fbpx
Wikipedia

Lerch zeta function

In mathematics, the Lerch zeta function, sometimes called the Hurwitz–Lerch zeta function, is a special function that generalizes the Hurwitz zeta function and the polylogarithm. It is named after Czech mathematician Mathias Lerch, who published a paper about the function in 1887.[1]

Definition edit

The Lerch zeta function is given by

 

A related function, the Lerch transcendent, is given by

 .

The transcendent only converges for any real number  , where:

 , or

 , and  .[2]

The two are related, as

 

Integral representations edit

The Lerch transcendent has an integral representation:

 

The proof is based on using the integral definition of the Gamma function to write

 

and then interchanging the sum and integral. The resulting integral representation converges for   Re(s) > 0, and Re(a) > 0. This analytically continues   to z outside the unit disk. The integral formula also holds if z = 1, Re(s) > 1, and Re(a) > 0; see Hurwitz zeta function.[3][4]

A contour integral representation is given by

 

where C is a Hankel contour counterclockwise around the positive real axis, not enclosing any of the points   (for integer k) which are poles of the integrand. The integral assumes Re(a) > 0.[5]

Other integral representations edit

A Hermite-like integral representation is given by

 

for

 

and

 

for

 

Similar representations include

 

and

 

holding for positive z (and more generally wherever the integrals converge). Furthermore,

 

The last formula is also known as Lipschitz formula.

Special cases edit

The Lerch zeta function and Lerch transcendent generalize various special functions.

The Hurwitz zeta function is the special case[6]

 

The polylogarithm is another special case:[6]

 

The Riemann zeta function is a special case of both of the above:[6]

 

Other special cases include:

 
 
 
 

Identities edit

For λ rational, the summand is a root of unity, and thus   may be expressed as a finite sum over the Hurwitz zeta function. Suppose   with   and  . Then   and  .

 

Various identities include:

 

and

 

and

 

Series representations edit

A series representation for the Lerch transcendent is given by

 

(Note that   is a binomial coefficient.)

The series is valid for all s, and for complex z with Re(z)<1/2. Note a general resemblance to a similar series representation for the Hurwitz zeta function.[7]

A Taylor series in the first parameter was given by Arthur Erdélyi. It may be written as the following series, which is valid for[8]

 
 

If n is a positive integer, then

 

where   is the digamma function.

A Taylor series in the third variable is given by

 

where   is the Pochhammer symbol.

Series at a = −n is given by

 

A special case for n = 0 has the following series

 

where   is the polylogarithm.

An asymptotic series for  

 

for   and

 

for  

An asymptotic series in the incomplete gamma function

 

for  

The representation as a generalized hypergeometric function is[9]

 

Asymptotic expansion edit

The polylogarithm function   is defined as

 

Let

 

For   and  , an asymptotic expansion of   for large   and fixed   and   is given by

 

for  , where   is the Pochhammer symbol.[10]

Let

 

Let   be its Taylor coefficients at  . Then for fixed   and  ,

 

as  .[11]

Software edit

The Lerch transcendent is implemented as LerchPhi in Maple and Mathematica, and as lerchphi in mpmath and SymPy.

References edit

  1. ^ Lerch, Mathias (1887), "Note sur la fonction  ", Acta Mathematica (in French), 11 (1–4): 19–24, doi:10.1007/BF02612318, JFM 19.0438.01, MR 1554747, S2CID 121885446
  2. ^ https://arxiv.org/pdf/math/0506319.pdf
  3. ^ Bateman & Erdélyi 1953, p. 27
  4. ^ Guillera & Sondow 2008, Lemma 2.1 and 2.2
  5. ^ Bateman & Erdélyi 1953, p. 28
  6. ^ a b c d e f Guillera & Sondow 2008, p. 248–249
  7. ^ "The Analytic Continuation of the Lerch Transcendent and the Riemann Zeta Function". 27 April 2020. Retrieved 28 April 2020.
  8. ^ B. R. Johnson (1974). "Generalized Lerch zeta function". Pacific J. Math. 53 (1): 189–193. doi:10.2140/pjm.1974.53.189.
  9. ^ Gottschalk, J. E.; Maslen, E. N. (1988). "Reduction formulae for generalized hypergeometric functions of one variable". J. Phys. A. 21 (9): 1983–1998. Bibcode:1988JPhA...21.1983G. doi:10.1088/0305-4470/21/9/015.
  10. ^ Ferreira, Chelo; López, José L. (October 2004). "Asymptotic expansions of the Hurwitz–Lerch zeta function". Journal of Mathematical Analysis and Applications. 298 (1): 210–224. doi:10.1016/j.jmaa.2004.05.040.
  11. ^ Cai, Xing Shi; López, José L. (10 June 2019). "A note on the asymptotic expansion of the Lerch's transcendent". Integral Transforms and Special Functions. 30 (10): 844–855. arXiv:1806.01122. doi:10.1080/10652469.2019.1627530. S2CID 119619877.

