fbpx
Wikipedia

Ingenuity (helicopter)

Ingenuity, nicknamed Ginny, is an autonomous NASA helicopter that operated on Mars from 2021 to 2024 as part of the Mars 2020 mission. Ingenuity made its first flight on April 19, 2021, demonstrating that flight is possible in the extremely thin atmosphere of Mars, and becoming the first aircraft to conduct a powered and controlled extra-terrestrial flight. It was designed by NASA's Jet Propulsion Laboratory (JPL) in collaboration with AeroVironment, NASA's Ames Research Center and Langley Research Center with some components supplied by Lockheed Martin Space, Qualcomm, and SolAero.

Ingenuity
Part of Mars 2020
Ingenuity at Wright Brothers Field on April 6, 2021, its third day of deployment on Mars
TypeExtraterrestrial autonomous UAV helicopter
Serial no.IGY (civil registration)
OwnerNASA
ManufacturerJet Propulsion Laboratory
Specifications
Dimensions121 cm × 49 cm × 52 cm (48 in × 19 in × 20 in)
Dry mass1.8 kilograms (4.0 lb)[1]
CommunicationZigbee transponder with base station on Perseverance
Power6 Solar-charged Sony VTC4 Li ion batteries; typical motor input power: 350 watt[2]
Instruments
History
Deployed
First flight
Last flight
  • 18 January 2024 (to and from Airfield Chi (χ) in Valinor Hills)
Flights72
Flight time2 hr 8 min 55 sec, cumulative
Travelled
  • Horizontal: 17.242 km (10.714 mi) on Mars
  • Vertical: max. 24 m (79 ft)

Data from NASA Mars Helicopter Flight Log

  • Maximum speed: 22.4 mph (36.0 km/h, 19.5 kn)
FateRetired due to sustained rotor blade damage[4]
LocationJezero crater, Mars[3]
NASA Mars helicopters

Ingenuity was delivered to Mars on February 18, 2021, attached to the underside of the Perseverance rover, which landed at Octavia E. Butler Landing near the western rim of the 45 km-wide (28 mi) Jezero crater. Because radio signals take between five and 20 minutes to travel between Earth and Mars, depending on the planets' positions, it could not be controlled directly in real time but flew autonomously to execute flight plans designed and sent to it by JPL.

Originally intended to make only five flights, Ingenuity completed 72 flights in nearly three years. The five planned flights were part of a 30-sol technology demonstration intended to prove its airworthiness with flights of up to 90 seconds at altitudes ranging from 3–5 m (10–16 ft). Following this demonstration, JPL designed a series of operational flights to explore how aerial scouts could help explore Mars and other worlds. In this operational role, Ingenuity scouted areas of interest for the Perseverance rover, improved navigational techniques, and explored the limits of its flight envelope. Ingenuity's performance and resilience in the harsh Martian environment greatly exceeded expectations, allowing it to perform far more flights than were initially planned. On January 18, 2024, Ingenuity's rotor blades were damaged while landing on its 72nd flight, permanently grounding the helicopter. NASA announced the end of its mission one week later. Ingenuity had flown for a total of two hours, eight minutes and 48 seconds over 1,004 days, covering more than 17 kilometres (11 mi).

Development edit

Concept edit

 
Prototype Mars helicopter, which first flew in a pressure chamber simulating the Martian atmosphere on May 31, 2016

The development of the project that would eventually become Ingenuity started in 2012 when JPL director Charles Elachi visited the lab's Autonomous Systems Division, which had done relevant concept work. By January 2015, NASA agreed to fund the development of a full-size model, which came to be known as the "risk reduction" vehicle.[5] NASA's JPL and AeroVironment published the conceptual design in 2014 for a scout helicopter to accompany a rover.[6][7][8] By mid-2016, $15 million was being requested to continue development of the helicopter.[9]

By December 2017, engineering models of the vehicle had been tested in a simulated Martian atmosphere.[10][11] Models were undergoing testing in the Arctic, but its inclusion in the mission had not yet been approved or funded.[12]

Mission integration edit

When the Mars 2020 program was approved in July 2014,[13] a helicopter flight demonstration was neither included nor budgeted.[14]

The United States federal budget, announced in March 2018, provided $23 million for the helicopter for one year,[15][16] and it was announced on May 11, 2018, that the helicopter could be developed and tested in time to be included in the Mars 2020 mission.[17] The helicopter underwent extensive flight-dynamics and environment testing,[10][18] and was mounted on the underside of the Perseverance rover in August 2019.[19] NASA spent about $80 million to build Ingenuity and about $5 million to operate the helicopter.[20]

In 2019, preliminary designs of Ingenuity were tested on Earth in simulated Mars atmospheric and gravity conditions. For flight testing, a large vacuum chamber was used to simulate the very low pressure of the atmosphere of Mars – filled with carbon dioxide to about 0.60% (about 1160) of standard atmospheric pressure at sea level on Earth – which is roughly equivalent to a helicopter flying at 34,000 m (112,000 ft) altitude in the atmosphere of Earth. In order to simulate the much-reduced gravity field of Mars (38% of Earth's), 62% of Earth's gravity was offset by a line pulling upwards during flight tests.[21] A "wind-wall" consisting of almost 900 computer fans was used to provide wind in the chamber.[22][23]: 1:08:05–1:08:40 

In April 2020, the vehicle was named Ingenuity by Vaneeza Rupani, a girl in the 11th grade at Tuscaloosa County High School in Northport, Alabama, who submitted an essay into NASA's "Name the Rover" contest.[24][25] Known in planning stages as the Mars Helicopter Scout,[26] or simply the Mars Helicopter,[27] the nickname Ginny later entered use in parallel to the parent rover Perseverance being affectionately referred to as Percy.[28] Its full-scale engineering model for testing on Earth was named Earth Copter and, unofficially, Terry.[29]

Ingenuity was designed to be a technology demonstrator by JPL to assess whether such a vehicle could fly safely. Before it was built, launched and landed, scientists and managers expressed hope that helicopters could provide better mapping and guidance that would give future mission controllers more information to help with travel routes, planning, and hazard avoidance.[17][30][31] Based on the performance of previous rovers through Curiosity, it was assumed that such aerial scouting might enable future rovers to safely drive up to three times as far per sol.[32][33] However, the new AutoNav capability of Perseverance significantly reduced this advantage, allowing the rover to cover more than 100 meters per sol.[34]

Development team edit

 
Ingenuity team, 2018

The Ingenuity team was comparatively small, with never more than 65 full-time-equivalent employees from JPL. Program workers from AeroVironment, NASA AMES and Langley research centers brought the total to 150.[5] Key personnel include:

On June 15, 2021, the team behind Ingenuity was named the 2021 winner of the John L. "Jack" Swigert Jr. Award for Space Exploration from the Space Foundation.[57] On April 5, 2022, the National Aeronautic Association awarded Ingenuity and its group in JPL the 2021 Collier Trophy.[58][59]

Opposition edit

The idea to include a helicopter in the Mars 2020 mission was opposed by several people. Up until the end of the 2010s, several NASA leaders, scientists and JPL employees argued against integrating a helicopter into the mission. For three years, the future Ingenuity was developed outside the Mars 2020 project and its budget.[60][61] And although NASA management accepted assurances in the spring of 2018 that the addition of a helicopter would not harm the goals of the expedition, Mars 2020 chief scientist, Kenneth Farley, stated "I have personally been opposed to it because we are working very hard for efficiencies and spending 30 days working on a technology demonstration does not further those goals directly from the science point of view".[62] Farley was convinced that the helicopter was a distraction from the priority scientific tasks, unacceptable even for a short time.[62]

 
Comparison of total distance traveled by Ingenuity and Perseverance[a]

The skepticism on the part of NASA leadership was not unfounded. Scientists, engineers and managers proceeded from a pragmatic comparison of the benefits of additional aerial reconnaissance with the costs that inevitably fall on the schedule for the rover to complete all the tasks assigned to it. During a live-stream from NASA, MiMi Aung, the Ingenuity Project Manager, and Jennifer Trosper discussed the value of Ingenuity. Trosper argued that the rover would outpace the helicopter due to its auto-navigation capability, thus negating one of central arguments for the value to the mission of the helicopter. During the operations on Mars, Trosper was shown to be correct when, in the spring of 2022, at the beginning of Sol 400 the helicopter fell behind the rover.

At the end of the "test window", NASA extended support for Ingenuity for another 30 sols, limiting the frequency of departures to one flight every few weeks.

On 14 June 2021, the Director of the Mars Exploration program, E. Janson, and the Principal Mars Explorer, M. Meyer, directly addressed all the staff of the Mars 2020 project. During this address they cautioned the staff to keep their Ingenuity enthusiasm in check, and concentrate on collecting samples". On the same date, in their report to the Planetary Advisory Committee (PAC), the helicopter was mentioned only in the past tense, e.g. "...placed Ingenuity and completed the technology demonstration phase...".[63] Despite this early pessimism, Ingenuity has since proved to be more than capable of keeping up with Perseverance, actually staying ahead of the rover for the majority of the traverse up the Jezero delta.[64]

Insufficient solar energy during the Martian winter was the main driver of poor operational performance in the latter half of 2022.[65]

Design edit

Mechanical design edit

 
The main components of Ingenuity

Ingenuity consists of a rectangular fuselage measuring 136 mm × 195 mm × 163 mm (5.4 in × 7.7 in × 6.4 in) suspended below a pair of coaxial counter-rotating rotors measuring 1.21 m (4 ft) in diameter.[1][11][27] This assembly is supported by four landing legs of 384 mm (15.1 in) each.[1] It also carries a solar array mounted above the rotors to recharge its batteries. The entire vehicle is 0.49 m (1 ft 7 in) tall.[1]

 
Ingenuity upper swashplate assembly
A – Rotor blade; B – Pitch link; C – Servo; D – Swashplate

The lower gravity of Mars (about a third of Earth's) only partially offsets the thinness of the 95% carbon dioxide atmosphere of Mars,[66] making it much harder for an aircraft to generate adequate lift. The planet's atmospheric density is about 1100 that of Earth's at sea level, or about the same as at 27,000 m (87,000 ft), an altitude never reached by existing helicopters. This density reduces even more in Martian winters. To keep Ingenuity aloft, its specially shaped blades of enlarged size must rotate between 2400 and 2900 rpm, or about 10 times faster than what is needed on Earth.[11][67][68] Each of the helicopter's contra-rotating coaxial rotors is controlled by a separate swashplate that can affect both collective and cyclic pitch.[69] Ingenuity was also constructed to spacecraft specifications to withstand the acceleration and vibrations during launch and Mars landing without damage.[68]

Avionics edit

Ingenuity relies on different sensor packages grouped in two assemblies. All sensors are commercial off-the-shelf units.

 
Structural design of internal hardware of Ingenuity

The Upper Sensor Assembly, with associated vibration isolation elements, is mounted on the mast close to the vehicle's center-of-mass to minimize the effects of angular rates and accelerations. It consists of a cellphone-grade Bosch BMI-160 Inertial measurement unit (IMU) and an inclinometer (Murata SCA100T-D02); the inclinometer is used to calibrate the IMU while on the ground prior to flight. The Lower Sensor Assembly consists of an altimeter (Garmin LIDAR Lite v3), cameras, and a secondary IMU, all mounted directly on the Electronics Core Module (not on the mast).[69]

 
The monopole antenna of the base station is mounted on a bracket in the right rear part of the rover.

Ingenuity uses a 425×165 mm solar panel to recharge its batteries, which are six Sony Li-ion cells with 35–40 Wh (130–140 kJ) of energy capacity[21] (nameplate capacity of 2 Ah).[10] Flight duration is not constrained by available battery power, but by thermals – during flight, the drive motors heat up by 1 °C every second, and the thin Martian atmosphere makes for poor heat dissipation.[70] The helicopter uses a Qualcomm Snapdragon 801 processor running a Linux operating system.[42] Among other functions, it controls the visual navigation algorithm via a velocity estimate derived from terrain features tracked with the navigation camera.[71] The Qualcomm processor is connected to two radiation-resistant flight-control microcontrollers (MCUs) to perform necessary control functions.[10]

The telecommunication system consists of two identical radios with monopole antennae for data exchange between the helicopter and rover. The radio link utilizes the low-power Zigbee communication protocols, implemented via 914 MHz SiFlex 02 chipsets mounted in both vehicles. The communication system is designed to relay data at 250 kbit/s over distances of up to 1,000 m (3,300 ft).[54] The omnidirectional antenna is part of the helicopter's solar panel assembly and weighs 4 grams.[72]

Cameras and photography edit

 
Ingenuity's two cameras, as seen from under the aircraft

Ingenuity is equipped with two commercial-off-the-shelf (COTS) cameras: a high-resolution Return to Earth (RTE) camera and a lower resolution navigation (NAV) camera. The RTE camera consists of the Sony IMX214, a rolling shutter, 4208 × 3120-pixel resolution color sensor with a built-in Bayer color filter array and fitted to an O-film optics module. The NAV camera consists of an Omnivision OV7251, a 640 × 480 black and white global shutter sensor, mounted to a Sunny optics module.[10]

Unlike Perseverance, Ingenuity does not have a special stereo camera for taking twin photos for 3D pictures simultaneously. However, the helicopter can make such images by taking duplicate color photos of the same terrain while hovering in slightly offset positions, as in flight 11, or by taking an offset picture on the return leg of a roundtrip flight, as in flight 12.[73]

 
Combination of two images, one each from Ingenuity's Navigation Camera and color camera (RTE), taken while Ingenuity was on the ground

While the RTE color camera is not necessary for flights (as in flights 7 and 8[52]), the NAV camera operates continuously throughout each flight, with the captured images used for visual odometry to determine the aircraft's position and motion during flight. Due to limitations on the transmission rate between the aircraft, the rover, and Earth, only a limited number of images can be saved from each flight. Images to save for transmission are defined by the flight plan prior to each flight, and the remaining images from the NAV camera are discarded after use.[citation needed]

As of December 16, 2021, 2,091 black-and-white images from the navigation camera[74] and 104 color images from the terrain camera (RTE)[75] have been published.

Count of stored images from both cameras per each flight[74]
Flight No. Date (UTC) and Mars 2020 mission sol Photographs Comments
b/w
NAV
color
RTE
Before April 19, 2021 (sol 58) 6[76] 6[77] Preflight camera tests
1 April 19, 2021 (sol 58) 15
2 April 22, 2021 (sol 61) 17 3 The first color photo session
3 April 25, 2021 (sol 64) 24 4
4 April 30, 2021 (sol 69) 62 5
5 May 7, 2021 (sol 76) 128 6
6 May 23, 2021 (sol 91) 106 8
7 June 8, 2021 (sol 107) 72 0 RTE was turned off[52]
8 June 22, 2021 (sol 121) 186 0
9 July 5, 2021 (sol 133) 193 10
10 July 24, 2021 (sol 152) 190 10 Five pairs of color images of Raised Ridges taken to make anaglyphs.[53]
11 August 5, 2021 (sol 164) 194 10
12 August 16, 2021 (Sol 174) 197[78] 10 Five pairs of color images of Séítah taken to make anaglyphs.[49]
13 September 5, 2021 (Sol 193) 191[79] 10
September 16, 2021 (Sol 204) to October 23, 2021 (Sol 240) 9 1 preflight 14 tests
14 October 24, 2021 (Sol 241) 182
15 November 6, 2021 (Sol 254) 191 10
November 15, 2021 (Sol 263) 1 ground color photo[80]
16 November 21, 2021 (Sol 268) 185 9
November 27, 2021 (Sol 274) 1 ground color photo[80]
17 December 5, 2021 (Sol 282) 192
18 December 15, 2021 (Sol 292) 184
December 20, 2021 (Sol 297) to February 3, 2022 (Sol 341) 10 1 preflight 19 tests and post-dust storm debris removal operations
19 February 8, 2022 (Sol 346) 92
20 February 25, 2022 (Sol 362) 110 10
February 27, 2022 (Sol 364) 1 preflight 21 tests
21 March 10, 2022 (Sol 375) 191

Flight software edit

Ingenuity's Hazard Avoidance Capability tested on Earth by post-processing flight 9 images

The helicopter uses autonomous control during its flights, which are telerobotically planned and scripted by operators at Jet Propulsion Laboratory (JPL). It communicates with the Perseverance rover directly before and after each landing.[23]: 1:20:38–1:22:20 

The flight control and navigation software on the Ingenuity can be updated remotely, which has been used to correct software bugs[81][52] and add new capabilities as the helicopter continues to operate beyond its original mission. Prior to flight 34, the software was updated to avoid hazards during landing and to correct a navigation error when traveling over uneven terrain. This update became necessary as the helicopter traveled away from the relatively flat terrain of the original landing site, and towards more varied and hazardous terrain.[82]

Specifications edit

Flight characteristics of Ingenuity
Rotor speed 2400–2700 rpm[1][27][83]
Blade tip speed <0.7 Mach[26]
Originally planned operational time 1 to 5 flights within 30 sols[1][2]
Flight time Up to 167 seconds per flight[84]
Maximum range, flight 704 m (2,310 ft)
Maximum range, radio 1,000 m (3,300 ft)[10]
Maximum altitude 24 m (79 ft)[85]
Maximum possible speed
  • Horizontal: 10 m/s (33 ft/s)[6]
  • Vertical: 3 m/s (9.8 ft/s)[6]
Battery capacity 35–40 Wh (130–140 kJ)[21]

Operational history edit

Primary mission edit

Perseverance dropped the debris shield protecting Ingenuity on March 21, 2021, and the helicopter deployed from the underside of the rover to the Martian surface on April 3, 2021.[86] That day both cameras of the helicopter were tested taking their first black-and-white and color photographs of the floor of Jezero Crater in the shadow of the rover.[87][77] After deployment, the rover drove about 100 m (330 ft) away from the drone to allow a safe flying zone.[88][89]

