fbpx
Wikipedia

Wigner D-matrix

The Wigner D-matrix is a unitary matrix in an irreducible representation of the groups SU(2) and SO(3). It was introduced in 1927 by Eugene Wigner, and plays a fundamental role in the quantum mechanical theory of angular momentum. The complex conjugate of the D-matrix is an eigenfunction of the Hamiltonian of spherical and symmetric rigid rotors. The letter D stands for Darstellung, which means "representation" in German.

Definition of the Wigner D-matrix edit

Let Jx, Jy, Jz be generators of the Lie algebra of SU(2) and SO(3). In quantum mechanics, these three operators are the components of a vector operator known as angular momentum. Examples are the angular momentum of an electron in an atom, electronic spin, and the angular momentum of a rigid rotor.

In all cases, the three operators satisfy the following commutation relations,

 

where i is the purely imaginary number and Planck's constant ħ has been set equal to one. The Casimir operator

 

commutes with all generators of the Lie algebra. Hence, it may be diagonalized together with Jz.

This defines the spherical basis used here. That is, there is a complete set of kets (i.e. orthonormal basis of joint eigenvectors labelled by quantum numbers that define the eigenvalues) with

 

where j = 0, 1/2, 1, 3/2, 2, ... for SU(2), and j = 0, 1, 2, ... for SO(3). In both cases, m = −j, −j + 1, ..., j.

A 3-dimensional rotation operator can be written as

 

where α, β, γ are Euler angles (characterized by the keywords: z-y-z convention, right-handed frame, right-hand screw rule, active interpretation).

The Wigner D-matrix is a unitary square matrix of dimension 2j + 1 in this spherical basis with elements

 

where

 

is an element of the orthogonal Wigner's (small) d-matrix.

That is, in this basis,

 

is diagonal, like the γ matrix factor, but unlike the above β factor.

Wigner (small) d-matrix edit

Wigner gave the following expression:[1]

 

The sum over s is over such values that the factorials are nonnegative, i.e.  ,  .

Note: The d-matrix elements defined here are real. In the often-used z-x-z convention of Euler angles, the factor   in this formula is replaced by   causing half of the functions to be purely imaginary. The realness of the d-matrix elements is one of the reasons that the z-y-z convention, used in this article, is usually preferred in quantum mechanical applications.

The d-matrix elements are related to Jacobi polynomials   with nonnegative   and  [2] Let

 

If

 

Then, with   the relation is

 

where  

Properties of the Wigner D-matrix edit

The complex conjugate of the D-matrix satisfies a number of differential properties that can be formulated concisely by introducing the following operators with  

 

which have quantum mechanical meaning: they are space-fixed rigid rotor angular momentum operators.

Further,

 

which have quantum mechanical meaning: they are body-fixed rigid rotor angular momentum operators.

The operators satisfy the commutation relations

 

and the corresponding relations with the indices permuted cyclically. The   satisfy anomalous commutation relations (have a minus sign on the right hand side).

The two sets mutually commute,

 

and the total operators squared are equal,

 

Their explicit form is,

 

The operators   act on the first (row) index of the D-matrix,

 

The operators   act on the second (column) index of the D-matrix,

 

and, because of the anomalous commutation relation the raising/lowering operators are defined with reversed signs,

 

Finally,

 

In other words, the rows and columns of the (complex conjugate) Wigner D-matrix span irreducible representations of the isomorphic Lie algebras generated by   and  .

An important property of the Wigner D-matrix follows from the commutation of   with the time reversal operator T,

 

or

 

Here, we used that   is anti-unitary (hence the complex conjugation after moving   from ket to bra),   and  .

A further symmetry implies

 

Orthogonality relations edit

The Wigner D-matrix elements   form a set of orthogonal functions of the Euler angles   and  :

 

This is a special case of the Schur orthogonality relations.

Crucially, by the Peter–Weyl theorem, they further form a complete set.

