fbpx
Wikipedia

Euler's constant

Euler's constant (sometimes called the Euler–Mascheroni constant) is a mathematical constant, usually denoted by the lowercase Greek letter gamma (γ), defined as the limiting difference between the harmonic series and the natural logarithm, denoted here by log:

Euler's constant
The area of the blue region converges to Euler's constant
Representations
Decimal0.5772156649015328606065120900824024310421...
Continued fraction (linear)[0; 1, 1, 2, 1, 2, 1, 4, 3, 13, 5, 1, 1, 8, 1, 2, 4, 1, 1, ...][1]
Unknown if periodic
Unknown if finite
Binary0.1001001111000100011001111110001101111101...
Hexadecimal0.93C467E37DB0C7A4D1BE3F810152CB56A1CECC3A...

Here, ⌊ ⌋ represents the floor function.

The numerical value of Euler's constant, to 50 decimal places, is:[2]

0.57721566490153286060651209008240243104215933593992...
Unsolved problem in mathematics:

Is Euler's constant irrational? If so, is it transcendental?

History

The constant first appeared in a 1734 paper by the Swiss mathematician Leonhard Euler, titled De Progressionibus harmonicis observationes (Eneström Index 43). Euler used the notations C and O for the constant. In 1790, Italian mathematician Lorenzo Mascheroni used the notations A and a for the constant. The notation γ appears nowhere in the writings of either Euler or Mascheroni, and was chosen at a later time perhaps because of the constant's connection to the gamma function.[3] For example, the German mathematician Carl Anton Bretschneider used the notation γ in 1835[4] and Augustus De Morgan used it in a textbook published in parts from 1836 to 1842.[5]

Appearances

Euler's constant appears, among other places, in the following (where '*' means that this entry contains an explicit equation):

Properties

The number γ has not been proved algebraic or transcendental. In fact, it is not even known whether γ is irrational. Using a continued fraction analysis, Papanikolaou showed in 1997 that if γ is rational, its denominator must be greater than 10244663.[8][9] The ubiquity of γ revealed by the large number of equations below makes the irrationality of γ a major open question in mathematics.[10]

However, some progress was made. Kurt Mahler showed in 1968 that the number   is transcendental (here,   and   are Bessel functions).[11][3] In 2009 Alexander Aptekarev proved that at least one of Euler's constant γ and the Euler–Gompertz constant δ is irrational;[12] Tanguy Rivoal proved in 2012 that at least one of them is transcendental.[13][3] In 2010 M. Ram Murty and N. Saradha showed that at most one of the numbers of the form

 

with q ≥ 2 and 1 ≤ a < q is algebraic; this family includes the special case γ(2,4) = γ/4.[3][14] In 2013 M. Ram Murty and A. Zaytseva found a different family containing γ, which is based on sums of reciprocals of integers not divisible by a fixed list of primes, with the same property.[3][15]

Relation to gamma function

γ is related to the digamma function Ψ, and hence the derivative of the gamma function Γ, when both functions are evaluated at 1. Thus:

 

This is equal to the limits:

 

Further limit results are:[16]

 

A limit related to the beta function (expressed in terms of gamma functions) is

 

Relation to the zeta function

γ can also be expressed as an infinite sum whose terms involve the Riemann zeta function evaluated at positive integers:

 

Other series related to the zeta function include:

 

The error term in the last equation is a rapidly decreasing function of n. As a result, the formula is well-suited for efficient computation of the constant to high precision.

Other interesting limits equaling Euler's constant are the antisymmetric limit:[17]

 

and the following formula, established in 1898 by de la Vallée-Poussin:

 

where ⌈ ⌉ are ceiling brackets. This formula indicates that when taking any positive integer n and dividing it by each positive integer k less than n, the average fraction by which the quotient n/k falls short of the next integer tends to γ (rather than 0.5) as n tends to infinity.

Closely related to this is the rational zeta series expression. By taking separately the first few terms of the series above, one obtains an estimate for the classical series limit:

 

where ζ(s, k) is the Hurwitz zeta function. The sum in this equation involves the harmonic numbers, Hn. Expanding some of the terms in the Hurwitz zeta function gives:

 

where 0 < ε < 1/252n6.

γ can also be expressed as follows where A is the Glaisher–Kinkelin constant:

 

γ can also be expressed as follows, which can be proven by expressing the zeta function as a Laurent series:

 

Integrals

γ equals the value of a number of definite integrals:

 

where Hx is the fractional harmonic number.

The third formula in the integral list can be proved in the following way:

 

The integral on the second line of the equation stands for the Debye function value of +∞, which is m! ζ(m + 1).

Definite integrals in which γ appears include:

 

One can express γ using a special case of Hadjicostas's formula as a double integral[10][18] with equivalent series:

 

An interesting comparison by Sondow[18] is the double integral and alternating series

 

It shows that log 4/π may be thought of as an "alternating Euler constant".

The two constants are also related by the pair of series[19]

 

where N1(n) and N0(n) are the number of 1s and 0s, respectively, in the base 2 expansion of n.

We also have Catalan's 1875 integral[20]

 

Series expansions

In general,

 

for any α > −n. However, the rate of convergence of this expansion depends significantly on α. In particular, γn(1/2) exhibits much more rapid convergence than the conventional expansion γn(0).[21][22] This is because

 

while

 

Even so, there exist other series expansions which converge more rapidly than this; some of these are discussed below.

Euler showed that the following infinite series approaches γ:

 

The series for γ is equivalent to a series Nielsen found in 1897:[16][23]

 

In 1910, Vacca found the closely related series[24][25][26][27][28][16][29]

 

where log2 is the logarithm to base 2 and ⌊ ⌋ is the floor function.

In 1926 he found a second series:

 

From the MalmstenKummer expansion for the logarithm of the gamma function[30] we get:

 

An important expansion for Euler's constant is due to Fontana and Mascheroni

 

where Gn are Gregory coefficients[16][29][31] This series is the special case k = 1 of the expansions

 

convergent for k = 1, 2, ...

A similar series with the Cauchy numbers of the second kind Cn is[29][32]

 

Blagouchine (2018) found an interesting generalisation of the Fontana–Mascheroni series

 

where ψn(a) are the Bernoulli polynomials of the second kind, which are defined by the generating function

 

For any rational a this series contains rational terms only. For example, at a = 1, it becomes[33][34]

 

Other series with the same polynomials include these examples:

 

and

 

where Γ(a) is the gamma function.[31]

A series related to the Akiyama–Tanigawa algorithm is

 

where Gn(2) are the Gregory coefficients of the second order.[31]

Series of prime numbers:

 

Asymptotic expansions

γ equals the following asymptotic formulas (where Hn is the nth harmonic number):

  (Euler)
  (Negoi)
  (Cesàro)

The third formula is also called the Ramanujan expansion.

Alabdulmohsin derived closed-form expressions for the sums of errors of these approximations.[32] He showed that (Theorem A.1):

 
 
 

Exponential

The constant eγ is important in number theory. Some authors denote this quantity simply as γ. eγ equals the following limit, where pn is the nth prime number:

 

This restates the third of Mertens' theorems.[35] The numerical value of eγ is:[36]

1.78107241799019798523650410310717954916964521430343....

Other infinite products relating to eγ include:

 

These products result from the Barnes G-function.