External links edit

  • Aksenov, Sergej V.; Jentschura, Ulrich D. (2002), C and Mathematica Programs for Calculation of Lerch's Transcendent.
  • Ramunas Garunkstis, Home Page (2005) (Provides numerous references and preprints.)
  • Garunkstis, Ramunas (2004). "Approximation of the Lerch Zeta Function" (PDF). Lithuanian Mathematical Journal. 44 (2): 140–144. doi:10.1023/B:LIMA.0000033779.41365.a5. S2CID 123059665.
  • Kanemitsu, S.; Tanigawa, Y.; Tsukada, H. (2015). "A generalization of Bochner's formula". Kanemitsu, S.; Tanigawa, Y.; Tsukada, H. (2004). "A generalization of Bochner's formula". Hardy-Ramanujan Journal. 27. doi:10.46298/hrj.2004.150.
  • Weisstein, Eric W. "Lerch Transcendent". MathWorld.
  • Olver, Frank W. J.; Lozier, Daniel M.; Boisvert, Ronald F.; Clark, Charles W., eds. (2010), "Lerch's Transcendent", NIST Handbook of Mathematical Functions, Cambridge University Press, ISBN 978-0-521-19225-5, MR 2723248.

lerch, zeta, function, mathematics, sometimes, called, hurwitz, special, function, that, generalizes, hurwitz, zeta, function, polylogarithm, named, after, czech, mathematician, mathias, lerch, published, paper, about, function, 1887, contents, definition, int. In mathematics the Lerch zeta function sometimes called the Hurwitz Lerch zeta function is a special function that generalizes the Hurwitz zeta function and the polylogarithm It is named after Czech mathematician Mathias Lerch who published a paper about the function in 1887 1 Contents 1 Definition 2 Integral representations 2 1 Other integral representations 3 Special cases 4 Identities 5 Series representations 6 Asymptotic expansion 7 Software 8 References 9 External linksDefinition editThe Lerch zeta function is given by L l s a n 0 e 2 p i l n n a s displaystyle L lambda s alpha sum n 0 infty frac e 2 pi i lambda n n alpha s nbsp A related function the Lerch transcendent is given by F z s a n 0 z n n a s displaystyle Phi z s alpha sum n 0 infty frac z n n alpha s nbsp The transcendent only converges for any real number a gt 0 displaystyle alpha gt 0 nbsp where z lt 1 displaystyle z lt 1 nbsp orR s gt 1 displaystyle mathfrak R s gt 1 nbsp and z 1 displaystyle z 1 nbsp 2 The two are related as F e 2 p i l s a L l s a displaystyle Phi e 2 pi i lambda s alpha L lambda s alpha nbsp Integral representations editThe Lerch transcendent has an integral representation F z s a 1 G s 0 t s 1 e a t 1 z e t d t displaystyle Phi z s a frac 1 Gamma s int 0 infty frac t s 1 e at 1 ze t dt nbsp The proof is based on using the integral definition of the Gamma function to write F z s a G s n 0 z n n a s 0 x s e x d x x n 0 0 t s z n e n a t d t t displaystyle Phi z s a Gamma s sum n 0 infty frac z n n a s int 0 infty x s e x frac dx x sum n 0 infty int 0 infty t s z n e n a t frac dt t nbsp and then interchanging the sum and integral The resulting integral representation converges for z C 1 displaystyle z in mathbb C setminus 1 infty nbsp Re s gt 0 and Re a gt 0 This analytically continues F z s a displaystyle Phi z s a nbsp to z outside the unit disk The integral formula also holds if z 1 Re s gt 1 and Re a gt 0 see Hurwitz zeta function 3 4 A contour integral