The fact that   are matrix elements of a unitary transformation from one spherical basis   to another   is represented by the relations:[3]

 
 

The group characters for SU(2) only depend on the rotation angle β, being class functions, so, then, independent of the axes of rotation,

 

and consequently satisfy simpler orthogonality relations, through the Haar measure of the group,[4]

 

The completeness relation (worked out in the same reference, (3.95)) is

 

whence, for  

 

Kronecker product of Wigner D-matrices, Clebsch-Gordan series edit

The set of Kronecker product matrices

 

forms a reducible matrix representation of the groups SO(3) and SU(2). Reduction into irreducible components is by the following equation:[3]

 

The symbol   is a Clebsch–Gordan coefficient.

Relation to spherical harmonics and Legendre polynomials edit

For integer values of  , the D-matrix elements with second index equal to zero are proportional to spherical harmonics and associated Legendre polynomials, normalized to unity and with Condon and Shortley phase convention:

 

This implies the following relationship for the d-matrix:

 

A rotation of spherical harmonics   then is effectively a composition of two rotations,

 

When both indices are set to zero, the Wigner D-matrix elements are given by ordinary Legendre polynomials:

 

In the present convention of Euler angles,   is a longitudinal angle and   is a colatitudinal angle (spherical polar angles in the physical definition of such angles). This is one of the reasons that the z-y-z convention is used frequently in molecular physics. From the time-reversal property of the Wigner D-matrix follows immediately

 

There exists a more general relationship to the spin-weighted spherical harmonics:

 [5]

Connection with transition probability under rotations edit

The absolute square of an element of the D-matrix,

 

gives the probability that a system with spin   prepared in a state with spin projection   along some direction will be measured to have a spin projection   along a second direction at an angle   to the first direction. The set of quantities   itself forms a real symmetric matrix, that depends only on the Euler angle  , as indicated.

Remarkably, the eigenvalue problem for the   matrix can be solved completely:[6][7]

 

Here, the eigenvector,  , is a scaled and shifted discrete Chebyshev polynomial, and the corresponding eigenvalue,  , is the Legendre polynomial.

Relation to Bessel functions edit

In the limit when   we have

 

where   is the Bessel function and   is finite.

List of d-matrix elements edit

Using sign convention of Wigner, et al. the d-matrix elements   for j = 1/2, 1, 3/2, and 2 are given below.

for j = 1/2

 

for j = 1

 

for j = 3/2

 

for j = 2[8]

 

Wigner d-matrix elements with swapped lower indices are found with the relation:

 

Symmetries and special cases edit

 

See also edit

References edit

  1. ^ Wigner, E. P. (1951) [1931]. Gruppentheorie und ihre Anwendungen auf die Quantenmechanik der Atomspektren. Braunschweig: Vieweg Verlag. OCLC 602430512. Translated into English by Group Theory and its Application to the Quantum Mechanics of Atomic Spectra. Translated by Griffin, J.J. Elsevier. 2013 [1959]. ISBN 978-1-4832-7576-5.
  2. ^ Biedenharn, L. C.; Louck, J. D. (1981). Angular Momentum in Quantum Physics. Reading: Addison-Wesley. ISBN 0-201-13507-8.
  3. ^ a b Rose, Morris Edgar (1995) [1957]. Elementary theory of angular momentum. Dover. ISBN 0-486-68480-6. OCLC 31374243.
  4. ^ Schwinger, J. (January 26, 1952). On Angular Momentum (Technical report). Harvard University, Nuclear Development Associates. doi:10.2172/4389568. NYO-3071, TRN: US200506%%295.
  5. ^ Shiraishi, M. (2013). "Appendix A: Spin-Weighted Spherical Harmonic Function" (PDF). Probing the Early Universe with the CMB Scalar, Vector and Tensor Bispectrum (PhD). Nagoya University. pp. 153–4. ISBN 978-4-431-54180-6.
  6. ^ Meckler, A. (1958). "Majorana formula". Physical Review. 111 (6): 1447. doi:10.1103/PhysRev.111.1447.
  7. ^ Mermin, N.D.; Schwarz, G.M. (1982). "Joint distributions and local realism in the higher-spin Einstein-Podolsky-Rosen experiment". Foundations of Physics. 12 (2): 101. doi:10.1007/BF00736844. S2CID 121648820.
  8. ^ Edén, M. (2003). "Computer simulations in solid-state NMR. I. Spin dynamics theory". Concepts in Magnetic Resonance Part A. 17A (1): 117–154. doi:10.1002/cmr.a.10061.