In addition,

 

where the nth factor is the (n + 1)th root of

 

This infinite product, first discovered by Ser in 1926, was rediscovered by Sondow using hypergeometric functions.[37]

It also holds that[38]

 

Continued fraction

The continued fraction expansion of γ begins [0; 1, 1, 2, 1, 2, 1, 4, 3, 13, 5, 1, 1, 8, 1, 2, 4, 1, 1, 40, ...],[1] which has no apparent pattern. The continued fraction is known to have at least 475,006 terms,[8] and it has infinitely many terms if and only if γ is irrational.

Generalizations

 
abm(x) = γx

Euler's generalized constants are given by

 

for 0 < α < 1, with γ as the special case α = 1.[39] This can be further generalized to

 

for some arbitrary decreasing function f. For example,

 

gives rise to the Stieltjes constants, and

 

gives

 

where again the limit

 

appears.

A two-dimensional limit generalization is the Masser–Gramain constant.

Euler–Lehmer constants are given by summation of inverses of numbers in a common modulo class:[14]

 

The basic properties are

 

and if gcd(a,q) = d then

 

Published digits

Euler initially calculated the constant's value to 6 decimal places. In 1781, he calculated it to 16 decimal places. Mascheroni attempted to calculate the constant to 32 decimal places, but made errors in the 20th–22nd and 31st–32nd decimal places; starting from the 20th digit, he calculated ...1811209008239 when the correct value is ...0651209008240.

Published Decimal Expansions of γ
Date Decimal digits Author Sources
1734 5 Leonhard Euler
1735 15 Leonhard Euler
1781 16 Leonhard Euler
1790 32 Lorenzo Mascheroni, with 20–22 and 31–32 wrong
1809 22 Johann G. von Soldner
1811 22 Carl Friedrich Gauss
1812 40 Friedrich Bernhard Gottfried Nicolai
1857 34 Christian Fredrik Lindman
1861 41 Ludwig Oettinger
1867 49 William Shanks
1871 99 James W.L. Glaisher
1871 101 William Shanks
1877 262 J. C. Adams
1952 328 John William Wrench Jr.
1961 1050 Helmut Fischer and Karl Zeller
1962 1271 Donald Knuth [40]
1962 3566 Dura W. Sweeney
1973 4879 William A. Beyer and Michael S. Waterman
1977 20700 Richard P. Brent
1980 30100 Richard P. Brent & Edwin M. McMillan
1993 172000 Jonathan Borwein
1999 108000000 Patrick Demichel and Xavier Gourdon
March 13, 2009 29844489545 Alexander J. Yee & Raymond Chan [41][42]
December 22, 2013 119377958182 Alexander J. Yee [42]
March 15, 2016 160000000000 Peter Trueb [42]
May 18, 2016 250000000000 Ron Watkins [42]
August 23, 2017 477511832674 Ron Watkins [42]
May 26, 2020 600000000100 Seungmin Kim & Ian Cutress [42][43]

References

  • Bretschneider, Carl Anton (1837) [1835]. "Theoriae logarithmi integralis lineamenta nova". Crelle's Journal (in Latin). 17: 257–285.
  • Havil, Julian (2003). Gamma: Exploring Euler's Constant. Princeton University Press. ISBN 978-0-691-09983-5.
  • Ram Murty, M.; Saradha, N. (2010). "Euler–Lehmer constants and a conjecture of Erdos". Journal of Number Theory. 130 (12): 2671–2681. doi:10.1016/j.jnt.2010.07.004. ISSN 0022-314X.

