fbpx
Wikipedia

Flight feather

Flight feathers (Pennae volatus)[1] are the long, stiff, asymmetrically shaped, but symmetrically paired pennaceous feathers on the wings or tail of a bird; those on the wings are called remiges (/ˈrɛmɪz/), singular remex (/ˈrmɛks/), while those on the tail are called rectrices (/rɛkˈtrss/), singular rectrix (/ˈrɛktrɪks/). The primary function of the flight feathers is to aid in the generation of both thrust and lift, thereby enabling flight. The flight feathers of some birds perform additional functions, generally associated with territorial displays, courtship rituals or feeding methods. In some species, these feathers have developed into long showy plumes used in visual courtship displays, while in others they create a sound during display flights. Tiny serrations on the leading edge of their remiges help owls to fly silently (and therefore hunt more successfully), while the extra-stiff rectrices of woodpeckers help them to brace against tree trunks as they hammer on them. Even flightless birds still retain flight feathers, though sometimes in radically modified forms.

Red kite (Milvus milvus) in flight, showing remiges and rectrices

The remiges are divided into primary and secondary feathers based on their position along the wing. There are typically 11 primaries attached to the manus (six attached to the metacarpus and five to the phalanges), but the outermost primary, called the remicle, is often rudimentary or absent; certain birds, notably the flamingos, grebes, and storks, have seven primaries attached to the metacarpus and 12 in all. Secondary feathers are attached to the ulna. The fifth secondary remex (numbered inwards from the carpal joint) was formerly thought to be absent in some species, but the modern view of this diastataxy is that there is a gap between the fourth and fifth secondaries. Tertiary feathers growing upon the adjoining portion of the brachium are not considered true remiges.[2][3][4][5][6][7]

The moult of their flight feathers can cause serious problems for birds, as it can impair their ability to fly. Different species have evolved different strategies for coping with this, ranging from dropping all their flight feathers at once (and thus becoming flightless for some relatively short period of time) to extending the moult over a period of several years.

Remiges edit

 
Bird wing bone structure, indicating attachment points of remiges

Remiges (from the Latin for "oarsman") are located on the posterior side of the wing. Ligaments attach the long calami (quills) firmly to the wing bones, and a thick, strong band of tendinous tissue known as the postpatagium helps to hold and support the remiges in place.[8] Corresponding remiges on individual birds are symmetrical between the two wings, matching to a large extent in size and shape (except in the case of mutation or damage), though not necessarily in the pattern.[9][10] They are given different names depending on their position along the wing.

Primaries edit

Primaries are connected to the manus (the bird's "hand", composed of carpometacarpus and phalanges); these are the longest and narrowest of the remiges (particularly those attached to the phalanges), and they can be individually rotated. These feathers are especially important for flapping flight, as they are the principal source of thrust, moving the bird forward through the air. The mechanical properties of primaries are important in supporting flight.[11] Most thrust is generated on the downstroke of flapping flight. However, on the upstroke (when the bird often draws its wing in close to its body), the primaries are separated and rotated, reducing air resistance while still helping to provide some thrust.[12] The flexibility of the remiges on the wingtips of large soaring birds also allows for the spreading of those feathers, which helps to reduce the creation of wingtip vortices, thereby reducing drag.[13] The barbules on these feathers, friction barbules, are specialized with large lobular barbicels that help grip and prevent slippage of overlying feathers and are present in most of the flying birds.[14]

 
Bald eagle (Haliaeetus leucocephalus) in flight with primaries spread to decrease drag and improve lift

Species vary somewhat in the number of primaries they possess. The number in non-passerines generally varies between 9 and 11,[15] but grebes, storks and flamingos have 12,[16] and ostriches have 16.[16] While most modern passerines have ten primaries,[15] some have only nine. Those with nine are missing the most distal primary (sometimes called the remicle) which is typically very small and sometimes rudimentary in passerines.[16]

The outermost primaries—those connected to the phalanges—are sometimes known as pinions.

Secondaries edit

 
Primary (left) and secondary (right) feathers of the common buzzard (Buteo buteo); note the asymmetrical orientation of the shafts
 
Secondaries of a pheasant showing eutaxis (above) and an eagle showing diastataxis (below)

Secondaries are connected to the ulna. In some species, the ligaments that bind these remiges to the bone connect to small, rounded projections, known as quill knobs, on the ulna; in other species, no such knobs exist. Secondary feathers remain close together in flight (they cannot be individually separated like the primaries can) and help to provide lift by creating the airfoil shape of the bird's wing. Secondaries tend to be shorter and broader than primaries, with blunter ends (see illustration). They vary in number from 6 in hummingbirds to as many as 40 in some species of albatross.[17] In general, larger and longer-winged species have a larger number of secondaries.[17] Birds in more than 40 non-passerine families seem to be missing the fifth secondary feather on each wing, a state known as diastataxis (those that do have the fifth secondary are said to be eutaxic). In these birds, the fifth set of secondary covert feathers does not cover any remiges, possibly due to a twisting of the feather papillae during embryonic development. Loons, grebes, pelicans, hawks and eagles, cranes, sandpipers, gulls, parrots, and owls are among the families missing this feather.[18]

Tertials edit

Tertials arise in the brachial region and are not considered true remiges as they are not supported by attachment to the corresponding bone, in this case the humerus. These elongated "true" tertials act as a protective cover for all or part of the folded primaries and secondaries, and do not qualify as flight feathers as such.[19] However, many authorities use the term tertials to refer to the shorter, more symmetrical innermost secondaries of passerines (arising from the olecranon and performing the same function as true tertials) in an effort to distinguish them from other secondaries. The term humeral is sometimes used for birds such as the albatrosses and pelicans that have a long humerus.[20][21]

Tectrices edit

The calami of the flight feathers are protected by a layer of non-flight feathers called covert feathers or tectrices (singular tectrix), at least one layer of them both above and beneath the flight feathers of the wings as well as above and below the rectrices of the tail.[22] These feathers may vary widely in size – in fact, the upper tail tectrices of the male peafowl, rather than its rectrices, are what constitute its elaborate and colorful "train".[23]

Emargination edit

The outermost primaries of large soaring birds, particularly raptors, often show a pronounced narrowing at some variable distance along the feather edges. These narrowings are called either notches or emarginations depending on the degree of their slope.[18] An emargination is a gradual change, and can be found on either side of the feather. A notch is an abrupt change, and is only found on the wider trailing edge of the remex. (Both are visible on the primary in the photo showing the feathers; they can be found about halfway along both sides of the left hand feather—a shallow notch on the left, and a gradual emargination on the right.) The presence of notches and emarginations creates gaps at the wingtip; air is forced through these gaps, increasing the generation of lift.[24]

Alula edit

 
Male mallard (Anas platyrhynchos) landing, showing outspread alulae on the leading edge of the wing

Feathers on the alula or bastard wing are not generally considered to be flight feathers in the strict sense; though they are asymmetrical, they lack the length and stiffness of most true flight feathers. However, alula feathers are definitely an aid to slow flight. These feathers—which are attached to the bird's "thumb" and normally lie flush against the anterior edge of the wing—function in the same way as the slats on an airplane wing, allowing the wing to achieve a higher than normal angle of attack – and thus lift – without resulting in a stall. By manipulating its thumb to create a gap between the alula and the rest of the wing, a bird can avoid stalling when flying at low speeds or landing.[18]

