fbpx
Wikipedia

Identification friend or foe

Identification, friend or foe (IFF) is an identification system designed for command and control. It uses a transponder that listens for an interrogation signal and then sends a response that identifies the broadcaster. IFF systems usually use radar frequencies, but other electromagnetic frequencies, radio or infrared, may be used.[1] It enables military and civilian air traffic control interrogation systems to identify aircraft, vehicles or forces as friendly, as opposed to neutral or hostile, and to determine their bearing and range from the interrogator. IFF is used by both military and civilian aircraft. IFF was first developed during World War II, with the arrival of radar, and several friendly fire incidents.

An IFF test set used by a United States Air Force avionics technician technical sergeant for testing transponders on aircraft
Model XAE IFF kit, the first radio recognition IFF system in the U.S.

IFF can only positively identify friendly aircraft or other forces.[2][3][4][5] If an IFF interrogation receives no reply or an invalid reply, the object is not positively identified as foe; friendly forces may not properly reply to IFF for various reasons such as equipment malfunction, and parties in the area not involved in the combat, such as civilian airliners, will not be equipped with IFF.

IFF is a tool within the broader military action of Combat Identification (CID), the characterization of objects detected in the field of combat sufficiently accurately to support operational decisions. The broadest characterization is that of friend, enemy, neutral, or unknown. CID not only can reduce friendly fire incidents, but also contributes to overall tactical decision-making.[6]

History

With the successful deployment of radar systems for air defence during World War II, combatants were immediately confronted with the difficulty of distinguishing friendly aircraft from hostile ones; by that time, aircraft were flown at high speed and altitude, making visual identification impossible, and the targets showed up as featureless blips on the radar screen. This led to incidents such as the Battle of Barking Creek, over Britain,[7][8][9] and the air attack on the fortress of Koepenick over Germany.[10][11]

British Empire

Early concepts

 
Radar coverage of the Chain Home system, 1939–40

Already before the deployment of their Chain Home radar system (CH), the RAF had considered the problem of IFF. Robert Watson-Watt had filed patents on such systems in 1935 and 1936. By 1938, researchers at Bawdsey Manor began experiments with "reflectors" consisting of dipole antennas tuned to resonate to the primary frequency of the CH radars. When a pulse from the CH transmitter hit the aircraft, the antennas would resonate for a short time, increasing the amount of energy returned to the CH receiver. The antenna was connected to a motorized switch that periodically shorted it out, preventing it from producing a signal. This caused the return on the CH set to periodically lengthen and shorten as the antenna was turned on and off. In practice, the system was found to be too unreliable to use; the return was highly dependent on the direction the aircraft was moving relative to the CH station, and often returned little or no additional signal.[12]

It had been suspected this system would be of little use in practice. When that turned out to be the case, the RAF turned to an entirely different system that was also being planned. This consisted of a set of tracking stations using HF/DF radio direction finders. Their aircraft radios were modified to send out a 1 kHz tone for 14 seconds every minute, allowing the stations ample time to measure the aircraft's bearing. Several such stations were assigned to each "sector" of the air defence system, and sent their measurements to a plotting station at sector headquarters, who used triangulation to determine the aircraft's location. Known as "pip-squeak", the system worked, but was labour-intensive and did not display its information directly to the radar operators. A system that worked directly with the radar was clearly desirable.[13]

IFF Mark II

The first active IFF transponder (transmitter/responder) was the IFF Mark I which was used experimentally in 1939. This used a regenerative receiver, which fed a small amount of the amplified output back into the input, strongly amplifying even small signals as long as they were of a single frequency (like Morse code, but unlike voice transmissions). They were tuned to the signal from the CH radar (20–30 MHz), amplifying it so strongly that it was broadcast back out the aircraft's antenna. Since the signal was received at the same time as the original reflection of the CH signal, the result was a lengthened "blip" on the CH display which was easily identifiable. In testing, it was found that the unit would often overpower the radar or produce too little signal to be seen, and at the same time, new radars were being introduced using new frequencies.

Instead of putting Mark I into production, a new IFF Mark II was introduced in early 1940. Mark II had a series of separate tuners inside tuned to different radar bands that it stepped through using a motorized switch, while an automatic gain control solved the problem of it sending out too much signal. Mark II was technically complete as the war began, but a lack of sets meant it was not available in quantity and only a small number of RAF aircraft carried it by the time of the Battle of Britain. Pip-squeak was kept in operation during this period, but as the Battle ended, IFF Mark II was quickly put into full operation. Pip-squeak was still used for areas over land where CH did not cover, as well as an emergency guidance system.[14]

IFF Mark III

Even by 1940 the complex system of Mark II was reaching its limits while new radars were being constantly introduced. By 1941, a number of sub-models were introduced that covered different combinations of radars, common naval ones for instance, or those used by the RAF. But the introduction of radars based on the microwave-frequency cavity magnetron rendered this obsolete; there was simply no way to make a responder operating in this band using contemporary electronics.

In 1940, English engineer Freddie Williams had suggested using a single separate frequency for all IFF signals, but at the time there seemed no pressing need to change the existing system. With the introduction of the magnetron, work on this concept began at the Telecommunications Research Establishment as the IFF Mark III. This was to become the standard for the Western Allies for most of the war.