Footnotes

  1. ^ a b Sloane, N. J. A. (ed.). "Sequence A002852 (Continued fraction for Euler's constant)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  2. ^ Sloane, N. J. A. (ed.). "Sequence A001620 (Decimal expansion of Euler's constant (or the Euler-Mascheroni constant), gamma)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  3. ^ a b c d e Lagarias, Jeffrey C. (October 2013). "Euler's constant: Euler's work and modern developments". Bulletin of the American Mathematical Society. 50 (4): 556. arXiv:1303.1856. doi:10.1090/s0273-0979-2013-01423-x. S2CID 119612431.
  4. ^ Bretschneider 1837, "γ = c = 0,5772156649015328606181120900823..." on p. 260.
  5. ^ De Morgan, Augustus (1836–1842). The differential and integral calculus. London: Baldwin and Craddoc. "γ" on p. 578.
  6. ^ Caves, Carlton M.; Fuchs, Christopher A. (1996). "Quantum information: How much information in a state vector?". The Dilemma of Einstein, Podolsky and Rosen – 60 Years Later. Israel Physical Society. arXiv:quant-ph/9601025. Bibcode:1996quant.ph..1025C. ISBN 9780750303941. OCLC 36922834.
  7. ^ Connallon, Tim; Hodgins, Kathryn A. (October 2021). "Allen Orr and the genetics of adaptation". Evolution. 75 (11): 2624–2640. doi:10.1111/evo.14372.
  8. ^ a b Haible, Bruno; Papanikolaou, Thomas (1998). Buhler, Joe P. (ed.). "Fast multiprecision evaluation of series of rational numbers". Algorithmic Number Theory. Lecture Notes in Computer Science. Springer. 1423: 338–350. doi:10.1007/bfb0054873. ISBN 9783540691136.
  9. ^ Papanikolaou, T. (1997). Entwurf und Entwicklung einer objektorientierten Bibliothek für algorithmische Zahlentheorie (Thesis) (in German). Universität des Saarlandes.
  10. ^ a b See also Sondow, Jonathan (2003). "Criteria for irrationality of Euler's constant". Proceedings of the American Mathematical Society. 131 (11): 3335–3344. arXiv:math.NT/0209070. doi:10.1090/S0002-9939-03-07081-3. S2CID 91176597.
  11. ^ Mahler, Kurt; Mordell, Louis Joel (4 June 1968). "Applications of a theorem by A. B. Shidlovski". Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences. 305 (1481): 149–173. Bibcode:1968RSPSA.305..149M. doi:10.1098/rspa.1968.0111. S2CID 123486171.
  12. ^ Aptekarev, A. I. (28 February 2009). "On linear forms containing the Euler constant". arXiv:0902.1768 [math.NT].
  13. ^ Rivoal, Tanguy (2012). "On the arithmetic nature of the values of the gamma function, Euler's constant, and Gompertz's constant". Michigan Mathematical Journal. 61 (2): 239–254. doi:10.1307/mmj/1339011525. ISSN 0026-2285.
  14. ^ a b Ram Murty & Saradha 2010.
  15. ^ Murty, M. Ram; Zaytseva, Anastasia (2013). "Transcendence of Generalized Euler Constants". The American Mathematical Monthly. 120 (1): 48–54. doi:10.4169/amer.math.monthly.120.01.048. ISSN 0002-9890. JSTOR 10.4169/amer.math.monthly.120.01.048. S2CID 20495981.
  16. ^ a b c d Krämer, Stefan (2005). Die Eulersche Konstante γ und verwandte Zahlen (in German). University of Göttingen.
  17. ^ Sondow, Jonathan (1998). . Mathematics Magazine. 71 (3): 219–220. doi:10.1080/0025570X.1998.11996638. Archived from the original on 2011-06-04. Retrieved 2006-05-29.
  18. ^ a b Sondow, Jonathan (2005). "Double integrals for Euler's constant and   and an analog of Hadjicostas's formula". American Mathematical Monthly. 112 (1): 61–65. arXiv:math.CA/0211148. doi:10.2307/30037385. JSTOR 30037385.
  19. ^ Sondow, Jonathan (1 August 2005a). New Vacca-type rational series for Euler's constant and its 'alternating' analog  . arXiv:math.NT/0508042.
  20. ^ Sondow, Jonathan; Zudilin, Wadim (2006). "Euler's constant, q-logarithms, and formulas of Ramanujan and Gosper". The Ramanujan Journal. 12 (2): 225–244. arXiv:math.NT/0304021. doi:10.1007/s11139-006-0075-1. S2CID 1368088.
  21. ^ DeTemple, Duane W. (May 1993). "A Quicker Convergence to Euler's Constant". The American Mathematical Monthly. 100 (5): 468–470. doi:10.2307/2324300. ISSN 0002-9890. JSTOR 2324300.
  22. ^ Havil 2003, pp. 75–8.
  23. ^ Blagouchine 2016.
  24. ^ Vacca, G. (1910). "A new analytical expression for the number π and some historical considerations". Bulletin of the American Mathematical Society. 16: 368–369. doi:10.1090/S0002-9904-1910-01919-4.
  25. ^ Glaisher, James Whitbread Lee (1910). "On Dr. Vacca's series for γ". Q. J. Pure Appl. Math. 41: 365–368.
  26. ^ Hardy, G.H. (1912). "Note on Dr. Vacca's series for γ". Q. J. Pure Appl. Math. 43: 215–216.
  27. ^ Vacca, G. (1926). "Nuova serie per la costante di Eulero, C = 0,577...". Rendiconti, Accademia Nazionale dei Lincei, Roma, Classe di Scienze Fisiche". Matematiche e Naturali (in Italian). 6 (3): 19–20.
  28. ^ Kluyver, J.C. (1927). "On certain series of Mr. Hardy". Q. J. Pure Appl. Math. 50: 185–192.
  29. ^ a b c Blagouchine, Iaroslav V. (2016). "Expansions of generalized Euler's constants into the series of polynomials in π−2 and into the formal enveloping series with rational coefficients only". J. Number Theory. 158: 365–396. arXiv:1501.00740. doi:10.1016/j.jnt.2015.06.012.
  30. ^ Blagouchine, Iaroslav V. (2014). "Rediscovery of Malmsten's integrals, their evaluation by contour integration methods and some related results". The Ramanujan Journal. 35 (1): 21–110. doi:10.1007/s11139-013-9528-5. S2CID 120943474.
  31. ^ a b c Blagouchine, Iaroslav V. (2018). "Three notes on Ser's and Hasse's representations for the zeta-functions". INTEGERS: The Electronic Journal of Combinatorial Number Theory. 18A (#A3): 1–45. arXiv:1606.02044. Bibcode:2016arXiv160602044B.
  32. ^ a b Alabdulmohsin, Ibrahim M. (2018). Summability Calculus. A Comprehensive Theory of Fractional Finite Sums. Springer. pp. 147–8. ISBN 9783319746487.
  33. ^ Sloane, N. J. A. (ed.). "Sequence A302120 (Absolute value of the numerators of a series converging to Euler's constant)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  34. ^ Sloane, N. J. A. (ed.). "Sequence A302121 (Denominators of a series converging to Euler's constant)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  35. ^ Ramaré, Olivier (2022). Excursions in Multiplicative Number Theory. Birkhäuser Advanced Texts: Basel Textbooks. Basel: Birkhäuser/Springer. p. 131. doi:10.1007/978-3-030-73169-4. ISBN 978-3-030-73168-7. MR 4400952.
  36. ^ Sloane, N. J. A. (ed.). "Sequence A073004 (Decimal expansion of exp(gamma))". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  37. ^ Sondow, Jonathan (2003). "An infinite product for eγ via hypergeometric formulas for Euler's constant, γ". arXiv:math.CA/0306008.
  38. ^ Choi, Junesang; Srivastava, H.M. (1 September 2010). "Integral Representations for the Euler–Mascheroni Constant γ". Integral Transforms and Special Functions. 21 (9): 675–690. doi:10.1080/10652461003593294. ISSN 1065-2469. S2CID 123698377.
  39. ^ Havil 2003, pp. 117–8.
  40. ^ Knuth, Donald E. (July 1962). "Euler's Constant to 1271 Places". Mathematics of Computation. American Mathematical Society. 16 (79): 275–281. doi:10.2307/2004048. JSTOR 2004048.
  41. ^ Yee, Alexander J. (7 March 2011). "Large Computations". www.numberworld.org.
  42. ^ a b c d e f Yee, Alexander J. "Records Set by y-cruncher". www.numberworld.org. Retrieved 30 April 2018.
    Yee, Alexander J. "y-cruncher - A Multi-Threaded Pi-Program". www.numberworld.org.
  43. ^ "Euler-Mascheroni Constant". Polymath Collector. 15 February 2020.

Further reading

  • Borwein, Jonathan M.; David M. Bradley; Richard E. Crandall (2000). "Computational Strategies for the Riemann Zeta Function" (PDF). Journal of Computational and Applied Mathematics. 121 (1–2): 11. Bibcode:2000JCoAM.121..247B. doi:10.1016/s0377-0427(00)00336-8. Derives γ as sums over Riemann zeta functions.
  • Finch, Steven R. (2003). Mathematical Constants. Encyclopedia of Mathematics and its Applications. Vol. 94. Cambridge: Cambridge University Press. ISBN 0-521-81805-2.
  • Gerst, I. (1969). "Some series for Euler's constant". Amer. Math. Monthly. 76 (3): 237–275. doi:10.2307/2316370. JSTOR 2316370.
  • Glaisher, James Whitbread Lee (1872). "On the history of Euler's constant". Messenger of Mathematics. 1: 25–30. JFM 03.0130.01.
  • Gourdon, Xavier; Sebah, P. (2002). "Collection of formulae for Euler's constant, γ".
  • Gourdon, Xavier; Sebah, P. (2004). "The Euler constant: γ".
  • Karatsuba, E. A. (1991). "Fast evaluation of transcendental functions". Probl. Inf. Transm. 27 (44): 339–360.
  • Karatsuba, E.A. (2000). "On the computation of the Euler constant γ". Journal of Numerical Algorithms. 24 (1–2): 83–97. doi:10.1023/A:1019137125281. S2CID 21545868.
  • Knuth, Donald (1997). The Art of Computer Programming, Vol. 1 (3rd ed.). Addison-Wesley. pp. 75, 107, 114, 619–620. ISBN 0-201-89683-4.
  • Lehmer, D. H. (1975). "Euler constants for arithmetical progressions" (PDF). Acta Arith. 27 (1): 125–142. doi:10.4064/aa-27-1-125-142.
  • Lerch, M. (1897). "Expressions nouvelles de la constante d'Euler". Sitzungsberichte der Königlich Böhmischen Gesellschaft der Wissenschaften. 42: 5.
  • Mascheroni, Lorenzo (1790). Adnotationes ad calculum integralem Euleri, in quibus nonnulla problemata ab Eulero proposita resolvuntur. Galeati, Ticini.
  • Sondow, Jonathan (2002). "A hypergeometric approach, via linear forms involving logarithms, to irrationality criteria for Euler's constant". Mathematica Slovaca. 59: 307–314. arXiv:math.NT/0211075. Bibcode:2002math.....11075S. doi:10.2478/s12175-009-0127-2. S2CID 16340929. with an Appendix by

