control over the heat input into the weld, but requires significant skill to perform successfully.[15]

Alternating current is rarely used with GMAW; instead, direct current is employed and the electrode is generally positively charged. Since the anode tends to have a greater heat concentration, this results in faster melting of the feed wire, which increases weld penetration and welding speed. The polarity can be reversed only when special emissive-coated electrode wires are used, but since these are not popular, a negatively charged electrode is rarely employed.[16]

Electrode edit

The electrode is a metallic alloy wire, called a MIG wire, whose selection, alloy and size, is based primarily on the composition of the metal being welded, the process variation being used, joint design, and the material surface conditions. Electrode selection greatly influences the mechanical properties of the weld and is a key factor of weld quality. In general the finished weld metal should have mechanical properties similar to those of the base material with no defects such as discontinuities, entrained contaminants or porosity within the weld. To achieve these goals a wide variety of electrodes exist. All commercially available electrodes contain deoxidizing metals such as silicon, manganese, titanium and aluminum in small percentages to help prevent oxygen porosity. Some contain denitriding metals such as titanium and zirconium to avoid nitrogen porosity.[17] Depending on the process variation and base material being welded the diameters of the electrodes used in GMAW typically range from 0.7 to 2.4 mm (0.028 – 0.095 in) but can be as large as 4 mm (0.16 in). The smallest electrodes, generally up to 1.14 mm (0.045 in)[18] are associated with the short-circuiting metal transfer process, while the most common spray-transfer process mode electrodes are usually at least 0.9 mm (0.035 in).[19][20]

Shielding gas edit

 
GMAW circuit diagram:
  1. Welding torch
  2. Workpiece
  3. Power source
  4. Wire feed unit
  5. Electrode source
  6. Shielding gas supply

Shielding gases are necessary for gas metal arc welding to protect the welding area from atmospheric gases such as nitrogen and oxygen, which can cause fusion defects, porosity, and weld metal embrittlement if they come in contact with the electrode, the arc, or the welding metal. This problem is common to all arc welding processes; for example, in the older Shielded-Metal Arc Welding process (SMAW), the electrode is coated with a solid flux which evolves a protective cloud of carbon dioxide when melted by the arc. In GMAW, however, the electrode wire does not have a flux coating, and a separate shielding gas is employed to protect the weld. This eliminates slag, the hard residue from the flux that builds up after welding and must be chipped off to reveal the completed weld.[21]

The choice of a shielding gas depends on several factors, most importantly the type of material being welded and the process variation being used. Pure inert gases such as argon and helium are only used for nonferrous welding; with steel they do not provide adequate weld penetration (argon) or cause an erratic arc and encourage spatter (with helium). Pure carbon dioxide, on the other hand, allows for deep penetration welds but encourages oxide formation, which adversely affects the mechanical properties of the weld. lts low cost makes it an attractive choice, but because of the reactivity of the arc plasma, spatter is unavoidable and welding thin materials is difficult. As a result, argon and carbon dioxide are frequently mixed in a 75%/25% to 90%/10% mixture. Generally, in short circuit GMAW, higher carbon dioxide content increases the weld heat and energy when all other weld parameters (volts, current, electrode type and diameter) are held the same. As the carbon dioxide content increases over 20%, spray transfer GMAW becomes increasingly problematic, especially with smaller electrode diameters.[22]

Argon is also commonly mixed with other gases, oxygen, helium, hydrogen and nitrogen. The addition of up to 5% oxygen (like the higher concentrations of carbon dioxide mentioned above) can be helpful in welding stainless steel, however, in most applications carbon dioxide is preferred.[23] Increased oxygen makes the shielding gas oxidize the electrode, which can lead to porosity in the deposit if the electrode does not contain sufficient deoxidizers. Excessive oxygen, especially when used in application for which it is not prescribed, can lead to brittleness in the heat affected zone. Argon-helium mixtures are extremely inert, and can be used on nonferrous materials. A helium concentration of 50–75% raises the required voltage and increases the heat in the arc, due to helium's higher ionization temperature. Hydrogen is sometimes added to argon in small concentrations (up to about 5%) for welding nickel and thick stainless steel workpieces. In higher concentrations (up to 25% hydrogen), it may be used for welding conductive materials such as copper. However, it should not be used on steel, aluminum or magnesium because it can cause porosity and hydrogen embrittlement.[21]

Shielding gas mixtures of three or more gases are also available. Mixtures of argon, carbon dioxide and oxygen are marketed for welding steels. Other mixtures add a small amount of helium to argon-oxygen combinations. These mixtures are claimed to allow higher arc voltages and welding speed. Helium also sometimes serves as the base gas, with small amounts of argon and carbon dioxide added. However, because it is less dense than air, helium is less effective at shielding the weld than argon—which is denser than air. It also can lead to arc stability and penetration issues, and increased spatter, due to its much more energetic arc plasma. Helium is also substantially more expensive than other shielding gases. Other specialized and often proprietary gas mixtures claim even greater benefits for specific applications.[21]

Despite being poisonous, trace amounts of nitric oxide can be used to prevent the even more troublesome ozone from being formed in the arc.

The desirable rate of shielding-gas flow depends primarily on weld geometry, speed, current, the type of gas, and the metal transfer mode. Welding flat surfaces requires higher flow than welding grooved materials, since gas disperses more quickly. Faster welding speeds, in general, mean that more gas must be supplied to provide adequate coverage. Additionally, higher current requires greater flow, and generally, more helium is required to provide adequate coverage than if argon is used. Perhaps most importantly, the four primary variations of GMAW have differing shielding gas flow requirements—for the small weld pools of the short circuiting and pulsed spray modes, about 10 L/min (20 ft3/h) is generally suitable, whereas for globular transfer, around 15 L/min (30 ft3/h) is preferred. The spray transfer variation normally requires more shielding-gas flow because of its higher heat input and thus larger weld pool. Typical gas-flow amounts are approximately 20–25 L/min (40–50 ft3/h).[13]

GMAW-based 3-D printing edit

GMAW has also been used as a low-cost method to 3-D print metal objects.[24][25][26] Various open source 3-D printers have been developed to use GMAW.[27] Such components fabricated from aluminum compete with more traditionally manufactured components on mechanical strength.[28] By forming a bad weld on the first layer, GMAW 3-D printed parts can be removed from the substrate with a hammer.[29][30]

Operation edit

 
GMAW weld area:
  1. Direction of travel
  2. Contact tube
  3. Electrode
  4. Shielding gas
  5. Molten weld metal
  6. Solidified weld metal
  7. Workpiece

For most of its applications gas metal arc welding is a fairly simple welding process to learn requiring no more than a week or two to master basic welding technique. Even when welding is performed by well-trained operators weld quality can fluctuate since it depends on a number of external factors. All GMAW is dangerous, though perhaps less so than some other welding methods, such as shielded metal arc welding.[31]