External links edit

  • Amsler, C.; et al. (Particle Data Group) (2008). "PDG Table of Clebsch-Gordan Coefficients, Spherical Harmonics, and d-Functions" (PDF). Physics Letters B667.

wigner, matrix, unitary, matrix, irreducible, representation, groups, introduced, 1927, eugene, wigner, plays, fundamental, role, quantum, mechanical, theory, angular, momentum, complex, conjugate, matrix, eigenfunction, hamiltonian, spherical, symmetric, rigi. The Wigner D matrix is a unitary matrix in an irreducible representation of the groups SU 2 and SO 3 It was introduced in 1927 by Eugene Wigner and plays a fundamental role in the quantum mechanical theory of angular momentum The complex conjugate of the D matrix is an eigenfunction of the Hamiltonian of spherical and symmetric rigid rotors The letter D stands for Darstellung which means representation in German Contents 1 Definition of the Wigner D matrix 2 Wigner small d matrix 3 Properties of the Wigner D matrix 4 Orthogonality relations 5 Kronecker product of Wigner D matrices Clebsch Gordan series 6 Relation to spherical harmonics and Legendre polynomials 7 Connection with transition probability under rotations 8 Relation to Bessel functions 9 List of d matrix elements 10 Symmetries and special cases 11 See also 12 References 13 External linksDefinition of the Wigner D matrix editLet Jx Jy Jz be generators of the Lie algebra of SU 2 and SO 3 In quantum mechanics these three operators are the components of a vector operator known as angular momentum Examples are the angular momentum of an electron in an atom electronic spin and the angular momentum of a rigid rotor In all cases the three operators satisfy the following commutation relations J x J y i J z J z J x i J y J y J z i J x displaystyle J x J y iJ z quad J z J x iJ y quad J y J z iJ x nbsp where i is the purely imaginary number and Planck s constant ħ has been set equal to one The Casimir operator J 2 J x 2 J y 2 J z 2 displaystyle J 2 J x 2 J y 2 J z 2 nbsp commutes with all generators of the Lie algebra Hence it may be diagonalized together with Jz This defines the spherical basis used here That is there is a complete set of kets i e orthonormal basis of joint eigenvectors labelled by quantum numbers that define the eigenvalues with J 2 j m j j 1 j m J z j m m j m displaystyle J 2 jm rangle j j 1 jm rangle quad J z jm rangle m jm rangle nbsp where j 0 1 2 1 3 2 2 for SU 2 and j 0 1 2 for SO 3 In both cases m j j 1 j A 3 dimensional rotation operator can be written as R a b g e i a J z e i b J y e i g J z displaystyle mathcal R alpha beta gamma e i alpha J z e i beta J y e i gamma J z nbsp where a b g are Euler angles characterized by the keywords z y z convention right handed frame right hand screw rule active interpretation The Wigner D matrix is a unitary square matrix of dimension 2j 1 in this spherical basis with elements D m m j a b g j m R a b g j m e i m a d m m j b e i m g displaystyle D m m j alpha beta gamma equiv langle jm mathcal R alpha beta gamma jm rangle e im alpha d m m j beta e im gamma nbsp where d m m j b j m e i b J y j m D m m j 0 b 0 displaystyle d m m j beta langle jm e i beta J y jm rangle D m m j 0 beta 0 nbsp is an element of the orthogonal Wigner s small d matrix That is in this basis D m m j a 0 0 e i m a d m m displaystyle D m m j alpha 0 0 e im alpha delta m m nbsp is diagonal like the g matrix factor but unlike