External links

euler, constant, confused, with, euler, number, 71828, base, natural, logarithm, sometimes, called, euler, mascheroni, constant, mathematical, constant, usually, denoted, lowercase, greek, letter, gamma, defined, limiting, difference, between, harmonic, series. Not to be confused with Euler s number e 2 71828 the base of the natural logarithm Euler s constant sometimes called the Euler Mascheroni constant is a mathematical constant usually denoted by the lowercase Greek letter gamma g defined as the limiting difference between the harmonic series and the natural logarithm denoted here by log Euler s constantThe area of the blue region converges to Euler s constantRepresentationsDecimal0 5772156649 01532 86060 65120 90082 40243 10421 Continued fraction linear 0 1 1 2 1 2 1 4 3 13 5 1 1 8 1 2 4 1 1 1 Unknown if periodicUnknown if finiteBinary0 10010011 1100 0100 0110 0111 1110 0011 0111 1101 Hexadecimal0 93C467E3 7DB0 C7A4 D1BE 3F81 0152 CB56 A1CE CC3A g lim n log n k 1 n 1 k 1 1 x 1 x d x displaystyle begin aligned gamma amp lim n to infty left log n sum k 1 n frac 1 k right 5px amp int 1 infty left frac 1 x frac 1 lfloor x rfloor right dx end aligned Here represents the floor function The numerical value of Euler s constant to 50 decimal places is 2 0 5772156649 01532 86060 65120 90082 40243 10421 59335 93992 Unsolved problem in mathematics Is Euler s constant irrational If so is it transcendental more unsolved problems in mathematics Contents 1 History 2 Appearances 3 Properties 3 1 Relation to gamma function 3 2 Relation to the zeta function 3 3 Integrals 3 4 Series expansions 3 5 Asymptotic expansions 3 6 Exponential 3 7 Continued fraction 4 Generalizations 5 Published digits 6 References 7 Further reading 8 External linksHistory EditThe constant first appeared in a 1734 paper by the Swiss mathematician Leonhard Euler titled De Progressionibus harmonicis observationes Enestrom Index 43 Euler used the notations C and O for the constant In 1790 Italian mathematician Lorenzo Mascheroni used the notations A and a for the constant The notation g appears nowhere in the writings of either Euler or Mascheroni and was chosen at a later time perhaps because of the constant s connection to the gamma function 3 For example the German mathematician Carl Anton Bretschneider used the notation g in 1835 4 and Augustus De Morgan used it in a textbook published in parts from 1836 to 1842 5 Appearances EditEuler s constant appears among other places in the following where means that this entry contains an explicit equation Expressions involving the exponential integral The Laplace transform of the natural logarithm The first term of the Laurent series expansion for the Riemann zeta function where it is the first of the Stieltjes constants Calculations of the digamma function A product formula for the gamma function The asymptotic expansion of the gamma function for small arguments An inequality for Euler s totient function The growth rate of the divisor function In dimensional regularization of Feynman diagrams in quantum field theory The calculation of the Meissel Mertens constant The third of Mertens theorems Solution of the second kind to Bessel s equation In the regularization renormalization of the harmonic series as a finite value The mean of the Gumbel distribution The information entropy of the Weibull and Levy distributions and implicitly of the chi squared distribution for one or two degrees of freedom The answer to the coupon collector s problem In some formulations of Zipf s law A definition of the cosine integral Lower bounds to a prime gap An upper bound on Shannon entropy in quantum information theory 6 Fisher Orr model for genetics of adaptation in evolutionary biology 7 Properties EditThe number g has not been proved algebraic or transcendental In fact it is not even known whether g is irrational Using a continued fraction analysis Papanikolaou showed in 1997 that if g is rational its denominator must be greater than 10244663 8 9 The ubiquity of g revealed by the large number of equations below makes the irrationality of g a major open question in mathematics 10 However some progress was made Kurt Mahler showed in 1968 that the number p 2 Y 0 2 J 0 2 g displaystyle frac pi 2 frac Y 0 2 J 0 2 gamma is transcendental here J a x displaystyle J alpha x and Y a x displaystyle Y alpha x are Bessel functions 11 3 In 2009 Alexander Aptekarev proved that at least one of Euler s constant g and the Euler Gompertz constant d is irrational 12 Tanguy Rivoal proved in 2012 that at least one of them is transcendental 13 3 In 2010 M Ram Murty and N Saradha showed that at most one of the numbers of the form g a q lim n k 0 n 1 a k q log a n q q displaystyle gamma a q lim n rightarrow infty left left sum k 0 n frac 1 a kq right frac log a nq q right with q 2 and 1 a lt q is algebraic this family includes the special case g 2 4 g 4 3 14 In 2013 M Ram Murty and A Zaytseva found a different family containing g which is based on sums of reciprocals of integers not divisible by a fixed list of primes with the same property 3 15 Relation to gamma function Edit g is related to the digamma function PS and hence the derivative of the gamma function G when both functions are evaluated at 1 Thus g G 1 PS 1 displaystyle gamma Gamma 1 Psi 1 This is equal to the limits g lim z 0 G z 1 z lim z 0 PS z 1 z displaystyle begin aligned gamma amp lim z to 0 left Gamma z frac 1 z right amp lim z to 0 left Psi z frac 1 z right end aligned Further limit results are 16 lim z 0 1 z 1 G 1 z 1 G 1 z 2 g lim z 0 1 z 1 PS 1 z 1 PS 1 z p 2 3 g 2 displaystyle begin aligned lim z to 0 frac 1 z left frac 1 Gamma 1 z frac 1 Gamma 1 z right amp 2 gamma lim z to 0 frac 1 z left frac 1 Psi 1 z frac 1 Psi 1 z right amp frac pi 2 3 gamma 2 end aligned A limit related to the beta function expressed in terms of gamma functions is g lim n G 1 n G n 1 n 1 1 n G 2 n 1 n n 2 n 1 lim m k 1 m m k 1 k k log G k 1 displaystyle begin aligned gamma amp lim n to infty left frac Gamma left frac 1 n right Gamma n 1 n 1 frac 1 n Gamma left 2 n frac 1 n right frac n 2 n 1 right amp lim limits m to infty sum k 1 m m choose k frac 1 k k log big Gamma k 1 big end aligned Relation to the zeta function Edit g can also be expressed as an infinite sum whose terms involve the Riemann zeta function evaluated at positive integers g m 2 1 m z m m log 4 p