Delayed development in hoatzins edit

The development of the remiges (and alulae) of nestling hoatzins is much delayed compared to the development of these feathers in other young birds, presumably because young hoatzins are equipped with claws on their first two digits. They use these small rounded hooks to grasp branches when clambering about in trees, and feathering on these digits would presumably interfere with that functionality. Most youngsters shed their claws sometime between their 70th and 100th day of life, but some retain them— though callused-over and unusable— into adulthood.[25][26]

Rectrices edit

Rectrices (singular rectrix) from the Latin word for "helmsman", help the bird to brake and steer in flight. These feathers lie in a single horizontal row on the rear margin of the anatomic tail. Only the central pair are attached (via ligaments) to the tail bones; the remaining rectrices are embedded into the rectricial bulbs, complex structures of fat and muscle that surround those bones. Rectrices are always paired, with a vast majority of species having six pairs. They are absent in grebes and some ratites, and greatly reduced in size in penguins.[16][27][28][29] Many grouse species have more than 12 rectrices. In some species (including ruffed grouse, hazel grouse and common snipe), the number varies among individuals.[30] Domestic pigeons have a highly variable number as a result of changes brought about over centuries of selective breeding.[31]

Numbering conventions edit

In order to make the discussion of such topics as moult processes or body structure easier, ornithologists assign a number to each flight feather. By convention, the numbers assigned to primary feathers always start with the letter P (P1, P2, P3, etc.), those of secondaries with the letter S, those of tertials with T and those of rectrices with R.

Most authorities number the primaries descendantly, starting from the innermost primary (the one closest to the secondaries) and working outwards; others number them ascendantly, from the most distal primary inwards.[15] There are some advantages to each method. Descendant numbering follows the normal sequence of most birds' primary moult. In the event that a species is missing the small distal 10th primary, as some passerines are, its lack does not impact the numbering of the remaining primaries. Ascendant numbering, on the other hand, allows for uniformity in the numbering of non-passerine primaries, as they almost invariably have four attached to the manus regardless of how many primaries they have overall.[15] This method is particularly useful for indicating wing formulae, as the outermost primary is the one with which the measurements begin.

Secondaries are always numbered ascendantly, starting with the outermost secondary (the one closest to the primaries) and working inwards.[15] Tertials are also numbered ascendantly, but in this case, the numbers continue on consecutively from that given to the last secondary (e.g. ... S5, S6, T7, T8, ... etc.).[15]

Rectrices are always numbered from the centermost pair outwards in both directions.[32]

Specialized flight feathers edit

 
Male long-tailed paradise whydah (Vidua paradisaea) showing modified rectrices

The flight feathers of some species provide additional functionality. In some species, for example, either remiges or rectrices make a sound during flight. These sounds are most often associated with courtship or territorial displays. The outer primaries of male broad-tailed hummingbirds produce a distinctive high-pitched trill, both in direct flight and in power-dives during courtship displays; this trill is diminished when the outer primaries are worn, and absent when those feathers have been moulted.[33] During the northern lapwing's zigzagging display flight, the bird's outer primaries produce a humming sound.[34] The outer primaries of the male American woodcock are shorter and slightly narrower than those of the female, and are likely the source of the whistling and twittering sounds made during his courtship display flights.[35] Male club-winged manakins use modified secondaries to make a clear trilling courtship call. A curve-tipped secondary on each wing is dragged against an adjacent ridged secondary at high speeds (as many as 110 times per second—slightly faster than a hummingbird's wingbeat) to create a stridulation much like that produced by some insects.[36] Both Wilson's and common snipe have modified outer tail feathers which make noise when they are spread during the birds' roller coaster display flights; as the bird dives, wind flows through the modified feathers and creates a series of rising and falling notes, which is known as "winnowing".[37] Differences between the sounds produced by these two former conspecific subspecies—and the fact that the outer two pairs of rectrices in Wilson's snipe are modified, while only the single outermost pair are modified in common snipe—were among the characteristics used to justify their splitting into two distinct and separate species.

 
Leading edge of an owl feather, showing serrations

Flight feathers are also used by some species in visual displays. Male standard-winged and pennant-winged nightjars have modified P2 primaries (using the descendant numbering scheme explained above) which are displayed during their courtship rituals.[38] In the standard-winged nightjar, this modified primary consists of an extremely long shaft with a small "pennant" (actually a large web of barbules) at the tip. In the pennant-winged nightjar, the P2 primary is an extremely long (but otherwise normal) feather, while P3, P4 and P5 are successively shorter; the overall effect is a broadly forked wingtip with a very long plume beyond the lower half of the fork.

Males of many species, ranging from the widely introduced ring-necked pheasant to Africa's many whydahs, have one or more elongated pairs of rectrices, which play an often-critical role in their courtship rituals. The outermost pair of rectrices in male lyrebirds are extremely long and strongly curved at the ends. These plumes are raised up over the bird's head (along with a fine spray of modified uppertail coverts) during his extraordinary display. Rectrix modification reaches its pinnacle among the birds of paradise, which display an assortment of often bizarrely modified feathers, ranging from the extremely long plumes of the ribbon-tailed astrapia (nearly three times the length of the bird itself) to the dramatically coiled twin plumes of the magnificent bird-of-paradise.

Owls have remiges which are serrated rather than smooth on the leading edge. This adaptation disrupts the flow of air over the wings, eliminating the noise that airflow over a smooth surface normally creates, and allowing the birds to fly and hunt silently.[39]

The rectrices of woodpeckers are proportionately short and very stiff, allowing them to better brace themselves against tree trunks while feeding. This adaptation is also found, though to a lesser extent, in some other species that feed along tree trunks, including treecreepers and woodcreepers.

Scientists have not yet determined the function of all flight feather modifications. Male swallows in the genera Psalidoprocne and Stelgidopteryx have tiny recurved hooks on the leading edges of their outer primaries, but the function of these hooks is not yet known; some authorities suggest they may produce a sound during territorial or courtship displays.[40]

Vestigiality in flightless birds edit

 
Double-wattled cassowary, (Casuarius casuarius) showing modified remiges

Over time, a small number of bird species have lost their ability to fly. Some of these, such as the steamer ducks, show no appreciable changes in their flight feathers. Some, such as the Titicaca grebe and a number of the flightless rails, have a reduced number of primaries.[41]

The remiges of ratites are soft and downy; they lack the interlocking hooks and barbules that help to stiffen the flight feathers of other birds. In addition, the emu's remiges are proportionately much reduced in size, while those of the cassowaries are reduced both in number and structure, consisting merely of 5–6 bare quills. Most ratites have completely lost their rectrices; only the ostrich still has them.

Penguins have lost their differentiated flight feathers. As adults, their wings and tail are covered with the same small, stiff, slightly curved feathers as are found on the rest of their bodies.

The ground-dwelling kākāpō, which is the world's only flightless parrot, has remiges which are shorter, rounder and more symmetrically vaned than those of parrots capable of flight; these flight feathers also contain fewer interlocking barbules near their tips.[42]

Moult edit

 
Eurasian jackdaw (Corvus monedula), showing moult of central rectrices

Once they have finished growing, feathers are essentially dead structures. Over time, they become worn and abraded, and need to be replaced. This replacement process is known as moult (molt in the United States). The loss of wing and tail feathers can affect a bird's ability to fly (sometimes dramatically) and in certain families can impair the ability to feed or perform courtship displays. The timing and progression of flight feather moult therefore varies among families.