the above b factor Wigner small d matrix editWigner gave the following expression 1 d m m j b j m j m j m j m 1 2 s s m i n s m a x 1 m m s cos b 2 2 j m m 2 s sin b 2 m m 2 s j m s s m m s j m s displaystyle d m m j beta j m j m j m j m frac 1 2 sum s s mathrm min s mathrm max left frac 1 m m s left cos frac beta 2 right 2j m m 2s left sin frac beta 2 right m m 2s j m s s m m s j m s right nbsp The sum over s is over such values that the factorials are nonnegative i e s m i n m a x 0 m m displaystyle s mathrm min mathrm max 0 m m nbsp s m a x m i n j m j m displaystyle s mathrm max mathrm min j m j m nbsp Note The d matrix elements defined here are real In the often used z x z convention of Euler angles the factor 1 m m s displaystyle 1 m m s nbsp in this formula is replaced by 1 s i m m displaystyle 1 s i m m nbsp causing half of the functions to be purely imaginary The realness of the d matrix elements is one of the reasons that the z y z convention used in this article is usually preferred in quantum mechanical applications The d matrix elements are related to Jacobi polynomials P k a b cos b displaystyle P k a b cos beta nbsp with nonnegative a displaystyle a nbsp and b displaystyle b nbsp 2 Let k min j m j m j m j m displaystyle k min j m j m j m j m nbsp If k j m a m m l m m j m a m m l 0 j m a m m l 0 j m a m m l m m displaystyle k begin cases j m amp a m m quad lambda m m j m amp a m m quad lambda 0 j m amp a m m quad lambda 0 j m amp a m m quad lambda m m end cases nbsp Then with b 2 j 2 k a displaystyle b 2j 2k a nbsp the relation is d m m j b 1 l 2 j k k a 1 2 k b b 1 2 sin b 2 a cos b 2 b P k a b cos b displaystyle d m m j beta 1 lambda binom 2j k k a frac 1 2 binom k b b frac 1 2 left sin frac beta 2 right a left cos frac beta 2 right b P k a b cos beta nbsp where a b 0 displaystyle a b geq 0 nbsp Properties of the Wigner D matrix editThe complex conjugate of the D matrix satisfies a number of differential properties that can be formulated concisely by introducing the following operators with x y z 1 2 3 displaystyle x y z 1 2 3 nbsp J 1 i cos a cot b a sin a b cos a sin b g J 2 i sin a cot b a cos a b sin a sin b g J 3 i a displaystyle begin aligned hat mathcal J 1 amp i left cos alpha cot beta frac partial partial alpha sin alpha partial over partial beta cos alpha over sin beta partial over partial gamma right hat mathcal J 2 amp i left sin alpha cot beta partial over partial alpha cos alpha partial over partial beta sin alpha over sin beta partial over partial gamma right hat mathcal J 3 amp i partial over partial alpha end aligned nbsp which have quantum mechanical meaning they are space fixed rigid rotor angular momentum operators Further P 1 i cos g sin b a sin g b cot b cos g g P 2 i sin g sin b a cos g b cot b sin g g P 3 i g displaystyle begin aligned hat mathcal P 1 amp i left cos gamma over sin beta partial over partial alpha sin gamma partial over partial beta cot beta cos gamma partial over partial gamma right hat mathcal P 2 amp i left sin gamma over sin beta partial over partial alpha cos gamma partial over partial beta cot beta sin gamma partial over partial gamma right hat mathcal P 3 amp i partial over partial gamma end aligned nbsp which have quantum mechanical meaning they are body fixed rigid rotor angular momentum operators The operators satisfy the commutation relations J 1 J 2 i J 3 and P 1 P 2 i P 3 