m 2 1 m z m 2 m 1 m displaystyle begin aligned gamma amp sum m 2 infty 1 m frac zeta m m amp log frac 4 pi sum m 2 infty 1 m frac zeta m 2 m 1 m end aligned Other series related to the zeta function include g 3 2 log 2 m 2 1 m m 1 m z m 1 lim n 2 n 1 2 n log n k 2 n 1 k z 1 k n k lim n 2 n e 2 n m 0 2 m n m 1 t 0 m 1 t 1 n log 2 O 1 2 n e 2 n displaystyle begin aligned gamma amp tfrac 3 2 log 2 sum m 2 infty 1 m frac m 1 m big zeta m 1 big amp lim n to infty left frac 2n 1 2n log n sum k 2 n left frac 1 k frac zeta 1 k n k right right amp lim n to infty left frac 2 n e 2 n sum m 0 infty frac 2 mn m 1 sum t 0 m frac 1 t 1 n log 2 O left frac 1 2 n e 2 n right right end aligned The error term in the last equation is a rapidly decreasing function of n As a result the formula is well suited for efficient computation of the constant to high precision Other interesting limits equaling Euler s constant are the antisymmetric limit 17 g lim s 1 n 1 1 n s 1 s n lim s 1 z s 1 s 1 lim s 0 z 1 s z 1 s 2 displaystyle begin aligned gamma amp lim s to 1 sum n 1 infty left frac 1 n s frac 1 s n right amp lim s to 1 left zeta s frac 1 s 1 right amp lim s to 0 frac zeta 1 s zeta 1 s 2 end aligned and the following formula established in 1898 by de la Vallee Poussin g lim n 1 n k 1 n n k n k displaystyle gamma lim n to infty frac 1 n sum k 1 n left left lceil frac n k right rceil frac n k right where are ceiling brackets This formula indicates that when taking any positive integer n and dividing it by each positive integer k less than n the average fraction by which the quotient n k falls short of the next integer tends to g rather than 0 5 as n tends to infinity Closely related to this is the rational zeta series expression By taking separately the first few terms of the series above one obtains an estimate for the classical series limit g lim n k 1 n 1 k log n m 2 z m n 1 m displaystyle gamma lim n to infty left sum k 1 n frac 1 k log n sum m 2 infty frac zeta m n 1 m right where z s k is the Hurwitz zeta function The sum in this equation involves the harmonic numbers Hn Expanding some of the terms in the Hurwitz zeta function gives H n log n g 1 2 n 1 12 n 2 1 120 n 4 e displaystyle H n log n gamma frac 1 2n frac 1 12n 2 frac 1 120n 4 varepsilon where 0 lt e lt 1 252n6 g can also be expressed as follows where A is the Glaisher Kinkelin constant g 12 log A log 2 p 6 p 2 z 2 displaystyle gamma 12 log A log 2 pi frac 6 pi 2 zeta 2 g can also be expressed as follows which can be proven by expressing the zeta function as a Laurent series g lim n n z n 1 n displaystyle gamma lim n to infty left n zeta Bigl frac n 1 n bigr right Integrals Edit g equals the value of a number of definite integrals g 0 e x log x d x 0 1 log log 1 x d x 0 1 e x 1 1 x e x d x 0 1 1 e x x d x 1 e x x d x 0 1 1 log x 1 1 x d x 0 1 1 x k e x d x x k gt 0 2 0 e x 2 e x x d x 0 1 H x d x displaystyle begin aligned gamma amp int 0 infty e x log x dx amp int 0 1 log left log frac 1 x right dx amp int 0 infty left frac 1 e x 1 frac 1 x cdot e x right dx amp int 0 1 frac 1 e x x dx int 1 infty frac e x x dx amp int 0 1 left frac 1 log x frac 1 1 x right dx amp int 0 infty left frac 1 1 x k e x right frac dx x quad k gt 0 amp 2 int 0 infty frac e x 2 e x x dx amp int 0 1 H x dx end aligned where Hx is the fractional harmonic number The third formula in the integral list can be proved in the following way 0 1 e x 1 1 x e x d x 0 e x x 1 x e x 1 d x 0 1 x e x 1 m 1 1 m 1 x m 1 m 1 d x 0 m 1 1 m 1 x m m 1 e x 1 d x m 1 0 1 m 1 x m m 1 e x 1 d x m 1 1 m 1 m 1 0 x m e x 1 d x m 1 1 m 1 m 1 m z m 1 m 1 1 m 1 m 1 z m 1 m 1 1 m 1 m 1 n 1 1 n m 1 m 1 n 1 1 m 1 m 1 1 n m 1 n 1 m 1 1 m 1 m 1 1 n m 1 n 1 1 n log 1 1 n g displaystyle begin aligned amp int 0 infty left frac 1 e x 1 frac 1 xe x right dx int 0 infty frac e x x 1 x e x 1 dx int 0 infty frac 1 x e x 1 sum m 1 infty frac 1 m 1 x m 1 m 1 dx 2pt amp int 0 infty sum m 1 infty frac 1 m 1 x m m 1 e x 1 dx sum m 1 infty int 0 infty frac 1 m 1 x m m 1 e x 1 dx sum m 1 infty frac 1 m 1 m 1 int 0 infty frac x m e x 1 dx 2pt amp sum m 1 infty frac 1 m 1 m 1 m zeta m 1 sum m 1 infty frac 1 m 1 m 1 zeta m 1 sum m 1 infty frac 1 m 1 m 1 sum n 1 infty frac 1 n m 1 sum m 1 infty sum n 1 infty frac 1 m 1 m 1 frac 1 n m 1 2pt amp sum n 1 infty sum m 1 infty frac 1 m 1 m 1 frac 1 n m 1 sum n 1 infty left frac 1 n log left 1 frac 1 n right right gamma end aligned The integral on the second line of the equation stands for the Debye function value of which is m z m 1 Definite integrals in which g appears include 0 e x 2 log x d x g 2 log 2 p 4 0 e x log 2 x d x g 2 p 2 6 displaystyle begin aligned int 0 infty e x 2 log x dx amp frac gamma 2 log 2 sqrt pi 4 int 0 infty e x log 2 x dx amp gamma 2 frac pi 2 6 end aligned One can express g using a special case of Hadjicostas s formula as a double integral 10 18 with equivalent series g 0 1 0 1 x 1 1 x y log x y d x d y n 1 1 n log n 1 n displaystyle begin aligned gamma amp int 0 1 int 0 1 frac x 1 1 xy log xy dx dy amp sum n 1 infty left frac 1 n log frac n 1 n right end aligned An interesting comparison by Sondow 18 is the double integral and alternating series log 4 p 0 1 0 1 x 1 1 x y log x y d x d y n 1 1 n 1 1 n log n 1 n displaystyle begin aligned log frac 4 pi amp int 0 1 int 0 1 frac x 1 1 xy log xy dx dy amp sum n 1 infty left 1 n 1 left frac 1 n log frac n 1 n right right end aligned It shows that log 4 p may be thought of as an alternating Euler constant The two constants are also related by the pair of series 19 g n 1 N 1 n N 0 n 2 n 2 n 1 log 4 p n 1 N 1 n N 0 n 2 n 2 n 1 displaystyle begin aligned gamma amp sum n 1 infty frac N 1 n N 0 n 2n 2n 1 log frac 4 pi amp sum n 1 infty frac N 1 n N 0 n 2n 2n 1 end aligned where N1 n and N0 n are the number of 1s and 0s respectively in the base 2 expansion of n We also have Catalan s 1875 integral 20 g 0 1 1 1 x n 1 x 2 n 1 d x displaystyle gamma int 0 1 left frac 1 1 x sum n 1 infty x 2 n 1 right dx Series expansions Edit In general g lim n 1 1 1 2 1 3 1 n log n a lim n g n a displaystyle gamma lim n to infty left frac 1 1 frac 1 2 frac 1 3 ldots frac 1 n log n alpha right equiv lim n to infty gamma n alpha for any a gt n However the rate of convergence of this expansion depends significantly on a In particular gn 1 2 exhibits much more rapid convergence than the conventional expansion gn 0 21 22 This is because 1 