For most birds, moult begins at a certain specific point, called a focus (plural foci), on the wing or tail and proceeds in a sequential manner in one or both directions from there. For example, most passerines have a focus between the innermost primary (P1, using the numbering scheme explained above) and outermost secondary (S1), and a focus point in the middle of the center pair of rectrices.[43] As passerine moult begins, the two feathers closest to the focus are the first to drop. When replacement feathers reach roughly half of their eventual length, the next feathers in line (P2 and S2 on the wing, and both R2s on the tail) are dropped. This pattern of drop and replacement continues until moult reaches either end of the wing or tail. The speed of the moult can vary somewhat within a species. Some passerines that breed in the Arctic, for example, drop many more flight feathers at once (sometimes becoming briefly flightless) in order to complete their entire wing moult prior to migrating south, while those same species breeding at lower latitudes undergo a more protracted moult.[44]

 
Young white-bellied sea eagle (Haliaeetus leucogaster) in flight, showing moult waves in wings

In many species, there is more than one focus along the wing. Here, moult begins at all foci simultaneously, but generally proceeds only in one direction. Most grouse, for example, have two wing foci: one at the wingtip, the other between feathers P1 and S1. In this case, moult proceeds descendantly from both foci. Many large, long-winged birds have multiple wing foci.

Birds that are heavily "wing-loaded"—that is, heavy-bodied birds with relatively short wings—have great difficulty flying with the loss of even a few flight feathers. A protracted moult like the one described above would leave them vulnerable to predators for a sizeable portion of the year. Instead, these birds lose all their flight feathers at once. This leaves them completely flightless for a period of three to four weeks, but means their overall period of vulnerability is significantly shorter than it would otherwise be. Eleven families of birds, including loons, grebes and most waterfowl, have this moult strategy.

The cuckoos show what is called saltatory or transilient wing moults. In simple forms, this involves the moulting and replacement of odd-numbered primaries and then the even-numbered primaries. There are however complex variations with differences based on life history.[45]

Arboreal woodpeckers, which depend on their tails—particularly the strong central pair of rectrices—for support while they feed, have a unique tail moult. Rather than moulting their central tail feathers first, as most birds do, they retain these feathers until last. Instead, the second pair of rectrices (both R2 feathers) are the first to drop. (In some species in the genera Celeus and Dendropicos, the third pair is the first dropped.) The pattern of feather drop and replacement proceeds as described for passerines (above) until all other rectrices have been replaced; only then are the central tail rectrices moulted. This provides some protection to the growing feathers, since they're always covered by at least one existing feather, and also ensures that the bird's newly strengthened tail is best able to cope with the loss of the crucial central rectrices. Ground-feeding woodpeckers, such as the wrynecks, do not have this modified moult strategy; in fact, wrynecks moult their outer tail feathers first, with moult proceeding proximally from there.

Age differences in flight feathers edit

 
Western gull chick about 3 weeks old flapping its developing wings

There are often substantial differences between the remiges and rectrices of adults and juveniles of the same species. Because all juvenile feathers are grown at once—a tremendous energy burden to the developing bird—they are softer and of poorer quality than the equivalent feathers of adults, which are moulted over a longer period of time (as long as several years in some cases).[46] As a result, they wear more quickly.

As feathers grow at variable rates, these variations lead to visible dark and light bands in the fully formed feather. These growth bars and their widths have been used to determine the daily nutritional status of birds. Each light and dark bar correspond to around 24 hours and the use of this technique has been called ptilochronology (analogous to dendrochronology).[47][48]

In general, juveniles have feathers which are narrower and more sharply pointed at the tip.[49][50] This can be particularly visible when the bird is in flight, especially in the case of raptors. The trailing edge of the wing of a juvenile bird can appear almost serrated, due to the feathers' sharp tips, while that of an older bird will be straighter-edged.[49] The flight feathers of a juvenile bird will also be uniform in length, since they all grew at the same time. Those of adults will be of various lengths and levels of wear, since each is moulted at a different time.[46]

The flight feathers of adults and juveniles can differ considerably in length, particularly among the raptors. Juveniles tend to have slightly longer rectrices and shorter, broader wings (with shorter outer primaries, and longer inner primaries and secondaries) than do adults of the same species.[51] However, there are many exceptions. In longer-tailed species, such as swallow-tailed kite, secretary bird and European honey buzzard, for example, juveniles have shorter rectrices than adults do. Juveniles of some Buteo buzzards have narrower wings than adults do, while those of large juvenile falcons are longer. It is theorized that the differences help young birds compensate for their inexperience, weaker flight muscles and poorer flying ability.[51]

Wing formula edit

 
Measuring primary lengths, one of the steps in determining a bird's wing formula

A wing formula describes the shape of distal end of a bird's wing in a mathematical way. It can be used to help distinguish between species with similar plumages, and thus is particularly useful for those who ring (band) birds.[18]

To determine a bird's wing formula, the distance between the tip of the most distal primary and the tip of its greater covert (the longest of the feathers that cover and protect the shaft of that primary) is measured in millimeters. In some cases, this results in a positive number (e.g., the primary extends beyond its greater covert), while in other cases it is a negative number (e.g. the primary is completely covered by the greater covert, as happens in some passerine species). Next, the longest primary feather is identified, and the differences between the length of that primary and that of all remaining primaries and of the longest secondary are also measured, again in millimeters. If any primary shows a notch or emargination, this is noted, and the distance between the feather's tip and any notch is measured, as is the depth of the notch. All distance measurements are made with the bird's wing closed, so as to maintain the relative positions of the feathers.

While there can be considerable variation across members of a species—and while the results are obviously impacted by the effects of moult and feather regeneration—even very closely related species show clear differences in their wing formulas.[18]

Primary extension edit

 
Comparison of primary extensions: chiffchaff (left) and willow warbler

The distance that a bird's longest primaries extend beyond its longest secondaries (or tertials) when its wings are folded is referred to as the primary extension or primary projection.[52] As with wing formulae, this measurement is useful for distinguishing between similarly plumaged birds; however, unlike wing formulae, it is not necessary to have the bird in-hand to make the measurement. Rather, this is a useful relative measurement—some species have long primary extensions, while others have shorter ones. Among the Empidonax flycatchers of the Americas, for example, the dusky flycatcher has a much shorter primary extension than does the very similarly plumaged Hammond's flycatcher.[52] Europe's common skylark has a long primary projection, while that of the near-lookalike Oriental skylark is very short.[53]

As a general rule, species which are long-distance migrants will have longer primary projection than similar species which do not migrate or migrate shorter distances.[54]