Mark III transponders were designed to respond to specific 'interrogators', rather than replying directly to received radar signals. These interrogators worked on a limited selection of frequencies, no matter what radar they were paired with. The system also allowed limited communication to be made, including the ability to transmit a coded 'Mayday' response. The IFF sets were designed and built by Ferranti in Manchester to Williams' specifications. Equivalent sets were manufactured in the US, initially as copies of British sets, so that allied aircraft would be identified upon interrogation by each other's radar.[14]

IFF sets were obviously highly classified. Thus, many of them were wired with explosives in the event the aircrew bailed out or crash landed. Jerry Proc reports:

Alongside the switch to turn on the unit was the IFF destruct switch to prevent its capture by the enemy. Many a pilot chose the wrong switch and blew up his IFF unit. The thud of a contained explosion and the acrid smell of burning insulation in the cockpit did not deter many pilots from destroying IFF units time and time again. Eventually, the self destruct switch was secured by a thin wire to prevent its accidental use."[15]

Germany

 
Code generator from German WW II IFF-Radio FuG 25a Erstling

FuG 25a Erstling (English: Firstborn, Debut) was developed in Germany in 1940. It was tuned to the low-VHF band at 125 MHz used by the Freya radar, and an adaptor was used with the low-UHF-banded 550–580 MHz used by Würzburg. Before a flight, the transceiver was set up with a selected day code of ten bits which was dialed into the unit. To start the identification procedure, the ground operator switched the pulse frequency of his radar from 3,750 Hz to 5,000 Hz. The airborne receiver decoded that and started to transmit the day code. The radar operator would then see the blip lengthen and shorten in the given code. The IFF transmitter worked on 168 MHz with a power of 400 watts (PEP).

The system included a way for ground controllers to determine whether an aircraft had the right code or not but it did not include a way for the transponder to reject signals from other sources. British military scientists found a way of exploiting this by building their own IFF transmitter called Perfectos, which were designed to trigger a response from any FuG 25a system in the vicinity. When an FuG 25a responded on its 168 MHz frequency, the signal was received by the antenna system from an AI Mk. IV radar, which originally operated at 212 MHz. By comparing the strength of the signal on different antennas the direction to the target could be determined. Mounted on Mosquitos, the "Perfectos" severely limited German use of the FuG 25a.

Further wartime developments

IFF Mark IV and V

The United States Naval Research Laboratory had been working on their own IFF system since before the war. It used a single interrogation frequency, like the Mark III, but differed in that it used a separate responder frequency. Responding on a different frequency has several practical advantages, most notably that the response from one IFF cannot trigger another IFF on another aircraft. But it requires a complete transmitter for the responder side of the circuitry, in contrast to the greatly simplified regenerative system used in the British designs. This technique is now known as a cross-band transponder.

When the Mark II was revealed in 1941 during the Tizard Mission, it was decided to use it and take the time to further improve their experimental system. The result was what became IFF Mark IV. The main difference between this and earlier models is that it worked on higher frequencies, around 600 MHz, which allowed much smaller antennas. However, this also turned out to be close to the frequencies used by the German Würzburg radar and there were concerns that it would be triggered by that radar and the transponder responses would be picked on its radar display. This would immediately reveal the IFF's operational frequencies.

This led to a US–British effort to make a further improved model, the Mark V, also known as the United Nations Beacon or UNB. This moved to still higher frequencies around 1 GHz but operational testing was not complete when the war ended. By the time testing was finished in 1948, the much improved Mark X was beginning its testing and Mark V was abandoned.

Postwar systems

IFF Mark X

Mark X started as a purely experimental device operating at frequencies above 1 GHz, the name refers to "experimental", not "number 10". As development continued it was decided to introduce an encoding system known as the "Selective Identification Feature", or SIF. SIF allowed the return signal to contain up to 12 pulses, representing four octal digits of 3 bits each. Depending on the timing of the interrogation signal, SIF would respond in several ways. Mode 1 indicated the type of aircraft or its mission (cargo or bomber, for instance) while Mode 2 returned a tail code.

Mark X began to be introduced in the early 1950s. This was during a period of great expansion of the civilian air transport system, and it was decided to use slightly modified Mark X sets for these aircraft as well. These sets included a new military Mode 3 which was essentially identical to Mode 2, returning a four-digit code, but used a different interrogation pulse, allowing the aircraft to identify if the query was from a military or civilian radar. For civilian aircraft, this same system was known as Mode A, and because they were identical, they are generally known as Mode 3/A.

Several new modes were also introduced during this process. Civilian modes B and D were defined, but never used. Mode C responded with a 12-bit number encoded using Gillham code, which represented the altitude as (that number) x 100 feet - 1200. Radar systems can easily locate an aircraft in two dimensions, but measuring altitude is a more complex problem and, especially in the 1950s, added significantly to the cost of the radar system. By placing this function on the IFF, the same information could be returned for little additional cost, essentially that of adding a digitizer to the aircraft's altimeter.

Modern interrogators generally send out a series of challenges on Mode 3/A and then Mode C, allowing the system to combine the identity of the aircraft with its altitude and location from the radar.

IFF Mark XII

The current IFF system is the Mark XII. This works on the same frequencies as Mark X, and supports all of its military and civilian modes.[citation needed]

It had long been considered a problem that the IFF responses could be triggered by any properly formed interrogation, and those signals were simply two short pulses of a single frequency. This allowed enemy transmitters to trigger the response, and using triangulation, an enemy could determine the location of the transponder. The British had already used this technique against the Germans during WWII, and it was used by the USAF against VPAF aircraft during the Vietnam War.

Mark XII differs from Mark X through the addition of the new military Mode 4. This works in a fashion similar to Mode 3/A, with the interrogator sending out a signal that the IFF responds to. There are two key differences, however.

One is that the Interrogation pulse is followed by a 12-bit code similar to the ones sent back by the Mark 3 transponders. The encoded number changes day-to-day. When the number is received and decoded in the aircraft transponder, a further cryptographic encoding is applied. If the result of that operation matches the value dialled into the IFF in the aircraft, the transponder replies with a Mode 3 response as before. If the values do not match, it does not respond.

This solves the problem of the aircraft transponder replying to false interrogations, but does not completely solve the problem of locating the aircraft through triangulation. To solve this problem, a delay is added to the response signal that varies based on the code sent from the interrogator. When received by an enemy that does not see the interrogation pulse, which is generally the case as they are often below the radar horizon, this causes a random displacement of the return signal with every pulse. Locating the aircraft within the set of returns is a difficult process.