Technique edit

GMAW's basic technique is uncomplicated, with most individuals able to achieve reasonable proficiency in a few weeks, assuming proper training and sufficient practice. As much of the process is automated, GMAW relieves the welder (operator) of the burden of maintaining a precise arc length, as well as feeding filler metal into the weld puddle, coordinated operations that are required in other manual welding processes, such as shielded metal arc. GMAW requires only that the welder guide the gun with proper position and orientation along the area being welded, as well as periodically clean the gun's gas nozzle to remove spatter buildup. Additional skill includes knowing how to adjust the welder so the voltage, wire feed rate and gas flow rate are correct for the materials being welded and the wire size being employed.[citation needed]

Maintaining a relatively constant contact tip-to-work distance (the stick-out distance) is important. Excessive stick-out distance may cause the wire electrode to prematurely melt, causing a sputtering arc, and may also cause the shielding gas to rapidly disperse, degrading the quality of the weld. In contrast, insufficient stick-out may increase the rate at which spatter builds up inside the gun's nozzle and in extreme cases, may cause damage to the gun's contact tip. Stick-out distance varies for different GMAW weld processes and applications.[32][33][34][35]

The orientation of the gun relative to the weldment is also important. It should be held so as to bisect the angle between the workpieces; that is, at 45 degrees for a fillet weld and 90 degrees for welding a flat surface. The travel angle, or lead angle, is the angle of the gun with respect to the direction of travel, and it should generally remain approximately vertical.[36] However, the desirable angle changes somewhat depending on the type of shielding gas used—with pure inert gases, the bottom of the torch is often slightly in front of the upper section, while the opposite is true when the welding atmosphere is carbon dioxide.[37]

Position welding, that is, welding vertical or overhead joints, may require the use of a weaving technique to assure proper weld deposition and penetration. In position welding, gravity tends to cause molten metal to run out of the puddle, resulting in cratering and undercutting, two conditions that produce a weak weld. Weaving constantly moves the fusion zone around so as to limit the amount of metal deposited at any one point. Surface tension then assists in keeping the molten metal in the puddle until it is able to solidify. Development of position welding skill takes some experience, but is usually soon mastered.[citation needed]

Quality edit

Two of the most prevalent quality problems in GMAW are dross and porosity. If not controlled, they can lead to weaker, less ductile welds. Dross is an especially common problem in aluminium GMAW welds, normally coming from particles of aluminium oxide or aluminum nitride present in the electrode or base materials. Electrodes and workpieces must be brushed with a wire brush or chemically treated to remove oxides on the surface. Any oxygen in contact with the weld pool, whether from the atmosphere or the shielding gas, causes dross as well. As a result, sufficient flow of inert shielding gases is necessary, and welding in moving air should be avoided.[38]

In GMAW the primary cause of porosity is gas entrapment in the weld pool, which occurs when the metal solidifies before the gas escapes. The gas can come from impurities in the shielding gas or on the workpiece, as well as from an excessively long or violent arc. Generally, the amount of gas entrapped is directly related to the cooling rate of the weld pool. Because of its higher thermal conductivity, aluminum welds are especially susceptible to greater cooling rates and thus additional porosity. To reduce it, the workpiece and electrode should be clean, the welding speed diminished and the current set high enough to provide sufficient heat input and stable metal transfer but low enough that the arc remains steady. Preheating can also help reduce the cooling rate in some cases by reducing the temperature gradient between the weld area and the base metal.[39]

Safety edit

Arc welding in any form can be dangerous if proper precautions are not taken. Since GMAW employs an electric arc, welders must wear suitable protective clothing, including heavy gloves and protective long sleeve jackets, to minimize exposure to the arc itself, as well as intense heat, sparks and hot metal. The intense ultraviolet radiation of the arc may cause sunburn-like damage to exposed skin, as well a condition known as arc eye, an inflammation of the cornea, or in cases of prolonged exposure, irreversible damage to the eye's retina. Conventional welding helmets contain dark face plates to prevent this exposure. Newer helmet designs feature a liquid crystal-type face plate that self-darkens upon exposure to the arc. Transparent welding curtains, made of a polyvinyl chloride plastic film, are often used to shield nearby workers and bystanders from exposure to the arc.[40]

Welders are often exposed to hazardous gases and airborne particulate matter. GMAW produces smoke containing particles of various types of oxides, and the size of the particles tends to influence the toxicity of the fumes. Smaller particles present greater danger. Concentrations of carbon dioxide and ozone can prove dangerous if ventilation is inadequate. Other precautions include keeping combustible materials away from the workplace, and having a working fire extinguisher nearby.[41]

Metal transfer modes edit

The three transfer modes in GMAW are globular, short-circuiting, and spray. There are a few recognized variations of these three transfer modes including modified short-circuiting and pulsed-spray.[42]

Globular edit

GMAW with globular metal transfer is considered the least desirable of the three major GMAW variations, because of its tendency to produce high heat, a poor weld surface, and spatter. The method was originally developed as a cost efficient way to weld steel using GMAW, because this variation uses carbon dioxide, a less expensive shielding gas than argon. Adding to its economic advantage was its high deposition rate, allowing welding speeds of up to 110 mm/s (250 in/min).[43] As the weld is made, a ball of molten metal from the electrode tends to build up on the end of the electrode, often in irregular shapes with a larger diameter than the electrode itself. When the droplet finally detaches either by gravity or short circuiting, it falls to the workpiece, leaving an uneven surface and often causing spatter.[44] As a result of the large molten droplet, the process is generally limited to flat and horizontal welding positions, requires thicker workpieces, and results in a larger weld pool.[45][46]

Short-circuiting edit

Further developments in welding steel with GMAW led to a variation known as short-circuit transfer (SCT) or short-arc GMAW, in which the current is lower than for the globular method. As a result of the lower current, the heat input for the short-arc variation is considerably reduced, making it possible to weld thinner materials while decreasing the amount of distortion and residual stress in the weld area. As in globular welding, molten droplets form on the tip of the electrode, but instead of dropping to the weld pool, they bridge the gap between the electrode and the weld pool as a result of the lower wire feed rate. This causes a short circuit and extinguishes the arc, but it is quickly reignited after the surface tension of the weld pool pulls the molten metal bead off the electrode tip. This process is repeated about 100 times per second, making the arc appear constant to the human eye. This type of metal transfer provides better weld quality and less spatter than the globular variation, and allows for welding in all positions, albeit with slower deposition of weld material. Setting the weld process parameters (volts, amps and wire feed rate) within a relatively narrow band is critical to maintaining a stable arc: generally between 100 and 200 amperes at 17 to 22 volts for most applications. Also, using short-arc transfer can result in lack of fusion and insufficient penetration when welding thicker materials, due to the lower arc energy and rapidly freezing weld pool.[47] Like the globular variation, it can only be used on ferrous metals.[20][48][49]

Cold Metal Transfer edit

For thin materials, Cold Metal Transfer (CMT) is used by reducing the current when a short circuit is registered, producing many drops per second. CMT can be used for aluminum.[citation needed]