Ingenuity's rotor blades were unlocked on April 8, 2021, (mission sol 48), and the helicopter performed a low-speed rotor spin test at 50 rpm.[90][91][92][93][94]

A high-speed spin test was attempted on April 9, but failed due to the expiration of a watchdog timer, a software measure to protect the helicopter from incorrect operation in unforeseen conditions.[95] On April 12, JPL said it identified a software fix to correct the problem.[81] To save time, however, JPL decided to use a workaround procedure, which managers said had an 85% chance of succeeding and would be "the least disruptive" to the helicopter.[35]

On April 16, 2021, Ingenuity passed the full-speed 2400 rpm rotor spin test while remaining on the surface.[96][97] Three days later, April 19, JPL flew the helicopter for the first time. The watchdog timer problem occurred again when the fourth flight was attempted. Rescheduled for April 30, the fourth flight captured numerous color photos and explored the surface with its black-and-white navigation camera.[37]

On June 25, JPL said it had uploaded a software update the previous week to permanently fix the watchdog problem, and that a rotor spin test and the eighth flight confirmed that the update worked.[52]

Each flight was planned for altitudes ranging 3–5 m (10–16 ft) above the ground, though Ingenuity soon exceeded that planned height.[1] The first flight was a hover at an altitude of 3 m (9.8 ft), lasting about 40 seconds and including taking a picture of the rover. The first flight succeeded, and subsequent flights were increasingly ambitious as allotted time for operating the helicopter dwindled. JPL said the mission might even stop before the 30-day period ended, in the likely event that the helicopter crashed,[23]: 0:49:50–0:51:40  an outcome which did not occur. In up to 90 seconds per flight, Ingenuity could travel as far as 50 m (160 ft) downrange and then back to the starting area, though that goal was also soon exceeded with the fourth flight.[1][37]

The commissioning sequence was as follows:

Surface deployment sequence
 
Step 1, Perseverance drops the pan that protected the RIMFAX equipment during the landing and drives away from it
 
Step 2, the protective debris shield is dropped, exposing Ingenuity, which is stowed on its side. Perseverance then drives away from it
 
Step 3, Ingenuity swings down, with two of its four legs extended
 
Step 4, all four legs are extended before Ingenuity is deployed on the surface and Perseverance drives away
 
Image taken by Perseverance on March 29, 2021, following Ingenuity's deployment on the surface, showing the debris shield dropped and abandoned on March 21, 2021
Pre-flight testing
 
Ingenuity is successfully deployed, Perseverance has moved away to a safe distance. The rotor blades are still locked as stowed
 
The rotor blades are now unlocked for tests and Ingenuity is watched by Perseverance from its safe place
 
Sol 48, the slow-speed (50 rpm) rotor spin up test is successful
 
Sol 55, the high-speed (2,400 rpm) spin up test. The spin tests are successful, the next phase is flight testing
Flight testing
Test flight 1, 19 April 2021
Test flight 1, enhanced to show the dust thrown up
Test flight 2, 22 April 2021
Test flight 3, 25 April 2021
Test flight 4, 30 April 2021

After the successful first three flights, the objective was changed from technology demonstration to operational demonstration. Ingenuity flew through a transitional phase of two flights, 4 and 5, before beginning its operations demonstration phase.[98] By November 2023, the principal mission priorities had become:[99]

  • Avoid significant interference with, or delay of, rover operations
  • Maintain vehicle health and safety
  • Perform scouting for tactical planning and science assessment
  • Perform experiments to inform mission and vehicle design for future Mars rotorcraft, or collect data for discretionary science

Operations Demo Phase edit

Ingenuity on Mars, flight 54, 3 August 2023
Ingenuity, heard by Perseverance, flight 4

Just before the final demonstration flight on April 30, 2021, NASA approved the continued operation of Ingenuity in an "operational demonstration phase" to explore using a helicopter as supplementary reconnaissance for ground assets like Perseverance.[98] Funding for Ingenuity was renewed monthly.[100]

With flight 6, the mission goal shifted towards supporting the rover science mission by mapping and scouting the terrain.[101] While Ingenuity would do more to help Perseverance, the rover would pay less attention to the helicopter and stop taking pictures of it in flight. JPL managers said the photo procedure took an "enormous" amount of time, slowing the project's main mission of looking for signs of ancient life.[102]

On May 7, Ingenuity flew to a new landing site.[103]

After 12 flights by September 2021, the mission was extended indefinitely.[104] After 21 flights by March 2022, NASA said it would continue flying Ingenuity every two to three weeks[104] until at least the coming September. The area of the helicopter's next goal was more rugged than the relatively flat terrain it flew over in its first year of operation. The ancient fan-shaped river delta has jagged cliffs, angled surfaces, and projecting boulders. Ingenuity helped the mission team decide which route Perseverance should take to the top of the delta and aided it in analyzing potential science targets. Software updates eliminated the helicopter's 50-foot altitude limit, allowed it to change speed in flight, and improved its understanding of terrain texture below it. NASA associate administrator Thomas Zurbuchen noted that less than a year previously, "we didn't even know if powered, controlled flight of an aircraft at Mars was possible." He said that the advancement in understanding what the aircraft can do is "one of the most historic in the annals of air and space exploration."[105]

The helicopter's longer-than-expected flying career lasted into a seasonal change on Mars. This lowered the atmospheric density, which required higher rotor speed for flight: probably 2700 rpm, according to the flight team's calculations. JPL said this might cause dangerous vibration, power consumption, and aerodynamic drag if the blade tips approach the speed of sound.[83] So the flight team commanded Ingenuity to test the rotor at 2800 rpm while remaining on the ground.

In mid-September, the flight team began preparing for the Martian winter and solar conjunction, when Mars moves behind the Sun, blocking communications with Earth and forcing the rover and helicopter to halt operations. When the shutdown began in mid-October 2021[98][106] the helicopter remained stationary 175 meters (575 feet) from Perseverance and communicated its status weekly to the rover for health checks.[107] JPL intended to continue flying Ingenuity since it survived solar conjunction.[108][109] NASA leaders said that extending the mission would increase the project's expenses, but that they believed the cost to be worthwhile for the information learned.[110]

The launch time of each flight was influenced by the temperature of the batteries, which needed to warm up after the night. During Martian summer lower air density imposed a higher load on the motors, so flights were shifted from noon (LMST 12:30) to morning (LMST 9:30) and limited to 130 seconds to not overheat the motors.[111]

On May 3 and 4, 2022, for the first time in the mission, the helicopter unexpectedly failed to communicate with the rover, following the 28th flight on April 29.[112] JPL determined that Ingenuity's rechargeable batteries suffered a power drop or insufficient battery state-of-charge while going into the night, most likely because of a seasonal increase in atmospheric dust reducing sunshine on its solar panel and due to lower temperatures as winter approached. When the battery pack's state of charge dropped below a lower limit, the helicopter's field-programmable gate array (FPGA) powered down, resetting the mission clock, which lost sync with the base station on the rover. Contact was re-established on May 5. Controllers decided to turn off the helicopter's heaters at night to conserve power, accepting the risk of exposing components to nighttime's extreme cold.[113] This daily state-of-charge deficit is likely to persist for the duration of Martian winter (at least until September/October).[112]

In a June 6, 2022, update, JPL reported Ingenuity's inclination sensor had stopped working. Its purpose was to determine the helicopter's orientation at the start of each flight. Mission controllers developed a workaround using the craft's inertial measurement unit (IMU) to provide equivalent data to the onboard navigation computer.[114]

In January 2023, the helicopter began to have enough solar power to avoid overnight brownouts and FPGA resets due to the start of Martian spring.[65] This meant the helicopter was able to fly more frequently and over longer distances.[citation needed]

In March 2023, the helicopter made frequent flights to deal with limited radio range in the rough terrain of the Jezero delta. In the narrow canyons of the river delta, the helicopter needed to stay ahead of the rover, rather than entering a "keep out" zone and passing it, which JPL considered potentially hazardous.[64]

Three times, mission controllers lost contact with Ingenuity after a flight, when the helicopter was not in the line of sight with Perseverance, preventing radio communication with the rover, which relays flight data between the helicopter and Earth. After the 49th flight on April 2, 2023, JPL lost contact with Ingenuity for six days, until Perseverance drove to a spot where communication was re-established.[115] JPL had no contact with the helicopter for 63 days after flight 52 on April 26, 2023. Mission controllers had intentionally flown Ingenuity out of radio range, expecting to regain communication in a few days. Perseverance controllers, however, changed their exploration plans and drove further out of range, and then had difficulty collecting rock samples, adding another delay before finally driving toward the helicopter and re-establishing contact on June 28.[116][99] Communication with Ingenuity was lost again at the end of flight 72 on January 18, 2024. Communication was re-established on January 20 but during the subsequent post-flight assessment, images of Ingenuity's shadow, taken by its navigation and horizon cameras after the flight, showed damage to its rotor blade tips. This ended the Operations Demo Phase and the mission.[117][118][119][120][121][122]

End of mission edit

Ingenuity was permanently grounded after flight 72 on January 18, 2024, when a rotor blade broke off and other blade tips were damaged during the landing. The mishap is believed to have resulted from an autonomous navigation error in a mostly featureless area of sand dunes, which offered few points of reference.[4][123][124][125][126] JPL said such problems may be avoided in the future with an established GPS system on Mars.[127]

On January 25, 2024, NASA Administrator, Bill Nelson, announced the end of the mission.[118] Ingenuity's final location is at Airfield Chi (χ) within the area since nicknamed by the project team, Valinor Hills, a reference to the final residence of the immortals in the J.R.R. Tolkien trilogy, The Lord of the Rings.[128]

In the days after its accident, Ingenuity remained responsive to signals from JPL, which commanded a low-speed rotation of the rotors. The helicopter photographed the rotor shadows, which revealed that one of the blades was entirely missing.[4][129]

Following a few final transmissions and a farewell message by the rotorcraft on April 16, 2024, The JPL team uploaded new software commands that direct the helicopter to continue collecting data well after communications with the rover have ceased. Ingenuity will serve as a stationary platform, testing the performance of its solar panel, batteries, and electronic equipment. In addition, the helicopter will take a picture of the surface with its color camera and collect temperature data from sensors placed throughout the rotorcraft and store it onboard, such that in-case of future retrieval, the results will provide long-term perspective on Martian weather patterns and dust movement, aiding the design of future rotorcraft. Engineers expect Ingenuity to store up to 20 years of daily data, if the craft is unhampered by the local conditions. Perseverance will continue exploration of Jezero crater autonomously, out of the rover's radio range.[130][131][132]

 
Ingenuity's end of mission location at Airfield Chi (χ), at the foot of the Valinor Hills taken by Perseverance on February 4, 2024.
 
The Valinor Hills above Ingenuity's final location, taken by Perseverance on February 21, 2024
The damaged rotor blades, flight 72
 
The sand dune area in which the damage occurred, taken by Ingenuity during flight 70 on December 22, 2023.
 
The shadow of the damaged tip of one of the rotor blades taken by Ingenuity's horizon camera after flight 72, which occurred on January 18, 2024.[4][125][135]
 
View of Ingenuity with missing and damaged blades[136][137]
 
Animated view of Ingenuity with missing blade[136][137]
 
Separated rotor blade and damaged Ingenuity helicopter (24 February 2024)

Follow-on missions and future work and conceptions edit

There are currently no plans to send Curiosity/Perseverance-class scientific laboratories to Mars, and funding for Martian projects is frozen to the level necessary to complete the Mars sample-return campaign.[138]

Sample Return Helicopter edit

 
Sample Return Helicopter, based on Ingenuity

The idea of future Martian helicopters has been proposed. In March 2022, AeroVironment engineers, who previously created Ingenuity, presented the concept of a new helicopter with a payload of 280 g. A 90 g small manipulator arm with a two-fingered gripper and a self-propelled landing gear make it possible to use vehicles of this type instead of a fetch rover[139] to select sample tubes cases with samples collected by Perseverance.[140] At a briefing on September 15, 2022, NASA Planetary Science Division Director Laurie Gleizes confirmed her intention to use two of these helicopters.[141]

The choice of Ingenuity as the prototype for the intended pair of assembler helicopters was based on the impressive safety margin built into it by AeroVironment designers. In principle, even the limit of 100 landings for the high-wear shock absorbers of the chassis is sufficient to transfer all 43 sleeves. Multiple small payloads can be carried by these types of helicopters, deployed and re-deployed to various locations, to perform a variety of distributed and networked operations.[142]

Inertial navigation was one of the main challenges on Mars for the Ingenuity. The helicopter needs to show the ability to accurately follow the track it has already "mapped" on previously collected NAV frame sets and land at the takeoff point. In a future sample return mission, each cartridge case would require a pair of flights ending at the point of departure. Landing accuracy was an assigned task of Ingenuity's 31st flight.[143] The very thin atmosphere of Mars does not allow repeating the maneuvers and landing techniques of terrestrial helicopters.[144][8]

Mars Science Helicopter edit

 
Mars Science Helicopter, Ingenuity's proposed successor

Data collected by Ingenuity are intended to support the development of future helicopters capable of carrying larger payloads. The Mars Science Helicopter task is the next evolutionary step for Martian rotorcraft at JPL. The key focus is to develop the technology needed to deploy science payloads (0.5 kg – 2 kg) on rotorcraft platforms at the surface of Mars. MSH will inherit many of the technologies created by the Mars Helicopter Technology Demonstrator (MHTD) baselined for Mars 2020, and extend capabilities in order to enable a new class of mesoscale planetary access across Mars.[145][17][10][146]

Designing and proving how science payloads can be deployed, recovered, integrated, and operated on a dynamically and computationally representative rotorcraft will be critical in expanding a new frontier for Martian scientific exploration.[145][17][10][146]

The focus will include:

  • Rotorcraft configurations capable of carrying and deploying science payloads
  • Forecasting technological advancements in avionics, batteries, power systems, and navigation algorithms.
  • Earthbound demonstration testbed for evaluating avionics and payload integrations along with MHTD inherited FSW, C&DH, and eventual autonomous science mission execution.[145][17][10][146]

MAGGIE edit

Mars Aerial and Ground Global Intelligent Explorer (MAGGIE) is a compact fixed wing aircraft proposed during 2024 NIAC selections.[147]

Tributes to the Wright brothers edit

NASA and JPL officials described the first Mars Ingenuity helicopter flight as their "Wright Brothers moment", by analogy to the first successful powered airplane flight on Earth.[148][149] A small piece of the wing cloth from the Wright brothers' 1903 Wright Flyer is attached to a cable underneath Ingenuity's solar panel.[150] In 1969, Apollo 11's Neil Armstrong carried a similar Wright Flyer artifact to the Moon in the Lunar Module Eagle.

NASA named Ingenuity's first take-off and landing airstrip Wright Brothers Field, which the UN agency ICAO gave an airport code of JZRO for Jezero Crater,[151] and the drone itself a type designator of IGY, call-sign INGENUITY.[152][153][151]

Gallery edit

Maps of flights edit

The flight zone of the technical demonstration and transitional stage
 
Wright Brothers Field and the overlook location
 
View of the field from the rover
 
Airfield B[b]
Flight paths of the operational demonstration stage and HiRise images of Ingenuity
 
Flight profile for Ingenuity's Flight 15
 
Topography between Mars helicopter and rover for Flight 17
 
Positioning before the 2021 solar conjunction
R210 is the rover position on sol 210;
H163
1
, H174
2
and H193
3
means 1st, 2nd and 3rd landing sites of Ingenuity on the Field H on sols 163, 174 and 193 respectively
 
Ingenuity captured by HiRise camera on Mars Reconnaissance Orbiter at Airfield M on February 26, 2022

Images by Ingenuity edit

First Images[c]
 
The first color image (April 4, 2021)[d]
 
In-flight image (19 April 2021, altitude 1.2 m (3 ft 11 in))
 
Landing after the first flight (19 April 2021)
 
First color aerial photo (22 April 2021, altitude 5.2 m (17 ft), flight 2)
Flights 3–9
 
Flight 3, rover is seen left-up from the 5.0 m (16.4 ft) height
 
Heading towards Airfield B (flight 4, 30 April 2021)
 
Flight 6, view from 10 m (33 ft) towards Séítah
 
Flight 9, flying over the Séítah (July 5, 2021)
 
Perseverance rover (left) viewed about 85 m (279 ft) away from 5.0 m (16.4 ft) height (April 25, 2021)
Flights 10–13
 
Flight 10 over ridges
 
Flight 12 over Séítah
 
Flight 13 rover view
After conjunction: preflight tests and flights 14–16
 
Flight 16, 21 November 2021)
 
Post-flight 16 as seen from Perseverance
Entry-descent-landing debris
 
 
 
 
 
Delivery spacecraft backshell and parachute, seen on flight 26, April 19, 2022.[154]
Crater Ridgeline
 
Flight 27 − Fortun Ridge
(23 April 2022)

Motion images edit

 
Flight 5. Landing at Airfield B, 7 May 2021
 
Flight 9, animation from the flight images
 
Flight 11 Perseverance spotted
 
Flight 11 ten slides
Flight 13, 4 September 2021
Flight 59, 16 September 2023

See also edit

Notes edit

  1. ^ Flights 1, 2 and 14 are not seen because they include little, if any, horizontal displacement.
  2. ^ HiRISE's view of Ingenuity's fourth flight path paving the way for it to move to Airfield B on flight 5
  3. ^ All images taken by Ingenuity are from either its black-and-white downward-facing navigation camera[74] or from horizon-facing color camera;[75] landing legs are seen at the side edges of images
  4. ^ Perseverance Rover wheels are clearly seen in top corners