representation is given by F z s a G 1 s 2 p i C t s 1 e a t 1 z e t d t displaystyle Phi z s a frac Gamma 1 s 2 pi i int C frac t s 1 e at 1 ze t dt nbsp where C is a Hankel contour counterclockwise around the positive real axis not enclosing any of the points t log z 2 k p i displaystyle t log z 2k pi i nbsp for integer k which are poles of the integrand The integral assumes Re a gt 0 5 Other integral representations edit A Hermite like integral representation is given by F z s a 1 2 a s 0 z t a t s d t 2 a s 1 0 sin s arctan t t a log z 1 t 2 s 2 e 2 p a t 1 d t displaystyle Phi z s a frac 1 2a s int 0 infty frac z t a t s dt frac 2 a s 1 int 0 infty frac sin s arctan t ta log z 1 t 2 s 2 e 2 pi at 1 dt nbsp for ℜ a gt 0 z lt 1 displaystyle Re a gt 0 wedge z lt 1 nbsp and F z s a 1 2 a s log s 1 1 z z a G 1 s a log 1 z 2 a s 1 0 sin s arctan t t a log z 1 t 2 s 2 e 2 p a t 1 d t displaystyle Phi z s a frac 1 2a s frac log s 1 1 z z a Gamma 1 s a log 1 z frac 2 a s 1 int 0 infty frac sin s arctan t ta log z 1 t 2 s 2 e 2 pi at 1 dt nbsp for ℜ a gt 0 displaystyle Re a gt 0 nbsp Similar representations include F z s a 1 2 a s 0 cos t log z sin s arctan t a sin t log z cos s arctan t a a 2 t 2 s 2 tanh p t d t displaystyle Phi z s a frac 1 2a s int 0 infty frac cos t log z sin Big s arctan tfrac t a Big sin t log z cos Big s arctan tfrac t a Big big a 2 t 2 big frac s 2 tanh pi t dt nbsp and F z s a 1 2 a s 0 cos t log z sin s arctan t a sin t log z cos s arctan t a a 2 t 2 s 2 sinh p t d t displaystyle Phi z s a frac 1 2a s int 0 infty frac cos t log z sin Big s arctan tfrac t a Big sin t log z cos Big s arctan tfrac t a Big big a 2 t 2 big frac s 2 sinh pi t dt nbsp holding for positive z and more generally wherever the integrals converge Furthermore F e i f s a L f 2 p s a 1 a s 1 2 G s 0 t s 1 e a t e i f e t cosh t cos f d t displaystyle Phi e i varphi s a L big tfrac varphi 2 pi s a big frac 1 a s frac 1 2 Gamma s int 0 infty frac t s 1 e at big e i varphi e t big cosh t cos varphi dt nbsp The last formula is also known as Lipschitz formula Special cases editThe Lerch zeta function and Lerch transcendent generalize various special functions The Hurwitz zeta function is the special case 6 z s a L 0 s a F 1 s a n 0 1 n a s displaystyle zeta s alpha L 0 s alpha Phi 1 s alpha sum n 0 infty frac 1 n alpha s nbsp The polylogarithm is another special case 6 Li s z z F z s 1 n 1 z n n s displaystyle textrm Li s z z Phi z s 1 sum n 1 infty frac z n n s nbsp The Riemann zeta function is a special case of both of the above 6 z s F 1 s 1 n 1 1 n s displaystyle zeta s Phi 1 s 1 sum n 1 infty frac 1 n s nbsp Other special cases include The Dirichlet eta function 6 h s F 1 s 1 n 1 1 n 1 n s displaystyle eta s Phi 1 s 1 sum n 1 infty frac 1 n 1 n s nbsp dd The Dirichlet beta function 6 b s 2 s F 1 s 1 2 k 0 1 k 2 k 1 s displaystyle beta s 2 s Phi 1 s 1 2 sum k 0 infty frac 1 k 2k 1 s nbsp dd The Legendre chi function 6 x s z 2 s z F z 2 s 1 2 k 0 z 2 k 1 2 k 1 s displaystyle chi s z 2 s z Phi z 2 s 1 2 sum k 0 infty frac z 2k 1 2k 1 s nbsp dd The polygamma function citation needed ps n a 1 n 1 n F 1 n 1 a displaystyle psi n alpha 