Mode S

During the 1980s, a new civilian mode, Mode S, was added that allowed greatly increased amounts of data to be encoded in the returned signal. This was used to encode the location of the aircraft from the navigation system. This is a basic part of the traffic collision avoidance system (TCAS), which allows commercial aircraft to know the location of other aircraft in the area and avoid them without the need for ground operators.

The basic concepts from Mode S were then militarized as Mode 5, which is simply a cryptographically encoded version of the Mode S data.

The IFF of World War II and Soviet military systems (1946 to 1991) used coded radar signals (called Cross-Band Interrogation, or CBI) to automatically trigger the aircraft's transponder in an aircraft illuminated by the radar. Radar-based aircraft identification is also called secondary surveillance radar in both military and civil usage, with primary radar bouncing an RF pulse off of the aircraft to determine position. George Charrier, working for RCA, filed for a patent for such an IFF device in 1941. It required the operator to perform several adjustments to the radar receiver to suppress the image of the natural echo on the radar receiver, so that visual examination of the IFF signal would be possible.[16]

By 1943, Donald Barchok filed a patent for a radar system using the abbreviation IFF in his text with only parenthetic explanation, indicating that this acronym had become an accepted term.[17] In 1945, Emile Labin and Edwin Turner filed patents for radar IFF systems where the outgoing radar signal and the transponder's reply signal could each be independently programmed with a binary codes by setting arrays of toggle switches; this allowed the IFF code to be varied from day to day or even hour to hour.[18][19]

Early 21st century systems

NATO

The United States and other NATO countries started using a system called Mark XII in the late twentieth century; Britain had not until then implemented an IFF system compatible with that standard, but then developed a program for a compatible system known as successor IFF (SIFF).[20]

Modes

  • Mode 1 – military only; provides 2-digit octal (6 bit) "mission code" that identifies the aircraft type or mission.[21]
  • Mode 2 – military only; provides 4-digit octal (12 bit) unit code or tail number.[22]
  • Mode 3/A – military/civilian; provides a 4-digit octal (12 bit) identification code for the aircraft, assigned by the air traffic controller. Commonly referred to as a squawk code.[21]
  • Mode 4 – military only; provides a 3-pulse reply, delay is based on the encrypted challenge.[21]
  • Mode 5 – military only; provides a cryptographically secured version of Mode S and ADS-B GPS position.[21]

Modes 4 and 5 are designated for use by NATO forces.

Submarines

In World War I, 8 submarines were sunk by friendly fire and in World War II nearly 20 were sunk this way.[23] Still, Identification of friend or foe (IFF) has not been regarded a high concern before the 1990s by the US military as not many other countries possess submarines.[24]

IFF methods that are analogous to aircraft IFF have been deemed unfeasible for submarines because they would make submarines easier to detect. Thus, having friendly submarines broadcast a signal, or somehow increase the submarine's signature (based on acoustics, magnetic fluctuations etc.), are not considered viable.[24] Instead, submarine IFF is done based on carefully defining areas of operation. Each friendly submarine is assigned a patrol area, where the presence of any other submarine is deemed hostile and open to attack. Further, within these assigned areas, surface ships and aircraft refrain from any anti-submarine warfare (ASW); only the resident submarine may target other submarines in its own area. Ships and aircraft may still engage in ASW in areas that have not been assigned to any friendly submarines.[24] Navies also use database of acoustic signatures to attempt to identify the submarine, but acoustic data can be ambiguous and several countries deploy similar classes of submarines.[25]

Highly visible painted IFF markings

Painted colours or bands have been used as an easy and low-tech combat identification system. The most notable example comes from the Normandy landings in World War II, where invasion stripes were used. These were alternating black and white bands painted on the fuselage and wings of Allied aircraft to reduce the chance that they would be attacked by friendly forces during and after the landings. Three white and two black bands were wrapped around the rear of a fuselage just in front of the empennage (tail) and from front to back around the upper and lower wing surfaces.

World War II

Invasion stripes were five alternating black and white stripes. On single-engine aircraft each stripe was to be 18 inches (46 cm) wide, placed 6 inches (15 cm) inboard of the roundels on the wings and 18 inches (46 cm) forward of the leading edge of the tailplane on the fuselage. National markings and serial number were not to be obliterated. On twin-engine aircraft the stripes were 24 inches (61 cm) wide, placed 24 inches (61 cm) outboard of the engine nacelles on the wings, and 18 inches (46 cm) forward of the leading edge of the tailplane around the fuselage. However, American aircraft using the invasion stripes very commonly had some part of the added "bar" section of their post-1942 roundels overlapping the invasion strips on the wings.[citation needed]

Korean War

 
A Hawker Sea Fury launches from HMS Glory in 1951

Invasion stripes were re-introduced on British and Australian Fleet Air Arm aircraft operating during the Korean War in 1950. Similar stripes were also used early in the war on F-86 Sabres of the 4th Fighter Interceptor Wing as a deviation from the standard yellow stripes.[citation needed]

Suez operation

The stripes were used again by the Royal Air Force, the Royal Navy's Fleet Air Arm, the French Naval Aviation and the French Air Force during the Suez operation of 1956, mostly to distinguish UK and French aircraft from Egypt's British-made planes. Single-engined aircraft had yellow/black/yellow/black/yellow stripes one foot wide; multi-engined aircraft had the same pattern with 2-foot (61 cm) stripes. Israel, who was a co-belligerent with Britain and France, did not paint Suez Stripes on their aircraft.[citation needed]

Invasion of Czechoslovakia

 
Two Soviet T-55 tanks bearing the white invasion stripes in Prague, Czechoslovakia, during the Warsaw Pact invasion of the country in 1968.