References edit

  1. ^ a b c d e f g h   One or more of the preceding sentences incorporates text from this source, which is in the public domain: "Ingenuity Mars Helicopter Landing Press Kit" (PDF). NASA. January 2021. (PDF) from the original on 18 February 2021. Retrieved 14 February 2021.
  2. ^ a b   One or more of the preceding sentences incorporates text from this source, which is in the public domain: "Mars Helicopter". Mars.nasa.gov. NASA. from the original on 16 April 2020. Retrieved 2 May 2020.
  3. ^ "Mars Lander Missions". NASA Goddard Institute for Space Studies. from the original on 28 October 2020. Retrieved 26 October 2021.
  4. ^ a b c d "After Three Years on Mars, NASA's Ingenuity Helicopter Mission Ends". Jet Propulsion Laboratory. from the original on 25 January 2024. Retrieved 25 January 2024.
  5. ^ a b c Lerner, Preston (April 2019). "A Helicopter Dreams of Mars". Air & Space/Smithsonian. from the original on 21 May 2021. Retrieved 16 August 2021.
  6. ^ a b c   One or more of the preceding sentences incorporates text from this source, which is in the public domain: Generation of Mars Helicopter Rotor Model for Comprehensive Analyses 1 January 2020 at the Wayback Machine, Witold J. F. Koning, Wayne Johnson, Brian G. Allan; NASA 2018
  7. ^ J. Balaram and P. T. Tokumaru, "Rotorcrafts for Mars Exploration", in 11th International Planetary Probe Workshop, 2014, Bibcode 2014LPICo1795.8087B Balaram, J.; Tokumaru, P. T. (2014). "Rotorcrafts for Mars Exploration". 11th International Planetary Probe Workshop. 1795: 8087. Bibcode:2014LPICo1795.8087B. from the original on 17 February 2021. Retrieved 29 October 2020.
  8. ^ a b c d Benjamin T. Pipenberg, Matthew Keennon, Jeremy Tyler, Bart Hibbs, Sara Langberg, J. (Bob) Balaram, Håvard F. Grip and Jack Pempejian, "Design and Fabrication of the Mars Helicopter Rotor, Airframe, and Landing Gear Systems 21 February 2021 at the Wayback Machine", American Institute of Aeronautics and Astronautics (AIAA), SciTech Forum Conference; 7–11 January 2019, San Diego, California
  9. ^ Berger, Eric (24 May 2016). "Four wild technologies lawmakers want NASA to pursue". ARS Technica. from the original on 7 February 2021. Retrieved 24 May 2016.
  10. ^ a b c d e f g h i   One or more of the preceding sentences incorporates text from this source, which is in the public domain: Mars Helicopter Technology Demonstrator 1 April 2019 at the Wayback Machine J. (Bob) Balaram, Timothy Canham, Courtney Duncan, Matt Golombek, Håvard Fjær Grip, Wayne Johnson, Justin Maki, Amelia Quon, Ryan Stern, and David Zhu; American Institute of Aeronautics and Astronautics (AIAA) SciTech Forum Conference 8–12 January 2018 Kissimmee, Florida doi:10.2514/6.2018-0023
  11. ^ a b c Clarke, Stephen (14 May 2018). "Helicopter to accompany NASA's next Mars rover to Red Planet". Spaceflight Now. from the original on 7 February 2021. Retrieved 15 May 2018.
  12. ^ Dubois, Chantelle (29 November 2017). "Drones on Mars? NASA Projects May Soon Use Drones for Space Exploration". All About Circuits. from the original on 7 December 2017. Retrieved 14 January 2018.
  13. ^ Beutel, Allard (15 April 2015). "NASA Announces Mars 2020 Rover Payload to Explore the Red Planet". NASA. from the original on 19 February 2021. Retrieved 7 September 2022.
  14. ^ Grush, Loren (11 May 2018). "NASA is sending a helicopter to Mars to get a bird's-eye view of the planet". The Verge. from the original on 6 December 2020. Retrieved 7 September 2022.
  15. ^ NASA Mars exploration efforts turn to operating existing missions and planning sample return 21 February 2023 at the Wayback Machine, Jeff Foust, SpaceNews, 23 February 2018
  16. ^ NASA to decide soon whether flying drone will launch with Mars 2020 rover 21 February 2021 at the Wayback Machine Stephen Clark Spaceflight Now 15 March 2018
  17. ^ a b c d e   One or more of the preceding sentences incorporates text from this source, which is in the public domain: "Mars Helicopter to Fly on NASA's Next Red Planet Rover Mission". NASA. 11 May 2018. from the original on 11 May 2018.
  18. ^   One or more of the preceding sentences incorporates text from this source, which is in the public domain: Agle, AG; Johnson, Alana (28 March 2019). "NASA's Mars Helicopter Completes Flight Tests". NASA. from the original on 29 March 2019. Retrieved 28 March 2019.
  19. ^   One or more of the preceding sentences incorporates text from this source, which is in the public domain.
  20. ^   One or more of the preceding sentences incorporates text from this source, which is in the public domain: "Mars 2020 Perseverance Launch Press Kit" (PDF). NASA. 24 June 2020. (PDF) from the original on 21 July 2020. Retrieved 20 August 2020.
  21. ^ a b c First Flight on Another Planet!. Veritasium. 10 August 2019. from the original on 28 July 2020. Retrieved 3 August 2020 – via YouTube.
  22. ^ Status 289.
  23. ^ a b c Ingenuity Mars Helicopter Preflight Briefing (press conference livestreamed on YouTube). NASA Jet Propulsion Laboratory. 9 April 2021. from the original on 16 July 2023. Retrieved 14 April 2021.
  24. ^   One or more of the preceding sentences incorporates text from this source, which is in the public domain: Hautaluoma, Grey; Johnson, Alana; Agle, D.C. (29 April 2020). "Alabama High School Student Names NASA's Mars Helicopter". NASA. from the original on 30 April 2020. Retrieved 29 April 2020.
  25. ^   One or more of the preceding sentences incorporates text from this source, which is in the public domain: Agle, D.C.; Cook, Jia-Rui; Johnson, Alana (29 April 2020). "Q&A with the Student Who Named Ingenuity, NASA's Mars Helicopter". NASA. from the original on 4 June 2020. Retrieved 29 April 2020.
  26. ^ a b   One or more of the preceding sentences incorporates text from this source, which is in the public domain: Mars Helicopter Scout. video presentation at Caltech
  27. ^ a b c   One or more of the preceding sentences incorporates text from this source, which is in the public domain: "Mars Helicopter Fact Sheet" (PDF). NASA. February 2020. (PDF) from the original on 22 March 2020. Retrieved 2 May 2020.
  28. ^   One or more of the preceding sentences incorporates text from this source, which is in the public domain: "Astronomy Picture of the Day". NASA. 2 March 2021. from the original on 4 March 2021. Retrieved 4 March 2021.
  29. ^ "NASA begins search for ancient life on Mars after arrival of Perseverance, Ingenuity spacecrafts". www.cbsnews.com. 9 May 2021. from the original on 16 September 2022. Retrieved 7 September 2022.
  30. ^ Chang, Kenneth (12 May 2018). "A Helicopter on Mars? NASA Wants to Try". The New York Times. from the original on 12 May 2018. Retrieved 12 May 2018.
  31. ^ Gush, Loren (11 May 2018). "NASA is sending a helicopter to Mars to get a bird's-eye view of the planet – The Mars Helicopter is happening". The Verge. from the original on 6 December 2020. Retrieved 11 May 2018.
  32. ^ Review on space robotics: Toward top-level science through space exploration 21 February 2021 at the Wayback Machine Y. Gao, S. Chien – Science Robotics, 2017
  33. ^   One or more of the preceding sentences incorporates text from this source, which is in the public domain: "NASA's Mars Helicopter Reports In". NASA. 19 February 2021. from the original on 26 January 2024. Retrieved 23 February 2021.
  34. ^ Ianson, Eric; Meyer, Michael (3 May 2022). Explore Mars, Mars Exploration Program Briefing to MEPAG (PDF) (Report). NASA. (PDF) from the original on 29 January 2023. Retrieved 28 January 2023.
  35. ^ a b Status 293.
  36. ^ Status 294.
  37. ^ a b c Status 297.
  38. ^ Status 287.
  39. ^ Status 288.
  40. ^ Status 301.
  41. ^ a b Status 313.
  42. ^ a b "How NASA Designed a Helicopter That Could Fly Autonomously on Mars". IEEE Spectrum. 17 February 2021. from the original on 19 February 2021. Retrieved 19 February 2021.
  43. ^ Metcalfe, Tom (12 February 2021). "First 'space helicopter' set to take to Martian skies". NBC News. from the original on 12 October 2021. Retrieved 11 October 2021.
  44. ^ Finley, Klint (14 April 2021). "Open Source on Mars: Community powers NASA's Ingenuity Helicopter". GitHub. from the original on 11 October 2021. Retrieved 11 October 2021.
  45. ^ Status 295.
  46. ^ Status 298.
  47. ^ Status 305.
  48. ^ Status 314.
  49. ^ a b c Status 321.
  50. ^ Status 299.
  51. ^ Status 318.
  52. ^ a b c d e Status 308.
  53. ^ a b Status 316.
  54. ^ a b Chahat, Nacer; Miller, Joshua; Decrossas, Emmanuel; McNally, Lauren; Chase, Matthew; Jin, Curtis; Duncan, Courtney (December 2020). "The Mars Helicopter Telecommunication Link: Antennas, Propagation, and Link Analysis". IEEE Antennas and Propagation Magazine. 62 (6): 12–22. Bibcode:2020IAPM...62f..12C. doi:10.1109/MAP.2020.2990088. S2CID 219472515. from the original on 10 June 2021. Retrieved 29 May 2021.
  55. ^ Chahat, Nacer; Chase, Matt; Lazaro, Austin; Gupta, Gaurangi; Duncan, Courtney (22 November 2023). "Enhancing Communication Link Predictions for Ingenuity Mars Helicopter Mission with the Parabolic Equation Method". IEEE Transactions on Antennas and Propagation. 72 (2): 1. doi:10.1109/TAP.2023.3333433. S2CID 265392941.
  56. ^ "Season 5, Episode 2: Talking to Ingenuity and Other Space Robots - NASA". from the original on 7 December 2023. Retrieved 1 December 2023.
  57. ^ "Space Foundation Selects NASA JPL Ingenuity Mars Helicopter Flight Team To Receive 2021 John L. 'Jack' Swigert Jr. Award for Space Exploration". Space Foundation. 9 June 2021. from the original on 10 June 2021. Retrieved 16 June 2021.
  58. ^ "The NASA/JPL Ingenuity Mars Helicopter Team Awarded the 2021 Robert J. Collier Trophy" (PDF). (PDF) from the original on 17 October 2022. Retrieved 17 October 2022.
  59. ^ mars.nasa.gov. "NASA's Mars Helicopter Team Members With Collier Trophy". NASA Mars Exploration. from the original on 21 October 2022. Retrieved 17 October 2022.
  60. ^ Decision expected soon on adding helicopter to Mars 2020 21 February 2023 at the Wayback Machine, Jeff Fout, SpaceNews 4 May 2018
  61. ^ Ackerman, Evan (8 December 2021). "Mars Helicopter Is Much More Than a Tech Demo". IEEE Spectrum. from the original on 17 October 2022. Retrieved 17 October 2022.
  62. ^ a b Foust, Jeff (4 May 2018). "Decision expected soon on adding helicopter to Mars 2020". SpaceNews. from the original on 26 January 2024. Retrieved 17 October 2022.
  63. ^ "Mars Exploration Program Presentation to PAC" (PDF). 14 June 2021. (PDF) from the original on 22 June 2021. Retrieved 16 August 2021.
  64. ^ a b Status 450.
  65. ^ a b Status 441.
  66. ^ Sharp, Tim (12 September 2017). "Mars' Atmosphere: Composition, Climate & Weather". Space. from the original on 5 March 2021. Retrieved 10 March 2021.
  67. ^ Bachman, Justin (19 April 2021). "Why flying a helicopter on Mars is a big deal". phys.org. from the original on 20 April 2021. Retrieved 21 April 2021. Indeed, flying close to the surface of Mars is the equivalent of flying at more than 87,000 feet on Earth, essentially three times the height of Mount Everest, NASA engineers said. The altitude record for a helicopter flight on Earth is 41,000 feet.
  68. ^ a b "6 Things to Know About NASA's Mars Helicopter on Its Way to Mars". NASA Jet Propulsion Laboratory (JPL). 21 January 2021. from the original on 28 February 2021. Retrieved 21 January 2021.
  69. ^ a b Grip, Håvard Fjær; Lam, Johnny N. (2019). "Flight Control System for NASA's Mars Helicopter" (PDF). NASA/JPL. (PDF) from the original on 28 June 2021. Retrieved 16 April 2021.
  70. ^ NASA's Ingenuity Mars Helicopter's Next Steps. Media briefing. NASA/JPL. 30 April 2021. from the original on 8 May 2021. Retrieved 30 April 2021 – via YouTube.
  71. ^ Matthies, Bayard; Delaune, Conway (2019). "Vision-Based Navigation for the NASA Mars Helicopter". AIAA Scitech 2019 Forum (1411): 3. doi:10.2514/6.2019-1411. ISBN 978-1-62410-578-4. S2CID 86460806.
  72. ^ On Mars, the amazing design of the radio link between Ingenuity and the Perseverance rover (in French). Université de Rennes. 10 April 2021. Event occurs at 00:07:27. from the original on 15 August 2021. Retrieved 16 August 2021 – via YouTube.
  73. ^ Jet Propulsion Laboratory (26 August 2021). "NASA's Ingenuity Helicopter Sees Potential Martian "Road" Ahead". SciTechDaily. from the original on 30 August 2021. Retrieved 30 August 2021.
  74. ^ a b c "Raw Images From Ingenuity Helicopter". NASA. 30 April 2021. from the original on 17 September 2021. Retrieved 10 May 2021. (NAV images)
  75. ^ a b "Raw Images From Ingenuity Helicopter". NASA. 30 April 2021. from the original on 25 June 2021. Retrieved 10 May 2021. (RTE images)
  76. ^ "Raw Images. Filtering: Mars Helicopter Tech Demo Cameras: Navigation Camera". Mars 2020 Mission Perseverance Rover. NASA. 18 April 2021. from the original on 1 September 2021. Retrieved 1 September 2021.
  77. ^ a b "Ingenuity's First Color Snap". NASA. 5 April 2021. from the original on 26 January 2024. Retrieved 8 April 2021.
  78. ^ "Raw Images. Filtering: Mars Helicopter Tech Demo Cameras: Navigation Camera". Mars 2020 Mission Perseverance Rover. NASA. 15 August 2021. from the original on 24 December 2021. Retrieved 1 September 2021.
  79. ^ "Raw Images. Filtering: Mars Helicopter Tech Demo Cameras: Navigation Camera". Mars 2020 Mission Perseverance Rover. NASA. 4 September 2021. from the original on 6 September 2021. Retrieved 4 September 2021.
  80. ^ a b "Images from the Mars Perseverance Rover". Mars.nasa.gov. from the original on 15 February 2021. Retrieved 17 February 2022.
  81. ^ a b Status 290.
  82. ^ Status 420.
  83. ^ a b Status 334.
  84. ^ @NASAJPL (5 July 2021). "#MarsHelicopter pushes its Red Planet limits. 🚁The rotorcraft completed its 9th and most challenging flight yet, f..." (Tweet). Retrieved 5 July 2021 – via Twitter.
  85. ^ "Flight 61 Preview – By the Numbers".
  86. ^ "NASA's Mars Helicopter Survives First Cold Martian Night on Its Own". Nasa Mars Website. from the original on 26 January 2024. Retrieved 5 April 2021.
  87. ^   One or more of the preceding sentences incorporates text from this source, which is in the public domain: Agle, D.C.; Hautaluoma, Gray; Johnson, Alana (23 June 2020). "How NASA's Mars Helicopter Will Reach the Red Planet's Surface". NASA. from the original on 19 February 2021. Retrieved 23 February 2021.
  88. ^ "NASA's Mars Helicopter: Small, Autonomous Rotorcraft To Fly On Red Planet" 10 July 2018 at the Wayback Machine, Shubham Sharma, International Business Times, 14 May 2018
  89. ^   One or more of the preceding sentences incorporates text from this source, which is in the public domain: "Mars Helicopter a new challenge for flight" (PDF). NASA. July 2018. (PDF) from the original on 1 January 2020. Retrieved 20 July 2018.
  90. ^ Griffith, Andrew (8 April 2021). "NASA Unlocks Mars Helicopter's Rotor Blades Ahead Of Pioneering Ingenuity Flight". The Independent. from the original on 18 April 2021. Retrieved 8 April 2021.
  91. ^ Bartels, Meghan (8 April 2021). "Mars helicopter Ingenuity unlocks its rotor blades to prepare for 1st flight on Red Planet". Space.com. from the original on 13 September 2023. Retrieved 8 April 2021.
  92. ^ "Ingenuity Begins to Spin Its Blades". NASA's Mars Exploration Program. NASA. 9 April 2021. from the original on 17 April 2021. Retrieved 14 April 2021.
  93. ^ @NASAJPL (9 April 2021). "🎶Wiggle, wiggle, wiggle 🎶 With just a little bit of swing, the #MarsHelicopter has moved its blades & spun to 50..." (Tweet). Retrieved 18 April 2021 – via Twitter.
  94. ^ Latifiyan, Pouya (April 2021). "Space Telecommunications, how?". Take off. 1. Tehran: Civil Aviation Technology College: 15 – via Persian.
  95. ^ Status 291.
  96. ^ Status 292.
  97. ^ @NASA (17 April 2021). "Encouraging news: #MarsHelicopter completed a full-speed spin test—an important milestone on our path to 1st flight" (Tweet). Retrieved 17 April 2021 – via Twitter.
  98. ^ a b c "NASA's Ingenuity Helicopter to Begin New Demonstration Phase". from the original on 7 October 2023. Retrieved 15 March 2022.
  99. ^ a b "The Long Wait – NASA". Mars Helicopter Tech Demo. from the original on 13 November 2023. Retrieved 11 November 2023.
  100. ^ "NASA Helicopter Marks 6 Months on Mars, Is Still Flying High – ExtremeTech". www.extremetech.com. 8 September 2021. from the original on 8 November 2022. Retrieved 7 September 2022.
  101. ^ "Breaking: Mars Helicopter Is Now A Fully Operational Partner Of Perseverance". IFLScience. 30 April 2021. from the original on 30 April 2021. Retrieved 30 April 2021.
  102. ^ Gohd, Chelsea (30 April 2021). "NASA extends Mars helicopter Ingenuity's high-flying mission on Red Planet". Space.com. from the original on 30 April 2021. Retrieved 10 June 2021.
  103. ^ "Location Map for Perseverance Rover – NASA". mars.nasa.gov. from the original on 12 June 2019. Retrieved 26 September 2023.
  104. ^ a b "Ingenuity Is So Good, NASA's Mars Helicopter Mission Just Got an Exciting Update". Science Alert. 6 September 2021. from the original on 6 September 2021. Retrieved 6 September 2021.
  105. ^ "NASA Extends Ingenuity Helicopter Mission". Mars Exploration Program. NASA. 15 March 2022. from the original on 14 June 2022. Retrieved 17 March 2022.
  106. ^ "Solar Conjunction | Mars in our Night Sky". NASA's Mars Exploration Program. from the original on 20 August 2021. Retrieved 18 August 2021.
  107. ^ . NASA. 28 September 2021. Archived from the original on 28 September 2021. Retrieved 28 September 2021.
  108. ^ . Business Insider Australia. 29 July 2021. Archived from the original on 21 December 2021. Retrieved 30 August 2021.
  109. ^ "After Six Months on Mars, NASA's Tiny Helicopter Is Still Flying High". NDTV. 5 September 2021. from the original on 5 September 2021. Retrieved 5 September 2021.
  110. ^ "NASA's eventual farewell to tiny Mars helicopter could be emotional". from the original on 10 December 2021. Retrieved 10 December 2021.
  111. ^ Status 373.
  112. ^ a b Status 382.
  113. ^ Status 379.
  114. ^ Status 385.
  115. ^ Wu, Daniel (2 June 2023). "NASA's Mars helicopter is somehow still flying — and playing hide-and-seek – Scientists thought Ingenuity would fail years ago. It's still flying, although NASA has to search for it occasionally". The Washington Post. Archived from the original on 2 June 2023. Retrieved 4 June 2023.
  116. ^ "NASA's Ingenuity Mars Helicopter Phones Home". NASA Jet Propulsion Laboratory (JPL). 30 June 2023. from the original on 21 January 2024. Retrieved 4 July 2023.
  117. ^ @NASAJPL (21 January 2024). "Good news today" (Tweet) – via Twitter.
  118. ^ a b "After Three Years on Mars, NASA's Ingenuity Helicopter Mission Ends". from the original on 25 January 2024. Retrieved 25 January 2024.
  119. ^ Donaldson, Abbey A. (25 January 2024). "After Three Years on Mars, NASA's Ingenuity Helicopter Mission Ends". NASA. Retrieved 27 January 2024.
  120. ^ mars.nasa.gov. "Images from the Mars Perseverance Rover - NASA". mars.nasa.gov. Retrieved 27 January 2024.
  121. ^ mars.nasa.gov. "Images from the Mars Perseverance Rover - NASA". mars.nasa.gov. Retrieved 27 January 2024.
  122. ^ Wall, Mike (20 January 2024). "NASA loses contact with Ingenuity Mars helicopter". Space.com. from the original on 20 January 2024. Retrieved 20 January 2024.
  123. ^ Wall, Mike (25 January 2024). "'It's sort of been invincible until this moment:' Mars helicopter Ingenuity pilot says 'bland' terrain may have doomed NASA chopper - The sandy landscape offered few points of navigational reference for Ingenuity". Space.com. Archived from the original on 31 January 2024. Retrieved 31 January 2024.
  124. ^ NASA Science Live: Ingenuity Mars Helicopter Tribute & Legacy. from the original on 1 February 2024. Retrieved 1 February 2024 – via YouTube.
  125. ^ a b "Ingenuity spots the shadow of its damaged rotor blade". NASA Jet Propulsion Laboratory (JPL). 25 January 2024. from the original on 27 January 2024. Retrieved 27 January 2024.
  126. ^ Berger, Eric (25 January 2024). "The amazing helicopter on Mars, Ingenuity, will fly no more". Ars Technica. from the original on 26 January 2024. Retrieved 26 January 2024.
  127. ^ Grip, Håvard Fjær; et al. (2019). "Flight Control System for NASA's Mars Helicopter" (PDF). NASA. Archived (PDF) from the original on 28 February 2024. Retrieved 28 February 2024.
  128. ^ mars.nasa.gov. "Perseverance Spots Ingenuity at Its Final Airfield". NASA Mars Exploration. Retrieved 9 February 2024.
  129. ^ Rabie, Passant (1 February 2024), "NASA's Mars Helicopter Will Do a 'Wiggle' Test After Fatal Malfunction - The space agency is still trying to figure out what may have caused Ingenuity's mission-ending damage, leading to the proposed spin test.", Gizmodo, archived from the original on 2 February 2024, retrieved 2 February 2024
  130. ^ https://www.jpl.nasa.gov. "NASA's Ingenuity Mars Helicopter Team Says Goodbye … for Now". NASA Jet Propulsion Laboratory (JPL). Retrieved 17 April 2024. {{cite web}}: External link in |last= (help)
  131. ^ "NASA's Ingenuity Mars Helicopter Team Says Goodbye … for Now - NASA". 16 April 2024. Retrieved 17 April 2024.
  132. ^ Weatherbed, Jess (17 April 2024). "Until we meet again, Ingenuity". The Verge. Retrieved 17 April 2024.
  133. ^ "Catalog Page for PIA26236". photojournal.jpl.nasa.gov. Retrieved 7 February 2024.
  134. ^ "Location Map for Perseverance Rover – NASA". mars.nasa.gov. from the original on 12 June 2019. Retrieved 27 September 2023.
  135. ^ Chang, Kenneth (25 January 2024). "Ingenuity, the NASA Helicopter Flying Over Mars, Ends Its Mission – The robot flew 72 times, serving as a scouting partner to the Perseverance rover, aiding in the search for evidence that there was once life on the red planet". The New York Times. Archived from the original on 25 January 2024. Retrieved 26 January 2024.
  136. ^ a b Berger, Eric (26 February 2024). "Final images of Ingenuity reveal an entire blade broke off the helicopter - This new data should help us understand Ingenuity's final moments on Mars". Ars Technica. Archived from the original on 26 February 2024. Retrieved 26 February 2024.
  137. ^ a b Wall, Mike (26 February 2024). "Ingenuity Mars helicopter snapped rotor blade during hard landing last month (video, photo)". Space.com. Archived from the original on 27 February 2024. Retrieved 27 February 2024.
  138. ^ "Planetary Science and Astrobiology Decadal Survey 2023–2032". from the original on 29 March 2021. Retrieved 17 October 2022.
  139. ^ Foust, Jeff (27 July 2022). "NASA and ESA remove rover from Mars Sample Return plans". SpaceNews. from the original on 26 January 2024. Retrieved 17 October 2022.
  140. ^ Pipenberg, Benjamin T.; Langberg, Sara A.; Tyler, Jeremy D.; Keennon, Matthew T. (March 2022). "Conceptual Design of a Mars Rotorcraft for Future Sample Fetch Missions". 2022 IEEE Aerospace Conference (AERO). pp. 01–14. doi:10.1109/AERO53065.2022.9843820. ISBN 978-1-6654-3760-8. S2CID 251473077. from the original on 19 October 2022. Retrieved 17 October 2022.
  141. ^ News Briefing: NASA's Perseverance Mars Rover Investigates Geologically Rich Area, 15 September 2022, from the original on 17 October 2022, retrieved 17 October 2022
  142. ^ Status 417.
  143. ^ Status 398.
  144. ^ "Inside Unmanned Systems: Inside the Ingenuity Helicopter" (PDF). (PDF) from the original on 17 October 2022. Retrieved 17 October 2022.
  145. ^ a b c "Mars Science Helicopter". SpaceNews.com. 24 June 2021. from the original on 26 January 2024. Retrieved 24 June 2021.
  146. ^ a b c   One or more of the preceding sentences incorporates text from this source, which is in the public domain: "Mars Helicopter a new challenge for flight" (PDF). NASA. July 2018. (PDF) from the original on 1 January 2020. Retrieved 9 August 2018.
  147. ^ "Mars Aerial and Ground Global Intelligent Explorer (MAGGIE) – NASA". 4 January 2024. from the original on 12 January 2024. Retrieved 20 January 2024.
  148. ^ Gorman, Steve (19 April 2021). "NASA Scores Wright Brothers Moment with First Helicopter Flight on Mars". Reuters. from the original on 26 May 2023. Retrieved 21 April 2021.
  149. ^ Harwood, William (19 April 2021). "NASA's Ingenuity helicopter makes maiden flight on Mars in a "Wright brothers moment"". CBS News. from the original on 19 April 2021. Retrieved 21 April 2021.
  150. ^ Johnson, Alana; Hautaluoma, Grey; Agle, DC (23 March 2021). "NASA Ingenuity Mars Helicopter Prepares for First Flight". NASA. from the original on 26 January 2024. Retrieved 23 March 2021.
  151. ^ a b "NASA's Ingenuity Mars Helicopter Succeeds in Historic First Flight". Mars Exploration Program. NASA. 19 April 2021. from the original on 30 December 2021. Retrieved 19 April 2021.
  152. ^ Amos, Jonathan (19 April 2021). "NASA successfully flies small helicopter on Mars". BBC. from the original on 19 April 2021. Retrieved 19 April 2021.
  153. ^ Strickland, Ashley (19 April 2021). "NASA's Mars helicopter Ingenuity successfully completed its historic first flight". CNN. from the original on 5 April 2023. Retrieved 19 April 2021.
  154. ^ Chang, Kenneth (27 April 2022). "NASA Sees 'Otherworldly' Wreckage on Mars With Ingenuity Helicopter – The debris was part of the equipment that helped the Perseverance mission safely land on the red planet in 2021". The New York Times. from the original on 3 July 2022. Retrieved 28 April 2022.