1 n 1 n Phi 1 n 1 alpha nbsp dd Identities editFor l rational the summand is a root of unity and thus L l s a displaystyle L lambda s alpha nbsp may be expressed as a finite sum over the Hurwitz zeta function Suppose l p q textstyle lambda frac p q nbsp with p q Z displaystyle p q in mathbb Z nbsp and q gt 0 displaystyle q gt 0 nbsp Then z w e 2 p i p q displaystyle z omega e 2 pi i frac p q nbsp and w q 1 displaystyle omega q 1 nbsp F w s a n 0 w n n a s m 0 q 1 n 0 w q n m q n m a s m 0 q 1 w m q s z s m a q displaystyle Phi omega s alpha sum n 0 infty frac omega n n alpha s sum m 0 q 1 sum n 0 infty frac omega qn m qn m alpha s sum m 0 q 1 omega m q s zeta left s frac m alpha q right nbsp Various identities include F z s a z n F z s a n k 0 n 1 z k k a s displaystyle Phi z s a z n Phi z s a n sum k 0 n 1 frac z k k a s nbsp and F z s 1 a a z z F z s a displaystyle Phi z s 1 a left a z frac partial partial z right Phi z s a nbsp and F z s 1 a 1 s a F z s a displaystyle Phi z s 1 a frac 1 s frac partial partial a Phi z s a nbsp Series representations editA series representation for the Lerch transcendent is given by F z s q 1 1 z n 0 z 1 z n k 0 n 1 k n k q k s displaystyle Phi z s q frac 1 1 z sum n 0 infty left frac z 1 z right n sum k 0 n 1 k binom n k q k s nbsp Note that n k displaystyle tbinom n k nbsp is a binomial coefficient The series is valid for all s and for complex z with Re z lt 1 2 Note a general resemblance to a similar series representation for the Hurwitz zeta function 7 A Taylor series in the first parameter was given by Arthur Erdelyi It may be written as the following series which is valid for 8 log z lt 2 p s 1 2 3 a 0 1 2 displaystyle left log z right lt 2 pi s neq 1 2 3 dots a neq 0 1 2 dots nbsp F z s a z a G 1 s log z s 1 k 0 z s k a log k z k displaystyle Phi z s a z a left Gamma 1 s left log z right s 1 sum k 0 infty zeta s k a frac log k z k right nbsp If n is a positive integer then F z n a z a k 0 k n 1 z n k a log k z k ps n ps a log log z log n 1 z n 1 displaystyle Phi z n a z a left sum k 0 atop k neq n 1 infty zeta n k a frac log k z k left psi n psi a log log z right frac log n 1 z n 1 right nbsp where ps n displaystyle psi n nbsp is the digamma function A Taylor series in the third variable is given by F z s a x k 0 F z s k a s k x k k x lt ℜ a displaystyle Phi z s a x sum k 0 infty Phi z s k a s k frac x k k x lt Re a nbsp where s k displaystyle s k nbsp is the Pochhammer symbol Series at a n is given by F z s a k 0 n z k a k s z n m 0 1 m s m Li s m z a n m m a n displaystyle Phi z s a sum k 0 n frac z k a k s z n sum m 0 infty 1 m s m operatorname Li s m z frac a n m m a rightarrow n nbsp A special case for n 0 has the following series F z s a 1 a s m 0 1 m s m Li s m z a m m a lt 1 displaystyle Phi z s a frac 1 a s sum m 0 infty 1 m s m operatorname Li s m z frac a m m a lt 1 nbsp where Li s z displaystyle operatorname Li s z nbsp is the polylogarithm An asymptotic series for s displaystyle s rightarrow infty nbsp F z s a z a G 1 s k 2 k p i log z s 1 e 2 k p a i displaystyle Phi z s a z a Gamma 1 s sum k infty infty 2k pi i log z s 1 e 2k pi ai nbsp for a lt 1 ℜ s lt 0 z 0 displaystyle