See also edit

Notes edit

  1. ^ Julian J. Baumel. Handbook of Avian Anatomy: Nomina Anatomica Avium. 1993
  2. ^ Bruce Campbell, Elizabeth Lack. A Dictionary of Birds. T & AD Poyser Ltd. 1985
  3. ^ Olin Sewall Pettingill Jr. Ornithology in Laboratory and Field. 5th Edition. Academic Press, 1985
  4. ^ Brian K. Wheeler. Birds of Prey of the West: A Field Guide. Princeton University Press, 2018
  5. ^ Lukas Jenni, Raffael Winkler. The Biology of Moult in Birds. Bloomsbury Publishing Plc, 2020
  6. ^ John J. Videler. Avian Flight. Oxford University Press 2005
  7. ^ Oxford Dictionary of English, 3rd Edition. Oxford University Press 2010
  8. ^ Podulka, Sandy; Ronald W. Rohrbaugh; Rick Bonney, eds. (2003), Home Study Course in Bird Biology, Second Edition, Ithaca, New York: Cornell Lab of Ornithology, p. 1.11
  9. ^ Trail 2001, p. 8
  10. ^ Moller, Anders Pape; Hoglund, Jacob (1991), "Patterns of Fluctuating Asymmetry in Avian Feather Ornaments: Implications for Models of Sexual Selection", Proceedings: Biological Sciences, 245 (1312): 1–5, Bibcode:1991RSPSB.245....1P, doi:10.1098/rspb.1991.0080, S2CID 84991514
  11. ^ Wang, Bin (2017). "Seagull feather shaft: Correlation between structure and mechanical response". Acta Biomaterialia. 48: 270–288. doi:10.1016/j.actbio.2016.11.006. PMID 27818305.
  12. ^ Ehrlich et al. 1994, p. 219
  13. ^ Ehrlich et al. 1994, p. 79
  14. ^ Muller, Werner; Patone, Giannino (1998), "Air transmissivity of feathers" (PDF), Journal of Experimental Biology, 201 (18): 2591–2599, doi:10.1242/jeb.201.18.2591, PMID 9716511
  15. ^ a b c d e f Jenni & Winkler 1994, p. 7
  16. ^ a b c d del Hoyo, Elliott & Sargatal 1992, p. 37
  17. ^ a b Sibley et al. 2001, p. 17
  18. ^ a b c d e Campbell & Lack 1985, p. 656
  19. ^ Ferguson-Lees & Christie 2001, p. 27
  20. ^ Hickman, Scott (2008), "The trouble with tertials", Auk, 125 (2): 493, doi:10.1525/auk.2008.2408, S2CID 85245232
  21. ^ Berger, AJ & WA Lunk (1954), "The Pterylosis of the Nestling Coua ruficeps" (PDF), Wilson Bulletin, 66 (2): 119–126
  22. ^ R.M. Pierce (1911). Dictionary of aviation. Рипол Классик. pp. 69–70. ISBN 978-5-87745-565-8.
  23. ^ Jason A. Mobley (2008). Birds of the World. Marshall Cavendish. p. 295. ISBN 978-0-7614-7775-4.
  24. ^ Trail 2001, p. 6
  25. ^ Campbell & Lack 1985, p. 285
  26. ^ del Hoyo, Elliott & Sargatal 1997, p. 29
  27. ^ del Hoyo, Elliott & Sargatal 1992, p. 176
  28. ^ del Hoyo, Elliott & Sargatal 1992, pp. 84–85, 91, 104
  29. ^ del Hoyo, Elliott & Sargatal 1992, p. 141
  30. ^ Madge, Steve; McGowan, Phil (2002), Pheasants, Partridges & Grouse, London: Christopher Helm, p. 375, ISBN 0-7136-3966-0
  31. ^ del Hoyo, Elliott & Sargatal 1997, p. 105
  32. ^ Jenni & Winkler 1994, p. 8
  33. ^ Howell, Steve N. G. (2002), Hummingbirds of North America, London: Academic Press, p. 180, ISBN 0-12-356955-9
  34. ^ Ehrlich et al. 1994, p. 183
  35. ^ Paulson 2005, p. 333
  36. ^ Bostwick, Kimberly S.; Prum, Richard O. (2005), "Courting Bird Sings with Stridulating Wing Feathers", Science, 309 (5735): 736, doi:10.1126/science.1111701, PMID 16051789, S2CID 22278735
  37. ^ Paulson 2005, p. 323
  38. ^ Cleere, Nigel; Nurney, Dave (1998), Nightjars: A Guide to Nightjars and Related Nightbirds, Mountfield, East Sussex: Pica Press, p. 98, ISBN 1-873403-48-8
  39. ^ Ehrlich et al. 1994, pp. 251–253
  40. ^ del Hoyo, Elliott & Christie 2004, p. 609
  41. ^ Taylor, Barry; van Berlo, Ber (1998), Rails, London: Christopher Helm, p. 33, ISBN 1-873403-59-3
  42. ^ Livezey, Bradley C. (2005), "Morphological corollaries and ecological implications of flightlessness in the kakapo (Psittaciformes: Strigops habroptilus)", Journal of Morphology, 213 (1): 105–145, doi:10.1002/jmor.1052130108, PMID 29865598, S2CID 206090256, archived from the original on 10 December 2012
  43. ^ Campbell & Lack 1985, p. 361
  44. ^ Campbell & Lack 1985, p. 363
  45. ^ Robert B. Payne (2005), The Cuckoos: Cuculidae, Oxford University Press, p. 52, ISBN 0-19-850213-3
  46. ^ a b Forsman 1999, p. 9
  47. ^ Grubb 1989
  48. ^ Shawkey, Beck & Hill 2003
  49. ^ a b Forsman 1999, p. 16
  50. ^ Jenni & Winkler 1994, p. 29
  51. ^ a b Ferguson-Lees & Christie 2001, p. 39
  52. ^ a b Kaufman, Kenn (1990), Advanced Birding, Boston: Houghton Mifflin, p. 186, ISBN 0-395-53376-7
  53. ^ Svensson, Lars; Grant, Peter J. (1999), Collins Bird Guide: The Most Complete Field Guide to the Birds of Britain and Europe, London: HarperCollins, p. 231, ISBN 0-00-219728-6
  54. ^ Christie, Thomas Alerstam ; translated by David A. (1993). Bird migration. Cambridge [England]: Cambridge University Press. p. 253. ISBN 0521448220.{{cite book}}: CS1 maint: multiple names: authors list (link)

References edit

  • Campbell, Bruce; Lack, Elizabeth, eds. (1985), A Dictionary of Birds, Carlton, England: T and A D Poyser, ISBN 0-85661-039-9
  • del Hoyo, Josep; Elliott, Andrew; Sargatal, Jordi, eds. (1992), Handbook of the Birds of the World, Volume 1: Ostrich to Ducks, Barcelona: Lynx Edicions, ISBN 84-87334-10-5
  • del Hoyo, Josep; Elliott, Andrew; Sargatal, Jordi, eds. (1997), Handbook of the Birds of the World, Volume 4: Sandgrouse to Cuckoos, Barcelona: Lynx Edicions, ISBN 84-87334-22-9
  • del Hoyo, Josep; Elliott, Andrew; Christie, David, eds. (2004), Handbook of the Birds of the World, Volume 9: Cotingas to Pipits and Wagtails, Barcelona: Lynx Edicions, ISBN 84-87334-69-5
  • Ehrlich, Paul R.; Dobkin, Darryl A.; Wheye, Darryl; Pimm, Stuart L. (1994), The Birdwatcher's Handbook, Oxford University Press, ISBN 0-19-858407-5
  • Ferguson-Lees, James; Christie, David A. (2001), Raptors of the World, London: Christopher Helm, ISBN 0-7136-8026-1
  • Forsman, Dick (1999), The Raptors of Europe and the Middle East, London: T and A D Poyser, ISBN 0-85661-098-4
  • Grubb, T. C. (1989), "Ptilochronology: feather growth bars as indicators of nutritional status", Auk, 106 (2): 314–320, JSTOR 4087726
  • Jenni, Lukas; Winkler, Raffael (1994), Moult and Ageing of European Passerines, London: Academic Press, ISBN 0-12-384150-X
  • Paulson, Dennis (2005), Shorebirds of North America, London: Christopher Helm, ISBN 0-7136-7377-X
  • Shawkey, Matthew D.; Beck, Michelle L.; Hill, Geoffrey E. (2003), "Use of a gel documentation system to measure feather growth bars", J. Field Ornithol., 74 (2): 125–128, doi:10.1648/0273-8570-74.2.125, S2CID 55380093
  • Sibley, David; et al. (2001), The Sibley Guide to Bird Life & Behaviour, London: Christopher Helm, ISBN 0-7136-6250-6
  • Trail, Pepper (2001), Wing Feathers (PDF), U.S. Fish and Wildlife Service, retrieved 4 August 2017