Status reports edit

  • Balaram, Bob (19 March 2021). "How is the Weather on Mars?". Status #287. NASA/JPL. from the original on 26 January 2024. Retrieved 25 July 2021.
  • Balaram, Bob (2 April 2021). "It's Cold on Mars". Status #288. NASA/JPL. from the original on 26 January 2024. Retrieved 25 July 2021.
  • "When Should Ingenuity Fly?". Status #289. NASA/JPL. 8 April 2021. from the original on 26 January 2024. Retrieved 25 July 2021.
  • "Work Progresses Toward Ingenuity's First Flight on Mars". Status #290. NASA/JPL. 12 April 2021. from the original on 26 January 2024. Retrieved 25 July 2021.
  • "Mars Helicopter Flight Delayed to No Earlier than April 14". Status #291. NASA/JPL. 10 April 2021. from the original on 26 January 2024. Retrieved 25 July 2021.
  • Ingenuity Flight Team (16 April 2021). "Working the Challenge: Two Paths to First Flight on Mars". Status #292. NASA/JPL. from the original on 26 January 2024. Retrieved 25 July 2021.
  • Aung, MiMi (17 April 2021). "Why We Choose to Try Our First Helicopter Flight on Monday". Status #293. NASA/JPL. from the original on 26 January 2024. Retrieved 25 July 2021.
  • Aung, MiMi (21 April 2021). "We're Getting Ready for Ingenuity's Second Flight". Status #294. NASA/JPL. from the original on 26 January 2024. Retrieved 25 July 2021.
  • Grip, Håvard (23 April 2021). "We Are Prepping for Ingenuity's Third Flight Test". Status #295. NASA/JPL. from the original on 26 January 2024. Retrieved 24 April 2021.
  • "Mars Helicopter's Flight Four Rescheduled". Status #296. NASA/JPL. 29 April 2021. from the original on 26 January 2024. Retrieved 25 July 2021.
  • Aung, MiMi (30 April 2021). "Ingenuity Completes Its Fourth Flight". Status #297. NASA/JPL. from the original on 26 January 2024. Retrieved 25 July 2021.
  • Grip, Håvard (30 April 2021). "What We're Learning about Ingenuity's Flight Control and Aerodynamic Performance". Status #298. NASA/JPL. from the original on 26 January 2024. Retrieved 25 July 2021.
  • Ravich, Josh (6 May 2021). "Why Ingenuity's Fifth Flight Will Be Different". Status #299. NASA/JPL. from the original on 26 January 2024. Retrieved 25 July 2021.
  • Balaram, Bob; Tyler, Jeremy (10 May 2021). "Keeping Our Feet Firmly on the Ground". Status #301. NASA/JPL. from the original on 26 January 2024. Retrieved 25 July 2021.
  • "Plans Underway for Ingenuity's Sixth Flight". Status #302. NASA/JPL. 19 May 2021. from the original on 26 January 2024. Retrieved 25 July 2021.
  • Grip, Håvard (27 May 2021). "Surviving an In-Flight Anomaly: What Happened on Ingenuity's Sixth Flight". Status #305. NASA/JPL. from the original on 26 January 2024. Retrieved 25 July 2021.
  • "Ingenuity Flight 7 Preview". Status #306. NASA/JPL. 4 June 2021. from the original on 26 January 2024. Retrieved 25 July 2021.
  • Tzanetos, Teddy (25 June 2021). "Flight 8 Success, Software Updates, and Next Steps". Status #308. NASA/JPL. from the original on 26 January 2024. Retrieved 25 July 2021.
  • Håvard Grip & Bob Balaram (2 July 2021). "We're Going Big for Flight 9". Status #313. NASA/JPL. from the original on 26 January 2024. Retrieved 25 July 2021.
  • Grip, Håvard; Williford, Ken (7 July 2021). "Flight 9 Was a Nail-Biter, but Ingenuity Came Through With Flying Colors". Status #314. NASA/JPL. from the original on 26 January 2024. Retrieved 25 July 2021.
  • Tzanetos, Teddy (23 July 2021). "Aerial Scouting of 'Raised Ridges' for Ingenuity's Flight 10". Status #316. NASA/JPL. from the original on 26 January 2024. Retrieved 25 July 2021.
  • Josh Ravich (4 August 2021). "North-By-Northwest for Ingenuity's 11th Flight". Status #318. NASA/JPL. from the original on 26 January 2024. Retrieved 5 August 2021.
  • Tzanetos, Teddy (15 August 2021). "Better By the Dozen – Ingenuity Takes on Flight 12". Status #321. NASA/JPL. from the original on 26 January 2024. Retrieved 15 August 2021.
  • Tzanetos, Teddy; Grip, Håvard (3 September 2021). "Lucky 13 – Ingenuity to Get Lower for More Detailed Images During Next Flight". Status #329. NASA/JPL. from the original on 26 January 2024. Retrieved 3 September 2021.
  • Håvard Grip (15 September 2021). "Flying on Mars Is Getting Harder and Harder". Status #334. NASA/JPL. from the original on 26 January 2024. Retrieved 15 September 2021.
  • Jaakko Karras (28 September 2021). "2,800 RPM Spin a Success, but Flight 14 Delayed to Post Conjunction". Status #336. NASA/JPL. from the original on 26 January 2024. Retrieved 28 September 2021.
  • Tzanetos, Teddy (10 October 2021). "Flight 14 Successful". Status #341. NASA/JPL. from the original on 26 January 2024. Retrieved 25 November 2021.
  • Tzanetos, Teddy (5 November 2021). "Flight #15 — Start of the Return Journey". Status #343. NASA/JPL. from the original on 26 January 2024. Retrieved 25 November 2021.
  • Anderson, Joshua (16 November 2021). "Flight 16 — Short Hop to the North". Status #346. NASA/JPL. from the original on 26 January 2024. Retrieved 25 November 2021.
  • Kubiak, Gerik (2 December 2021). "Flight 17 — Heading North Into Séítah". Status #349. NASA/JPL. from the original on 26 January 2024. Retrieved 3 December 2021.
  • Tzanetos, Teddy (7 December 2021). "Flight 17 – DiscoveringLimits". Status #350. NASA/JPL. from the original on 26 January 2024. Retrieved 8 December 2021.
  • Karras, Jaakko (23 February 2022). "Dusty Flight 19 Completed and Looking Ahead to Flight 20". Status #366. NASA/JPL. from the original on 26 January 2024. Retrieved 27 February 2022.
  • Morrell, Ben (5 April 2022). "Balancing Risks in the 'Séítah' Region – Flight 24". Status #373. NASA. from the original on 7 February 2023. Retrieved 6 April 2022.
  • Agle, David (6 May 2022). "NASA's Ingenuity in Contact With Perseverance Rover After Communications Dropout" (Status379). Status #379. NASA. from the original on 3 February 2023. Retrieved 8 May 2022.
  • Tzanetos, Teddy (27 May 2022). "Ingenuity Adapts for Mars Winter Operations". Status #382. NASA. from the original on 28 May 2022. Retrieved 28 May 2022.
  • Grip, Håvard (6 June 2022). "Keeping Our Sense of Direction: Dealing With a Dead Sensor". Status #385. NASA. from the original on 26 January 2024. Retrieved 14 June 2022.
  • "Status #392: Ingenuity Postpones Flights Until August". mars.nasa.gov. from the original on 26 January 2024. Retrieved 17 October 2022.
  • Tzanetos, Teddy (19 August 2022). "Ingenuity Team Spun Up for Upcoming Flight 30". Status #398. NASA. from the original on 26 January 2024. Retrieved 9 May 2023.
  • Balaram, Bob (14 November 2022). "Mars Helicopters – The 4R's". Status #417. NASA. from the original on 15 November 2022. Retrieved 9 May 2023.
  • Anderson, Joshua. "Flight 34 Was Short But Significant – NASA". Status #420. from the original on 27 January 2023. Retrieved 24 November 2022.
  • Brown, Travis (14 February 2023). "Perseverance's Four-Legged Companion is Ready". Status #441. from the original on 26 January 2024. Retrieved 31 March 2023.
  • Brown, Travis (23 March 2023). "The Race Is On". Status #450. from the original on 26 January 2024. Retrieved 5 May 2023.