During the Soviet-led invasion of Czechoslovakia in 1968, the Soviet Union used a series of white stripes on the armoured vehicles of its invasion forces because they used predominantly the same types of combat vehicles as the armed forces of Czechoslovakia (both were Warsaw Pact allies). The markings consisted of one long white strip in the middle of the vehicle from the front and across the roof all the way to the back with two additional strips in the middle of both sides. This is similar to the markings applied on most Soviet tanks and armoured fighting vehicles fighting in Berlin in 1945 during the Second World War to prevent friendly fire from Western Allied (British or American) aircraft that flew over the city to conduct bombing raids until its fall.[citation needed]

In addition to that, certain Soviet Air Force aircraft, such as the MiG-21 fighters, were given two red stripes on their fuselages and vertical stabilisers, also because these types of aircraft were used by the Czechoslovak Air Force.

Russian invasion of Ukraine

 
"Z" symbol

Several white painted letters, most famously an insignia resembling the Latin letter Z, have been used on tanks and armoured vehicles by the Russian Armed Forces during the 2022 Invasion of Ukraine. In April 2021, analysts first noted that vehicles were being painted with markings similar to those used in the invasion of Czechoslovakia.[26] Military experts and advisors have stated that this is likely to prevent friendly fire incidents, as both the Russian and Ukrainian forces use the same type of combat vehicles.[27] The Russian Ministry of Defence confirmed the symbol's usage on Instagram, stating it is an abbreviation of the phrase "for the victory" (Russian: за победу, romanizedza pobedu).[28] According to the Armed Forces of Ukraine, the different letters indicate different Russian military detachments, with the Z indicating forces from the Eastern Military District.[29]

See also

References

  1. ^ "Identification Friend or Foe (IFF) Panel with Dynamic Contrast at Long Wave Infrared (LWIR) Wavelengths (Solicitation)". SBIR-STTR. US Department of Defense (Army). January 2019.
  2. ^ "Combat Identification IFF Systems" (PDF). Tellumat. Retrieved 24 September 2020.
  3. ^ . Lockheed Martin. Archived from the original on 2016-03-04. Retrieved 31 May 2015.
  4. ^ "Identification Friend or Foe". Global Security. Retrieved 31 May 2015.
  5. ^ "Combat Identification (IFF)". BAE Systems. Retrieved 31 May 2015.
  6. ^ (PDF). US DoD. 30 June 2010. p. III-20. Archived from the original (PDF) on 2014-04-11. Retrieved 27 December 2013.
  7. ^ Christopher Yeoman & John Freeborn, Tiger Cub – The Story of John Freeborn DFC* A 74 Squadron Fighter Pilot In WWII, Pen and Sword Aviation, 2009, ISBN 978-1-84884-023-2, p45
  8. ^ Bob Cossey, A Tiger's Tale: The Story of Battle of Britain Fighter Ace Wg. Cdr. John Connell Freeborn, ISBN 978-1-900511-64-3, chapter 4
  9. ^ Hough, Richard and Denis Richards. The Battle of Britain: The Greatest Air Battle of World War II, WW Norton, 1990, p.67
  10. ^ Galland, Adolf : The First and the Last p 101(1954 reprinted ..) ISBN 978 80 87888 92 6
  11. ^ Price, Alfred : Battle Over the Reich pp95-6(1973) ISBN 0 7110 0481 1
  12. ^ "General IFF principles". United States Fleet. 1945. Retrieved 2012-12-17.
  13. ^ "The British invention of radar". Retrieved 2012-12-17.
  14. ^ a b Lord Bowden (1985). "The story of IFF (identification friend or foe)". IEE Proceedings A - Physical Science, Measurement and Instrumentation, Management and Education, Reviews. 132 (6): 435. doi:10.1049/ip-a-1.1985.0079.
  15. ^ Proc, Jerry. "IFF System History". The Web Pages Of Jerry Proc. Jerry Proc. Retrieved 5 November 2018.
  16. ^ George M. Charrier, Recognition System for Pulse Echo Radio Locators, U.S. Patent 2,453,970, granted Nov. 16, 1948.
  17. ^ Donald Barchok, Means for Synchronizing Detection and Interrogation Systems, U.S. Patent 2,515,178, granted July 18, 1950.
  18. ^ Emile Labin, Magnetostrictive Time-Delay Device, U.S. Patent 2,495,740, granted Jan. 31, 1950.
  19. ^ Edwin E. Turner, Coded Impulse Responsive Secret Signalling System, U.S. Patent 2,648,060, granted Aug. 4, 1953.
  20. ^ . Archived from the original on 2014-04-08. Retrieved 2012-12-12.
  21. ^ a b c d NATO STANAG 4193
  22. ^ "What is IFF (Identification Friend or Foe)?". EverythingRF. EverythingRF. Retrieved 29 November 2020.
  23. ^ Charles Kirke, ed. (2012-04-26). Fratricide in Battle. Bloomsbury Publishing.
  24. ^ a b c "Avoiding Fratricide of Air and Sea Targets" (PDF). Who Goes There: Friend or Foe?. June 1993. p. 66–67.
  25. ^ Glynn, Michael (2022-05-30). Airborne Anti-Submarine Warfare. p. 245.
  26. ^ Ambrose, Tom (15 April 2021). "Russia 'paints invasion stripes on assault vehicles' as soldiers mass at Ukraine border". Yahoo! News. Retrieved 2022-07-21.
  27. ^ Hassan, Beril Naz (2022-02-27). "Why do Russian tanks have a 'Z' symbol on them?". Metro. Retrieved 2022-03-01.
  28. ^ Chaturvedi, Amit (7 March 2022). "Explained: What Does The 'Z' Symbol On Russian Military Vehicles Mean". NDTV. Retrieved 7 March 2022.
  29. ^ Lazurkevych, Sofia (1 March 2022). Українські військові показали, як ворог маркує свою техніку [The Ukrainian military showed how the enemy marks its equipment]. Zaxid.net [uk] (in Ukrainian). Retrieved 7 March 2022.