displaystyle left mathcal J 1 mathcal J 2 right i mathcal J 3 qquad hbox and qquad left mathcal P 1 mathcal P 2 right i mathcal P 3 nbsp and the corresponding relations with the indices permuted cyclically The P i displaystyle mathcal P i nbsp satisfy anomalous commutation relations have a minus sign on the right hand side The two sets mutually commute P i J j 0 i j 1 2 3 displaystyle left mathcal P i mathcal J j right 0 quad i j 1 2 3 nbsp and the total operators squared are equal J 2 J 1 2 J 2 2 J 3 2 P 2 P 1 2 P 2 2 P 3 2 displaystyle mathcal J 2 equiv mathcal J 1 2 mathcal J 2 2 mathcal J 3 2 mathcal P 2 equiv mathcal P 1 2 mathcal P 2 2 mathcal P 3 2 nbsp Their explicit form is J 2 P 2 1 sin 2 b 2 a 2 2 g 2 2 cos b 2 a g 2 b 2 cot b b displaystyle mathcal J 2 mathcal P 2 frac 1 sin 2 beta left frac partial 2 partial alpha 2 frac partial 2 partial gamma 2 2 cos beta frac partial 2 partial alpha partial gamma right frac partial 2 partial beta 2 cot beta frac partial partial beta nbsp The operators J i displaystyle mathcal J i nbsp act on the first row index of the D matrix J 3 D m m j a b g m D m m j a b g J 1 i J 2 D m m j a b g j j 1 m m 1 D m 1 m j a b g displaystyle begin aligned mathcal J 3 D m m j alpha beta gamma amp m D m m j alpha beta gamma mathcal J 1 pm i mathcal J 2 D m m j alpha beta gamma amp sqrt j j 1 m m pm 1 D m pm 1 m j alpha beta gamma end aligned nbsp The operators P i displaystyle mathcal P i nbsp act on the second column index of the D matrix P 3 D m m j a b g m D m m j a b g displaystyle mathcal P 3 D m m j alpha beta gamma mD m m j alpha beta gamma nbsp and because of the anomalous commutation relation the raising lowering operators are defined with reversed signs P 1 i P 2 D m m j a b g j j 1 m m 1 D m m 1 j a b g displaystyle mathcal P 1 mp i mathcal P 2 D m m j alpha beta gamma sqrt j j 1 m m pm 1 D m m pm 1 j alpha beta gamma nbsp Finally J 2 D m m j a b g P 2 D m m j a b g j j 1 D m m j a b g displaystyle mathcal J 2 D m m j alpha beta gamma mathcal P 2 D m m j alpha beta gamma j j 1 D m m j alpha beta gamma nbsp In other words the rows and columns of the complex conjugate Wigner D matrix span irreducible representations of the isomorphic Lie algebras generated by J i displaystyle mathcal J i nbsp and P i displaystyle mathcal P i nbsp An important property of the Wigner D matrix follows from the commutation of R a b g displaystyle mathcal R alpha beta gamma nbsp with the time reversal operator T j m R a b g j m j m T R a b g T j m 1 m m j m R a b g j m displaystyle langle jm mathcal R alpha beta gamma jm rangle langle jm T dagger mathcal R alpha beta gamma T jm rangle 1 m m langle j m mathcal R alpha beta gamma j m rangle nbsp or D m m j a b g 1 m m D m m j a b g displaystyle D m m j alpha beta gamma 1 m m D m m j alpha beta gamma nbsp Here we used that T displaystyle T nbsp is anti unitary hence the complex conjugation after moving T displaystyle T dagger nbsp from ket to bra T j m 1 j m j m displaystyle T jm rangle 1 j m j m rangle nbsp and 1 2 j m m 1 m m displaystyle 1 2j m m 1 m m nbsp A further symmetry implies 1 m m D m m j a b g D m m j g b a displaystyle 1 m m D mm j alpha beta gamma D m m j gamma beta alpha nbsp Orthogonality relations editThe Wigner D matrix elements D m k j a b g displaystyle D mk j alpha beta gamma nbsp form a set of orthogonal functions of the Euler angles a b displaystyle alpha beta