External links edit

  • Wing Feathers—US Fish and Wildlife Service document 30 September 2017 at the Wayback Machine Contains excellent photographic examples of emargination and notching in raptor remiges.
  • Video of feeding Magellanic woodpecker (Campephilus magellanicus) Shows use of rectrices for bracing.
  • Video of singing male superb lyrebird (Menuta novaehollandiae) Shows long modified rectrices which are used in display (though the video doesn't show full display).
  • Video of male club-winged manakin (Machaeropterus deliciosus) Shows use of secondary remiges to produce sound.
  • #94216 has a good example of the sounds made by remiges during courtship display flight, starting at about 2:32.
  • Sound made by rectrices in courtship flight of common snipe (Gallinago gallinago)

flight, feather, pennae, volatus, long, stiff, asymmetrically, shaped, symmetrically, paired, pennaceous, feathers, wings, tail, bird, those, wings, called, remiges, singular, remex, while, those, tail, called, rectrices, singular, rectrix, primary, function, . Flight feathers Pennae volatus 1 are the long stiff asymmetrically shaped but symmetrically paired pennaceous feathers on the wings or tail of a bird those on the wings are called remiges ˈ r ɛ m ɪ dʒ iː z singular remex ˈ r iː m ɛ k s while those on the tail are called rectrices r ɛ k ˈ t r aɪ s iː s singular rectrix ˈ r ɛ k t r ɪ k s The primary function of the flight feathers is to aid in the generation of both thrust and lift thereby enabling flight The flight feathers of some birds perform additional functions generally associated with territorial displays courtship rituals or feeding methods In some species these feathers have developed into long showy plumes used in visual courtship displays while in others they create a sound during display flights Tiny serrations on the leading edge of their remiges help owls to fly silently and therefore hunt more successfully while the extra stiff rectrices of woodpeckers help them to brace against tree trunks as they hammer on them Even flightless birds still retain flight feathers though sometimes in radically modified forms Red kite Milvus milvus in flight showing remiges and rectricesThe remiges are divided into primary and secondary feathers based on their position along the wing There are typically 11 primaries attached to the manus six attached to the metacarpus and five to the phalanges but the outermost primary called the remicle is often rudimentary or absent certain birds notably the flamingos grebes and storks have seven primaries attached to the metacarpus and 12 in all Secondary feathers are attached to the ulna The fifth secondary remex numbered inwards from the carpal joint was formerly thought to be absent in some species but the modern view of this diastataxy is that there is a gap between the fourth and fifth secondaries Tertiary feathers growing upon the adjoining portion of the brachium are not considered true remiges 2 3 4 5 6 7 The moult of their flight feathers can cause serious problems for birds as it can impair their ability to fly Different species have evolved different strategies for coping with this ranging from dropping all their flight feathers at once and thus becoming flightless for some relatively short period of time to extending the moult over a period of several years Contents 1 Remiges 1 1 Primaries 1 2 Secondaries 1 3 Tertials 1 4 Tectrices 1 5 Emargination 1 6 Alula 1 7 Delayed development in hoatzins 2 Rectrices 3 Numbering conventions 4 Specialized flight feathers 5 Vestigiality in flightless birds 6 Moult 7 Age differences in flight feathers 8 Wing formula 9 Primary extension 10 See also 11 Notes 12 References 13 External linksRemiges edit nbsp Bird wing bone structure indicating attachment points of remigesRemiges from the Latin for oarsman are located on the posterior side of the wing Ligaments attach the long calami quills firmly to the wing bones and a thick strong band of tendinous tissue known as the postpatagium helps to hold and support the remiges in place 8 Corresponding remiges on individual birds are symmetrical between the two wings matching to a large extent in size and shape except in the case of mutation or damage though not necessarily in the pattern 9 10 They are given different names depending on their position along the wing Primaries edit Primaries are connected to the manus the bird s hand composed of carpometacarpus and phalanges these are the longest and narrowest of the remiges particularly those attached to the phalanges and they can be individually rotated These feathers are especially important for flapping flight as they are the principal source of thrust moving the bird forward through the air The mechanical properties of primaries are important in supporting flight 11 Most thrust is generated on the downstroke of flapping flight However on the upstroke when the bird often draws its wing in close to its body the primaries are separated and rotated reducing air resistance while still helping to provide some thrust 12 The flexibility of the remiges on the wingtips of large soaring birds also allows for the spreading of those feathers which helps to reduce the creation of wingtip vortices thereby reducing drag 13 The barbules on these feathers friction barbules are specialized with large lobular barbicels that help grip and prevent slippage of overlying feathers and are present in most of the flying birds 14 nbsp Bald eagle Haliaeetus leucocephalus in flight with primaries spread to decrease drag and improve liftSpecies vary somewhat in the number of primaries they possess The number in non passerines generally varies between 9 and 11 15 but grebes storks and flamingos have 12 16 and ostriches have 16 16 While most modern passerines have ten primaries 15 some have only nine Those with nine are missing the most distal primary sometimes called the remicle which is typically very small and sometimes rudimentary in passerines 16 The outermost primaries those connected to the phalanges are sometimes known as pinions Secondaries edit nbsp Primary left and secondary right feathers of the common buzzard Buteo buteo note the asymmetrical orientation of the shafts nbsp Secondaries of a pheasant showing eutaxis above and an eagle showing diastataxis below Secondaries are connected to the ulna In some species the ligaments that bind these remiges to the bone connect to small rounded projections known as quill knobs on the ulna in other species no such knobs exist Secondary feathers remain close together in flight they cannot be individually separated like the primaries can and help to provide lift by creating the airfoil shape of the bird s wing Secondaries tend to be shorter and broader than primaries with blunter ends see illustration They vary in number from 6 in hummingbirds to as many as 40 in some species of albatross 17 In general larger and longer winged species have a larger number of secondaries 17 Birds in more than 40 non passerine families seem to be missing the fifth secondary feather on each wing a state known as diastataxis those that do have the fifth secondary are said to be eutaxic In these birds the fifth set of secondary covert feathers does not cover any remiges possibly due to a twisting of the feather papillae during embryonic development Loons grebes pelicans hawks and eagles cranes sandpipers gulls parrots and owls are among the families missing this feather 18 Tertials edit Tertials arise in the brachial region and are not considered true remiges as they are not supported by attachment to the corresponding bone in this case the humerus These elongated true tertials act as a protective cover for all or part of the folded primaries and secondaries and do not qualify as flight feathers as such 19 However many authorities use the term tertials to refer to the shorter more symmetrical innermost secondaries of passerines arising from the olecranon and performing the same function as true tertials in an effort to distinguish them from other secondaries The term humeral is sometimes used for birds such as the albatrosses and pelicans that have a long humerus 20 21 Tectrices edit The calami of the flight feathers are protected by a layer of non flight feathers called covert feathers or tectrices singular tectrix at least one layer of them both above and beneath the flight feathers of the wings as well as above and below the rectrices of the tail 22 These feathers may vary widely in size in fact the upper tail tectrices of the male peafowl rather than its rectrices are what