External links

  • The short film STAFF FILM REPORT 66-27A (1966) is available for free download at the Internet Archive.
  • Overview of SSR and IFF Systems

identification, friend, identification, friend, identification, system, designed, command, control, uses, transponder, that, listens, interrogation, signal, then, sends, response, that, identifies, broadcaster, systems, usually, radar, frequencies, other, elec. Identification friend or foe IFF is an identification system designed for command and control It uses a transponder that listens for an interrogation signal and then sends a response that identifies the broadcaster IFF systems usually use radar frequencies but other electromagnetic frequencies radio or infrared may be used 1 It enables military and civilian air traffic control interrogation systems to identify aircraft vehicles or forces as friendly as opposed to neutral or hostile and to determine their bearing and range from the interrogator IFF is used by both military and civilian aircraft IFF was first developed during World War II with the arrival of radar and several friendly fire incidents An IFF test set used by a United States Air Force avionics technician technical sergeant for testing transponders on aircraft Model XAE IFF kit the first radio recognition IFF system in the U S IFF can only positively identify friendly aircraft or other forces 2 3 4 5 If an IFF interrogation receives no reply or an invalid reply the object is not positively identified as foe friendly forces may not properly reply to IFF for various reasons such as equipment malfunction and parties in the area not involved in the combat such as civilian airliners will not be equipped with IFF IFF is a tool within the broader military action of Combat Identification CID the characterization of objects detected in the field of combat sufficiently accurately to support operational decisions The broadest characterization is that of friend enemy neutral or unknown CID not only can reduce friendly fire incidents but also contributes to overall tactical decision making 6 Contents 1 History 1 1 British Empire 1 1 1 Early concepts 1 1 2 IFF Mark II 1 1 3 IFF Mark III 1 2 Germany 1 3 Further wartime developments 1 3 1 IFF Mark IV and V 1 4 Postwar systems 1 4 1 IFF Mark X 1 4 2 IFF Mark XII 1 4 3 Mode S 2 Early 21st century systems 2 1 NATO 3 Modes 4 Submarines 5 Highly visible painted IFF markings 5 1 World War II 5 2 Korean War 5 3 Suez operation 5 4 Invasion of Czechoslovakia 5 5 Russian invasion of Ukraine 6 See also 7 References 8 External linksHistory EditWith the successful deployment of radar systems for air defence during World War II combatants were immediately confronted with the difficulty of distinguishing friendly aircraft from hostile ones by that time aircraft were flown at high speed and altitude making visual identification impossible and the targets showed up as featureless blips on the radar screen This led to incidents such as the Battle of Barking Creek over Britain 7 8 9 and the air attack on the fortress of Koepenick over Germany 10 11 British Empire Edit Early concepts Edit Radar coverage of the Chain Home system 1939 40 Already before the deployment of their Chain Home radar system CH the RAF had considered the problem of IFF Robert Watson Watt had filed patents on such systems in 1935 and 1936 By 1938 researchers at Bawdsey Manor began experiments with reflectors consisting of dipole antennas tuned to resonate to the primary frequency of the CH radars When a pulse from the CH transmitter hit the aircraft the antennas would resonate for a short time increasing the amount of energy returned to the CH receiver The antenna was connected to a motorized switch that periodically shorted it out preventing it from producing a signal This caused the return on the CH set to periodically lengthen and shorten as the antenna was turned on and off In practice the system was found to be too unreliable to use the return was highly dependent on the direction the aircraft was moving relative to the CH station and often returned little or no additional signal 12 It had been suspected this system would be of little use in practice When that turned out to be the case the RAF turned to an entirely different system that was also being planned This consisted of a set of tracking stations using HF DF radio direction finders Their aircraft radios were modified to send out a 1 kHz tone for 14 seconds every minute allowing the stations ample time to measure the aircraft s bearing Several such stations were assigned to each sector of the air defence system and sent their measurements to a plotting station at sector headquarters who used triangulation to determine the aircraft s location Known as pip squeak the system worked but was labour intensive and did not display its information directly to the radar operators A system that worked directly with the radar was clearly desirable 13 IFF Mark II Edit Main article IFF Mark II The first active IFF transponder transmitter responder was the IFF Mark I which was used experimentally in 1939 This used a regenerative receiver which fed a small amount of the amplified output back into the input strongly amplifying even small signals as long as they were of a single frequency like Morse code but unlike voice transmissions They were tuned to the signal from the CH radar 20 30 MHz amplifying it so strongly that it was broadcast back out the aircraft s antenna Since the signal was received at the same time as the original reflection of the CH signal the result was a lengthened blip on the CH display which was easily identifiable In testing it was found that the unit would often overpower the radar or produce too little signal to be seen and at the same time new radars were being introduced using new frequencies Instead of putting Mark I into production a new IFF Mark II was introduced in early 1940 Mark II had a series of separate tuners inside tuned to different radar bands that it stepped through using a motorized switch while an automatic gain control solved the problem of it sending out too much signal Mark II was technically complete as the war began but a lack of sets meant it was not available in quantity and only a small number of RAF aircraft carried it by the time of the Battle of Britain Pip squeak was kept in operation during this period but as the Battle ended IFF Mark II was quickly put into full operation Pip squeak was still used for areas over land where CH did not cover as well as an emergency guidance system 14 IFF Mark III Edit Main article IFF Mark III Even by 1940 the complex system of Mark II was reaching its limits while new radars were being constantly introduced By 1941 a number of sub models were introduced that covered different combinations of radars common naval ones for instance or those used by the RAF But the introduction of radars based on the microwave frequency cavity magnetron rendered this obsolete there was simply no way to make a responder operating in this band using