a lt 1 Re s lt 0 z notin infty 0 nbsp and F z s a z a G 1 s k 2 k 1 p i log z s 1 e 2 k 1 p a i displaystyle Phi z s a z a Gamma 1 s sum k infty infty 2k 1 pi i log z s 1 e 2k 1 pi ai nbsp for a lt 1 ℜ s lt 0 z 0 displaystyle a lt 1 Re s lt 0 z notin 0 infty nbsp An asymptotic series in the incomplete gamma function F z s a 1 2 a s 1 z a k 1 e 2 p i k 1 a G 1 s a 2 p i k 1 log z 2 p i k 1 log z 1 s e 2 p i k a G 1 s a 2 p i k log z 2 p i k log z 1 s displaystyle Phi z s a frac 1 2a s frac 1 z a sum k 1 infty frac e 2 pi i k 1 a Gamma 1 s a 2 pi i k 1 log z 2 pi i k 1 log z 1 s frac e 2 pi ika Gamma 1 s a 2 pi ik log z 2 pi ik log z 1 s nbsp for a lt 1 ℜ s lt 0 displaystyle a lt 1 Re s lt 0 nbsp The representation as a generalized hypergeometric function is 9 F z s a 1 a s s 1 F s 1 a a a 1 a 1 a 1 a z displaystyle Phi z s alpha frac 1 alpha s s 1 F s left begin array c 1 alpha alpha alpha cdots 1 alpha 1 alpha 1 alpha cdots end array mid z right nbsp Asymptotic expansion editThe polylogarithm function L i n z displaystyle mathrm Li n z nbsp is defined as L i 0 z z 1 z L i n z z d d z L i 1 n z displaystyle mathrm Li 0 z frac z 1 z qquad mathrm Li n z z frac d dz mathrm Li 1 n z nbsp Let W a C 1 if ℜ a gt 0 z C z lt 1 if ℜ a 0 displaystyle Omega a equiv begin cases mathbb C setminus 1 infty amp text if Re a gt 0 z in mathbb C z lt 1 amp text if Re a leq 0 end cases nbsp For A r g a lt p s C displaystyle mathrm Arg a lt pi s in mathbb C nbsp and z W a displaystyle z in Omega a nbsp an asymptotic expansion of F z s a displaystyle Phi z s a nbsp for large a displaystyle a nbsp and fixed s displaystyle s nbsp and z displaystyle z nbsp is given by F z s a 1 1 z 1 a s n 1 N 1 1 n L i n z n s n a n s O a N s displaystyle Phi z s a frac 1 1 z frac 1 a s sum n 1 N 1 frac 1 n mathrm Li n z n frac s n a n s O a N s nbsp for N N displaystyle N in mathbb N nbsp where s n s s 1 s n 1 displaystyle s n s s 1 cdots s n 1 nbsp is the Pochhammer symbol 10 Let f z x a 1 z e x 1 a 1 z e x displaystyle f z x a equiv frac 1 ze x 1 a 1 ze x nbsp Let C n z a displaystyle C n z a nbsp be its Taylor coefficients at x 0 displaystyle x 0 nbsp Then for fixed N N ℜ a gt 1 displaystyle N in mathbb N Re a gt 1 nbsp and ℜ s gt 0 displaystyle Re s gt 0 nbsp F z s a L i s z z a n 0 N 1 C n z a s n a n s O ℜ a 1 N s a z ℜ a displaystyle Phi z s a frac mathrm Li s z z a sum n 0 N 1 C n z a frac s n a n s O left Re a 1 N s az Re a right nbsp as ℜ a displaystyle Re a to infty nbsp 11 Software editThe Lerch transcendent is implemented as LerchPhi in Maple and Mathematica and as lerchphi in mpmath and SymPy References edit Lerch Mathias 1887 Note sur la fonction K w x s k 0 e 2 k p i x w k s displaystyle scriptstyle mathfrak K w x s sum k 0 infty e 2k pi ix over w k s nbsp Acta Mathematica in French 11 1 4 19 24 doi 10 1007 BF02612318 JFM 19 0438 01 MR 1554747 S2CID 121885446 https arxiv org pdf math 0506319 pdf Bateman amp Erdelyi 1953 p 27 Guillera amp Sondow 2008 Lemma 2 1 and 2 2 Bateman amp Erdelyi 1953 p 28 a b c d e f Guillera amp Sondow 2008 p 248 249 The Analytic Continuation of the Lerch Transcendent and the Riemann Zeta Function 27 April 2020 