2 n 1 lt g n 0 g lt 1 2 n displaystyle frac 1 2 n 1 lt gamma n 0 gamma lt frac 1 2n while 1 24 n 1 2 lt g n 1 2 g lt 1 24 n 2 displaystyle frac 1 24 n 1 2 lt gamma n 1 2 gamma lt frac 1 24n 2 Even so there exist other series expansions which converge more rapidly than this some of these are discussed below Euler showed that the following infinite series approaches g g k 1 1 k log 1 1 k displaystyle gamma sum k 1 infty left frac 1 k log left 1 frac 1 k right right The series for g is equivalent to a series Nielsen found in 1897 16 23 g 1 k 2 1 k log 2 k k 1 displaystyle gamma 1 sum k 2 infty 1 k frac left lfloor log 2 k right rfloor k 1 In 1910 Vacca found the closely related series 24 25 26 27 28 16 29 g k 2 1 k log 2 k k 1 2 1 3 2 1 4 1 5 1 6 1 7 3 1 8 1 9 1 10 1 11 1 15 displaystyle begin aligned gamma amp sum k 2 infty 1 k frac left lfloor log 2 k right rfloor k 5pt amp tfrac 1 2 tfrac 1 3 2 left tfrac 1 4 tfrac 1 5 tfrac 1 6 tfrac 1 7 right 3 left tfrac 1 8 tfrac 1 9 tfrac 1 10 tfrac 1 11 cdots tfrac 1 15 right cdots end aligned where log2 is the logarithm to base 2 and is the floor function In 1926 he found a second series g z 2 k 2 1 k 2 1 k k 2 k k 2 k k 2 1 2 2 3 1 2 2 k 1 2 2 k k 2 2 1 3 2 k 1 3 2 k k 3 2 displaystyle begin aligned gamma zeta 2 amp sum k 2 infty left frac 1 left lfloor sqrt k right rfloor 2 frac 1 k right 5pt amp sum k 2 infty frac k left lfloor sqrt k right rfloor 2 k left lfloor sqrt k right rfloor 2 5pt amp frac 1 2 frac 2 3 frac 1 2 2 sum k 1 2 cdot 2 frac k k 2 2 frac 1 3 2 sum k 1 3 cdot 2 frac k k 3 2 cdots end aligned From the Malmsten Kummer expansion for the logarithm of the gamma function 30 we get g log p 4 log G 3 4 4 p k 1 1 k 1 log 2 k 1 2 k 1 displaystyle gamma log pi 4 log left Gamma tfrac 3 4 right frac 4 pi sum k 1 infty 1 k 1 frac log 2k 1 2k 1 An important expansion for Euler s constant is due to Fontana and Mascheroni g n 1 G n n 1 2 1 24 1 72 19 2880 3 800 displaystyle gamma sum n 1 infty frac G n n frac 1 2 frac 1 24 frac 1 72 frac 19 2880 frac 3 800 cdots where Gn are Gregory coefficients 16 29 31 This series is the special case k 1 of the expansions g H k 1 log k n 1 n 1 G n k k 1 k n 1 H k 1 log k 1 2 k 1 12 k k 1 1 12 k k 1 k 2 19 120 k k 1 k 2 k 3 displaystyle begin aligned gamma amp H k 1 log k sum n 1 infty frac n 1 G n k k 1 cdots k n 1 amp amp amp H k 1 log k frac 1 2k frac 1 12k k 1 frac 1 12k k 1 k 2 frac 19 120k k 1 k 2 k 3 cdots amp amp end aligned convergent for k 1 2 A similar series with the Cauchy numbers of the second kind Cn is 29 32 g 1 n 1 C n n n 1 1 1 4 5 72 1 32 251 14400 19 1728 displaystyle gamma 1 sum n 1 infty frac C n n n 1 1 frac 1 4 frac 5 72 frac 1 32 frac 251 14400 frac 19 1728 ldots Blagouchine 2018 found an interesting generalisation of the Fontana Mascheroni series g n 1 1 n 1 2 n ps n a ps n a 1 a a gt 1 displaystyle gamma sum n 1 infty frac 1 n 1 2n Big psi n a psi n Big frac a 1 a Big Big quad a gt 1 where psn a are the Bernoulli polynomials of the second kind which are defined by the generating function z 1 z s log 1 z n 0 z n ps n s z lt 1 displaystyle frac z 1 z s log 1 z sum n 0 infty z n psi n s qquad z lt 1 For any rational a this series contains rational terms only For example at a 1 it becomes 33 34 g 3 4 11 96 1 72 311 46080 5 1152 7291 2322432 243 100352 displaystyle gamma frac 3 4 frac 11 96 frac 1 72 frac 311 46080 frac 5 1152 frac 7291 2322432 frac 243 100352 ldots Other series with the same polynomials include these examples g log a 1 n 1 1 n ps n a n ℜ a gt 1 displaystyle gamma log a 1 sum n 1 infty frac 1 n psi n a n qquad Re a gt 1 and g 2 1 2 a log G a 1 1 2 log 2 p 1 2 n 1 1 n ps n 1 a n ℜ a gt 1 displaystyle gamma frac 2 1 2a left log Gamma a 1 frac 1 2 log 2 pi frac 1 2 sum n 1 infty frac 1 n psi n 1 a n right qquad Re a gt 1 where G a is the gamma function 31 A series related to the Akiyama Tanigawa algorithm is g log 2 p 2 2 n 1 1 n G n 2 n log 2 p 2 2 3 1 24 7 540 17 2880 41 12600 displaystyle gamma log 2 pi 2 2 sum n 1 infty frac 1 n G n 2 n log 2 pi 2 frac 2 3 frac 1 24 frac 7 540 frac 17 2880 frac 41 12600 ldots where Gn 2 are the Gregory coefficients of the second order 31 Series of prime numbers g lim n log n p n log p p 1 displaystyle gamma lim n to infty left log n sum p leq n frac log p p 1 right Asymptotic expansions Edit g equals the following asymptotic formulas where Hn is the n th harmonic number g H n log n 1 2 n 1 12 n 2 1 120 n 4 displaystyle gamma sim H n log n frac 1 2n frac 1 12n 2 frac 1 120n 4 cdots Euler g H n log n 1 2 1 24 n 1 48 n 2 displaystyle gamma sim H n log left n frac 1 2 frac 1 24n frac 1 48n 2 cdots right Negoi g H n log n log n 1 2 1 6 n n 1 1 30 n 2 n 1 2 displaystyle gamma sim H n frac log n log n 1 2 frac 1 6n n 1 frac 1 30n 2 n 1 2 cdots Cesaro The third formula is also called the Ramanujan expansion Alabdulmohsin derived closed form expressions for the sums of errors of these approximations 32 He showed that Theorem A 1 n 1 log n g H n 1 2 n log 2 p 1 g 2 displaystyle sum n 1 infty log n gamma H n frac 1 2n frac log 2 pi 1 gamma 2 n 1 log n n 1 g H n log 2 p 1 2 g displaystyle sum n 1 infty log sqrt n n 1 gamma H n frac log 2 pi 1 2 gamma n 1 1 n log n g H n log p g 2 displaystyle sum n 1 infty 1 n Big log n gamma H n Big frac log pi gamma 2 Exponential Edit The constant eg is important in number theory Some authors denote this quantity simply as g eg equals the following limit where pn is the n th prime number e g lim n 1 log p n i 1 n p i p i 1 displaystyle e gamma lim n to infty frac 1 log p n prod i 1 n frac p i p i 1 This restates the third of Mertens theorems 35 The numerical value of eg is 36 1 7810724179 90197 98523 65041 03107 17954 91696 45214 30343 Other infinite products relating to eg include e 1 g 2 2 p n 1 e 1 1 2 n 1 1 n n e 3 2 g 2 p n 1 e 2 2 n 1 2 n n displaystyle begin aligned frac e 1 frac gamma 2 sqrt 2 pi amp prod n 1 infty e 1 frac 1 2n left 1 frac 1 n right n frac e 3 2 gamma 2 pi amp prod n 1 infty e 2 frac 2 n left 1 frac 2 n right n end aligned These products result from the Barnes G function In addition e g 2 1 2 2 1 3 3 2 3 4 1 3 3 4 2 4 4 4 1 3 6 5 5 displaystyle e gamma sqrt frac 2 1 cdot sqrt 3 frac 2 2 1 cdot 3 cdot sqrt 4 frac 2 3 cdot 4 1 cdot 3 3 cdot sqrt 5 frac 2 4 cdot 4 4 1 cdot 3 6 cdot 5 cdots where the n th factor is the n 1 th root of k 0 n k 1 1 k 1 n k displaystyle prod k 0 n k 1 1 k 1 n