Spray edit

Spray transfer GMAW was the first metal transfer method used in GMAW, and well-suited to welding aluminium and stainless steel while employing an inert shielding gas. In this GMAW process, the weld electrode metal is rapidly passed along the stable electric arc from the electrode to the workpiece, essentially eliminating spatter and resulting in a high-quality weld finish. As the current and voltage increases beyond the range of short circuit transfer the weld electrode metal transfer transitions from larger globules through small droplets to a vaporized stream at the highest energies.[50] Since this vaporized spray transfer variation of the GMAW weld process requires higher voltage and current than short circuit transfer, and as a result of the higher heat input and larger weld pool area (for a given weld electrode diameter), it is generally used only on workpieces of thicknesses above about 6.4 mm (0.25 in).[51]

Also, because of the large weld pool, it is often limited to flat and horizontal welding positions and sometimes also used for vertical-down welds. It is generally not practical for root pass welds.[52] When a smaller electrode is used in conjunction with lower heat input, its versatility increases. The maximum deposition rate for spray arc GMAW is relatively high—about 600 mm/s (1500 in/min).[20][43][53]

Pulsed-spray edit

A variation of the spray transfer mode, pulse-spray is based on the principles of spray transfer but uses a pulsing current to melt the filler wire and allow one small molten droplet to fall with each pulse. The pulses allow the average current to be lower, decreasing the overall heat input and thereby decreasing the size of the weld pool and heat-affected zone while making it possible to weld thin workpieces. The pulse provides a stable arc and no spatter, since no short-circuiting takes place. This also makes the process suitable for nearly all metals, and thicker electrode wire can be used as well. The smaller weld pool gives the variation greater versatility, making it possible to weld in all positions. In comparison with short arc GMAW, this method has a somewhat slower maximum speed (85 mm/s or 200 in/min) and the process also requires that the shielding gas be primarily argon with a low carbon dioxide concentration. Additionally, it requires a special power source capable of providing current pulses with a frequency between 30 and 400 pulses per second. However, the method has gained popularity, since it requires lower heat input and can be used to weld thin workpieces, as well as nonferrous materials.[20][54][55][56]

Comparison with flux-cored wire-fed arc welding edit

Flux-cored, self-shielding or gasless wire-fed welding had been developed for simplicity and portability.[57] This avoids the gas system of conventional GMAW and uses a cored wire containing a solid flux. This flux vaporises during welding and produces a plume of shielding gas. Although described as a 'flux', this compound has little activity and acts mostly as an inert shield. The wire is of slightly larger diameter than for a comparable gas-shielded weld, to allow room for the flux. The smallest available is 0.8 mm diameter, compared to 0.6 mm for solid wire. The shield vapor is slightly active, rather than inert, so the process is always MAGS but not MIG (inert gas shield). This limits the process to steel and not aluminium.[citation needed]

These gasless machines operate as DCEN, rather than the DCEP usually used for GMAW solid wire.[57] DCEP, or DC Electrode Positive, makes the welding wire into the positively-charged anode, which is the hotter side of the arc.[58] Provided that it is switchable from DCEN to DCEP, a gas-shielded wire-feed machine may also be used for flux-cored wire.[citation needed]

Flux-cored wire is considered to have some advantages for outdoor welding on-site, as the shielding gas plume is less likely to be blown away in a wind than shield gas from a conventional nozzle.[59][60] A slight drawback is that, like SMAW (stick) welding, there may be some flux deposited over the weld bead, requiring more of a cleaning process between passes.[59]

Flux-cored welding machines are most popular at the hobbyist level, as the machines are slightly simpler but mainly because they avoid the cost of providing shield gas, either through a rented cylinder or with the high cost of disposable cylinders.[59]

See also edit

References edit

  1. ^ a b Anders 2003, pp. 1060–9
  2. ^ Cary & Helzer 2005, p. 7
  3. ^ Cary & Helzer 2005, pp. 8–9
  4. ^ Jeffus 1997, p. 6
  5. ^ Kalpakjian & Schmid 2001, p. 783
  6. ^ Davies 2003, p. 174
  7. ^ Jeffus 1997, p. 264
  8. ^ Davies 2003, p. 118
  9. ^ Davies 2003, p. 253
  10. ^ Miller Electric Mfg Co 2012, p. 5
  11. ^ Nadzam 1997, pp. 5–6
  12. ^ Nadzam 1997, p. 6
  13. ^ a b Cary & Helzer 2005, pp. 123–5
  14. ^ Todd, Allen & Alting 1994, pp. 351–355.
  15. ^ Nadzam 1997, p. 1
  16. ^ Cary & Helzer 2005, pp. 118–9
  17. ^ Nadzam 1997, p. 15
  18. ^ Craig 1991, p. 22
  19. ^ Craig 1991, p. 105
  20. ^ a b c d Cary & Helzer 2005, p. 121
  21. ^ a b c Cary & Helzer 2005, pp. 357–9.
  22. ^ Craig 1991, p. 96
  23. ^ Craig 1991, pp. 40–1
  24. ^ Loose screw? 3-D printer may soon forge you a new one http://www.nbcnews.com/technology/loose-screw-3-d-printer-may-soon-forge-you-new-2D11678840
  25. ^ You Can Now 3D Print with Metal at Home . Archived from the original on 2016-08-16. Retrieved 2016-08-16.
  26. ^ Gerald C. Anzalone, Chenlong Zhang, Bas Wijnen, Paul G. Sanders and Joshua M. Pearce, "Low-Cost Open-Source 3-D Metal Printing" IEEE Access, 1, pp.803-810, (2013). doi: 10.1109/ACCESS.2013.2293018
  27. ^ Yuenyong Nilsiam, Amberlee Haselhuhn, Bas Wijnen, Paul Sanders, & Joshua M. Pearce. Integrated Voltage - Current Monitoring and Control of Gas Metal Arc Weld Magnetic Ball-Jointed Open Source 3-D Printer.Machines 3(4), 339-351 (2015). doi:10.3390/machines3040339
  28. ^ Amberlee S. Haselhuhn, Michael W. Buhr, Bas Wijnen, Paul G. Sanders, Joshua M. Pearce, Structure-Property Relationships of Common Aluminum Weld Alloys Utilized as Feedstock for GMAW-based 3-D Metal Printing. Materials Science and Engineering: A, 673, pp. 511–523 (2016). DOI: 10.1016/j.msea.2016.07.099
  29. ^ Amberlee S. Haselhuhn, Bas Wijnen, Gerald C. Anzalone, Paul G. Sanders, Joshua M. Pearce, In Situ Formation of Substrate Release Mechanisms for Gas Metal Arc Weld Metal 3-D Printing. Journal of Materials Processing Technology. 226, pp. 50–59 (2015).
  30. ^ Amberlee S. Haselhuhn, Eli J. Gooding, Alexandra G. Glover, Gerald C. Anzalone, Bas Wijnen, Paul G. Sanders, Joshua M. Pearce. Substrate Release Mechanisms for Gas Metal Arc 3-D Aluminum Metal Printing. 3D Printing and Additive Manufacturing. 1(4): 204-209 (2014). DOI: 10.1089/3dp.2014.0015
  31. ^ Cary & Helzer 2005, p. 126
  32. ^ Craig 1991, p. 29
  33. ^ Craig 1991, p. 52
  34. ^ Craig 1991, p. 109
  35. ^ Craig 1991, p. 141
  36. ^ "Variables that Affect Weld Penetration". Lincoln Electric. Retrieved August 20, 2018.
  37. ^ Cary & Helzer 2005, p. 125
  38. ^ Lincoln Electric 1994, 9.3-5 – 9.3-6
  39. ^ Lincoln Electric 1994, 9.3-1 – 9.3-2
  40. ^ Cary & Helzer 2005, p. 42
  41. ^ Cary & Helzer 2005, pp. 52–62
  42. ^ American Welding Society 2004, p. 150
  43. ^ a b Cary & Helzer 2005, p. 117
  44. ^ Weman 2003, p. 50
  45. ^ Miller Electric Mfg Co 2012, p. 14
  46. ^ Nadzam 1997, p. 8
  47. ^ Craig 1991, p. 11
  48. ^ Cary & Helzer 2005, p. 98
  49. ^ Weman 2003, pp. 49–50
  50. ^ Craig 1991, p. 82
  51. ^ Craig 1991, p. 90
  52. ^ Craig 1991, p. 98
  53. ^ Cary & Helzer 2005, p. 96
  54. ^ Cary & Helzer 2005, p. 99
  55. ^ Cary & Helzer 2005, p. 118
  56. ^ American Welding Society 2004, p. 154
  57. ^ a b Greg Holster. "Gasless wire welding is a breeze" (PDF). pp. 64–68.
  58. ^ "Welding Metallurgy: Arc Physics and Weld Pool Behaviour" (PDF). Canteach.
  59. ^ a b c "How to weld with flux cored wire". MIG Welding - The DIY Guide.
  60. ^ "Gas Vs Gasless Mig Welding, what's the difference". Welder's Warehouse. 4 October 2014.