nbsp and g displaystyle gamma nbsp 0 2 p d a 0 p d b sin b 0 2 p d g D m k j a b g D m k j a b g 8 p 2 2 j 1 d m m d k k d j j displaystyle int 0 2 pi d alpha int 0 pi d beta sin beta int 0 2 pi d gamma D m k j alpha beta gamma ast D mk j alpha beta gamma frac 8 pi 2 2j 1 delta m m delta k k delta j j nbsp This is a special case of the Schur orthogonality relations Crucially by the Peter Weyl theorem they further form a complete set The fact that D m k j a b g displaystyle D mk j alpha beta gamma nbsp are matrix elements of a unitary transformation from one spherical basis l m displaystyle lm rangle nbsp to another R a b g l m displaystyle mathcal R alpha beta gamma lm rangle nbsp is represented by the relations 3 k D m k j a b g D m k j a b g d m m displaystyle sum k D m k j alpha beta gamma D mk j alpha beta gamma delta m m nbsp k D k m j a b g D k m j a b g d m m displaystyle sum k D km j alpha beta gamma D km j alpha beta gamma delta m m nbsp The group characters for SU 2 only depend on the rotation angle b being class functions so then independent of the axes of rotation x j b m D m m j b m d m m j b sin 2 j 1 b 2 sin b 2 displaystyle chi j beta equiv sum m D mm j beta sum m d mm j beta frac sin left frac 2j 1 beta 2 right sin left frac beta 2 right nbsp and consequently satisfy simpler orthogonality relations through the Haar measure of the group 4 1 p 0 2 p d b sin 2 b 2 x j b x j b d j j displaystyle frac 1 pi int 0 2 pi d beta sin 2 left frac beta 2 right chi j beta chi j beta delta j j nbsp The completeness relation worked out in the same reference 3 95 is j x j b x j b d b b displaystyle sum j chi j beta chi j beta delta beta beta nbsp whence for b 0 displaystyle beta 0 nbsp j x j b 2 j 1 d b displaystyle sum j chi j beta 2j 1 delta beta nbsp Kronecker product of Wigner D matrices Clebsch Gordan series editThe set of Kronecker product matrices D j a b g D j a b g displaystyle mathbf D j alpha beta gamma otimes mathbf D j alpha beta gamma nbsp forms a reducible matrix representation of the groups SO 3 and SU 2 Reduction into irreducible components is by the following equation 3 D m k j a b g D m k j a b g J j j j j j m j m J m m j k j k J k k D m m k k J a b g displaystyle D mk j alpha beta gamma D m k j alpha beta gamma sum J j j j j langle jmj m J left m m right rangle langle jkj k J left k k right rangle D left m m right left k k right J alpha beta gamma nbsp The symbol j 1 m 1 j 2 m 2 j 3 m 3 displaystyle langle j 1 m 1 j 2 m 2 j 3 m 3 rangle nbsp is a Clebsch Gordan coefficient Relation to spherical harmonics and Legendre polynomials editFor integer values of l displaystyle l nbsp the D matrix elements with second index equal to zero are proportional to spherical harmonics and associated Legendre polynomials normalized to unity and with Condon and Shortley phase convention D m 0 ℓ a b g 4 p 2 ℓ 1 Y ℓ m b a ℓ m ℓ m P ℓ m cos b e i m a displaystyle D m0 ell alpha beta gamma sqrt frac 4 pi 2 ell 1 Y ell m beta alpha sqrt frac ell m ell m P ell m cos beta e im alpha nbsp This implies the following relationship for the d matrix d m 0 ℓ b ℓ m ℓ m P ℓ m cos b displaystyle d m0 ell beta sqrt frac ell m ell m P ell m cos beta nbsp A rotation of spherical harmonics 8 ϕ ℓ m displaystyle langle theta phi ell m rangle nbsp then is effectively a composition of two rotations m ℓ ℓ Y ℓ m 8 ϕ D m m ℓ a b g displaystyle sum m ell ell Y ell m theta