Retrieved 28 April 2020 B R Johnson 1974 Generalized Lerch zeta function Pacific J Math 53 1 189 193 doi 10 2140 pjm 1974 53 189 Gottschalk J E Maslen E N 1988 Reduction formulae for generalized hypergeometric functions of one variable J Phys A 21 9 1983 1998 Bibcode 1988JPhA 21 1983G doi 10 1088 0305 4470 21 9 015 Ferreira Chelo Lopez Jose L October 2004 Asymptotic expansions of the Hurwitz Lerch zeta function Journal of Mathematical Analysis and Applications 298 1 210 224 doi 10 1016 j jmaa 2004 05 040 Cai Xing Shi Lopez Jose L 10 June 2019 A note on the asymptotic expansion of the Lerch s transcendent Integral Transforms and Special Functions 30 10 844 855 arXiv 1806 01122 doi 10 1080 10652469 2019 1627530 S2CID 119619877 Apostol T M 2010 Lerch s Transcendent in Olver Frank W J Lozier Daniel M Boisvert Ronald F Clark Charles W eds NIST Handbook of Mathematical Functions Cambridge University Press ISBN 978 0 521 19225 5 MR 2723248 Bateman H Erdelyi A 1953 Higher Transcendental Functions Vol I PDF New York McGraw Hill See 1 11 The function PS z s v p 27 Gradshteyn Izrail Solomonovich Ryzhik Iosif Moiseevich Geronimus Yuri Veniaminovich Tseytlin Michail Yulyevich Jeffrey Alan 2015 October 2014 9 55 In Zwillinger Daniel Moll Victor Hugo eds Table of Integrals Series and Products Translated by Scripta Technica Inc 8 ed Academic Press ISBN 978 0 12 384933 5 LCCN 2014010276 Guillera Jesus Sondow Jonathan 2008 Double integrals and infinite products for some classical constants via analytic continuations of Lerch s transcendent The Ramanujan Journal 16 3 247 270 arXiv math NT 0506319 doi 10 1007 s11139 007 9102 0 MR 2429900 S2CID 119131640 Includes various basic identities in the introduction Jackson M 1950 On Lerch s transcendent and the basic bilateral hypergeometric series 2ps2 J London Math Soc 25 3 189 196 doi 10 1112 jlms s1 25 3 189 MR 0036882 Johansson F Blagouchine Ia 2019 Computing Stieltjes constants using complex integration Mathematics of Computation 88 318 1829 1850 arXiv 1804 01679 doi 10 1090 mcom 3401 MR 3925487 S2CID 4619883 Laurincikas Antanas Garunkstis Ramunas 2002 The Lerch zeta function Dordrecht Kluwer Academic Publishers ISBN 978 1 4020 1014 9 MR 1979048 External links editAksenov Sergej V Jentschura Ulrich D 2002 C and Mathematica Programs for Calculation of Lerch s Transcendent Ramunas Garunkstis Home Page 2005 Provides numerous references and preprints Garunkstis Ramunas 2004 Approximation of the Lerch Zeta Function PDF Lithuanian Mathematical Journal 44 2 140 144 doi 10 1023 B LIMA 0000033779 41365 a5 S2CID 123059665 Kanemitsu S Tanigawa Y Tsukada H 2015 A generalization of Bochner s formula Kanemitsu S Tanigawa Y Tsukada H 2004 A generalization of Bochner s formula Hardy Ramanujan Journal 27 doi 10 46298 hrj 2004 150 Weisstein Eric W Lerch Transcendent MathWorld Olver Frank W J Lozier Daniel M Boisvert Ronald F Clark Charles W eds 2010 Lerch s Transcendent NIST Handbook of Mathematical Functions Cambridge University Press ISBN 978 0 521 19225 5 MR 2723248 Retrieved from https en wikipedia org w index php title Lerch zeta function amp oldid 1220526429, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.