External links edit

  • NASA Mars Helicopter webpage
  • NASA Mars Helicopter flight log
  • Mars Helicopter Technology Demonstrator. (PDF) – The key design features of the prototype drone.
  • First Video of NASA's Ingenuity helicopter in flight on YouTube
  • Perseverance Route Map – including the flight tracks of Ingenuity
  • Explore Mars
  • AIAA Book Planetary Exploration with Ingenuity and Dragonfly
  • source code of program behind Ginny – NASA GitHub page

ingenuity, helicopter, mars, helicopter, redirects, here, mars, aircraft, general, mars, aircraft, wright, brothers, field, redirects, here, other, uses, wright, field, disambiguation, ingenuity, nicknamed, ginny, autonomous, nasa, helicopter, that, operated, . Mars helicopter redirects here For Mars aircraft in general see Mars aircraft Wright Brothers Field redirects here For other uses see Wright Field disambiguation Ingenuity nicknamed Ginny is an autonomous NASA helicopter that operated on Mars from 2021 to 2024 as part of the Mars 2020 mission Ingenuity made its first flight on April 19 2021 demonstrating that flight is possible in the extremely thin atmosphere of Mars and becoming the first aircraft to conduct a powered and controlled extra terrestrial flight It was designed by NASA s Jet Propulsion Laboratory JPL in collaboration with AeroVironment NASA s Ames Research Center and Langley Research Center with some components supplied by Lockheed Martin Space Qualcomm and SolAero IngenuityPart of Mars 2020Ingenuity at Wright Brothers Field on April 6 2021 its third day of deployment on MarsTypeExtraterrestrial autonomous UAV helicopterSerial no IGY civil registration OwnerNASAManufacturerJet Propulsion LaboratorySpecificationsDimensions121 cm 49 cm 52 cm 48 in 19 in 20 in Dry mass1 8 kilograms 4 0 lb 1 CommunicationZigbee transponder with base station on PerseverancePower6 Solar charged Sony VTC4 Li ion batteries typical motor input power 350 watt 2 InstrumentsCameras 2Inertial sensorsLaser altimeterHistoryDeployed3 April 2021 2021 04 03 from PerseveranceFirst flight19 April 2021 07 34 UTC to and from Wright Brothers Field Last flight18 January 2024 to and from Airfield Chi x in Valinor Hills Flights72Flight time2 hr 8 min 55 sec cumulativeTravelledHorizontal 17 242 km 10 714 mi on MarsVertical max 24 m 79 ft Data from NASA Mars Helicopter Flight Log Maximum speed 22 4 mph 36 0 km h 19 5 kn FateRetired due to sustained rotor blade damage 4 LocationJezero crater Mars 3 NASA Mars helicoptersMars Sample Recovery Helicopters Ingenuity was delivered to Mars on February 18 2021 attached to the underside of the Perseverance rover which landed at Octavia E Butler Landing near the western rim of the 45 km wide 28 mi Jezero crater Because radio signals take between five and 20 minutes to travel between Earth and Mars depending on the planets positions it could not be controlled directly in real time but flew autonomously to execute flight plans designed and sent to it by JPL Originally intended to make only five flights Ingenuity completed 72 flights in nearly three years The five planned flights were part of a 30 sol technology demonstration intended to prove its airworthiness with flights of up to 90 seconds at altitudes ranging from 3 5 m 10 16 ft Following this demonstration JPL designed a series of operational flights to explore how aerial scouts could help explore Mars and other worlds In this operational role Ingenuity scouted areas of interest for the Perseverance rover improved navigational techniques and explored the limits of its flight envelope Ingenuity s performance and resilience in the harsh Martian environment greatly exceeded expectations allowing it to perform far more flights than were initially planned On January 18 2024 Ingenuity s rotor blades were damaged while landing on its 72nd flight permanently grounding the helicopter NASA announced the end of its mission one week later Ingenuity had flown for a total of two hours eight minutes and 48 seconds over 1 004 days covering more than 17 kilometres 11 mi Contents 1 Development 1 1 Concept 1 2 Mission integration 1 3 Development team 2 Opposition 3 Design 3 1 Mechanical design 3 2 Avionics 3 3 Cameras and photography 3 4 Flight software 3 5 Specifications 4 Operational history 4 1 Primary mission 4 2 Operations Demo Phase 4 3 End of mission 5 Follow on missions and future work and conceptions 5 1 Sample Return Helicopter 5 2 Mars Science Helicopter 5 3 MAGGIE 6 Tributes to the Wright brothers 7 Gallery 7 1 Maps of flights 7 2 Images by Ingenuity 7 2 1 Motion images 8 See also 9 Notes 10 References 10 1 Status reports 11 External linksDevelopment editConcept edit nbsp Prototype Mars helicopter which first flew in a pressure chamber simulating the Martian atmosphere on May 31 2016 The development of the project that would eventually become Ingenuity started in 2012 when JPL director Charles Elachi visited the lab s Autonomous Systems Division which had done relevant concept work By January 2015 NASA agreed to fund the development of a full size model which came to be known as the risk reduction vehicle 5 NASA s JPL and AeroVironment published the conceptual design in 2014 for a scout helicopter to accompany a rover 6 7 8 By mid 2016 15 million was being requested to continue development of the helicopter 9 By December 2017 engineering models of the vehicle had been tested in a simulated Martian atmosphere 10 11 Models were undergoing testing in the Arctic but its inclusion in the mission had not yet been approved or funded 12 Mission integration edit When the Mars 2020 program was approved in July 2014 13 a helicopter flight demonstration was neither included nor budgeted 14 The United States federal budget announced in March 2018 provided 23 million for the helicopter for one year 15 16 and it was announced on May 11 2018 that the helicopter could be developed and tested in time to be included in the Mars 2020 mission 17 The helicopter underwent extensive flight dynamics and environment testing 10 18 and was mounted on the underside of the Perseverance rover in August 2019 19 NASA spent about 80 million to build Ingenuity and about 5 million to operate the helicopter 20 In 2019 preliminary designs of Ingenuity were tested on Earth in simulated Mars atmospheric and gravity conditions For flight testing a large vacuum chamber was used to simulate the very low pressure of the atmosphere of Mars filled with carbon dioxide to about 0 60 about 1 160 of standard atmospheric pressure at sea level on Earth which is roughly equivalent to a helicopter flying at 34 000 m 112 000 ft altitude in the atmosphere of Earth In order to simulate the much reduced gravity field of Mars 38 of Earth s 62 of Earth s gravity was offset by a line pulling upwards during flight tests 21 A wind wall consisting of almost 900 computer fans was used to provide wind in the chamber 22 23 1 08 05 1 08 40 In April 2020 the vehicle was named Ingenuity by Vaneeza Rupani a girl in the 11th grade at Tuscaloosa County High School in Northport Alabama who submitted an essay into NASA s Name the Rover contest 24 25 Known in planning stages as the Mars Helicopter Scout 26 or simply the Mars Helicopter 27 the nickname Ginny later entered use in parallel to the parent rover Perseverance being affectionately referred to as Percy 28 Its full scale engineering model for testing on Earth was named Earth Copter and unofficially Terry 29 Ingenuity was designed to be a technology demonstrator by JPL to assess whether such a vehicle could fly safely Before it was built launched and landed scientists and managers expressed hope that helicopters could provide better mapping and guidance that would give future mission controllers more information to help with travel routes planning and hazard avoidance 17 30 31 Based on the performance of previous rovers through Curiosity it was assumed that such aerial scouting might enable future rovers to safely drive up to three times as far per sol 32 33 However the new AutoNav capability of Perseverance significantly reduced this advantage allowing the rover to cover more than 100 meters per sol 34 Development team edit nbsp Ingenuity team 2018 The Ingenuity team was comparatively small with never more than 65 full time equivalent employees from JPL Program workers from AeroVironment NASA AMES and Langley research centers brought the total to 150 5 Key personnel include MiMi Aung Ingenuity Mars Helicopter Project Manager at NASA s Jet Propulsion Laboratory 35 36 37 5 Bob Balaram Chief Engineer prior to Nov 2021 38 39 40 41 Timothy Canham Flight Software Lead and Operations Lead prior to June 2021 42 43 44 Havard Fjaer Grip GNC Lead and Chief Pilot 45 46 47 41 48 49 Matt Keennon AeroVironment Technical Lead 8 Ben Pipenberg AeroVironment Design Lead 8 Josh Ravich Mechanical Engineering Lead 50 51 Teddy Tzanetos Operations Lead 52 53 49 Nacer Chahat Antenna Engineer and Telecom System Engineering 54 55 56 On June 15 2021 the team behind Ingenuity was named the 2021 winner of the John L Jack Swigert Jr Award for Space Exploration from the Space Foundation 57 On April 5 2022 the National Aeronautic Association awarded Ingenuity and its group in JPL the 2021 Collier Trophy 58 59 Opposition editSee also Mars 2020 The idea to include a helicopter in the Mars 2020 mission was opposed by several people Up until the end of the 2010s several NASA leaders scientists and JPL employees argued against integrating a helicopter into the mission For three years the future Ingenuity was developed outside the Mars 2020 project and its budget 60 61 And although NASA management accepted assurances in the spring of 2018 that the addition of a helicopter would not harm the goals of the expedition Mars 2020 chief scientist Kenneth Farley stated I have personally been opposed to it because we are working very hard for efficiencies and spending 30 days working on a technology demonstration does not further those goals directly from the science point of view 62 Farley was convinced that the helicopter was a distraction from the priority scientific tasks unacceptable even for a short time 62 nbsp Comparison of total distance traveled by Ingenuity and Perseverance a The skepticism on the part of NASA leadership was not unfounded Scientists engineers and managers proceeded from a pragmatic comparison of the benefits of additional aerial reconnaissance with the costs that inevitably fall on the schedule for the rover to complete all the tasks assigned to it During a live stream from NASA MiMi Aung the Ingenuity Project Manager and Jennifer Trosper discussed the value of Ingenuity Trosper argued that the rover would outpace the helicopter due to its auto navigation capability thus negating one of central arguments for the value to the mission of the helicopter During the operations on Mars Trosper was shown to be correct when in the spring of 2022 at the beginning of Sol 400 the helicopter fell behind the rover At the end of the test window NASA extended support for Ingenuity for another 30 sols limiting the frequency of departures to one flight every few weeks On 14 June 2021 the Director of the Mars Exploration program E Janson and the Principal Mars Explorer M Meyer directly addressed all the staff of the Mars 2020 project During this address they cautioned the staff to keep their Ingenuity enthusiasm in check and concentrate on collecting samples On the same date in their report to the Planetary Advisory Committee PAC the helicopter was mentioned only in the past tense e g placed Ingenuity and completed the technology demonstration phase 63 Despite this early pessimism Ingenuity has since proved to be more than capable of keeping up with Perseverance actually staying ahead of the rover for the majority of the traverse up the Jezero delta 64 Insufficient solar energy during the Martian winter was the main driver of poor operational performance in the latter half of 2022 65 Design editMechanical design edit nbsp The main components of Ingenuity Ingenuity consists of a rectangular fuselage measuring 136 mm 195 mm 163 mm 5 4 in 7 7 in 6 4 in suspended below a pair of coaxial counter rotating rotors measuring 1 21 m 4 ft in diameter 1 11 27 This assembly is supported by four landing legs of 384 mm 15 1 in each 1 It also carries a solar array mounted above the rotors to recharge its batteries The entire vehicle is 0 49 m 1 ft 7 in tall 1 nbsp Ingenuity upper swashplate assemblyA Rotor blade B Pitch link C Servo D Swashplate The lower gravity of Mars about a third of Earth s only partially offsets the thinness of the 95 carbon dioxide atmosphere of Mars 66 making it much harder for an aircraft to generate adequate lift The planet s atmospheric density is about 1 100 that of Earth s at sea level or about the same as at 27 000 m 87 000 ft an altitude never reached by existing helicopters This density reduces even more in Martian winters To keep Ingenuity aloft its specially shaped blades of enlarged size must rotate between 2400 and 2900 rpm or about 10 times faster than what is needed on Earth 11 67 68 Each of the helicopter s contra rotating coaxial rotors is controlled by a separate swashplate that can affect both collective and cyclic pitch 69 Ingenuity was also constructed to spacecraft specifications to withstand the acceleration and vibrations during launch and Mars landing without damage 68 Avionics edit Ingenuity relies on different sensor packages grouped in two assemblies All sensors are commercial off the shelf units nbsp Structural design of internal hardware of Ingenuity The Upper Sensor Assembly with associated vibration isolation elements is mounted on the mast close to the vehicle s center of mass to minimize the effects of angular rates and accelerations It consists of a cellphone grade Bosch BMI 160 Inertial measurement unit IMU and an inclinometer Murata SCA100T D02 the inclinometer is used to calibrate the IMU while on the ground prior to flight The Lower Sensor Assembly consists of an altimeter Garmin LIDAR Lite v3 cameras and a secondary IMU all mounted directly on the Electronics Core Module not on the mast 69 nbsp The monopole antenna of the base station is mounted on a bracket in the right rear part of the rover Ingenuity uses a 425 165 mm solar panel to recharge its batteries which are six Sony Li ion cells with 35 40 Wh 130 140 kJ of energy capacity 21 nameplate capacity of 2 Ah 10 Flight duration is not constrained by available battery power but by thermals during flight the drive motors heat up by 1 C every second and the thin Martian atmosphere makes for poor heat dissipation 70 The helicopter uses a Qualcomm Snapdragon 801 processor running a Linux operating system 42 Among other functions it controls the visual navigation algorithm via a velocity estimate derived from terrain features tracked with the navigation camera 71 The Qualcomm processor is connected to two radiation resistant flight control microcontrollers MCUs to perform necessary control functions 10 The telecommunication system consists of two identical radios with monopole antennae for data exchange between the helicopter and rover The radio link utilizes the low power Zigbee communication protocols implemented via 914 MHz SiFlex 02 chipsets mounted in both vehicles The communication system is designed to relay data at 250 kbit s over distances of up to 1 000 m 3 300 ft 54 The omnidirectional antenna is part of the helicopter s solar panel assembly and weighs 4 grams 72 Cameras and photography edit nbsp Ingenuity s two cameras as seen from under the aircraft Ingenuity is equipped with two commercial off the shelf COTS cameras a high resolution Return to Earth RTE camera and a lower resolution navigation NAV camera The RTE camera consists of the Sony IMX214 a rolling shutter 4208 3120 pixel resolution color sensor with a built in Bayer color filter array and fitted to an O film optics module The NAV camera consists of an Omnivision OV7251 a 640 480 black and white global shutter sensor mounted to a Sunny optics module 10 Unlike Perseverance Ingenuity does not have a special stereo camera for taking twin photos for 3D pictures simultaneously However the helicopter can make such images by taking duplicate color photos of the same terrain while hovering in slightly offset positions as in flight 11 or by taking an offset picture on the return leg of a roundtrip flight as in flight 12 73 nbsp Combination of two images one each from Ingenuity s Navigation Camera and color camera RTE taken while Ingenuity was on the ground While the RTE color camera is not necessary for flights as in flights 7 and 8 52 the NAV camera operates continuously throughout each flight with the captured images used for visual odometry to determine the aircraft s position and motion during flight Due to limitations on the transmission rate between the aircraft the rover and Earth only a limited number of images can be saved from each flight Images to save for transmission are defined by the flight plan prior to each flight and the remaining images from the NAV camera are discarded after use citation needed As of December 16 2021 2 091 black and white images from the navigation camera 74 and 104 color images from the terrain camera RTE 75 have been published Count of stored images from both cameras per each flight 74 Flight No Date UTC and Mars 2020 mission sol Photographs Comments b wNAV colorRTE Before April 19 2021 sol 58 6 76 6 77 Preflight camera tests 1 April 19 2021 sol 58 15 2 April 22 2021 sol 61 17 3 The first color photo session 3 April 25 2021 sol 64 24 4 4 April 30 2021 sol 69 62 5 5 May 7 2021 sol 76 128 6 6 May 23 2021 sol 91 106 8 7 June 8 2021 sol 107 72 0 RTE was turned off 52 8 June 22 2021 sol 121 186 0 9 July 5 2021 sol 133 193 10 10 July 24 2021 sol 152 190 10 Five pairs of color images of Raised Ridges taken to make anaglyphs 53 11 August 5 2021 sol 164 194 10 12 August 16 2021 Sol 174 197 78 10 Five pairs of color images of Seitah taken to make anaglyphs 49 13 September 5 2021 Sol 193 191 79 10 September 16 2021 Sol 204 to October 23 2021 Sol 240 9 1 preflight 14 tests 14 October 24 2021 Sol 241 182 15 November 6 2021 Sol 254 191 10 November 15 2021 Sol 263 1 ground color