phi D m m ell alpha beta gamma nbsp When both indices are set to zero the Wigner D matrix elements are given by ordinary Legendre polynomials D 0 0 ℓ a b g d 0 0 ℓ b P ℓ cos b displaystyle D 0 0 ell alpha beta gamma d 0 0 ell beta P ell cos beta nbsp In the present convention of Euler angles a displaystyle alpha nbsp is a longitudinal angle and b displaystyle beta nbsp is a colatitudinal angle spherical polar angles in the physical definition of such angles This is one of the reasons that the z y z convention is used frequently in molecular physics From the time reversal property of the Wigner D matrix follows immediately Y ℓ m 1 m Y ℓ m displaystyle left Y ell m right 1 m Y ell m nbsp There exists a more general relationship to the spin weighted spherical harmonics D m s ℓ a b g 1 s 4 p 2 ℓ 1 s Y ℓ m b a e i s g displaystyle D ms ell alpha beta gamma 1 s sqrt frac 4 pi 2 ell 1 s Y ell m beta alpha e is gamma nbsp 5 Connection with transition probability under rotations editThe absolute square of an element of the D matrix F m m b D m m j a b g 2 displaystyle F mm beta D mm j alpha beta gamma 2 nbsp gives the probability that a system with spin j displaystyle j nbsp prepared in a state with spin projection m displaystyle m nbsp along some direction will be measured to have a spin projection m displaystyle m nbsp along a second direction at an angle b displaystyle beta nbsp to the first direction The set of quantities F m m displaystyle F mm nbsp itself forms a real symmetric matrix that depends only on the Euler angle b displaystyle beta nbsp as indicated Remarkably the eigenvalue problem for the F displaystyle F nbsp matrix can be solved completely 6 7 m j j F m m b f ℓ j m P ℓ cos b f ℓ j m ℓ 0 1 2 j displaystyle sum m j j F mm beta f ell j m P ell cos beta f ell j m qquad ell 0 1 ldots 2j nbsp Here the eigenvector f ℓ j m displaystyle f ell j m nbsp is a scaled and shifted discrete Chebyshev polynomial and the corresponding eigenvalue P ℓ cos b displaystyle P ell cos beta nbsp is the Legendre polynomial Relation to Bessel functions editIn the limit when ℓ m m displaystyle ell gg m m prime nbsp we have D m m ℓ a b g e i m a i m g J m m ℓ b displaystyle D mm ell alpha beta gamma approx e im alpha im gamma J m m ell beta nbsp where J m m ℓ b displaystyle J m m ell beta nbsp is the Bessel function and ℓ b displaystyle ell beta nbsp is finite List of d matrix elements editUsing sign convention of Wigner et al the d matrix elements d m m j 8 displaystyle d m m j theta nbsp for j 1 2 1 3 2 and 2 are given below for j 1 2 d 1 2 1 2 1 2 cos 8 2 d 1 2 1 2 1 2 sin 8 2 displaystyle begin aligned d frac 1 2 frac 1 2 frac 1 2 amp cos frac theta 2 6pt d frac 1 2 frac 1 2 frac 1 2 amp sin frac theta 2 end aligned nbsp for j 1 d 1 1 1 1 2 1 cos 8 d 1 0 1 1 2 sin 8 d 1 1 1 1 2 1 cos 8 d 0 0 1 cos 8 displaystyle begin aligned d 1 1 1 amp frac 1 2 1 cos theta 6pt d 1 0 1 amp frac 1 sqrt 2 sin theta 6pt d 1 1 1 amp frac 1 2 1 cos theta 6pt d 0 0 1 amp cos theta end aligned nbsp for j 3 2 d 3 2 3 2 3 2 1 2 1 cos 8 cos 8 2 d 3 2 1 2 3 2 3 2 1 cos 8 sin 8 2 d 3 2 1 2 3 2 3 2 1 cos 8 cos 8 2 d 3 2 3 2 3 2 1 2 1 cos 8 sin 8 2 d 1 2 1 2 3 2 1 2 3 cos 8 1 cos 8 2 d 1 2 1 2 3 2 1 2 3 cos 8 1 sin 8 2 displaystyle begin aligned d frac 3 2 frac 3 2 frac 3 2 amp frac 1 2 1 cos theta cos frac theta 2 6pt d frac 3 2 frac 1 2 frac 3 2 amp frac sqrt 3 2 1 cos theta sin frac