Bibliography edit

  • American Welding Society (2004). Welding Handbook, Welding Processes, Part 1. Miami: American Welding Society. ISBN 978-0-87171-729-0.
  • Anders, A. (2003). "Tracking down the origin of arc plasma science-II. early continuous discharges" (PDF). IEEE Transactions on Plasma Science. 31 (5): 1060–9. Bibcode:2003ITPS...31.1060A. doi:10.1109/TPS.2003.815477. S2CID 11047670.
  • Cary, Howard B.; Helzer, Scott C. (2005). Modern Welding Technology. Upper Saddle River, New Jersey: Pearson Education. ISBN 978-0-13-113029-6.
  • Craig, Ed (1991). Gas Metal Arc & Flux Cored Welding Parameters. Chicago: Weldtrain. ISBN 978-0-9753621-0-5.
  • Davies, Arthur Cyril (2003). The Science and Practice of Welding. Cambridge University Press. ISBN 978-0-521-43566-6.
  • Jeffus, Larry F. (1997). Welding: Principles and Applications. Cengage Learning. ISBN 978-08-2738-240-4.
  • Kalpakjian, Serope; Schmid, Steven R. (2001). Manufacturing Engineering and Technology. Prentice Hall. ISBN 978-0-201-36131-5.
  • Lincoln Electric (1994). The Procedure Handbook of Arc Welding. Cleveland: Lincoln Electric. ISBN 978-99949-25-82-7.
  • Miller Electric Mfg Co (2012). (PDF). Appleton, WI: Miller Electric Mfg Co. Archived from the original (PDF) on 2015-12-08.
  • Nadzam, Jeff, ed. (1997). Gas Metal Arc Welding Guidelines (PDF). Lincoln Electric.
  • Todd, Robert H.; Allen, Dell K.; Alting, Leo (1994). Manufacturing processes reference guide. New York: Industrial Press. ISBN 978-0-8311-3049-7.
  • Weman, Klas (2003). Welding processes handbook. New York: CRC Press LLC. ISBN 978-0-8493-1773-6.

Further reading edit


External links edit

  • ESAB Process Handbook
  • OSHA Safety and Health Topics- Welding, Cutting, and Brazing
  • Fume formation rates in gas metal arc welding – research article from the 1999 Welding Journal