contemporary electronics In 1940 English engineer Freddie Williams had suggested using a single separate frequency for all IFF signals but at the time there seemed no pressing need to change the existing system With the introduction of the magnetron work on this concept began at the Telecommunications Research Establishment as the IFF Mark III This was to become the standard for the Western Allies for most of the war Mark III transponders were designed to respond to specific interrogators rather than replying directly to received radar signals These interrogators worked on a limited selection of frequencies no matter what radar they were paired with The system also allowed limited communication to be made including the ability to transmit a coded Mayday response The IFF sets were designed and built by Ferranti in Manchester to Williams specifications Equivalent sets were manufactured in the US initially as copies of British sets so that allied aircraft would be identified upon interrogation by each other s radar 14 IFF sets were obviously highly classified Thus many of them were wired with explosives in the event the aircrew bailed out or crash landed Jerry Proc reports Alongside the switch to turn on the unit was the IFF destruct switch to prevent its capture by the enemy Many a pilot chose the wrong switch and blew up his IFF unit The thud of a contained explosion and the acrid smell of burning insulation in the cockpit did not deter many pilots from destroying IFF units time and time again Eventually the self destruct switch was secured by a thin wire to prevent its accidental use 15 Germany Edit Code generator from German WW II IFF Radio FuG 25a Erstling FuG 25a Erstling English Firstborn Debut was developed in Germany in 1940 It was tuned to the low VHF band at 125 MHz used by the Freya radar and an adaptor was used with the low UHF banded 550 580 MHz used by Wurzburg Before a flight the transceiver was set up with a selected day code of ten bits which was dialed into the unit To start the identification procedure the ground operator switched the pulse frequency of his radar from 3 750 Hz to 5 000 Hz The airborne receiver decoded that and started to transmit the day code The radar operator would then see the blip lengthen and shorten in the given code The IFF transmitter worked on 168 MHz with a power of 400 watts PEP The system included a way for ground controllers to determine whether an aircraft had the right code or not but it did not include a way for the transponder to reject signals from other sources British military scientists found a way of exploiting this by building their own IFF transmitter called Perfectos which were designed to trigger a response from any FuG 25a system in the vicinity When an FuG 25a responded on its 168 MHz frequency the signal was received by the antenna system from an AI Mk IV radar which originally operated at 212 MHz By comparing the strength of the signal on different antennas the direction to the target could be determined Mounted on Mosquitos the Perfectos severely limited German use of the FuG 25a Further wartime developments Edit IFF Mark IV and V Edit The United States Naval Research Laboratory had been working on their own IFF system since before the war It used a single interrogation frequency like the Mark III but differed in that it used a separate responder frequency Responding on a different frequency has several practical advantages most notably that the response from one IFF cannot trigger another IFF on another aircraft But it requires a complete transmitter for the responder side of the circuitry in contrast to the greatly simplified regenerative system used in the British designs This technique is now known as a cross band transponder When the Mark II was revealed in 1941 during the Tizard Mission it was decided to use it and take the time to further improve their experimental system The result was what became IFF Mark IV The main difference between this and earlier models is that it worked on higher frequencies around 600 MHz which allowed much smaller antennas However this also turned out to be close to the frequencies used by the German Wurzburg radar and there were concerns that it would be triggered by that radar and the transponder responses would be picked on its radar display This would immediately reveal the IFF s operational frequencies This led to a US British effort to make a further improved model the Mark V also known as the United Nations Beacon or UNB This moved to still higher frequencies around 1 GHz but operational testing was not complete when the war ended By the time testing was finished in 1948 the much improved Mark X was beginning its testing and Mark V was abandoned Postwar systems Edit IFF Mark X Edit Main article IFF Mark X Mark X started as a purely experimental device operating at frequencies above 1 GHz the name refers to experimental not number 10 As development continued it was decided to introduce an encoding system known as the Selective Identification Feature or SIF SIF allowed the return signal to contain up to 12 pulses representing four octal digits of 3 bits each Depending on the timing of the interrogation signal SIF would respond in several ways Mode 1 indicated the type of aircraft or its mission cargo or bomber for instance while Mode 2 returned a tail code Mark X began to be introduced in the early 1950s This was during a period of great expansion of the civilian air transport system and it was decided to use slightly modified Mark X sets for these aircraft as well These sets included a new military Mode 3 which was essentially identical to Mode 2 returning a four digit code but used a different interrogation pulse allowing the aircraft to identify if the query was from a military or civilian radar For civilian aircraft this same system was known as Mode A and because they were identical they are generally known as Mode 3 A Several new modes were also introduced during this process Civilian modes B and D were defined but never used Mode C responded with a 12 bit number encoded using Gillham code which represented the altitude as that number x 100 feet 1200 Radar systems can easily locate an aircraft in two dimensions but measuring altitude is a more complex problem and especially in the 1950s added significantly to the cost of the radar system By placing this function on the IFF the same information could be returned for little additional cost essentially that of adding a digitizer to the aircraft s altimeter Modern interrogators generally send out a series of challenges on Mode 3 A and then Mode C allowing the system to combine the identity of the aircraft with its altitude and location from the radar IFF Mark XII Edit The current IFF system is the Mark XII This works on the same frequencies as Mark X and supports all of its military and civilian modes citation needed It had long been considered a problem that the IFF responses could be triggered by any properly formed interrogation and those signals were simply two short