photo 80 16 November 21 2021 Sol 268 185 9 November 27 2021 Sol 274 1 ground color photo 80 17 December 5 2021 Sol 282 192 18 December 15 2021 Sol 292 184 December 20 2021 Sol 297 to February 3 2022 Sol 341 10 1 preflight 19 tests and post dust storm debris removal operations 19 February 8 2022 Sol 346 92 20 February 25 2022 Sol 362 110 10 February 27 2022 Sol 364 1 preflight 21 tests 21 March 10 2022 Sol 375 191 Flight software edit source source source source source source Ingenuity s Hazard Avoidance Capability tested on Earth by post processing flight 9 images The helicopter uses autonomous control during its flights which are telerobotically planned and scripted by operators at Jet Propulsion Laboratory JPL It communicates with the Perseverance rover directly before and after each landing 23 1 20 38 1 22 20 The flight control and navigation software on the Ingenuity can be updated remotely which has been used to correct software bugs 81 52 and add new capabilities as the helicopter continues to operate beyond its original mission Prior to flight 34 the software was updated to avoid hazards during landing and to correct a navigation error when traveling over uneven terrain This update became necessary as the helicopter traveled away from the relatively flat terrain of the original landing site and towards more varied and hazardous terrain 82 Specifications edit Flight characteristics of Ingenuity Rotor speed 2400 2700 rpm 1 27 83 Blade tip speed lt 0 7 Mach 26 Originally planned operational time 1 to 5 flights within 30 sols 1 2 Flight time Up to 167 seconds per flight 84 Maximum range flight 704 m 2 310 ft Maximum range radio 1 000 m 3 300 ft 10 Maximum altitude 24 m 79 ft 85 Maximum possible speed Horizontal 10 m s 33 ft s 6 Vertical 3 m s 9 8 ft s 6 Battery capacity 35 40 Wh 130 140 kJ 21 Operational history editMain article List of Ingenuity flights Primary mission edit Perseverance dropped the debris shield protecting Ingenuity on March 21 2021 and the helicopter deployed from the underside of the rover to the Martian surface on April 3 2021 86 That day both cameras of the helicopter were tested taking their first black and white and color photographs of the floor of Jezero Crater in the shadow of the rover 87 77 After deployment the rover drove about 100 m 330 ft away from the drone to allow a safe flying zone 88 89 Ingenuity s rotor blades were unlocked on April 8 2021 mission sol 48 and the helicopter performed a low speed rotor spin test at 50 rpm 90 91 92 93 94 A high speed spin test was attempted on April 9 but failed due to the expiration of a watchdog timer a software measure to protect the helicopter from incorrect operation in unforeseen conditions 95 On April 12 JPL said it identified a software fix to correct the problem 81 To save time however JPL decided to use a workaround procedure which managers said had an 85 chance of succeeding and would be the least disruptive to the helicopter 35 On April 16 2021 Ingenuity passed the full speed 2400 rpm rotor spin test while remaining on the surface 96 97 Three days later April 19 JPL flew the helicopter for the first time The watchdog timer problem occurred again when the fourth flight was attempted Rescheduled for April 30 the fourth flight captured numerous color photos and explored the surface with its black and white navigation camera 37 On June 25 JPL said it had uploaded a software update the previous week to permanently fix the watchdog problem and that a rotor spin test and the eighth flight confirmed that the update worked 52 Each flight was planned for altitudes ranging 3 5 m 10 16 ft above the ground though Ingenuity soon exceeded that planned height 1 The first flight was a hover at an altitude of 3 m 9 8 ft lasting about 40 seconds and including taking a picture of the rover The first flight succeeded and subsequent flights were increasingly ambitious as allotted time for operating the helicopter dwindled JPL said the mission might even stop before the 30 day period ended in the likely event that the helicopter crashed 23 0 49 50 0 51 40 an outcome which did not occur In up to 90 seconds per flight Ingenuity could travel as far as 50 m 160 ft downrange and then back to the starting area though that goal was also soon exceeded with the fourth flight 1 37 The commissioning sequence was as follows Surface deployment sequence nbsp Step 1 Perseverance drops the pan that protected the RIMFAX equipment during the landing and drives away from it nbsp Step 2 the protective debris shield is dropped exposing Ingenuity which is stowed on its side Perseverance then drives away from it nbsp Step 3 Ingenuity swings down with two of its four legs extended nbsp Step 4 all four legs are extended before Ingenuity is deployed on the surface and Perseverance drives away nbsp Image taken by Perseverance on March 29 2021 following Ingenuity s deployment on the surface showing the debris shield dropped and abandoned on March 21 2021 Pre flight testing nbsp Ingenuity is successfully deployed Perseverance has moved away to a safe distance The rotor blades are still locked as stowed nbsp The rotor blades are now unlocked for tests and Ingenuity is watched by Perseverance from its safe place nbsp Sol 48 the slow speed 50 rpm rotor spin up test is successful nbsp Sol 55 the high speed 2 400 rpm spin up test The spin tests are successful the next phase is flight testing Flight testing source source source source source source source Test flight 1 19 April 2021 source source source source source source source source Test flight 1 enhanced to show the dust thrown up source source source source source source source Test flight 2 22 April 2021 source source source source source source source Test flight 3 25 April 2021 source source source source source source source source Test flight 4 30 April 2021 After the successful first three flights the objective was changed from technology demonstration to operational demonstration Ingenuity flew through a transitional phase of two flights 4 and 5 before beginning its operations demonstration phase 98 By November 2023 the principal mission priorities had become 99 Avoid significant interference with or delay of rover operations Maintain vehicle health and safety Perform scouting for tactical planning and science assessment Perform experiments to inform mission and vehicle design for future Mars rotorcraft or collect data for discretionary science Operations Demo Phase edit source source source source source source source Ingenuity on Mars flight 54 3 August 2023 source source source Ingenuity heard by Perseverance flight 4 Just before the final demonstration flight on April 30 2021 NASA approved the continued operation of Ingenuity in an operational demonstration phase to explore using a helicopter as supplementary reconnaissance for ground assets like Perseverance 98 Funding for Ingenuity was renewed monthly 100 With flight 6 the mission goal shifted towards supporting the rover science mission by mapping and scouting the terrain 101 While Ingenuity would do more to help Perseverance the rover would pay less attention to the helicopter and stop taking pictures of it in flight JPL managers said the photo procedure took an enormous amount of time slowing the project s main mission of looking for signs of ancient life 102 On May 7 Ingenuity flew to a new landing site 103 After 12 flights by September 2021 the mission was extended indefinitely 104 After 21 flights by March 2022 NASA said it would continue flying Ingenuity every two to three weeks 104 until at least the coming September The area of the helicopter s next goal was more rugged than the relatively flat terrain it flew over in its first year of operation The ancient fan shaped river delta has jagged cliffs angled surfaces and projecting boulders Ingenuity helped the mission team decide which route Perseverance should take to the top of the delta and aided it in analyzing potential science targets Software updates eliminated the helicopter s 50 foot altitude limit allowed it to change speed in flight and improved its understanding of terrain texture below it NASA associate administrator Thomas Zurbuchen noted that less than a year previously we didn t even know if powered controlled flight of an aircraft at Mars was possible He said that the advancement in understanding what the aircraft can do is one of the most historic in the annals of air and space exploration 105 The helicopter s longer than expected flying career lasted into a seasonal change on Mars This lowered the atmospheric density which required higher rotor speed for flight probably 2700 rpm according to the flight team s calculations JPL said this might cause dangerous vibration power consumption and aerodynamic drag if the blade tips approach the speed of sound 83 So the flight team commanded Ingenuity to test the rotor at 2800 rpm while remaining on the ground In mid September the flight team began preparing for the Martian winter and solar conjunction when Mars moves behind the Sun blocking communications with Earth and forcing the rover and helicopter to halt operations When the shutdown began in mid October 2021 98 106 the helicopter remained stationary 175 meters 575 feet from Perseverance and communicated its status weekly to the rover for health checks 107 JPL intended to continue flying Ingenuity since it survived solar conjunction 108 109 NASA leaders said that extending the mission would increase the project s expenses but that they believed the cost to be worthwhile for the information learned 110 The launch time of each flight was influenced by the temperature of the batteries which needed to warm up after the night During Martian summer lower air density imposed a higher load on the motors so flights were shifted from noon LMST 12 30 to morning LMST 9 30 and limited to 130 seconds to not overheat the motors 111 On May 3 and 4 2022 for the first time in the mission the helicopter unexpectedly failed to communicate with the rover following the 28th flight on April 29 112 JPL determined that Ingenuity s rechargeable batteries suffered a power drop or insufficient battery state of charge while going into the night most likely because of a seasonal increase in atmospheric dust reducing sunshine on its solar panel and due to lower temperatures as winter approached When the battery pack s state of charge dropped below a lower limit the helicopter s field programmable gate array FPGA powered down resetting the mission clock which lost sync with the base station on the rover Contact was re established on May 5 Controllers decided to turn off the helicopter s heaters at night to conserve power accepting the risk of exposing components to nighttime s extreme cold 113 This daily state of charge deficit is likely to persist for the duration of Martian winter at least until September October 112 In a June 6 2022 update JPL reported Ingenuity s inclination sensor had stopped working Its purpose was to determine the helicopter s orientation at the start of each flight Mission controllers developed a workaround using the craft s inertial measurement unit IMU to provide equivalent data to the onboard navigation computer 114 In January 2023 the helicopter began to have enough solar power to avoid overnight brownouts and FPGA resets due to the start of Martian spring 65 This meant the helicopter was able to fly more frequently and over longer distances citation needed In March 2023 the helicopter made frequent flights to deal with limited radio range in the rough terrain of the Jezero delta In the narrow canyons of the river delta the helicopter needed to stay ahead of the rover rather than entering a keep out zone and passing it which JPL considered potentially hazardous 64 Three times mission controllers lost contact with Ingenuity after a flight when the helicopter was not in the line of sight with Perseverance preventing radio communication with the rover which relays flight data between the helicopter and Earth After the 49th flight on April 2 2023 JPL lost contact with Ingenuity for six days until Perseverance drove to a spot where communication was re established 115 JPL had no contact with the helicopter for 63 days after flight 52 on April 26 2023 Mission controllers had intentionally flown Ingenuity out of radio range expecting to regain communication in a few days Perseverance controllers however changed their exploration plans and drove further out of range and then had difficulty collecting rock samples adding another delay before finally driving toward the helicopter and re establishing contact on June 28 116 99 Communication with Ingenuity was lost again at the end of flight 72 on January 18 2024 Communication was re established on January 20 but during the subsequent post flight assessment images of Ingenuity s shadow taken by its navigation and horizon cameras after the flight showed damage to its rotor blade tips This ended the Operations Demo Phase and the mission 117 118 119 120 121 122 End of mission edit Ingenuity was permanently grounded after flight 72 on January 18 2024 when a rotor blade broke off and other blade tips were damaged during the landing The mishap is believed to have resulted from an autonomous navigation error in a mostly featureless area of sand dunes which offered few points of reference 4 123 124 125 126 JPL said such problems may be avoided in the future with an established GPS system on Mars 127 On January 25 2024 NASA Administrator Bill Nelson announced the end of the mission 118 Ingenuity s final location is at Airfield Chi x within the area since nicknamed by the project team Valinor Hills a reference to the final residence of the immortals in the J R R Tolkien trilogy The Lord of the Rings 128 In the days after its accident Ingenuity remained responsive to signals from JPL which commanded a low speed rotation of the rotors The helicopter photographed the rotor shadows which revealed that one of the blades was entirely missing 4 129 Following a few final transmissions and a farewell message by the rotorcraft on April 16 2024 The JPL team uploaded new software commands that direct the helicopter to continue collecting data well after communications with the rover have ceased Ingenuity will serve as a stationary platform testing the performance of its solar panel batteries and electronic equipment In addition the helicopter will take a picture of the surface with its color camera and collect temperature data from sensors placed throughout the rotorcraft and store it onboard such that in case of future retrieval the results will provide long term perspective on Martian weather patterns and dust movement aiding the design of future rotorcraft Engineers expect Ingenuity to store up to 20 years of daily data if the craft is unhampered by the local conditions Perseverance will continue exploration of Jezero crater autonomously out of the rover s radio range 130 131 132 nbsp Ingenuity s total flight path in yellow at the end of mission Also shown is the track of the rover Perseverance up to that point nbsp Detail of final position at Airfield Chi x showing the dunes referred to as Valinor Hills 133 134 nbsp Ingenuity s end of mission location at Airfield Chi x at the foot of the Valinor Hills taken by Perseverance on February 4 2024 nbsp The Valinor Hills above Ingenuity s final location taken by Perseverance on February 21 2024 The damaged rotor blades flight 72 nbsp The sand dune area in which the damage occurred taken by Ingenuity during flight 70 on December 22 2023 nbsp The shadow of the damaged tip of one of the rotor blades taken by Ingenuity s horizon camera after flight 72 which occurred on January 18 2024 4 125 135 nbsp View of Ingenuity with missing and damaged blades 136 137 nbsp Animated view of Ingenuity with missing blade 136 137 nbsp Separated rotor blade and damaged Ingenuity helicopter 24 February 2024 Follow on missions and future work and conceptions editThere are currently no plans to send Curiosity Perseverance class scientific laboratories to Mars and funding for Martian projects is frozen to the level necessary to complete the Mars sample return campaign 138 Sample Return Helicopter edit nbsp Sample Return Helicopter based on Ingenuity The idea of future Martian helicopters has been proposed In March 2022 AeroVironment engineers who previously created Ingenuity presented the concept of a new helicopter with a payload of 280 g A 90 g small manipulator arm with a two fingered gripper and a self propelled landing gear make it possible to use vehicles of this type instead of a fetch rover 139 to select sample tubes cases with samples collected by Perseverance 140 At a briefing on September 15 2022 NASA Planetary Science Division Director Laurie Gleizes confirmed her intention to use two of these helicopters 141 The choice of Ingenuity as the prototype for the intended pair of assembler helicopters was based on the impressive safety margin built into it by AeroVironment designers In principle even the limit of 100 landings for the high wear shock absorbers of the chassis is sufficient to transfer all 43 sleeves Multiple small payloads can be carried by these types of helicopters deployed and re deployed to various locations to perform a variety of distributed and networked operations 142 Inertial navigation was one of the main challenges on Mars for the Ingenuity The helicopter needs to show the ability to accurately follow the track it has already mapped on previously collected NAV frame sets and land at the takeoff point In a future sample return mission each cartridge case would require a pair of flights ending at the point of departure Landing accuracy was an assigned task of Ingenuity s 31st flight 143 The very thin atmosphere of Mars does not allow repeating the maneuvers and landing techniques of terrestrial helicopters 144 8 Mars Science Helicopter edit nbsp Mars Science Helicopter Ingenuity s proposed successor Data collected by Ingenuity are intended to support the development of future helicopters capable of carrying larger payloads The Mars Science Helicopter task is the next evolutionary step for Martian rotorcraft at JPL The key focus is to develop the