metal, welding, gmaw, sometimes, referred, subtypes, metal, inert, metal, active, welding, process, which, electric, forms, between, consumable, wire, electrode, workpiece, metal, which, heats, workpiece, metal, causing, them, fuse, melt, join, along, with, wi. Gas metal arc welding GMAW sometimes referred to by its subtypes metal inert gas MIG and metal active gas MAG is a welding process in which an electric arc forms between a consumable MIG wire electrode and the workpiece metal s which heats the workpiece metal s causing them to fuse melt and join Along with the wire electrode a shielding gas feeds through the welding gun which shields the process from atmospheric contamination Gas Metal Arc Welding Mig WeldingThe process can be semi automatic or automatic A constant voltage direct current power source is most commonly used with GMAW but constant current systems as well as alternating current can be used There are four primary methods of metal transfer in GMAW called globular short circuiting spray and pulsed spray each of which has distinct properties and corresponding advantages and limitations Originally developed in the 1940s for welding aluminium and other non ferrous materials GMAW was soon applied to steels because it provided faster welding time compared to other welding processes The cost of inert gas limited its use in steels until several years later when the use of semi inert gases such as carbon dioxide became common Further developments during the 1950s and 1960s gave the process more versatility and as a result it became a highly used industrial process Today GMAW is the most common industrial welding process preferred for its versatility speed and the relative ease of adapting the process to robotic automation Unlike welding processes that do not employ a shielding gas such as shielded metal arc welding it is rarely used outdoors or in other areas of moving air A related process flux cored arc welding often does not use a shielding gas but instead employs an electrode wire that is hollow and filled with flux Contents 1 Development 2 Equipment 2 1 Welding gun and wire feed unit 2 2 Tool style 2 3 Power supply 2 4 Electrode 2 5 Shielding gas 2 6 GMAW based 3 D printing 3 Operation 3 1 Technique 3 2 Quality 3 3 Safety 4 Metal transfer modes 4 1 Globular 4 2 Short circuiting 4 2 1 Cold Metal Transfer 4 3 Spray 4 4 Pulsed spray 5 Comparison with flux cored wire fed arc welding 6 See also 7 References 8 Bibliography 9 Further reading 10 External linksDevelopment editThe principles of gas metal arc welding began to be understood in the early 19th century after Humphry Davy discovered the short pulsed electric arcs in 1800 1 Vasily Petrov independently produced the continuous electric arc in 1802 followed by Davy after 1808 1 It was not until the 1880s that the technology became developed with the aim of industrial usage At first carbon electrodes were used in carbon arc welding By 1890 metal electrodes had been invented by Nikolay Slavyanov and C L Coffin In 1920 an early predecessor of GMAW was invented by P O Nobel of General Electric It used direct current with a bare electrode wire and used arc voltage to regulate the feed rate It did not use a shielding gas to protect the weld as developments in welding atmospheres did not take place until later that decade In 1926 another forerunner of GMAW was released but it was not suitable for practical use 2 In 1948 GMAW was developed by the Battelle Memorial Institute It used a smaller diameter electrode and a constant voltage power source developed by H E Kennedy It offered a high deposition rate but the high cost of inert gases limited its use to non ferrous materials and prevented cost savings In 1953 the use of carbon dioxide as a welding atmosphere was developed and it quickly gained popularity in GMAW since it made welding steel more economical In 1958 and 1959 the short arc variation of GMAW was released which increased welding versatility and made the welding of thin materials possible while relying on smaller electrode wires and more advanced power supplies It quickly became the most popular GMAW variation citation needed The spray arc transfer variation was developed in the early 1960s when experimenters added small amounts of oxygen to inert gases More recently pulsed current has been applied giving rise to a new method called the pulsed spray arc variation 3 GMAW is one of the most popular welding methods especially in industrial environments 4 It is used extensively by the sheet metal industry and the automobile industry There the method is often used for arc spot welding replacing riveting or resistance spot welding It is also popular for automated welding where robots handle the workpieces and the welding gun to accelerate manufacturing 5 GMAW can be difficult to perform well outdoors since drafts can dissipate the shielding gas and allow contaminants into the weld 6 flux cored arc welding is better suited for outdoor use such as in construction 7 8 Likewise GMAW s use of a shielding gas does not lend itself to underwater welding which is more commonly performed via shielded metal arc welding flux cored arc welding or gas tungsten arc welding 9 Equipment editTo perform gas metal arc welding the basic necessary equipment is a welding gun a wire feed unit a welding power supply a welding electrode wire and a shielding gas supply 10 Welding gun and wire feed unit edit nbsp GMAW torch nozzle cutaway image Torch handleMolded phenolic dielectric shown in white and threaded metal nut insert yellow Shielding gas diffuserContact tipNozzle output face nbsp GMAW on stainless steel nbsp Metal inert gas MIG welding stationThe typical GMAW welding gun has a number of key parts a control switch a contact tip a power cable a gas nozzle an electrode conduit and liner and a gas hose The control switch or trigger when pressed by the operator initiates the wire feed electric power and the shielding gas flow causing an electric arc to be struck The contact tip normally made of copper and sometimes chemically treated to reduce spatter is connected to the welding power source through the power cable and transmits the electrical energy to the electrode while directing it to the weld area It must be firmly secured and properly sized since it must allow the electrode to pass while maintaining electrical contact On the way to the contact tip the wire is protected and guided by the electrode conduit and liner which help prevent buckling and maintain an uninterrupted wire feed The gas nozzle directs the shielding gas evenly into the welding zone Inconsistent flow may not adequately protect the weld area Larger nozzles provide greater shielding gas flow which is useful for high current welding operations that develop a larger molten weld pool A gas hose from the tanks of shielding gas supplies the gas to the nozzle Sometimes a water hose is also built into the welding gun cooling the gun in high heat operations 11 The wire feed unit supplies the electrode to the work driving it through the conduit and on to the contact tip Most models provide the wire at a constant feed rate but more advanced machines can vary the feed rate in response to the arc length and voltage Some wire feeders can reach feed rates as high as 30 m min 1200 in min 12 but feed rates for semiautomatic GMAW typically range from 2 to 10 m min 75 400 in min 13 Tool style edit The most common electrode holder is a semiautomatic air cooled holder Compressed air circulates through it to maintain moderate temperatures It is used with lower current levels for welding lap or butt joints The second most common type of electrode holder is semiautomatic water cooled where the only difference is that water takes the place of air It uses higher current levels for welding T or corner joints The third typical holder type is a water cooled automatic electrode holder which is typically used with automated equipment 14 Power supply edit Most applications of gas metal arc welding use a constant voltage power supply As a result any change in arc length which is directly related to voltage results in a large change in heat input and current A shorter arc length causes a much greater heat input which makes the wire electrode melt more quickly and thereby restore the original arc length This helps operators keep the arc length consistent even when manually welding with hand held welding guns To achieve a similar effect sometimes a constant current power source is used in combination with an arc voltage controlled wire feed unit In this case a change in arc length makes the wire feed rate adjust to maintain a relatively constant arc length In rare circumstances a constant current power source and a constant wire feed rate unit might