constitute its elaborate and colorful train 23 Emargination edit The outermost primaries of large soaring birds particularly raptors often show a pronounced narrowing at some variable distance along the feather edges These narrowings are called either notches or emarginations depending on the degree of their slope 18 An emargination is a gradual change and can be found on either side of the feather A notch is an abrupt change and is only found on the wider trailing edge of the remex Both are visible on the primary in the photo showing the feathers they can be found about halfway along both sides of the left hand feather a shallow notch on the left and a gradual emargination on the right The presence of notches and emarginations creates gaps at the wingtip air is forced through these gaps increasing the generation of lift 24 Alula edit nbsp Male mallard Anas platyrhynchos landing showing outspread alulae on the leading edge of the wingFeathers on the alula or bastard wing are not generally considered to be flight feathers in the strict sense though they are asymmetrical they lack the length and stiffness of most true flight feathers However alula feathers are definitely an aid to slow flight These feathers which are attached to the bird s thumb and normally lie flush against the anterior edge of the wing function in the same way as the slats on an airplane wing allowing the wing to achieve a higher than normal angle of attack and thus lift without resulting in a stall By manipulating its thumb to create a gap between the alula and the rest of the wing a bird can avoid stalling when flying at low speeds or landing 18 Delayed development in hoatzins edit The development of the remiges and alulae of nestling hoatzins is much delayed compared to the development of these feathers in other young birds presumably because young hoatzins are equipped with claws on their first two digits They use these small rounded hooks to grasp branches when clambering about in trees and feathering on these digits would presumably interfere with that functionality Most youngsters shed their claws sometime between their 70th and 100th day of life but some retain them though callused over and unusable into adulthood 25 26 Rectrices editRectrices singular rectrix from the Latin word for helmsman help the bird to brake and steer in flight These feathers lie in a single horizontal row on the rear margin of the anatomic tail Only the central pair are attached via ligaments to the tail bones the remaining rectrices are embedded into the rectricial bulbs complex structures of fat and muscle that surround those bones Rectrices are always paired with a vast majority of species having six pairs They are absent in grebes and some ratites and greatly reduced in size in penguins 16 27 28 29 Many grouse species have more than 12 rectrices In some species including ruffed grouse hazel grouse and common snipe the number varies among individuals 30 Domestic pigeons have a highly variable number as a result of changes brought about over centuries of selective breeding 31 Numbering conventions editIn order to make the discussion of such topics as moult processes or body structure easier ornithologists assign a number to each flight feather By convention the numbers assigned to primary feathers always start with the letter P P1 P2 P3 etc those of secondaries with the letter S those of tertials with T and those of rectrices with R Most authorities number the primaries descendantly starting from the innermost primary the one closest to the secondaries and working outwards others number them ascendantly from the most distal primary inwards 15 There are some advantages to each method Descendant numbering follows the normal sequence of most birds primary moult In the event that a species is missing the small distal 10th primary as some passerines are its lack does not impact the numbering of the remaining primaries Ascendant numbering on the other hand allows for uniformity in the numbering of non passerine primaries as they almost invariably have four attached to the manus regardless of how many primaries they have overall 15 This method is particularly useful for indicating wing formulae as the outermost primary is the one with which the measurements begin Secondaries are always numbered ascendantly starting with the outermost secondary the one closest to the primaries and working inwards 15 Tertials are also numbered ascendantly but in this case the numbers continue on consecutively from that given to the last secondary e g S5 S6 T7 T8 etc 15 Rectrices are always numbered from the centermost pair outwards in both directions 32 Specialized flight feathers edit nbsp Male long tailed paradise whydah Vidua paradisaea showing modified rectricesThe flight feathers of some species provide additional functionality In some species for example either remiges or rectrices make a sound during flight These sounds are most often associated with courtship or territorial displays The outer primaries of male broad tailed hummingbirds produce a distinctive high pitched trill both in direct flight and in power dives during courtship displays this trill is diminished when the outer primaries are worn and absent when those feathers have been moulted 33 During the northern lapwing s zigzagging display flight the bird s outer primaries produce a humming sound 34 The outer primaries of the male American woodcock are shorter and slightly narrower than those of the female and are likely the source of the whistling and twittering sounds made during his courtship display flights 35 Male club winged manakins use modified secondaries to make a clear trilling courtship call A curve tipped secondary on each wing is dragged against an adjacent ridged secondary at high speeds as many as 110 times per second slightly faster than a hummingbird s wingbeat to create a stridulation much like that produced by some insects 36 Both Wilson s and common snipe have modified outer tail feathers which make noise when they are spread during the birds roller coaster display flights as the bird dives wind flows through the modified feathers and creates a series of rising and falling notes which is known as winnowing 37 Differences between the sounds produced by these two former conspecific subspecies and the fact that the outer two pairs of rectrices in Wilson s snipe are modified while only the single outermost pair are modified in common snipe were among the characteristics used to justify their splitting into two distinct and separate species nbsp Leading edge of an owl feather showing serrationsFlight feathers are also used by some species in visual displays Male standard winged and pennant winged nightjars have modified P2 primaries using the descendant numbering scheme explained above which are displayed during their courtship rituals 38 In the standard winged nightjar this modified primary consists of an extremely long shaft with a small pennant actually a large web of barbules at the tip In the pennant winged nightjar the P2 primary is an extremely long but otherwise normal feather while P3 P4 and P5 are successively shorter the overall effect is a broadly forked wingtip with a very long plume beyond the lower half of the fork Males of many species ranging from the widely introduced ring necked pheasant to Africa s many whydahs have one or more elongated pairs of rectrices which play an often critical role in their courtship rituals The outermost pair of rectrices in male lyrebirds are extremely long and strongly curved at the ends These plumes are raised up over the bird s head along with a fine spray of modified uppertail coverts during his extraordinary display Rectrix modification reaches its pinnacle among the birds of paradise which display an assortment of often bizarrely modified feathers ranging from the extremely long plumes of the ribbon tailed astrapia nearly three times the length of the bird itself to the dramatically coiled twin plumes of the magnificent bird of paradise Owls have remiges which are serrated rather than smooth on the leading edge This adaptation disrupts the flow of air over the wings eliminating the noise that airflow over a smooth surface normally creates and allowing the birds to fly and hunt silently 39 The rectrices of woodpeckers are proportionately short and very stiff allowing them to better brace themselves against tree trunks while feeding This adaptation is also found though to a lesser extent in some other species that feed along tree trunks including treecreepers and woodcreepers