choose k This infinite product first discovered by Ser in 1926 was rediscovered by Sondow using hypergeometric functions 37 It also holds that 38 e p 2 e p 2 p e g n 1 e 1 n 1 1 n 1 2 n 2 displaystyle frac e frac pi 2 e frac pi 2 pi e gamma prod n 1 infty left e frac 1 n left 1 frac 1 n frac 1 2n 2 right right Continued fraction Edit The continued fraction expansion of g begins 0 1 1 2 1 2 1 4 3 13 5 1 1 8 1 2 4 1 1 40 1 which has no apparent pattern The continued fraction is known to have at least 475 006 terms 8 and it has infinitely many terms if and only if g is irrational Generalizations Edit abm x g x Euler s generalized constants are given by g a lim n k 1 n 1 k a 1 n 1 x a d x displaystyle gamma alpha lim n to infty left sum k 1 n frac 1 k alpha int 1 n frac 1 x alpha dx right for 0 lt a lt 1 with g as the special case a 1 39 This can be further generalized to c f lim n k 1 n f k 1 n f x d x displaystyle c f lim n to infty left sum k 1 n f k int 1 n f x dx right for some arbitrary decreasing function f For example f n x log x n x displaystyle f n x frac log x n x gives rise to the Stieltjes constants and f a x x a displaystyle f a x x a gives g f a a 1 z a 1 a 1 displaystyle gamma f a frac a 1 zeta a 1 a 1 where again the limit g lim a 1 z a 1 a 1 displaystyle gamma lim a to 1 left zeta a frac 1 a 1 right appears A two dimensional limit generalization is the Masser Gramain constant Euler Lehmer constants are given by summation of inverses of numbers in a common modulo class 14 g a q lim x 0 lt n x n a mod q 1 n log x q displaystyle gamma a q lim x to infty left sum 0 lt n leq x atop n equiv a pmod q frac 1 n frac log x q right The basic properties are g 0 q g log q q a 0 q 1 g a q g q g a q g j 1 q 1 e 2 p a i j q log 1 e 2 p i j q displaystyle begin aligned gamma 0 q amp frac gamma log q q sum a 0 q 1 gamma a q amp gamma q gamma a q amp gamma sum j 1 q 1 e frac 2 pi aij q log left 1 e frac 2 pi ij q right end aligned and if gcd a q d then q g a q q d g a d q d log d displaystyle q gamma a q frac q d gamma left frac a d frac q d right log d Published digits EditEuler initially calculated the constant s value to 6 decimal places In 1781 he calculated it to 16 decimal places Mascheroni attempted to calculate the constant to 32 decimal places but made errors in the 20th 22nd and 31st 32nd decimal places starting from the 20th digit he calculated 1811209008239 when the correct value is 0651209008240 Published Decimal Expansions of g Date Decimal digits Author Sources1734 5 Leonhard Euler1735 15 Leonhard Euler1781 16 Leonhard Euler1790 32 Lorenzo Mascheroni with 20 22 and 31 32 wrong1809 22 Johann G von Soldner1811 22 Carl Friedrich Gauss1812 40 Friedrich Bernhard Gottfried Nicolai1857 34 Christian Fredrik Lindman1861 41 Ludwig Oettinger1867 49 William Shanks1871 99 James W L Glaisher1871 101 William Shanks1877 262 J C Adams1952 328 John William Wrench Jr 1961 1050 Helmut Fischer and Karl Zeller1962 1271 Donald Knuth 40 1962 3566 Dura W Sweeney1973 4879 William A Beyer and Michael S Waterman1977 20700 Richard P Brent1980 30100 Richard P Brent amp Edwin M McMillan1993 172000 Jonathan Borwein1999 108000 000 Patrick Demichel and Xavier GourdonMarch 13 2009 29844 489 545 Alexander J Yee amp Raymond Chan 41 42 December 22 2013 119377 958 182 Alexander J Yee 42 March 15 2016 160000 000 000 Peter Trueb 42 May 18 2016 250000 000 000 Ron Watkins 42 August 23 2017 477511 832 674 Ron Watkins 42 May 26 2020 600000 000 100 Seungmin Kim amp Ian Cutress 42 43 References EditBretschneider Carl Anton 1837 1835 Theoriae logarithmi integralis lineamenta nova Crelle s Journal in Latin 17 257 285 Havil Julian 2003 Gamma Exploring Euler s Constant Princeton University Press ISBN 978 0 691 09983 5 Ram Murty M Saradha N 2010 Euler Lehmer constants and a conjecture of Erdos Journal of Number Theory 130 12 2671 2681 doi 10 1016 j jnt 2010 07 004 ISSN 0022 314X Footnotes a b Sloane N J A ed Sequence A002852 Continued fraction for Euler s constant The On Line Encyclopedia of Integer Sequences OEIS Foundation Sloane N J A ed Sequence A001620 Decimal expansion of Euler s constant or the Euler Mascheroni constant gamma The On Line Encyclopedia of Integer Sequences OEIS Foundation a b c d e Lagarias Jeffrey C October 2013 Euler s constant Euler s work and modern developments Bulletin of the American Mathematical Society 50 4 556 arXiv 1303 1856 doi 10 1090 s0273 0979 2013 01423 x S2CID 119612431 Bretschneider 1837 g c 0 577215664901 532860 618112 090082 3 on p 260 De Morgan Augustus 1836 1842 The differential and integral calculus London Baldwin and Craddoc g on p 578 Caves Carlton M Fuchs Christopher A 1996 Quantum information How much information in a state vector The Dilemma of Einstein Podolsky and Rosen 60 Years Later Israel Physical Society arXiv quant ph 9601025 Bibcode 1996quant ph 1025C ISBN 9780750303941 OCLC 36922834 Connallon Tim Hodgins Kathryn A October 2021 Allen Orr and the genetics of adaptation Evolution 75 11 2624 2640 doi 10 1111 evo 14372 a b Haible Bruno Papanikolaou Thomas 1998 Buhler Joe P ed Fast multiprecision evaluation of series of rational numbers Algorithmic Number Theory Lecture Notes in Computer Science Springer 1423 338 350 doi 10 1007 bfb0054873 ISBN 9783540691136 Papanikolaou T 1997 Entwurf und Entwicklung einer objektorientierten Bibliothek fur algorithmische Zahlentheorie Thesis in German Universitat des Saarlandes a b See also Sondow Jonathan 2003 Criteria for irrationality of Euler s constant Proceedings of the American Mathematical Society 131 11 3335 3344 arXiv math NT 0209070 doi 10 1090 S0002 9939 03 07081 3 S2CID 91176597 Mahler Kurt Mordell Louis Joel 4 June 1968 Applications of a theorem by A B Shidlovski Proceedings of the Royal Society of London Series A Mathematical and Physical Sciences 305 1481 149 173 Bibcode 1968RSPSA 305 149M doi 10 1098 rspa 1968 0111 S2CID 123486171 Aptekarev A I 28 February 2009 On linear forms containing the Euler constant arXiv 0902 1768 math NT Rivoal Tanguy 2012 On the arithmetic nature of the values of the gamma function Euler s constant and Gompertz s constant Michigan Mathematical Journal 61 2 239 254 doi 10 1307 mmj 1339011525 ISSN 0026 2285 a b Ram Murty amp Saradha 2010 Murty M Ram Zaytseva Anastasia 2013 Transcendence of Generalized Euler Constants The American Mathematical Monthly 120 1 48 54 doi 10 4169 amer math monthly 120 01 048 