theta 2 6pt d frac 3 2 frac 1 2 frac 3 2 amp frac sqrt 3 2 1 cos theta cos frac theta 2 6pt d frac 3 2 frac 3 2 frac 3 2 amp frac 1 2 1 cos theta sin frac theta 2 6pt d frac 1 2 frac 1 2 frac 3 2 amp frac 1 2 3 cos theta 1 cos frac theta 2 6pt d frac 1 2 frac 1 2 frac 3 2 amp frac 1 2 3 cos theta 1 sin frac theta 2 end aligned nbsp for j 2 8 d 2 2 2 1 4 1 cos 8 2 d 2 1 2 1 2 sin 8 1 cos 8 d 2 0 2 3 8 sin 2 8 d 2 1 2 1 2 sin 8 1 cos 8 d 2 2 2 1 4 1 cos 8 2 d 1 1 2 1 2 2 cos 2 8 cos 8 1 d 1 0 2 3 8 sin 2 8 d 1 1 2 1 2 2 cos 2 8 cos 8 1 d 0 0 2 1 2 3 cos 2 8 1 displaystyle begin aligned d 2 2 2 amp frac 1 4 left 1 cos theta right 2 6pt d 2 1 2 amp frac 1 2 sin theta left 1 cos theta right 6pt d 2 0 2 amp sqrt frac 3 8 sin 2 theta 6pt d 2 1 2 amp frac 1 2 sin theta left 1 cos theta right 6pt d 2 2 2 amp frac 1 4 left 1 cos theta right 2 6pt d 1 1 2 amp frac 1 2 left 2 cos 2 theta cos theta 1 right 6pt d 1 0 2 amp sqrt frac 3 8 sin 2 theta 6pt d 1 1 2 amp frac 1 2 left 2 cos 2 theta cos theta 1 right 6pt d 0 0 2 amp frac 1 2 left 3 cos 2 theta 1 right end aligned nbsp Wigner d matrix elements with swapped lower indices are found with the relation d m m j 1 m m d m m j d m m j displaystyle d m m j 1 m m d m m j d m m j nbsp Symmetries and special cases editd m m j p 1 j m d m m d m m j p b 1 j m d m m j b d m m j p b 1 j m d m m j b d m m j 2 p b 1 2 j d m m j b d m m j b d m m j b 1 m m d m m j b displaystyle begin aligned d m m j pi amp 1 j m delta m m 6pt d m m j pi beta amp 1 j m d m m j beta 6pt d m m j pi beta amp 1 j m d m m j beta 6pt d m m j 2 pi beta amp 1 2j d m m j beta 6pt d m m j beta amp d m m j beta 1 m m d m m j beta end aligned nbsp See also editClebsch Gordan coefficients Tensor operator Symmetries in quantum mechanicsReferences edit Wigner E P 1951 1931 Gruppentheorie und ihre Anwendungen auf die Quantenmechanik der Atomspektren Braunschweig Vieweg Verlag OCLC 602430512 Translated into English by Group Theory and its Application to the Quantum Mechanics of Atomic Spectra Translated by Griffin J J Elsevier 2013 1959 ISBN 978 1 4832 7576 5 Biedenharn L C Louck J D 1981 Angular Momentum in Quantum Physics Reading Addison Wesley ISBN 0 201 13507 8 a b Rose Morris Edgar 1995 1957 Elementary theory of angular momentum Dover ISBN 0 486 68480 6 OCLC 31374243 Schwinger J January 26 1952 On Angular Momentum Technical report Harvard University Nuclear Development Associates doi 10 2172 4389568 NYO 3071 TRN US200506 295 Shiraishi M 2013 Appendix A Spin Weighted Spherical Harmonic Function PDF Probing the Early Universe with the CMB Scalar Vector and Tensor Bispectrum PhD Nagoya University pp 153 4 ISBN 978 4 431 54180 6 Meckler A 1958 Majorana formula Physical Review 111 6 1447 doi 10 1103 PhysRev 111 1447 Mermin N D Schwarz G M 1982 Joint distributions and local realism in the higher spin Einstein Podolsky Rosen experiment Foundations of Physics 12 2 101 doi 10 1007 BF00736844 S2CID 121648820 Eden M 2003 Computer simulations in solid state NMR I Spin dynamics theory Concepts in Magnetic Resonance Part A 17A 1 117 154 doi 10 1002 cmr a 10061 External links editAmsler C et al Particle Data Group 2008 PDG Table of Clebsch Gordan Coefficients Spherical Harmonics and d Functions PDF Physics Letters B667 Retrieved from https en wikipedia org w index php title Wigner D matrix amp oldid 1215883580, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.