pulses of a single frequency This allowed enemy transmitters to trigger the response and using triangulation an enemy could determine the location of the transponder The British had already used this technique against the Germans during WWII and it was used by the USAF against VPAF aircraft during the Vietnam War Mark XII differs from Mark X through the addition of the new military Mode 4 This works in a fashion similar to Mode 3 A with the interrogator sending out a signal that the IFF responds to There are two key differences however One is that the Interrogation pulse is followed by a 12 bit code similar to the ones sent back by the Mark 3 transponders The encoded number changes day to day When the number is received and decoded in the aircraft transponder a further cryptographic encoding is applied If the result of that operation matches the value dialled into the IFF in the aircraft the transponder replies with a Mode 3 response as before If the values do not match it does not respond This solves the problem of the aircraft transponder replying to false interrogations but does not completely solve the problem of locating the aircraft through triangulation To solve this problem a delay is added to the response signal that varies based on the code sent from the interrogator When received by an enemy that does not see the interrogation pulse which is generally the case as they are often below the radar horizon this causes a random displacement of the return signal with every pulse Locating the aircraft within the set of returns is a difficult process Mode S Edit During the 1980s a new civilian mode Mode S was added that allowed greatly increased amounts of data to be encoded in the returned signal This was used to encode the location of the aircraft from the navigation system This is a basic part of the traffic collision avoidance system TCAS which allows commercial aircraft to know the location of other aircraft in the area and avoid them without the need for ground operators The basic concepts from Mode S were then militarized as Mode 5 which is simply a cryptographically encoded version of the Mode S data The IFF of World War II and Soviet military systems 1946 to 1991 used coded radar signals called Cross Band Interrogation or CBI to automatically trigger the aircraft s transponder in an aircraft illuminated by the radar Radar based aircraft identification is also called secondary surveillance radar in both military and civil usage with primary radar bouncing an RF pulse off of the aircraft to determine position George Charrier working for RCA filed for a patent for such an IFF device in 1941 It required the operator to perform several adjustments to the radar receiver to suppress the image of the natural echo on the radar receiver so that visual examination of the IFF signal would be possible 16 By 1943 Donald Barchok filed a patent for a radar system using the abbreviation IFF in his text with only parenthetic explanation indicating that this acronym had become an accepted term 17 In 1945 Emile Labin and Edwin Turner filed patents for radar IFF systems where the outgoing radar signal and the transponder s reply signal could each be independently programmed with a binary codes by setting arrays of toggle switches this allowed the IFF code to be varied from day to day or even hour to hour 18 19 Early 21st century systems EditNATO Edit The United States and other NATO countries started using a system called Mark XII in the late twentieth century Britain had not until then implemented an IFF system compatible with that standard but then developed a program for a compatible system known as successor IFF SIFF 20 Modes EditSee also Aviation transponder interrogation modes Mode 1 military only provides 2 digit octal 6 bit mission code that identifies the aircraft type or mission 21 Mode 2 military only provides 4 digit octal 12 bit unit code or tail number 22 Mode 3 A military civilian provides a 4 digit octal 12 bit identification code for the aircraft assigned by the air traffic controller Commonly referred to as a squawk code 21 Mode 4 military only provides a 3 pulse reply delay is based on the encrypted challenge 21 Mode 5 military only provides a cryptographically secured version of Mode S and ADS B GPS position 21 Modes 4 and 5 are designated for use by NATO forces Submarines EditIn World War I 8 submarines were sunk by friendly fire and in World War II nearly 20 were sunk this way 23 Still Identification of friend or foe IFF has not been regarded a high concern before the 1990s by the US military as not many other countries possess submarines 24 IFF methods that are analogous to aircraft IFF have been deemed unfeasible for submarines because they would make submarines easier to detect Thus having friendly submarines broadcast a signal or somehow increase the submarine s signature based on acoustics magnetic fluctuations etc are not considered viable 24 Instead submarine IFF is done based on carefully defining areas of operation Each friendly submarine is assigned a patrol area where the presence of any other submarine is deemed hostile and open to attack Further within these assigned areas surface ships and aircraft refrain from any anti submarine warfare ASW only the resident submarine may target other submarines in its own area Ships and aircraft may still engage in ASW in areas that have not been assigned to any friendly submarines 24 Navies also use database of acoustic signatures to attempt to identify the submarine but acoustic data can be ambiguous and several countries deploy similar classes of submarines 25 Highly visible painted IFF markings EditPainted colours or bands have been used as an easy and low tech combat identification system The most notable example comes from the Normandy landings in World War II where invasion stripes were used These were alternating black and white bands painted on the fuselage and wings of Allied aircraft to reduce the chance that they would be attacked by friendly forces during and after the landings Three white and two black bands were wrapped around the rear of a fuselage just in front of the empennage tail and from front to back around the upper and lower wing surfaces World War II Edit Invasion stripes were five alternating black and white stripes On single engine aircraft each stripe was to be 18 inches 46 cm wide placed 6 inches 15 cm inboard of the roundels on the wings and 18 inches 46 cm forward of the leading edge of the tailplane on the fuselage National markings and serial number were not to be obliterated On twin engine aircraft the stripes were 24 inches 61 cm wide placed 24 inches 61 cm outboard of the engine nacelles on the wings and 18 inches 46 cm forward of the leading edge of the tailplane around the fuselage However American aircraft using the invasion stripes very commonly had some part of the added bar section of their post 1942 roundels overlapping the invasion strips on the wings citation needed Korean War Edit A Hawker Sea Fury launches from HMS Glory