Scientists have not yet determined the function of all flight feather modifications Male swallows in the genera Psalidoprocne and Stelgidopteryx have tiny recurved hooks on the leading edges of their outer primaries but the function of these hooks is not yet known some authorities suggest they may produce a sound during territorial or courtship displays 40 Vestigiality in flightless birds edit nbsp Double wattled cassowary Casuarius casuarius showing modified remigesOver time a small number of bird species have lost their ability to fly Some of these such as the steamer ducks show no appreciable changes in their flight feathers Some such as the Titicaca grebe and a number of the flightless rails have a reduced number of primaries 41 The remiges of ratites are soft and downy they lack the interlocking hooks and barbules that help to stiffen the flight feathers of other birds In addition the emu s remiges are proportionately much reduced in size while those of the cassowaries are reduced both in number and structure consisting merely of 5 6 bare quills Most ratites have completely lost their rectrices only the ostrich still has them Penguins have lost their differentiated flight feathers As adults their wings and tail are covered with the same small stiff slightly curved feathers as are found on the rest of their bodies The ground dwelling kakapō which is the world s only flightless parrot has remiges which are shorter rounder and more symmetrically vaned than those of parrots capable of flight these flight feathers also contain fewer interlocking barbules near their tips 42 Moult edit nbsp Eurasian jackdaw Corvus monedula showing moult of central rectricesOnce they have finished growing feathers are essentially dead structures Over time they become worn and abraded and need to be replaced This replacement process is known as moult molt in the United States The loss of wing and tail feathers can affect a bird s ability to fly sometimes dramatically and in certain families can impair the ability to feed or perform courtship displays The timing and progression of flight feather moult therefore varies among families For most birds moult begins at a certain specific point called a focus plural foci on the wing or tail and proceeds in a sequential manner in one or both directions from there For example most passerines have a focus between the innermost primary P1 using the numbering scheme explained above and outermost secondary S1 and a focus point in the middle of the center pair of rectrices 43 As passerine moult begins the two feathers closest to the focus are the first to drop When replacement feathers reach roughly half of their eventual length the next feathers in line P2 and S2 on the wing and both R2s on the tail are dropped This pattern of drop and replacement continues until moult reaches either end of the wing or tail The speed of the moult can vary somewhat within a species Some passerines that breed in the Arctic for example drop many more flight feathers at once sometimes becoming briefly flightless in order to complete their entire wing moult prior to migrating south while those same species breeding at lower latitudes undergo a more protracted moult 44 nbsp Young white bellied sea eagle Haliaeetus leucogaster in flight showing moult waves in wingsIn many species there is more than one focus along the wing Here moult begins at all foci simultaneously but generally proceeds only in one direction Most grouse for example have two wing foci one at the wingtip the other between feathers P1 and S1 In this case moult proceeds descendantly from both foci Many large long winged birds have multiple wing foci Birds that are heavily wing loaded that is heavy bodied birds with relatively short wings have great difficulty flying with the loss of even a few flight feathers A protracted moult like the one described above would leave them vulnerable to predators for a sizeable portion of the year Instead these birds lose all their flight feathers at once This leaves them completely flightless for a period of three to four weeks but means their overall period of vulnerability is significantly shorter than it would otherwise be Eleven families of birds including loons grebes and most waterfowl have this moult strategy The cuckoos show what is called saltatory or transilient wing moults In simple forms this involves the moulting and replacement of odd numbered primaries and then the even numbered primaries There are however complex variations with differences based on life history 45 Arboreal woodpeckers which depend on their tails particularly the strong central pair of rectrices for support while they feed have a unique tail moult Rather than moulting their central tail feathers first as most birds do they retain these feathers until last Instead the second pair of rectrices both R2 feathers are the first to drop In some species in the genera Celeus and Dendropicos the third pair is the first dropped The pattern of feather drop and replacement proceeds as described for passerines above until all other rectrices have been replaced only then are the central tail rectrices moulted This provides some protection to the growing feathers since they re always covered by at least one existing feather and also ensures that the bird s newly strengthened tail is best able to cope with the loss of the crucial central rectrices Ground feeding woodpeckers such as the wrynecks do not have this modified moult strategy in fact wrynecks moult their outer tail feathers first with moult proceeding proximally from there Age differences in flight feathers edit nbsp Western gull chick about 3 weeks old flapping its developing wingsThere are often substantial differences between the remiges and rectrices of adults and juveniles of the same species Because all juvenile feathers are grown at once a tremendous energy burden to the developing bird they are softer and of poorer quality than the equivalent feathers of adults which are moulted over a longer period of time as long as several years in some cases 46 As a result they wear more quickly As feathers grow at variable rates these variations lead to visible dark and light bands in the fully formed feather These growth bars and their widths have been used to determine the daily nutritional status of birds Each light and dark bar correspond to around 24 hours and the use of this technique has been called ptilochronology analogous to dendrochronology 47 48 In general juveniles have feathers which are narrower and more sharply pointed at the tip 49 50 This can be particularly visible when the bird is in flight especially in the case of raptors The trailing edge of the wing of a juvenile bird can appear almost serrated due to the feathers sharp tips while that of an older bird will be straighter edged 49 The flight feathers of a juvenile bird will also be uniform in length since they all grew at the same time Those of adults will be of various lengths and levels of wear since each is moulted at a different time 46 The flight feathers of adults and juveniles can differ considerably in length particularly among the raptors Juveniles tend to have slightly longer rectrices and shorter broader wings with shorter outer primaries and longer inner primaries and secondaries than do adults of the same species 51 However there are many exceptions In longer tailed species such as swallow tailed kite secretary bird and European honey buzzard for example juveniles have shorter rectrices than adults do Juveniles of some Buteo buzzards have narrower wings than adults do while those of large juvenile falcons are longer It is theorized that the differences help young birds compensate for their inexperience weaker flight muscles and poorer flying ability 51 Wing formula edit nbsp Measuring primary lengths one of the steps in determining a bird s wing formulaA wing formula describes the shape of distal end of a bird s wing in a mathematical way It can be used to help distinguish between species with similar plumages and thus is particularly useful for those who ring band birds 18 To determine a bird s wing formula the distance between the tip of the most distal primary and the tip of its greater covert the longest of the feathers that cover and protect the shaft of that primary is measured in millimeters In some cases this results in a positive number e g the primary extends beyond its greater covert while in other cases it is a negative number e g the primary is completely covered by the greater covert as happens in some passerine species Next