ISSN 0002 9890 JSTOR 10 4169 amer math monthly 120 01 048 S2CID 20495981 a b c d Kramer Stefan 2005 Die Eulersche Konstante g und verwandte Zahlen in German University of Gottingen Sondow Jonathan 1998 An antisymmetric formula for Euler s constant Mathematics Magazine 71 3 219 220 doi 10 1080 0025570X 1998 11996638 Archived from the original on 2011 06 04 Retrieved 2006 05 29 a b Sondow Jonathan 2005 Double integrals for Euler s constant and log 4 p displaystyle log frac 4 pi and an analog of Hadjicostas s formula American Mathematical Monthly 112 1 61 65 arXiv math CA 0211148 doi 10 2307 30037385 JSTOR 30037385 Sondow Jonathan 1 August 2005a New Vacca type rational series for Euler s constant and its alternating analog log 4 p displaystyle log frac 4 pi arXiv math NT 0508042 Sondow Jonathan Zudilin Wadim 2006 Euler s constant q logarithms and formulas of Ramanujan and Gosper The Ramanujan Journal 12 2 225 244 arXiv math NT 0304021 doi 10 1007 s11139 006 0075 1 S2CID 1368088 DeTemple Duane W May 1993 A Quicker Convergence to Euler s Constant The American Mathematical Monthly 100 5 468 470 doi 10 2307 2324300 ISSN 0002 9890 JSTOR 2324300 Havil 2003 pp 75 8 Blagouchine 2016 Vacca G 1910 A new analytical expression for the number p and some historical considerations Bulletin of the American Mathematical Society 16 368 369 doi 10 1090 S0002 9904 1910 01919 4 Glaisher James Whitbread Lee 1910 On Dr Vacca s series for g Q J Pure Appl Math 41 365 368 Hardy G H 1912 Note on Dr Vacca s series for g Q J Pure Appl Math 43 215 216 Vacca G 1926 Nuova serie per la costante di Eulero C 0 577 Rendiconti Accademia Nazionale dei Lincei Roma Classe di Scienze Fisiche Matematiche e Naturali in Italian 6 3 19 20 Kluyver J C 1927 On certain series of Mr Hardy Q J Pure Appl Math 50 185 192 a b c Blagouchine Iaroslav V 2016 Expansions of generalized Euler s constants into the series of polynomials in p 2 and into the formal enveloping series with rational coefficients only J Number Theory 158 365 396 arXiv 1501 00740 doi 10 1016 j jnt 2015 06 012 Blagouchine Iaroslav V 2014 Rediscovery of Malmsten s integrals their evaluation by contour integration methods and some related results The Ramanujan Journal 35 1 21 110 doi 10 1007 s11139 013 9528 5 S2CID 120943474 a b c Blagouchine Iaroslav V 2018 Three notes on Ser s and Hasse s representations for the zeta functions INTEGERS The Electronic Journal of Combinatorial Number Theory 18A A3 1 45 arXiv 1606 02044 Bibcode 2016arXiv160602044B a b Alabdulmohsin Ibrahim M 2018 Summability Calculus A Comprehensive Theory of Fractional Finite Sums Springer pp 147 8 ISBN 9783319746487 Sloane N J A ed Sequence A302120 Absolute value of the numerators of a series converging to Euler s constant The On Line Encyclopedia of Integer Sequences OEIS Foundation Sloane N J A ed Sequence A302121 Denominators of a series converging to Euler s constant The On Line Encyclopedia of Integer Sequences OEIS Foundation Ramare Olivier 2022 Excursions in Multiplicative Number Theory Birkhauser Advanced Texts Basel Textbooks Basel Birkhauser Springer p 131 doi 10 1007 978 3 030 73169 4 ISBN 978 3 030 73168 7 MR 4400952 Sloane N J A ed Sequence A073004 Decimal expansion of exp gamma The On Line Encyclopedia of Integer Sequences OEIS Foundation Sondow Jonathan 2003 An infinite product for eg via hypergeometric formulas for Euler s constant g arXiv math CA 0306008 Choi Junesang Srivastava H M 1 September 2010 Integral Representations for the Euler Mascheroni Constant g Integral Transforms and Special Functions 21 9 675 690 doi 10 1080 10652461003593294 ISSN 1065 2469 S2CID 123698377 Havil 2003 pp 117 8 Knuth Donald E July 1962 Euler s Constant to 1271 Places Mathematics of Computation American Mathematical Society 16 79 275 281 doi 10 2307 2004048 JSTOR 2004048 Yee Alexander J 7 March 2011 Large Computations www numberworld org a b c d e f Yee Alexander J Records Set by y cruncher www numberworld org Retrieved 30 April 2018 Yee Alexander J y cruncher A Multi Threaded Pi Program www numberworld org Euler Mascheroni Constant Polymath Collector 15 February 2020 Further reading EditBorwein Jonathan M David M Bradley Richard E Crandall 2000 Computational Strategies for the Riemann Zeta Function PDF Journal of Computational and Applied Mathematics 121 1 2 11 Bibcode 2000JCoAM 121 247B doi 10 1016 s0377 0427 00 00336 8 Derives g as sums over Riemann zeta functions Finch Steven R 2003 Mathematical Constants Encyclopedia of Mathematics and its Applications Vol 94 Cambridge Cambridge University Press ISBN 0 521 81805 2 Gerst I 1969 Some series for Euler s constant Amer Math Monthly 76 3 237 275 doi 10 2307 2316370 JSTOR 2316370 Glaisher James Whitbread Lee 1872 On the history of Euler s constant Messenger of Mathematics 1 25 30 JFM 03 0130 01 Gourdon Xavier Sebah P 2002 Collection of formulae for Euler s constant g Gourdon Xavier Sebah P 2004 The Euler constant g Karatsuba E A 1991 Fast evaluation of transcendental functions Probl Inf Transm 27 44 339 360 Karatsuba E A 2000 On the computation of the Euler constant g Journal of Numerical Algorithms 24 1 2 83 97 doi 10 1023 A 1019137125281 S2CID 21545868 Knuth Donald 1997 The Art of Computer Programming Vol 1 3rd ed Addison Wesley pp 75 107 114 619 620 ISBN 0 201 89683 4 Lehmer D H 1975 Euler constants for arithmetical progressions PDF Acta Arith 27 1 125 142 doi 10 4064 aa 27 1 125 142 Lerch M 1897 Expressions nouvelles de la constante d Euler Sitzungsberichte der Koniglich Bohmischen Gesellschaft der Wissenschaften 42 5 Mascheroni Lorenzo 1790 Adnotationes ad calculum integralem Euleri in quibus nonnulla problemata ab Eulero proposita resolvuntur Galeati Ticini Sondow Jonathan 2002 A hypergeometric approach via linear forms involving logarithms to irrationality criteria for Euler s constant Mathematica Slovaca 59 307 314 arXiv math NT 0211075 Bibcode 2002math 11075S doi 10 2478 s12175 009 0127 2 S2CID 16340929 with an Appendix by Sergey ZlobinExternal links Edit Euler constant Encyclopedia of Mathematics EMS Press 2001 1994 Weisstein Eric W Euler Mascheroni constant MathWorld Jonathan Sondow Fast Algorithms and the FEE Method E A Karatsuba 2005 Further formulae which make use of the constant Gourdon and Sebah 2004 Retrieved from https en wikipedia org w index php title Euler 27s constant amp oldid 1152511739, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.