in 1951 Invasion stripes were re introduced on British and Australian Fleet Air Arm aircraft operating during the Korean War in 1950 Similar stripes were also used early in the war on F 86 Sabres of the 4th Fighter Interceptor Wing as a deviation from the standard yellow stripes citation needed Suez operation Edit The stripes were used again by the Royal Air Force the Royal Navy s Fleet Air Arm the French Naval Aviation and the French Air Force during the Suez operation of 1956 mostly to distinguish UK and French aircraft from Egypt s British made planes Single engined aircraft had yellow black yellow black yellow stripes one foot wide multi engined aircraft had the same pattern with 2 foot 61 cm stripes Israel who was a co belligerent with Britain and France did not paint Suez Stripes on their aircraft citation needed Invasion of Czechoslovakia Edit Two Soviet T 55 tanks bearing the white invasion stripes in Prague Czechoslovakia during the Warsaw Pact invasion of the country in 1968 During the Soviet led invasion of Czechoslovakia in 1968 the Soviet Union used a series of white stripes on the armoured vehicles of its invasion forces because they used predominantly the same types of combat vehicles as the armed forces of Czechoslovakia both were Warsaw Pact allies The markings consisted of one long white strip in the middle of the vehicle from the front and across the roof all the way to the back with two additional strips in the middle of both sides This is similar to the markings applied on most Soviet tanks and armoured fighting vehicles fighting in Berlin in 1945 during the Second World War to prevent friendly fire from Western Allied British or American aircraft that flew over the city to conduct bombing raids until its fall citation needed In addition to that certain Soviet Air Force aircraft such as the MiG 21 fighters were given two red stripes on their fuselages and vertical stabilisers also because these types of aircraft were used by the Czechoslovak Air Force Russian invasion of Ukraine Edit Z symbol Several white painted letters most famously an insignia resembling the Latin letter Z have been used on tanks and armoured vehicles by the Russian Armed Forces during the 2022 Invasion of Ukraine In April 2021 analysts first noted that vehicles were being painted with markings similar to those used in the invasion of Czechoslovakia 26 Military experts and advisors have stated that this is likely to prevent friendly fire incidents as both the Russian and Ukrainian forces use the same type of combat vehicles 27 The Russian Ministry of Defence confirmed the symbol s usage on Instagram stating it is an abbreviation of the phrase for the victory Russian za pobedu romanized za pobedu 28 According to the Armed Forces of Ukraine the different letters indicate different Russian military detachments with the Z indicating forces from the Eastern Military District 29 See also EditAutomatic target recognition Challenge response authentication Cryptography List of World War II electronic warfare equipment Radio frequency identification Secondary surveillance radar Squawk code Transponder Non Cooperative Target Recognition Combat Identification Panel Nelson Chequer early 19th century identification pattern Invasion stripesReferences Edit Identification Friend or Foe IFF Panel with Dynamic Contrast at Long Wave Infrared LWIR Wavelengths Solicitation SBIR STTR US Department of Defense Army January 2019 Combat Identification IFF Systems PDF Tellumat Retrieved 24 September 2020 MEADS System Gains Full Certification for Identifying Friend or Foe Aircraft Lockheed Martin Archived from the original on 2016 03 04 Retrieved 31 May 2015 Identification Friend or Foe Global Security Retrieved 31 May 2015 Combat Identification IFF BAE Systems Retrieved 31 May 2015 Joint Publication JP 3 09 Joint Fire Support PDF US DoD 30 June 2010 p III 20 Archived from the original PDF on 2014 04 11 Retrieved 27 December 2013 Christopher Yeoman amp John Freeborn Tiger Cub The Story of John Freeborn DFC A 74 Squadron Fighter Pilot In WWII Pen and Sword Aviation 2009 ISBN 978 1 84884 023 2 p45 Bob Cossey A Tiger s Tale The Story of Battle of Britain Fighter Ace Wg Cdr John Connell Freeborn ISBN 978 1 900511 64 3 chapter 4 Hough Richard and Denis Richards The Battle of Britain The Greatest Air Battle of World War II WW Norton 1990 p 67 Galland Adolf The First and the Last p 101 1954 reprinted ISBN 978 80 87888 92 6 Price Alfred Battle Over the Reich pp95 6 1973 ISBN 0 7110 0481 1 General IFF principles United States Fleet 1945 Retrieved 2012 12 17 The British invention of radar Retrieved 2012 12 17 a b Lord Bowden 1985 The story of IFF identification friend or foe IEE Proceedings A Physical Science Measurement and Instrumentation Management and Education Reviews 132 6 435 doi 10 1049 ip a 1 1985 0079 Proc Jerry IFF System History The Web Pages Of Jerry Proc Jerry Proc Retrieved 5 November 2018 George M Charrier Recognition System for Pulse Echo Radio Locators U S Patent 2 453 970 granted Nov 16 1948 Donald Barchok Means for Synchronizing Detection and Interrogation Systems U S Patent 2 515 178 granted July 18 1950 Emile Labin Magnetostrictive Time Delay Device U S Patent 2 495 740 granted Jan 31 1950 Edwin E Turner Coded Impulse Responsive Secret Signalling System U S Patent 2 648 060 granted Aug 4 1953 Nations Seek NATO Compatible ID Systems Archived from the original on 2014 04 08 Retrieved 2012 12 12 a b c d NATO STANAG 4193 What is IFF Identification Friend or Foe EverythingRF EverythingRF Retrieved 29 November 2020 Charles Kirke ed 2012 04 26 Fratricide in Battle Bloomsbury Publishing a b c Avoiding Fratricide of Air and Sea Targets PDF Who Goes There Friend or Foe June 1993 p 66 67 Glynn Michael 2022 05 30 Airborne Anti Submarine Warfare p 245 Ambrose Tom 15 April 2021 Russia paints invasion stripes on assault vehicles as soldiers mass at Ukraine border Yahoo News Retrieved 2022 07 21 Hassan Beril Naz 2022 02 27 Why do Russian tanks have a Z symbol on them Metro Retrieved 2022 03 01 Chaturvedi Amit 7 March 2022 Explained What Does The Z Symbol On Russian Military Vehicles Mean NDTV Retrieved 7 March 2022 Lazurkevych Sofia 1 March 2022 Ukrayinski vijskovi pokazali yak vorog markuye svoyu tehniku The Ukrainian military showed how the enemy marks its equipment Zaxid net uk in Ukrainian Retrieved 7 March 2022 This article incorporates public domain material from Federal Standard 1037C General Services Administration Archived from the original on 2022 01 22 This article incorporates public domain material from Dictionary of Military and Associated Terms United States Department of Defense External links Edit Wikimedia Commons has media related to Identification friend or foe The short film STAFF FILM REPORT 66 27A 1966 is available for free download at the Internet Archive Overview of SSR and IFF Systems Retrieved from https en wikipedia org w index php title Identification friend or foe amp oldid 1136909835, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.