technology needed to deploy science payloads 0 5 kg 2 kg on rotorcraft platforms at the surface of Mars MSH will inherit many of the technologies created by the Mars Helicopter Technology Demonstrator MHTD baselined for Mars 2020 and extend capabilities in order to enable a new class of mesoscale planetary access across Mars 145 17 10 146 Designing and proving how science payloads can be deployed recovered integrated and operated on a dynamically and computationally representative rotorcraft will be critical in expanding a new frontier for Martian scientific exploration 145 17 10 146 The focus will include Rotorcraft configurations capable of carrying and deploying science payloads Forecasting technological advancements in avionics batteries power systems and navigation algorithms Earthbound demonstration testbed for evaluating avionics and payload integrations along with MHTD inherited FSW C amp DH and eventual autonomous science mission execution 145 17 10 146 MAGGIE edit Main article Mars Aerial and Ground Global Intelligent Explorer Mars Aerial and Ground Global Intelligent Explorer MAGGIE is a compact fixed wing aircraft proposed during 2024 NIAC selections 147 Tributes to the Wright brothers editNASA and JPL officials described the first Mars Ingenuity helicopter flight as their Wright Brothers moment by analogy to the first successful powered airplane flight on Earth 148 149 A small piece of the wing cloth from the Wright brothers 1903 Wright Flyer is attached to a cable underneath Ingenuity s solar panel 150 In 1969 Apollo 11 s Neil Armstrong carried a similar Wright Flyer artifact to the Moon in the Lunar Module Eagle NASA named Ingenuity s first take off and landing airstrip Wright Brothers Field which the UN agency ICAO gave an airport code of JZRO for Jezero Crater 151 and the drone itself a type designator of IGY call sign INGENUITY 152 153 151 Gallery editMaps of flights edit The flight zone of the technical demonstration and transitional stage nbsp Wright Brothers Field and the overlook location nbsp View of the field from the rover nbsp Airfield B b Flight paths of the operational demonstration stage and HiRise images of Ingenuity nbsp Flight profile for Ingenuity s Flight 15 nbsp Topography between Mars helicopter and rover for Flight 17 nbsp Positioning before the 2021 solar conjunctionR210 is the rover position on sol 210 H1631 H1742 and H1933 means 1st 2nd and 3rd landing sites of Ingenuity on the Field H on sols 163 174 and 193 respectively nbsp Ingenuity captured by HiRise camera on Mars Reconnaissance Orbiter at Airfield M on February 26 2022 Images by Ingenuity edit First Images c nbsp The first color image April 4 2021 d nbsp In flight image 19 April 2021 altitude 1 2 m 3 ft 11 in nbsp Landing after the first flight 19 April 2021 nbsp First color aerial photo 22 April 2021 altitude 5 2 m 17 ft flight 2 Flights 3 9 nbsp Flight 3 rover is seen left up from the 5 0 m 16 4 ft height nbsp Heading towards Airfield B flight 4 30 April 2021 nbsp Flight 6 view from 10 m 33 ft towards Seitah nbsp Flight 9 flying over the Seitah July 5 2021 nbsp Perseverance rover left viewed about 85 m 279 ft away from 5 0 m 16 4 ft height April 25 2021 Flights 10 13 nbsp Flight 10 over ridges nbsp Flight 12 over Seitah nbsp Flight 13 rover view After conjunction preflight tests and flights 14 16 nbsp Flight 16 21 November 2021 nbsp Post flight 16 as seen from Perseverance Entry descent landing debris nbsp nbsp nbsp nbsp nbsp Delivery spacecraft backshell and parachute seen on flight 26 April 19 2022 154 Crater Ridgeline nbsp Flight 27 Fortun Ridge 23 April 2022 Motion images edit nbsp Flight 5 Landing at Airfield B 7 May 2021 nbsp Flight 9 animation from the flight images nbsp Flight 11 Perseverance spotted nbsp Flight 11 ten slides source source source source source source source Flight 13 4 September 2021 source source source source source source source Flight 59 16 September 2023See also editARES 2008 robotic Mars aircraft proposal Coaxial rotors Helicopter with two sets of rotor blades placed on top of each otherPages displaying short descriptions of redirect targets Dragonfly Robotic rotorcraft mission to Saturn s moon Titan planned launch in 2028 Exploration of Mars List of artificial objects on Mars Mars Aerial and Ground Global Intelligent Explorer Solar aircraft concept to fly in Mars atmosphere Mars Piloted Orbital Station manned Mars orbital command module concept to control robots on and above the surface Sky Sailor 2004 proposal of a robotic Mars aircraft Solar powered aircraft Vega The USSR space program that included the first atmospheric balloon flight on Venus in 1985Notes edit Flights 1 2 and 14 are not seen because they include little if any horizontal displacement HiRISE s view of Ingenuity s fourth flight path paving the way for it to move to Airfield B on flight 5 All images taken by Ingenuity are from either its black and white downward facing navigation camera 74 or from horizon facing color camera 75 landing legs are seen at the side edges of images Perseverance Rover wheels are clearly seen in top cornersReferences edit a b c d e f g h nbsp One or more of the preceding sentences incorporates text from this source which is in the public domain Ingenuity Mars Helicopter Landing Press Kit PDF NASA January 2021 Archived PDF from the original on 18 February 2021 Retrieved 14 February 2021 a b nbsp One or more of the preceding sentences incorporates text from this source which is in the public domain Mars Helicopter Mars nasa gov NASA Archived from the original on 16 April 2020 Retrieved 2 May 2020 Mars Lander Missions NASA Goddard Institute for Space Studies Archived from the original on 28 October 2020 Retrieved 26 October 2021 a b c d After Three Years on Mars NASA s Ingenuity Helicopter Mission Ends Jet Propulsion Laboratory Archived from the original on 25 January 2024 Retrieved 25 January 2024 a b c Lerner Preston April 2019 A Helicopter Dreams of Mars Air amp Space Smithsonian Archived from the original on 21 May 2021 Retrieved 16 August 2021 a b c nbsp One or more of the preceding sentences incorporates text from this source which is in the public domain Generation of Mars Helicopter Rotor Model for Comprehensive Analyses Archived 1 January 2020 at the Wayback Machine Witold J F Koning Wayne Johnson Brian G Allan NASA 2018 J Balaram and P T Tokumaru Rotorcrafts for Mars Exploration in 11th International Planetary Probe Workshop 2014 Bibcode 2014LPICo1795 8087B Balaram J Tokumaru P T 2014 Rotorcrafts for Mars Exploration 11th International Planetary Probe Workshop 1795 8087 Bibcode 2014LPICo1795 8087B Archived from the original on 17 February 2021 Retrieved 29 October 2020 a b c d Benjamin T Pipenberg Matthew Keennon Jeremy Tyler Bart Hibbs Sara Langberg J Bob Balaram Havard F Grip and Jack Pempejian Design and Fabrication of the Mars Helicopter Rotor Airframe and Landing Gear Systems Archived 21 February 2021 at the Wayback Machine American Institute of Aeronautics and Astronautics AIAA SciTech Forum Conference 7 11 January 2019 San Diego California Berger Eric 24 May 2016 Four wild technologies lawmakers want NASA to pursue ARS Technica Archived from the original on 7 February 2021 Retrieved 24 May 2016 a b c d e f g h i nbsp One or more of the preceding sentences incorporates text from this source which is in the public domain Mars Helicopter Technology Demonstrator Archived 1 April 2019 at the Wayback Machine J Bob Balaram Timothy Canham Courtney Duncan Matt Golombek Havard Fjaer Grip Wayne Johnson Justin Maki Amelia Quon Ryan Stern and David Zhu American Institute of Aeronautics and Astronautics AIAA SciTech Forum Conference 8 12 January 2018 Kissimmee Florida doi 10 2514 6 2018 0023 a b c Clarke Stephen 14 May 2018 Helicopter to accompany NASA s next Mars rover to Red Planet Spaceflight Now Archived from the original on 7 February 2021 Retrieved 15 May 2018 Dubois Chantelle 29 November 2017 Drones on Mars NASA Projects May Soon Use Drones for Space Exploration All About Circuits Archived from the original on 7 December 2017 Retrieved 14 January 2018 Beutel Allard 15 April 2015 NASA Announces Mars 2020 Rover Payload to Explore the Red Planet NASA Archived from the original on 19 February 2021 Retrieved 7 September 2022 Grush Loren 11 May 2018 NASA is sending a helicopter to Mars to get a bird s eye view of the planet The Verge Archived from the original on 6 December 2020 Retrieved 7 September 2022 NASA Mars exploration efforts turn to operating existing missions and planning sample return Archived 21 February 2023 at the Wayback Machine Jeff Foust SpaceNews 23 February 2018 NASA to decide soon whether flying drone will launch with Mars 2020 rover Archived 21 February 2021 at the Wayback Machine Stephen Clark Spaceflight Now 15 March 2018 a b c d e nbsp One or more of the preceding sentences incorporates text from this source which is in the public domain Mars Helicopter to Fly on NASA s Next Red Planet Rover Mission NASA 11 May 2018 Archived from the original on 11 May 2018 nbsp One or more of the preceding sentences incorporates text from this source which is in the public domain Agle AG Johnson Alana 28 March 2019 NASA s Mars Helicopter Completes Flight Tests NASA Archived from the original on 29 March 2019 Retrieved 28 March 2019 nbsp One or more of the preceding sentences incorporates text from this source which is in the public domain nbsp One or more of the preceding sentences incorporates text from this source which is in the public domain Mars 2020 Perseverance Launch Press Kit PDF NASA 24 June 2020 Archived PDF from the original on 21 July 2020 Retrieved 20 August 2020 a b c First Flight on Another Planet Veritasium 10 August 2019 Archived from the original on 28 July 2020 Retrieved 3 August 2020 via YouTube Status 289 a b c Ingenuity Mars Helicopter Preflight Briefing press conference livestreamed on YouTube NASA Jet Propulsion Laboratory 9 April 2021 Archived from the original on 16 July 2023 Retrieved 14 April 2021 nbsp One or more of the preceding sentences incorporates text from this source which is in the public domain Hautaluoma Grey Johnson Alana Agle D C 29 April 2020 Alabama High School Student Names NASA s Mars Helicopter NASA Archived from the original on 30 April 2020 Retrieved 29 April 2020 nbsp One or more of the preceding sentences incorporates text from this source which is in the public domain Agle D C Cook Jia Rui Johnson Alana 29 April 2020 Q amp A with the Student Who Named Ingenuity NASA s Mars Helicopter NASA Archived from the original on 4 June 2020 Retrieved 29 April 2020 a b nbsp One or more of the preceding sentences incorporates text from this source which is in the public domain Mars Helicopter Scout video presentation at Caltech a b c nbsp One or more of the preceding sentences incorporates text from this source which is in the public domain Mars Helicopter Fact Sheet PDF NASA February 2020 Archived PDF from the original on 22 March 2020 Retrieved 2 May 2020 nbsp One or more of the preceding sentences incorporates text from this source which is in the public domain Astronomy Picture of the Day NASA 2 March 2021 Archived from the original on 4 March 2021 Retrieved 4 March 2021 NASA begins search for ancient life on Mars after arrival of Perseverance Ingenuity spacecrafts www cbsnews com 9 May 2021 Archived from the original on 16 September 2022 Retrieved 7 September 2022 Chang Kenneth 12 May 2018 A Helicopter on Mars NASA Wants to Try The New York Times Archived from the original on 12 May 2018 Retrieved 12 May 2018 Gush Loren 11 May 2018 NASA is sending a helicopter to Mars to get a bird s eye view of the planet The Mars Helicopter is happening The Verge Archived from the original on 6 December 2020 Retrieved 11 May 2018 Review on space robotics Toward top level science through space exploration Archived 21 February 2021 at the Wayback Machine Y Gao S Chien Science Robotics 2017 nbsp One or more of the preceding sentences incorporates text from this source which is in the public domain NASA s Mars Helicopter Reports In NASA 19 February 2021 Archived from the original on 26 January 2024 Retrieved 23 February 2021 Ianson Eric Meyer Michael 3 May 2022 Explore Mars Mars Exploration Program Briefing to MEPAG PDF Report NASA Archived PDF from the original on 29 January 2023 Retrieved 28 January 2023 a b Status 293 Status 294 a b c Status 297 Status 287 Status 288 Status 301 a b Status 313 a b How NASA Designed a Helicopter That Could Fly Autonomously on Mars IEEE Spectrum 17 February 2021 Archived from the original on 19 February 2021 Retrieved 19 February 2021 Metcalfe Tom 12 February 2021 First space helicopter set to take to Martian skies NBC News Archived from the original on 12 October 2021 Retrieved 11 October 2021 Finley Klint 14 April 2021 Open Source on Mars Community powers NASA s Ingenuity Helicopter GitHub Archived from the original on 11 October 2021 Retrieved 11 October 2021 Status 295 Status 298 Status 305 Status 314 a b c Status 321 Status 299 Status 318 a b c d e Status 308 a b Status 316 a b Chahat Nacer Miller Joshua Decrossas Emmanuel McNally Lauren Chase Matthew Jin Curtis Duncan Courtney December 2020 The Mars Helicopter Telecommunication Link Antennas Propagation and Link Analysis IEEE Antennas and Propagation Magazine 62 6 12 22 Bibcode 2020IAPM 62f 12C doi 10 1109 MAP 2020 2990088 S2CID 219472515 Archived from the original on 10 June 2021 Retrieved 29 May 2021 Chahat Nacer Chase Matt Lazaro Austin Gupta Gaurangi Duncan Courtney 22 November 2023 Enhancing Communication Link Predictions for Ingenuity Mars Helicopter Mission with the Parabolic Equation Method IEEE Transactions on Antennas and Propagation 72 2 1 doi 10 1109 TAP 2023 3333433 S2CID 265392941 Season 5 Episode 2 Talking to Ingenuity and Other Space Robots NASA Archived from the original on 7 December 2023 Retrieved 1 December 2023 Space Foundation Selects NASA JPL Ingenuity Mars Helicopter Flight Team To Receive 2021 John L Jack Swigert Jr Award for Space Exploration Space Foundation 9 June 2021 Archived from the original on 10 June 2021 Retrieved 16 June 2021 The NASA JPL Ingenuity Mars Helicopter Team Awarded the 2021 Robert J Collier Trophy PDF Archived PDF from the original on 17 October 2022 Retrieved 17 October 2022 mars nasa gov NASA s Mars Helicopter Team Members With Collier Trophy NASA Mars Exploration Archived from the original on 21 October 2022 Retrieved 17 October 2022 Decision expected soon on adding helicopter to Mars 2020 Archived 21 February 2023 at the Wayback Machine Jeff Fout SpaceNews 4 May 2018 Ackerman Evan 8 December 2021 Mars Helicopter Is Much More Than a Tech Demo IEEE Spectrum Archived from the original on 17 October 2022 Retrieved 17 October 2022 a b Foust Jeff 4 May 2018 Decision expected soon on adding helicopter to Mars 2020 SpaceNews Archived from the original on 26 January 2024 Retrieved 17 October 2022 Mars Exploration Program Presentation to PAC PDF 14 June 2021 Archived PDF from the original on 22 June 2021 Retrieved 16 August 2021 a b Status 450 a b Status 441 Sharp Tim 12 September 2017 Mars Atmosphere Composition Climate amp Weather Space Archived from the original on 5 March 2021 Retrieved 10 March 2021 Bachman Justin 19 April 2021 Why flying a helicopter on Mars is a big deal phys org Archived from the original on 20 April 2021 Retrieved 21 April 2021 Indeed flying close to the surface of Mars is the equivalent of flying at more than 87 000 feet on Earth essentially three times the height of Mount Everest NASA engineers said The altitude record for a helicopter flight on Earth is 41 000 feet a b 6 Things to Know About NASA s Mars Helicopter on Its Way to Mars NASA Jet Propulsion Laboratory JPL 21 January 2021 Archived from the original on 28 February 2021 Retrieved 21 January 2021 a b Grip Havard Fjaer Lam Johnny N 2019 Flight Control System for NASA s Mars Helicopter PDF NASA JPL Archived PDF from the original on 28 June 2021 Retrieved 16 April 2021 NASA s Ingenuity Mars Helicopter s Next Steps Media briefing NASA JPL 30 April 2021 Archived from the original on 8 May 2021 Retrieved 30 April 2021 via YouTube Matthies Bayard Delaune Conway 2019 Vision Based Navigation for the NASA Mars Helicopter AIAA Scitech 2019 Forum 1411 3 doi 10 2514 6 2019 1411 ISBN 978 1 62410 578 4 S2CID 86460806 On Mars the amazing design of the radio link between Ingenuity and the Perseverance rover in French Universite de Rennes 10 April 2021 Event occurs at 00 07 27 Archived from the original on 15 August 2021 Retrieved 16 August 2021 via YouTube Jet Propulsion Laboratory 26 August 2021 NASA s Ingenuity Helicopter Sees Potential Martian Road Ahead SciTechDaily Archived from the original on 30 August 2021 Retrieved 30 August 2021 a b c Raw Images From Ingenuity Helicopter NASA 30 April 2021 Archived from the original on 17 September 2021 Retrieved 10 May 2021 NAV images a b Raw Images From Ingenuity Helicopter NASA 30 April 2021 Archived from the original on 25 June 2021 Retrieved 10 May 2021 RTE images Raw Images Filtering Mars Helicopter Tech Demo Cameras Navigation Camera Mars 2020 Mission Perseverance Rover NASA 18 April 2021 Archived from the original on 1 September 2021 Retrieved 1 September 2021 a b Ingenuity s First Color Snap NASA 5 April 2021 Archived from the original on 26 January 2024 Retrieved 8 April 2021 Raw Images Filtering Mars Helicopter Tech Demo Cameras Navigation Camera Mars 2020 Mission Perseverance Rover NASA 15 August 2021 Archived from the original on 24 December 2021 Retrieved 1 September 2021 Raw Images Filtering Mars Helicopter Tech Demo Cameras Navigation Camera Mars 2020 Mission Perseverance Rover NASA 4 September 2021 Archived from the original on 6 September 2021 Retrieved 4 September 2021 a b Images from the Mars Perseverance Rover Mars nasa gov Archived from the original on 15 February 2021 Retrieved 17 February 2022 a b Status 290 Status 420 a b Status 334 NASAJPL 5 July 2021 MarsHelicopter pushes its Red Planet limits The rotorcraft completed its 9th and most challenging flight yet f Tweet Retrieved 5 July 2021 via Twitter Flight 61 Preview By the Numbers NASA s Mars Helicopter Survives First Cold Martian Night on Its Own Nasa