be coupled especially for the welding of metals with high thermal conductivities such as aluminum This grants the operator additional control over the heat input into the weld but requires significant skill to perform successfully 15 Alternating current is rarely used with GMAW instead direct current is employed and the electrode is generally positively charged Since the anode tends to have a greater heat concentration this results in faster melting of the feed wire which increases weld penetration and welding speed The polarity can be reversed only when special emissive coated electrode wires are used but since these are not popular a negatively charged electrode is rarely employed 16 Electrode edit The electrode is a metallic alloy wire called a MIG wire whose selection alloy and size is based primarily on the composition of the metal being welded the process variation being used joint design and the material surface conditions Electrode selection greatly influences the mechanical properties of the weld and is a key factor of weld quality In general the finished weld metal should have mechanical properties similar to those of the base material with no defects such as discontinuities entrained contaminants or porosity within the weld To achieve these goals a wide variety of electrodes exist All commercially available electrodes contain deoxidizing metals such as silicon manganese titanium and aluminum in small percentages to help prevent oxygen porosity Some contain denitriding metals such as titanium and zirconium to avoid nitrogen porosity 17 Depending on the process variation and base material being welded the diameters of the electrodes used in GMAW typically range from 0 7 to 2 4 mm 0 028 0 095 in but can be as large as 4 mm 0 16 in The smallest electrodes generally up to 1 14 mm 0 045 in 18 are associated with the short circuiting metal transfer process while the most common spray transfer process mode electrodes are usually at least 0 9 mm 0 035 in 19 20 Shielding gas edit Main article Shielding gas nbsp GMAW circuit diagram Welding torchWorkpiecePower sourceWire feed unitElectrode sourceShielding gas supplyShielding gases are necessary for gas metal arc welding to protect the welding area from atmospheric gases such as nitrogen and oxygen which can cause fusion defects porosity and weld metal embrittlement if they come in contact with the electrode the arc or the welding metal This problem is common to all arc welding processes for example in the older Shielded Metal Arc Welding process SMAW the electrode is coated with a solid flux which evolves a protective cloud of carbon dioxide when melted by the arc In GMAW however the electrode wire does not have a flux coating and a separate shielding gas is employed to protect the weld This eliminates slag the hard residue from the flux that builds up after welding and must be chipped off to reveal the completed weld 21 The choice of a shielding gas depends on several factors most importantly the type of material being welded and the process variation being used Pure inert gases such as argon and helium are only used for nonferrous welding with steel they do not provide adequate weld penetration argon or cause an erratic arc and encourage spatter with helium Pure carbon dioxide on the other hand allows for deep penetration welds but encourages oxide formation which adversely affects the mechanical properties of the weld lts low cost makes it an attractive choice but because of the reactivity of the arc plasma spatter is unavoidable and welding thin materials is difficult As a result argon and carbon dioxide are frequently mixed in a 75 25 to 90 10 mixture Generally in short circuit GMAW higher carbon dioxide content increases the weld heat and energy when all other weld parameters volts current electrode type and diameter are held the same As the carbon dioxide content increases over 20 spray transfer GMAW becomes increasingly problematic especially with smaller electrode diameters 22 Argon is also commonly mixed with other gases oxygen helium hydrogen and nitrogen The addition of up to 5 oxygen like the higher concentrations of carbon dioxide mentioned above can be helpful in welding stainless steel however in most applications carbon dioxide is preferred 23 Increased oxygen makes the shielding gas oxidize the electrode which can lead to porosity in the deposit if the electrode does not contain sufficient deoxidizers Excessive oxygen especially when used in application for which it is not prescribed can lead to brittleness in the heat affected zone Argon helium mixtures are extremely inert and can be used on nonferrous materials A helium concentration of 50 75 raises the required voltage and increases the heat in the arc due to helium s higher ionization temperature Hydrogen is sometimes added to argon in small concentrations up to about 5 for welding nickel and thick stainless steel workpieces In higher concentrations up to 25 hydrogen it may be used for welding conductive materials such as copper However it should not be used on steel aluminum or magnesium because it can cause porosity and hydrogen embrittlement 21 Shielding gas mixtures of three or more gases are also available Mixtures of argon carbon dioxide and oxygen are marketed for welding steels Other mixtures add a small amount of helium to argon oxygen combinations These mixtures are claimed to allow higher arc voltages and welding speed Helium also sometimes serves as the base gas with small amounts of argon and carbon dioxide added However because it is less dense than air helium is less effective at shielding the weld than argon which is denser than air It also can lead to arc stability and penetration issues and increased spatter due to its much more energetic arc plasma Helium is also substantially more expensive than other shielding gases Other specialized and often proprietary gas mixtures claim even greater benefits for specific applications 21 Despite being poisonous trace amounts of nitric oxide can be used to prevent the even more troublesome ozone from being formed in the arc The desirable rate of shielding gas flow depends primarily on weld geometry speed current the type of gas and the metal transfer mode Welding flat surfaces requires higher flow than welding grooved materials since gas disperses more quickly Faster welding speeds in general mean that more gas must be supplied to provide adequate coverage Additionally higher current requires greater flow and generally more helium is required to provide adequate coverage than if argon is used Perhaps most importantly the four primary variations of GMAW have differing shielding gas flow requirements for the small weld pools of the short circuiting and pulsed spray modes about 10 L min 20 ft3 h is generally suitable whereas for globular transfer around 15 L min 30 ft3 h is preferred The spray transfer variation normally requires more shielding gas flow because of its higher heat input and thus larger weld pool Typical gas flow amounts are approximately 20 25 L min 40 50 ft3 h 13 GMAW based 3 D printing edit GMAW has also been used as a low cost method to 3 D print metal objects 24 25 26 Various open source 3 D printers have been developed to use GMAW 27 Such components fabricated from aluminum compete with more traditionally manufactured components on mechanical strength 28 By forming a bad weld on the first layer GMAW 3 D printed parts can be removed from the substrate with a hammer 29 30 Operation edit nbsp GMAW weld area Direction of travelContact tubeElectrodeShielding gasMolten weld metalSolidified weld metalWorkpieceFor most of its applications gas metal arc welding is a fairly simple welding process to learn requiring no more than a week or two to master basic welding technique Even when welding is performed by well trained operators weld quality can fluctuate since it depends on a number of external factors All GMAW is dangerous though perhaps less so than some other welding methods such as shielded metal arc welding 31 Technique edit GMAW s basic technique is uncomplicated with most individuals able to achieve reasonable proficiency in a few weeks assuming proper training and sufficient practice As much of the process is automated GMAW relieves the welder operator of the burden of maintaining a precise arc length as well as feeding filler metal into the weld puddle coordinated operations that are required in other manual welding processes such as shielded metal arc GMAW requires only that the welder guide the gun with proper position and orientation along the area being welded as well as periodically clean the gun s gas nozzle to remove spatter buildup Additional skill includes knowing how to adjust the welder so the voltage wire feed rate