the longest primary feather is identified and the differences between the length of that primary and that of all remaining primaries and of the longest secondary are also measured again in millimeters If any primary shows a notch or emargination this is noted and the distance between the feather s tip and any notch is measured as is the depth of the notch All distance measurements are made with the bird s wing closed so as to maintain the relative positions of the feathers While there can be considerable variation across members of a species and while the results are obviously impacted by the effects of moult and feather regeneration even very closely related species show clear differences in their wing formulas 18 Primary extension edit nbsp Comparison of primary extensions chiffchaff left and willow warblerThe distance that a bird s longest primaries extend beyond its longest secondaries or tertials when its wings are folded is referred to as the primary extension or primary projection 52 As with wing formulae this measurement is useful for distinguishing between similarly plumaged birds however unlike wing formulae it is not necessary to have the bird in hand to make the measurement Rather this is a useful relative measurement some species have long primary extensions while others have shorter ones Among the Empidonax flycatchers of the Americas for example the dusky flycatcher has a much shorter primary extension than does the very similarly plumaged Hammond s flycatcher 52 Europe s common skylark has a long primary projection while that of the near lookalike Oriental skylark is very short 53 As a general rule species which are long distance migrants will have longer primary projection than similar species which do not migrate or migrate shorter distances 54 See also editBird anatomy Bird flight Drumming snipe Pinioning Plumage Delayed feathering in chickensNotes edit Julian J Baumel Handbook of Avian Anatomy Nomina Anatomica Avium 1993 Bruce Campbell Elizabeth Lack A Dictionary of Birds T amp AD Poyser Ltd 1985 Olin Sewall Pettingill Jr Ornithology in Laboratory and Field 5th Edition Academic Press 1985 Brian K Wheeler Birds of Prey of the West A Field Guide Princeton University Press 2018 Lukas Jenni Raffael Winkler The Biology of Moult in Birds Bloomsbury Publishing Plc 2020 John J Videler Avian Flight Oxford University Press 2005 Oxford Dictionary of English 3rd Edition Oxford University Press 2010 Podulka Sandy Ronald W Rohrbaugh Rick Bonney eds 2003 Home Study Course in Bird Biology Second Edition Ithaca New York Cornell Lab of Ornithology p 1 11 Trail 2001 p 8 Moller Anders Pape Hoglund Jacob 1991 Patterns of Fluctuating Asymmetry in Avian Feather Ornaments Implications for Models of Sexual Selection Proceedings Biological Sciences 245 1312 1 5 Bibcode 1991RSPSB 245 1P doi 10 1098 rspb 1991 0080 S2CID 84991514 Wang Bin 2017 Seagull feather shaft Correlation between structure and mechanical response Acta Biomaterialia 48 270 288 doi 10 1016 j actbio 2016 11 006 PMID 27818305 Ehrlich et al 1994 p 219 Ehrlich et al 1994 p 79 Muller Werner Patone Giannino 1998 Air transmissivity of feathers PDF Journal of Experimental Biology 201 18 2591 2599 doi 10 1242 jeb 201 18 2591 PMID 9716511 a b c d e f Jenni amp Winkler 1994 p 7 a b c d del Hoyo Elliott amp Sargatal 1992 p 37 a b Sibley et al 2001 p 17 a b c d e Campbell amp Lack 1985 p 656 Ferguson Lees amp Christie 2001 p 27 Hickman Scott 2008 The trouble with tertials Auk 125 2 493 doi 10 1525 auk 2008 2408 S2CID 85245232 Berger AJ amp WA Lunk 1954 The Pterylosis of the Nestling Coua ruficeps PDF Wilson Bulletin 66 2 119 126 R M Pierce 1911 Dictionary of aviation Ripol Klassik pp 69 70 ISBN 978 5 87745 565 8 Jason A Mobley 2008 Birds of the World Marshall Cavendish p 295 ISBN 978 0 7614 7775 4 Trail 2001 p 6 Campbell amp Lack 1985 p 285 del Hoyo Elliott amp Sargatal 1997 p 29 del Hoyo Elliott amp Sargatal 1992 p 176 del Hoyo Elliott amp Sargatal 1992 pp 84 85 91 104 del Hoyo Elliott amp Sargatal 1992 p 141 Madge Steve McGowan Phil 2002 Pheasants Partridges amp Grouse London Christopher Helm p 375 ISBN 0 7136 3966 0 del Hoyo Elliott amp Sargatal 1997 p 105 Jenni amp Winkler 1994 p 8 Howell Steve N G 2002 Hummingbirds of North America London Academic Press p 180 ISBN 0 12 356955 9 Ehrlich et al 1994 p 183 Paulson 2005 p 333 Bostwick Kimberly S Prum Richard O 2005 Courting Bird Sings with Stridulating Wing Feathers Science 309 5735 736 doi 10 1126 science 1111701 PMID 16051789 S2CID 22278735 Paulson 2005 p 323 Cleere Nigel Nurney Dave 1998 Nightjars A Guide to Nightjars and Related Nightbirds Mountfield East Sussex Pica Press p 98 ISBN 1 873403 48 8 Ehrlich et al 1994 pp 251 253 del Hoyo Elliott amp Christie 2004 p 609 Taylor Barry van Berlo Ber 1998 Rails London Christopher Helm p 33 ISBN 1 873403 59 3 Livezey Bradley C 2005 Morphological corollaries and ecological implications of flightlessness in the kakapo Psittaciformes Strigops habroptilus Journal of Morphology 213 1 105 145 doi 10 1002 jmor 1052130108 PMID 29865598 S2CID 206090256 archived from the original on 10 December 2012 Campbell amp Lack 1985 p 361 Campbell amp Lack 1985 p 363 Robert B Payne 2005 The Cuckoos Cuculidae Oxford University Press p 52 ISBN 0 19 850213 3 a b Forsman 1999 p 9 Grubb 1989 Shawkey Beck amp Hill 2003 a b Forsman 1999 p 16 Jenni amp Winkler 1994 p 29 a b Ferguson Lees amp Christie 2001 p 39 a b Kaufman Kenn 1990 Advanced Birding Boston Houghton Mifflin p 186 ISBN 0 395 53376 7 Svensson Lars Grant Peter J 1999 Collins Bird Guide The Most Complete Field Guide to the Birds of Britain and Europe London HarperCollins p 231 ISBN 0 00 219728 6 Christie Thomas Alerstam translated by David A 1993 Bird migration Cambridge England Cambridge University Press p 253 ISBN 0521448220 a href Template Cite book html title Template Cite book cite book a CS1 maint multiple names authors list link References editCampbell Bruce Lack Elizabeth eds 1985 A Dictionary of Birds Carlton England T and A D Poyser ISBN 0 85661 039 9 del Hoyo Josep Elliott Andrew Sargatal Jordi eds 1992 Handbook of the Birds of the World Volume 1 Ostrich to Ducks Barcelona Lynx Edicions ISBN 84 87334 10 5 del Hoyo Josep Elliott Andrew Sargatal Jordi eds 1997 Handbook of the Birds of the World Volume 4 Sandgrouse to Cuckoos Barcelona Lynx Edicions ISBN 84 87334 22 9 del Hoyo Josep Elliott Andrew Christie David eds 2004 Handbook of the Birds of the World Volume 9 Cotingas to Pipits and Wagtails Barcelona Lynx Edicions ISBN 84 87334 69 5 Ehrlich Paul R Dobkin Darryl A Wheye Darryl Pimm Stuart L 1994 The Birdwatcher s Handbook Oxford University Press ISBN 0 19 858407 5 Ferguson Lees James Christie David A 2001 Raptors of the World London Christopher Helm ISBN 0 7136 8026 1 Forsman Dick 1999 The Raptors of Europe and the Middle East London T and A D Poyser ISBN 0 85661 098 4 Grubb T C 1989 Ptilochronology feather growth bars as indicators of nutritional status Auk 106 2 314 320 JSTOR 4087726 Jenni Lukas Winkler Raffael 1994 Moult and Ageing of European Passerines London Academic Press ISBN 0 12 384150 X Paulson Dennis 2005 Shorebirds of North America London Christopher Helm ISBN 0 7136 7377 X Shawkey Matthew D Beck Michelle L Hill Geoffrey E 2003 Use of a gel documentation system to measure feather growth bars J Field Ornithol 74 2 125 128 doi 10 1648 0273 8570 74 2 125 S2CID 55380093 Sibley David et al 2001 The Sibley Guide to Bird Life amp Behaviour London Christopher Helm ISBN 0 7136 6250 6 Trail Pepper 2001 Wing Feathers PDF U S Fish and Wildlife Service retrieved 4 August 2017External links editWing Feathers US Fish and Wildlife Service document Archived 30 September 2017 at the Wayback Machine Contains excellent photographic examples of emargination and notching in raptor remiges Video of feeding Magellanic woodpecker Campephilus magellanicus Shows use of rectrices for bracing Video of singing male superb lyrebird Menuta novaehollandiae Shows long modified rectrices which are used in display though the video doesn t show full display Video of male club winged manakin Machaeropterus deliciosus Shows use of secondary remiges to produce sound Cornell Laboratory of Ornithology s American woodcock Scolopax minor recordings 94216 has a good example of the sounds made by remiges during courtship display flight starting at about 2 32 Sound made by rectrices in courtship flight of common snipe Gallinago gallinago Retrieved from https en wikipedia org w index php title Flight feather amp oldid 1207011485, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.