Mars Website Archived from the original on 26 January 2024 Retrieved 5 April 2021 nbsp One or more of the preceding sentences incorporates text from this source which is in the public domain Agle D C Hautaluoma Gray Johnson Alana 23 June 2020 How NASA s Mars Helicopter Will Reach the Red Planet s Surface NASA Archived from the original on 19 February 2021 Retrieved 23 February 2021 NASA s Mars Helicopter Small Autonomous Rotorcraft To Fly On Red Planet Archived 10 July 2018 at the Wayback Machine Shubham Sharma International Business Times 14 May 2018 nbsp One or more of the preceding sentences incorporates text from this source which is in the public domain Mars Helicopter a new challenge for flight PDF NASA July 2018 Archived PDF from the original on 1 January 2020 Retrieved 20 July 2018 Griffith Andrew 8 April 2021 NASA Unlocks Mars Helicopter s Rotor Blades Ahead Of Pioneering Ingenuity Flight The Independent Archived from the original on 18 April 2021 Retrieved 8 April 2021 Bartels Meghan 8 April 2021 Mars helicopter Ingenuity unlocks its rotor blades to prepare for 1st flight on Red Planet Space com Archived from the original on 13 September 2023 Retrieved 8 April 2021 Ingenuity Begins to Spin Its Blades NASA s Mars Exploration Program NASA 9 April 2021 Archived from the original on 17 April 2021 Retrieved 14 April 2021 NASAJPL 9 April 2021 Wiggle wiggle wiggle With just a little bit of swing the MarsHelicopter has moved its blades amp spun to 50 Tweet Retrieved 18 April 2021 via Twitter Latifiyan Pouya April 2021 Space Telecommunications how Take off 1 Tehran Civil Aviation Technology College 15 via Persian Status 291 Status 292 NASA 17 April 2021 Encouraging news MarsHelicopter completed a full speed spin test an important milestone on our path to 1st flight Tweet Retrieved 17 April 2021 via Twitter a b c NASA s Ingenuity Helicopter to Begin New Demonstration Phase Archived from the original on 7 October 2023 Retrieved 15 March 2022 a b The Long Wait NASA Mars Helicopter Tech Demo Archived from the original on 13 November 2023 Retrieved 11 November 2023 NASA Helicopter Marks 6 Months on Mars Is Still Flying High ExtremeTech www extremetech com 8 September 2021 Archived from the original on 8 November 2022 Retrieved 7 September 2022 Breaking Mars Helicopter Is Now A Fully Operational Partner Of Perseverance IFLScience 30 April 2021 Archived from the original on 30 April 2021 Retrieved 30 April 2021 Gohd Chelsea 30 April 2021 NASA extends Mars helicopter Ingenuity s high flying mission on Red Planet Space com Archived from the original on 30 April 2021 Retrieved 10 June 2021 Location Map for Perseverance Rover NASA mars nasa gov Archived from the original on 12 June 2019 Retrieved 26 September 2023 a b Ingenuity Is So Good NASA s Mars Helicopter Mission Just Got an Exciting Update Science Alert 6 September 2021 Archived from the original on 6 September 2021 Retrieved 6 September 2021 NASA Extends Ingenuity Helicopter Mission Mars Exploration Program NASA 15 March 2022 Archived from the original on 14 June 2022 Retrieved 17 March 2022 Solar Conjunction Mars in our Night Sky NASA s Mars Exploration Program Archived from the original on 20 August 2021 Retrieved 18 August 2021 NASA s Mars Fleet Lies Low As Sun Moves Between Earth and Red Planet NASA 28 September 2021 Archived from the original on 28 September 2021 Retrieved 28 September 2021 The 10 flights of NASA s Ingenuity Mars helicopter in one chart Business Insider Australia 29 July 2021 Archived from the original on 21 December 2021 Retrieved 30 August 2021 After Six Months on Mars NASA s Tiny Helicopter Is Still Flying High NDTV 5 September 2021 Archived from the original on 5 September 2021 Retrieved 5 September 2021 NASA s eventual farewell to tiny Mars helicopter could be emotional Archived from the original on 10 December 2021 Retrieved 10 December 2021 Status 373 a b Status 382 Status 379 Status 385 Wu Daniel 2 June 2023 NASA s Mars helicopter is somehow still flying and playing hide and seek Scientists thought Ingenuity would fail years ago It s still flying although NASA has to search for it occasionally The Washington Post Archived from the original on 2 June 2023 Retrieved 4 June 2023 NASA s Ingenuity Mars Helicopter Phones Home NASA Jet Propulsion Laboratory JPL 30 June 2023 Archived from the original on 21 January 2024 Retrieved 4 July 2023 NASAJPL 21 January 2024 Good news today Tweet via Twitter a b After Three Years on Mars NASA s Ingenuity Helicopter Mission Ends Archived from the original on 25 January 2024 Retrieved 25 January 2024 Donaldson Abbey A 25 January 2024 After Three Years on Mars NASA s Ingenuity Helicopter Mission Ends NASA Retrieved 27 January 2024 mars nasa gov Images from the Mars Perseverance Rover NASA mars nasa gov Retrieved 27 January 2024 mars nasa gov Images from the Mars Perseverance Rover NASA mars nasa gov Retrieved 27 January 2024 Wall Mike 20 January 2024 NASA loses contact with Ingenuity Mars helicopter Space com Archived from the original on 20 January 2024 Retrieved 20 January 2024 Wall Mike 25 January 2024 It s sort of been invincible until this moment Mars helicopter Ingenuity pilot says bland terrain may have doomed NASA chopper The sandy landscape offered few points of navigational reference for Ingenuity Space com Archived from the original on 31 January 2024 Retrieved 31 January 2024 NASA Science Live Ingenuity Mars Helicopter Tribute amp Legacy Archived from the original on 1 February 2024 Retrieved 1 February 2024 via YouTube a b Ingenuity spots the shadow of its damaged rotor blade NASA Jet Propulsion Laboratory JPL 25 January 2024 Archived from the original on 27 January 2024 Retrieved 27 January 2024 Berger Eric 25 January 2024 The amazing helicopter on Mars Ingenuity will fly no more Ars Technica Archived from the original on 26 January 2024 Retrieved 26 January 2024 Grip Havard Fjaer et al 2019 Flight Control System for NASA s Mars Helicopter PDF NASA Archived PDF from the original on 28 February 2024 Retrieved 28 February 2024 mars nasa gov Perseverance Spots Ingenuity at Its Final Airfield NASA Mars Exploration Retrieved 9 February 2024 Rabie Passant 1 February 2024 NASA s Mars Helicopter Will Do a Wiggle Test After Fatal Malfunction The space agency is still trying to figure out what may have caused Ingenuity s mission ending damage leading to the proposed spin test Gizmodo archived from the original on 2 February 2024 retrieved 2 February 2024 https www jpl nasa gov NASA s Ingenuity Mars Helicopter Team Says Goodbye for Now NASA Jet Propulsion Laboratory JPL Retrieved 17 April 2024 a href Template Cite web html title Template Cite web cite web a External link in code class cs1 code last code help NASA s Ingenuity Mars Helicopter Team Says Goodbye for Now NASA 16 April 2024 Retrieved 17 April 2024 Weatherbed Jess 17 April 2024 Until we meet again Ingenuity The Verge Retrieved 17 April 2024 Catalog Page for PIA26236 photojournal jpl nasa gov Retrieved 7 February 2024 Location Map for Perseverance Rover NASA mars nasa gov Archived from the original on 12 June 2019 Retrieved 27 September 2023 Chang Kenneth 25 January 2024 Ingenuity the NASA Helicopter Flying Over Mars Ends Its Mission The robot flew 72 times serving as a scouting partner to the Perseverance rover aiding in the search for evidence that there was once life on the red planet The New York Times Archived from the original on 25 January 2024 Retrieved 26 January 2024 a b Berger Eric 26 February 2024 Final images of Ingenuity reveal an entire blade broke off the helicopter This new data should help us understand Ingenuity s final moments on Mars Ars Technica Archived from the original on 26 February 2024 Retrieved 26 February 2024 a b Wall Mike 26 February 2024 Ingenuity Mars helicopter snapped rotor blade during hard landing last month video photo Space com Archived from the original on 27 February 2024 Retrieved 27 February 2024 Planetary Science and Astrobiology Decadal Survey 2023 2032 Archived from the original on 29 March 2021 Retrieved 17 October 2022 Foust Jeff 27 July 2022 NASA and ESA remove rover from Mars Sample Return plans SpaceNews Archived from the original on 26 January 2024 Retrieved 17 October 2022 Pipenberg Benjamin T Langberg Sara A Tyler Jeremy D Keennon Matthew T March 2022 Conceptual Design of a Mars Rotorcraft for Future Sample Fetch Missions 2022 IEEE Aerospace Conference AERO pp 01 14 doi 10 1109 AERO53065 2022 9843820 ISBN 978 1 6654 3760 8 S2CID 251473077 Archived from the original on 19 October 2022 Retrieved 17 October 2022 News Briefing NASA s Perseverance Mars Rover Investigates Geologically Rich Area 15 September 2022 archived from the original on 17 October 2022 retrieved 17 October 2022 Status 417 Status 398 Inside Unmanned Systems Inside the Ingenuity Helicopter PDF Archived PDF from the original on 17 October 2022 Retrieved 17 October 2022 a b c Mars Science Helicopter SpaceNews com 24 June 2021 Archived from the original on 26 January 2024 Retrieved 24 June 2021 a b c nbsp One or more of the preceding sentences incorporates text from this source which is in the public domain Mars Helicopter a new challenge for flight PDF NASA July 2018 Archived PDF from the original on 1 January 2020 Retrieved 9 August 2018 Mars Aerial and Ground Global Intelligent Explorer MAGGIE NASA 4 January 2024 Archived from the original on 12 January 2024 Retrieved 20 January 2024 Gorman Steve 19 April 2021 NASA Scores Wright Brothers Moment with First Helicopter Flight on Mars Reuters Archived from the original on 26 May 2023 Retrieved 21 April 2021 Harwood William 19 April 2021 NASA s Ingenuity helicopter makes maiden flight on Mars in a Wright brothers moment CBS News Archived from the original on 19 April 2021 Retrieved 21 April 2021 Johnson Alana Hautaluoma Grey Agle DC 23 March 2021 NASA Ingenuity Mars Helicopter Prepares for First Flight NASA Archived from the original on 26 January 2024 Retrieved 23 March 2021 a b NASA s Ingenuity Mars Helicopter Succeeds in Historic First Flight Mars Exploration Program NASA 19 April 2021 Archived from the original on 30 December 2021 Retrieved 19 April 2021 Amos Jonathan 19 April 2021 NASA successfully flies small helicopter on Mars BBC Archived from the original on 19 April 2021 Retrieved 19 April 2021 Strickland Ashley 19 April 2021 NASA s Mars helicopter Ingenuity successfully completed its historic first flight CNN Archived from the original on 5 April 2023 Retrieved 19 April 2021 Chang Kenneth 27 April 2022 NASA Sees Otherworldly Wreckage on Mars With Ingenuity Helicopter The debris was part of the equipment that helped the Perseverance mission safely land on the red planet in 2021 The New York Times Archived from the original on 3 July 2022 Retrieved 28 April 2022 Status reports edit Balaram Bob 19 March 2021 How is the Weather on Mars Status 287 NASA JPL Archived from the original on 26 January 2024 Retrieved 25 July 2021 Balaram Bob 2 April 2021 It s Cold on Mars Status 288 NASA JPL Archived from the original on 26 January 2024 Retrieved 25 July 2021 When Should Ingenuity Fly Status 289 NASA JPL 8 April 2021 Archived from the original on 26 January 2024 Retrieved 25 July 2021 Work Progresses Toward Ingenuity s First Flight on Mars Status 290 NASA JPL 12 April 2021 Archived from the original on 26 January 2024 Retrieved 25 July 2021 Mars Helicopter Flight Delayed to No Earlier than April 14 Status 291 NASA JPL 10 April 2021 Archived from the original on 26 January 2024 Retrieved 25 July 2021 Ingenuity Flight Team 16 April 2021 Working the Challenge Two Paths to First Flight on Mars Status 292 NASA JPL Archived from the original on 26 January 2024 Retrieved 25 July 2021 Aung MiMi 17 April 2021 Why We Choose to Try Our First Helicopter Flight on Monday Status 293 NASA JPL Archived from the original on 26 January 2024 Retrieved 25 July 2021 Aung MiMi 21 April 2021 We re Getting Ready for Ingenuity s Second Flight Status 294 NASA JPL Archived from the original on 26 January 2024 Retrieved 25 July 2021 Grip Havard 23 April 2021 We Are Prepping for Ingenuity s Third Flight Test Status 295 NASA JPL Archived from the original on 26 January 2024 Retrieved 24 April 2021 Mars Helicopter s Flight Four Rescheduled Status 296 NASA JPL 29 April 2021 Archived from the original on 26 January 2024 Retrieved 25 July 2021 Aung MiMi 30 April 2021 Ingenuity Completes Its Fourth Flight Status 297 NASA JPL Archived from the original on 26 January 2024 Retrieved 25 July 2021 Grip Havard 30 April 2021 What We re Learning about Ingenuity s Flight Control and Aerodynamic Performance Status 298 NASA JPL Archived from the original on 26 January 2024 Retrieved 25 July 2021 Ravich Josh 6 May 2021 Why Ingenuity s Fifth Flight Will Be Different Status 299 NASA JPL Archived from the original on 26 January 2024 Retrieved 25 July 2021 Balaram Bob Tyler Jeremy 10 May 2021 Keeping Our Feet Firmly on the Ground Status 301 NASA JPL Archived from the original on 26 January 2024 Retrieved 25 July 2021 Plans Underway for Ingenuity s Sixth Flight Status 302 NASA JPL 19 May 2021 Archived from the original on 26 January 2024 Retrieved 25 July 2021 Grip Havard 27 May 2021 Surviving an In Flight Anomaly What Happened on Ingenuity s Sixth Flight Status 305 NASA JPL Archived from the original on 26 January 2024 Retrieved 25 July 2021 Ingenuity Flight 7 Preview Status 306 NASA JPL 4 June 2021 Archived from the original on 26 January 2024 Retrieved 25 July 2021 Tzanetos Teddy 25 June 2021 Flight 8 Success Software Updates and Next Steps Status 308 NASA JPL Archived from the original on 26 January 2024 Retrieved 25 July 2021 Havard Grip amp Bob Balaram 2 July 2021 We re Going Big for Flight 9 Status 313 NASA JPL Archived from the original on 26 January 2024 Retrieved 25 July 2021 Grip Havard Williford Ken 7 July 2021 Flight 9 Was a Nail Biter but Ingenuity Came Through With Flying Colors Status 314 NASA JPL Archived from the original on 26 January 2024 Retrieved 25 July 2021 Tzanetos Teddy 23 July 2021 Aerial Scouting of Raised Ridges for Ingenuity s Flight 10 Status 316 NASA JPL Archived from the original on 26 January 2024 Retrieved 25 July 2021 Josh Ravich 4 August 2021 North By Northwest for Ingenuity s 11th Flight Status 318 NASA JPL Archived from the original on 26 January 2024 Retrieved 5 August 2021 Tzanetos Teddy 15 August 2021 Better By the Dozen Ingenuity Takes on Flight 12 Status 321 NASA JPL Archived from the original on 26 January 2024 Retrieved 15 August 2021 Tzanetos Teddy Grip Havard 3 September 2021 Lucky 13 Ingenuity to Get Lower for More Detailed Images During Next Flight Status 329 NASA JPL Archived from the original on 26 January 2024 Retrieved 3 September 2021 Havard Grip 15 September 2021 Flying on Mars Is Getting Harder and Harder Status 334 NASA JPL Archived from the original on 26 January 2024 Retrieved 15 September 2021 Jaakko Karras 28 September 2021 2 800 RPM Spin a Success but Flight 14 Delayed to Post Conjunction Status 336 NASA JPL Archived from the original on 26 January 2024 Retrieved 28 September 2021 Tzanetos Teddy 10 October 2021 Flight 14 Successful Status 341 NASA JPL Archived from the original on 26 January 2024 Retrieved 25 November 2021 Tzanetos Teddy 5 November 2021 Flight 15 Start of the Return Journey Status 343 NASA JPL Archived from the original on 26 January 2024 Retrieved 25 November 2021 Anderson Joshua 16 November 2021 Flight 16 Short Hop to the North Status 346 NASA JPL Archived from the original on 26 January 2024 Retrieved 25 November 2021 Kubiak Gerik 2 December 2021 Flight 17 Heading North Into Seitah Status 349 NASA JPL Archived from the original on 26 January 2024 Retrieved 3 December 2021 Tzanetos Teddy 7 December 2021 Flight 17 DiscoveringLimits Status 350 NASA JPL Archived from the original on 26 January 2024 Retrieved 8 December 2021 Karras Jaakko 23 February 2022 Dusty Flight 19 Completed and Looking Ahead to Flight 20 Status 366 NASA JPL Archived from the original on 26 January 2024 Retrieved 27 February 2022 Morrell Ben 5 April 2022 Balancing Risks in the Seitah Region Flight 24 Status 373 NASA Archived from the original on 7 February 2023 Retrieved 6 April 2022 Agle David 6 May 2022 NASA s Ingenuity in Contact With Perseverance Rover After Communications Dropout Status379 Status 379 NASA Archived from the original on 3 February 2023 Retrieved 8 May 2022 Tzanetos Teddy 27 May 2022 Ingenuity Adapts for Mars Winter Operations Status 382 NASA Archived from the original on 28 May 2022 Retrieved 28 May 2022 Grip Havard 6 June 2022 Keeping Our Sense of Direction Dealing With a Dead Sensor Status 385 NASA Archived from the original on 26 January 2024 Retrieved 14 June 2022 Status 392 Ingenuity Postpones Flights Until August mars nasa gov Archived from the original on 26 January 2024 Retrieved 17 October 2022 Tzanetos Teddy 19 August 2022 Ingenuity Team Spun Up for Upcoming Flight 30 Status 398 NASA Archived from the original on 26 January 2024 Retrieved 9 May 2023 Balaram Bob 14 November 2022 Mars Helicopters The 4R s Status 417 NASA Archived from the original on 15 November 2022 Retrieved 9 May 2023 Anderson Joshua Flight 34 Was Short But Significant NASA Status 420 Archived from the original on 27 January 2023 Retrieved 24 November 2022 Brown Travis 14 February 2023 Perseverance s Four Legged Companion is Ready Status 441 Archived from the original on 26 January 2024 Retrieved 31 March 2023 Brown Travis 23 March 2023 The Race Is On Status 450 Archived from the original on 26 January 2024 Retrieved 5 May 2023 External links edit nbsp Wikimedia Commons has media related to Ingenuity helicopter NASA Mars Helicopter webpage NASA Mars Helicopter flight log Mars Helicopter Technology Demonstrator PDF The key design features of the prototype drone First Video of NASA s Ingenuity helicopter in flight on YouTube Perseverance Route Map including the flight tracks of Ingenuity Explore Mars AIAA Book Planetary Exploration with Ingenuity and Dragonfly source code of program behind Ginny NASA GitHub page Portals nbsp Astronomy nbsp Spaceflight Retrieved from https en wikipedia org w index php title Ingenuity helicopter amp oldid 1220920152, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.