and gas flow rate are correct for the materials being welded and the wire size being employed citation needed Maintaining a relatively constant contact tip to work distance the stick out distance is important Excessive stick out distance may cause the wire electrode to prematurely melt causing a sputtering arc and may also cause the shielding gas to rapidly disperse degrading the quality of the weld In contrast insufficient stick out may increase the rate at which spatter builds up inside the gun s nozzle and in extreme cases may cause damage to the gun s contact tip Stick out distance varies for different GMAW weld processes and applications 32 33 34 35 The orientation of the gun relative to the weldment is also important It should be held so as to bisect the angle between the workpieces that is at 45 degrees for a fillet weld and 90 degrees for welding a flat surface The travel angle or lead angle is the angle of the gun with respect to the direction of travel and it should generally remain approximately vertical 36 However the desirable angle changes somewhat depending on the type of shielding gas used with pure inert gases the bottom of the torch is often slightly in front of the upper section while the opposite is true when the welding atmosphere is carbon dioxide 37 Position welding that is welding vertical or overhead joints may require the use of a weaving technique to assure proper weld deposition and penetration In position welding gravity tends to cause molten metal to run out of the puddle resulting in cratering and undercutting two conditions that produce a weak weld Weaving constantly moves the fusion zone around so as to limit the amount of metal deposited at any one point Surface tension then assists in keeping the molten metal in the puddle until it is able to solidify Development of position welding skill takes some experience but is usually soon mastered citation needed Quality edit Two of the most prevalent quality problems in GMAW are dross and porosity If not controlled they can lead to weaker less ductile welds Dross is an especially common problem in aluminium GMAW welds normally coming from particles of aluminium oxide or aluminum nitride present in the electrode or base materials Electrodes and workpieces must be brushed with a wire brush or chemically treated to remove oxides on the surface Any oxygen in contact with the weld pool whether from the atmosphere or the shielding gas causes dross as well As a result sufficient flow of inert shielding gases is necessary and welding in moving air should be avoided 38 In GMAW the primary cause of porosity is gas entrapment in the weld pool which occurs when the metal solidifies before the gas escapes The gas can come from impurities in the shielding gas or on the workpiece as well as from an excessively long or violent arc Generally the amount of gas entrapped is directly related to the cooling rate of the weld pool Because of its higher thermal conductivity aluminum welds are especially susceptible to greater cooling rates and thus additional porosity To reduce it the workpiece and electrode should be clean the welding speed diminished and the current set high enough to provide sufficient heat input and stable metal transfer but low enough that the arc remains steady Preheating can also help reduce the cooling rate in some cases by reducing the temperature gradient between the weld area and the base metal 39 Safety edit Arc welding in any form can be dangerous if proper precautions are not taken Since GMAW employs an electric arc welders must wear suitable protective clothing including heavy gloves and protective long sleeve jackets to minimize exposure to the arc itself as well as intense heat sparks and hot metal The intense ultraviolet radiation of the arc may cause sunburn like damage to exposed skin as well a condition known as arc eye an inflammation of the cornea or in cases of prolonged exposure irreversible damage to the eye s retina Conventional welding helmets contain dark face plates to prevent this exposure Newer helmet designs feature a liquid crystal type face plate that self darkens upon exposure to the arc Transparent welding curtains made of a polyvinyl chloride plastic film are often used to shield nearby workers and bystanders from exposure to the arc 40 Welders are often exposed to hazardous gases and airborne particulate matter GMAW produces smoke containing particles of various types of oxides and the size of the particles tends to influence the toxicity of the fumes Smaller particles present greater danger Concentrations of carbon dioxide and ozone can prove dangerous if ventilation is inadequate Other precautions include keeping combustible materials away from the workplace and having a working fire extinguisher nearby 41 Metal transfer modes editThe three transfer modes in GMAW are globular short circuiting and spray There are a few recognized variations of these three transfer modes including modified short circuiting and pulsed spray 42 Globular edit GMAW with globular metal transfer is considered the least desirable of the three major GMAW variations because of its tendency to produce high heat a poor weld surface and spatter The method was originally developed as a cost efficient way to weld steel using GMAW because this variation uses carbon dioxide a less expensive shielding gas than argon Adding to its economic advantage was its high deposition rate allowing welding speeds of up to 110 mm s 250 in min 43 As the weld is made a ball of molten metal from the electrode tends to build up on the end of the electrode often in irregular shapes with a larger diameter than the electrode itself When the droplet finally detaches either by gravity or short circuiting it falls to the workpiece leaving an uneven surface and often causing spatter 44 As a result of the large molten droplet the process is generally limited to flat and horizontal welding positions requires thicker workpieces and results in a larger weld pool 45 46 Short circuiting edit Further developments in welding steel with GMAW led to a variation known as short circuit transfer SCT or short arc GMAW in which the current is lower than for the globular method As a result of the lower current the heat input for the short arc variation is considerably reduced making it possible to weld thinner materials while decreasing the amount of distortion and residual stress in the weld area As in globular welding molten droplets form on the tip of the electrode but instead of dropping to the weld pool they bridge the gap between the electrode and the weld pool as a result of the lower wire feed rate This causes a short circuit and extinguishes the arc but it is quickly reignited after the surface tension of the weld pool pulls the molten metal bead off the electrode tip This process is repeated about 100 times per second making the arc appear constant to the human eye This type of metal transfer provides better weld quality and less spatter than the globular variation and allows for welding in all positions albeit with slower deposition of weld material Setting the weld process parameters volts amps and wire feed rate within a relatively narrow band is critical to maintaining a stable arc generally between 100 and 200 amperes at 17 to 22 volts for most applications Also using short arc transfer can result in lack of fusion and insufficient penetration when welding thicker materials due to the lower arc energy and rapidly freezing weld pool 47 Like the globular variation it can only be used on ferrous metals 20 48 49 Cold Metal Transfer edit For thin materials Cold Metal Transfer CMT is used by reducing the current when a short circuit is registered producing many drops per second CMT can be used for aluminum citation needed Spray edit Spray transfer GMAW was the first metal transfer method used in GMAW and well suited to welding aluminium and stainless steel while employing an inert shielding gas In this GMAW process the weld electrode metal is rapidly passed along the stable electric arc from the electrode to the workpiece essentially eliminating spatter and resulting in a high quality weld finish As the current and voltage increases beyond the range of short circuit transfer the weld electrode metal transfer transitions from larger globules through small droplets to a vaporized stream at the highest energies 50 Since this vaporized spray transfer variation of the GMAW weld process requires higher voltage and current than short circuit transfer and as a result of the higher heat input and larger weld pool area for a given weld electrode diameter it is generally used only on workpieces of thicknesses above about 6 4 mm 0 25 in 51 Also because of the large weld pool it is often limited to flat and horizontal welding positions and sometimes also used for vertical down welds It is generally not practical for root pass welds 52 When a smaller electrode is used in conjunction with lower heat input its versatility increases The maximum deposition rate for spray arc GMAW is relatively high about 600 mm s 1500 in min 20 43 53 Pulsed spray edit A variation of the spray transfer mode pulse spray is based on the principles of spray transfer but uses a pulsing current to melt the filler wire and allow one small molten droplet to fall with each pulse The pulses allow the average current to be lower decreasing the overall heat input and thereby decreasing the size of the weld pool and heat affected zone while making it possible to weld thin workpieces The pulse provides a stable arc and no spatter since no short circuiting takes place This also makes the process suitable for nearly all metals and thicker electrode wire can be used as well The smaller weld pool gives the variation greater versatility making it possible to weld in all positions In comparison with short arc GMAW this method has a somewhat slower maximum speed 85 mm s or 200 in min and the process also requires that the shielding gas be primarily argon with a low carbon dioxide concentration Additionally it requires a special power source capable of providing current pulses with a frequency between 30 and 400 pulses per second However the method has gained popularity since it requires lower heat input and can be used to weld thin workpieces as well as nonferrous materials 20 54 55 56 Comparison with flux cored wire fed arc welding editMain article Flux cored arc welding Flux cored self shielding or gasless wire fed welding had been developed for simplicity and portability 57 This avoids the gas system of conventional GMAW and uses a cored wire containing a solid flux This flux vaporises during welding and produces a plume of shielding gas Although described as a flux this compound has little activity and acts mostly as an inert shield The wire is of slightly larger diameter than for a comparable gas shielded weld to allow room for the flux The smallest available is 0 8 mm diameter compared to 0 6 mm for solid wire The shield vapor is slightly active rather than inert so the process is always MAGS but not MIG inert gas shield This limits the process to steel and not aluminium citation needed These gasless machines operate as DCEN rather than the DCEP usually used for GMAW solid wire 57 DCEP or DC Electrode Positive makes the welding wire into the positively charged anode which is the hotter side of the arc 58 Provided that it is switchable from DCEN to DCEP a gas shielded wire feed machine may also be used for flux cored wire citation needed Flux cored wire is considered to have some advantages for outdoor welding on site as the shielding gas plume is less likely to be blown away in a wind than shield gas from a conventional nozzle 59 60 A slight drawback is that like SMAW stick welding there may be some flux deposited over the weld bead requiring more of a cleaning process between passes 59 Flux cored welding machines are most popular at the hobbyist level as the machines are slightly simpler but mainly because they avoid the cost of providing shield gas either through a rented cylinder or with the high cost of disposable cylinders 59 See also editFlux cored arc welding List of welding processesReferences edit a b Anders 2003 pp 1060 9 Cary amp Helzer 2005 p 7 Cary amp Helzer 2005 pp 8 9 Jeffus 1997 p 6 Kalpakjian amp Schmid 2001 p 783 Davies 2003 p 174 Jeffus 1997 p 264 Davies 2003 p 118 Davies 2003 p 253 Miller Electric Mfg Co 2012 p 5 Nadzam 1997 pp 5 6 Nadzam 1997 p 6 a b Cary amp Helzer 2005 pp 123 5 Todd Allen amp Alting 1994 pp 351 355 Nadzam 1997 p 1 Cary amp Helzer 2005 pp 118 9 Nadzam 1997 p 15 Craig 1991 p 22 Craig 1991 p 105 a b c d Cary amp Helzer 2005 p 121 a b c Cary amp Helzer 2005 pp 357 9 Craig 1991 p 96 Craig 1991 pp 40 1 Loose screw 3 D printer may soon forge you a new one http www nbcnews com technology loose screw 3 d printer may soon forge you new 2D11678840 You Can Now 3D Print with Metal at Home You Can Now 3D Print with Metal at Home Motherboard Archived from the original on 2016 08 16 Retrieved 2016 08 16 Gerald C Anzalone Chenlong Zhang Bas Wijnen Paul G Sanders and Joshua M Pearce Low Cost Open Source 3 D Metal Printing IEEE Access 1 pp 803 810 2013 doi 10 1109 ACCESS 2013 2293018 Yuenyong Nilsiam Amberlee Haselhuhn Bas Wijnen Paul Sanders amp Joshua M Pearce Integrated Voltage Current Monitoring and Control of Gas Metal Arc Weld Magnetic Ball Jointed Open Source 3 D Printer Machines 3 4 339 351 2015 doi 10 3390 machines3040339 Amberlee S Haselhuhn Michael W Buhr Bas Wijnen Paul G Sanders Joshua M Pearce Structure Property Relationships of Common Aluminum Weld Alloys Utilized as Feedstock for GMAW based 3 D Metal Printing Materials Science and Engineering A 673 pp 511 523 2016 DOI 10 1016 j msea 2016 07 099 Amberlee S Haselhuhn Bas Wijnen Gerald C Anzalone Paul G Sanders Joshua M Pearce In Situ Formation of Substrate Release Mechanisms for Gas Metal Arc Weld Metal 3 D Printing Journal of Materials Processing Technology 226 pp 50 59 2015 Amberlee S Haselhuhn Eli J Gooding Alexandra G Glover Gerald C Anzalone Bas Wijnen Paul G Sanders Joshua M Pearce Substrate Release Mechanisms for Gas Metal Arc 3 D Aluminum Metal Printing 3D Printing and Additive Manufacturing 1 4 204 209 2014 DOI 10 1089 3dp 2014 0015 Cary amp Helzer 2005 p 126 Craig 1991 p 29 Craig 1991 p 52 Craig 1991 p 109 Craig 1991 p 141 Variables that Affect Weld Penetration Lincoln Electric Retrieved August 20 2018 Cary amp Helzer 2005 p 125 Lincoln Electric 1994 9 3 5 9 3 6 Lincoln Electric 1994 9 3 1 9 3 2 Cary amp Helzer 2005 p 42 Cary amp Helzer 2005 pp 52 62 American Welding Society 2004 p 150 a b Cary amp Helzer 2005 p 117 Weman 2003 p 50 Miller Electric Mfg Co 2012 p 14 Nadzam 1997 p 8 Craig 1991 p 11 Cary amp Helzer 2005 p 98 Weman 2003 pp 49 50 Craig 1991 p 82 Craig 1991 p 90 Craig 1991 p 98 Cary amp Helzer 2005 p 96 Cary amp Helzer 2005 p 99 Cary amp Helzer 2005 p 118 American Welding Society 2004 p 154 a b Greg Holster Gasless wire welding is a breeze PDF pp 64 68 Welding Metallurgy Arc Physics and Weld Pool Behaviour PDF Canteach a b c How to weld with flux cored wire MIG Welding The DIY Guide Gas Vs Gasless Mig Welding what s the difference Welder s Warehouse 4 October 2014 Bibliography editAmerican Welding Society 2004 Welding Handbook Welding Processes Part 1 Miami American Welding Society ISBN 978 0 87171 729 0 Anders A 2003 Tracking down the origin of arc plasma science II early continuous discharges PDF IEEE Transactions on Plasma Science 31 5 1060 9 Bibcode 2003ITPS 31 1060A doi 10 1109 TPS 2003 815477 S2CID 11047670 Cary Howard B Helzer Scott C 2005 Modern Welding Technology Upper Saddle River New Jersey Pearson Education ISBN 978 0 13 113029 6 Craig Ed 1991 Gas Metal Arc amp Flux Cored Welding Parameters Chicago Weldtrain ISBN 978 0 9753621 0 5 Davies Arthur Cyril 2003 The Science and Practice of Welding Cambridge University Press ISBN 978 0 521 43566 6 Jeffus Larry F 1997 Welding Principles and Applications Cengage Learning ISBN 978 08 2738 240 4 Kalpakjian Serope Schmid Steven R 2001 Manufacturing Engineering and Technology Prentice Hall ISBN 978 0 201 36131 5 Lincoln Electric 1994 The Procedure Handbook of Arc Welding Cleveland Lincoln Electric ISBN 978 99949 25 82 7 Miller Electric Mfg Co 2012 Guidelines For Gas Metal Arc Welding GMAW PDF Appleton WI Miller Electric Mfg Co Archived from the original PDF on 2015 12 08 Nadzam Jeff ed 1997 Gas Metal Arc Welding Guidelines PDF Lincoln Electric Todd Robert H Allen Dell K Alting Leo 1994 Manufacturing processes reference guide New York Industrial Press ISBN 978 0 8311 3049 7 Weman Klas 2003 Welding processes handbook New York CRC Press LLC ISBN 978 0 8493 1773 6 Further reading editBlunt Jane Balchin Nigel C 2002 Health and Safety in Welding and Allied Processes Cambridge UK Woodhead ISBN 978 1 85573 538 5 Hicks John 1999 Welded Joint Design Industrial Press ISBN 978 0 8311 3130 2 Minnick William H 2007 Gas Metal Arc Welding Handbook Textbook Tinley Park Goodheart Willcox ISBN 978 1 59070 866 8 Trends in Welding Research Materials Park Ohio ASM International 2003 ISBN 978 0 87170 780 2 External links edit nbsp Wikimedia Commons has media related to Gas metal arc welding ESAB Process Handbook OSHA Safety and Health Topics Welding Cutting and Brazing Fume formation rates in gas metal arc welding research article from the 1999 Welding Journal 1 Retrieved from https en wikipedia org w index php title Gas metal arc welding amp oldid 1178718213, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.