fbpx
Wikipedia

Crystal polymorphism

In crystallography, polymorphism describes the phenomenon where a compound or element can crystallize into more than one crystal structure. The preceding definition has evolved over many years and is still under discussion today.[1][2][3] Discussion of the defining characteristics of polymorphism involves distinguishing among types of transitions and structural changes occurring in polymorphism versus those in other phenomena.

It is also useful to note that materials with two polymorphic phases can be called dimorphic, those with three polymorphic phases, trimorphic, etc.[4]

Overview edit

Phase transitions (phase changes) that help describe polymorphism include polymorphic transitions as well as melting and vaporization transitions. According to IUPAC, a polymorphic transition is "A reversible transition of a solid crystalline phase at a certain temperature and pressure (the inversion point) to another phase of the same chemical composition with a different crystal structure."[5] Additionally, Walter McCrone described the phases in polymorphic matter as "different in crystal structure but identical in the liquid or vapor states." McCrone also defines a polymorph as “a crystalline phase of a given compound resulting from the possibility of at least two different arrangements of the molecules of that compound in the solid state.”[6][7] These defining facts imply that polymorphism involves changes in physical properties but cannot include chemical change. Some early definitions do not make this distinction.

Eliminating chemical change from those changes permissible during a polymorphic transition delineates polymorphism. For example, isomerization can often lead to polymorphic transitions. However, tautomerism (dynamic isomerization) leads to chemical change, not polymorphism.[1] As well, allotropy of elements and polymorphism have been linked historically. However, allotropes of an element are not always polymorphs. A common example is the allotropes of carbon, which include graphite, diamond, and londsdaleite. While all three forms are allotropes, graphite is not a polymorph of diamond and londsdaleite. The reason is that graphite is chemically distinct, having sp2 hybridized bonding, while diamond, and londsdaleite are chemically identical, both having sp3 hybridized bonding. Diamond and londsdaleite differ in their crystal structures but do not differ chemically.[2] Isomerization and allotropy are only two of the phenomena linked to polymorphism. For additional information about identifying polymorphism and distinguishing it from other phenomena, see the review by Brog et al.[2]

Polymorphism is of practical relevance to pharmaceuticals, agrochemicals, pigments, dyestuffs, foods, and explosives.

Detection edit

Experimental methods edit

Early records of the discovery of polymorphism credit Eilhard Mitscerlich and Jöns Jacob Berzelius for their studies of phosphates and arsenates in the early 1800s. The studies involved measuring the interfacial angles of the crystals to show that chemically identical salts could have two different forms. Mitscerlich originally called this discovery isomorphism.[8] The measurement of crystal density was also used by Wilhelm Ostwald and expressed in Ostwald's Ratio.[9]

The development of the microscope enhanced observations of polymorphism and aided Moritz Ludwig Frankenheim’s studies in the 1830s. He was able to demonstrate methods to induce crystal phase changes and formally summarized his findings on the nature of polymorphism. Soon after, the more sophisticated polarized light microscope came into use, and it provided better visualization of crystalline phases allowing crystallographers to distinguish between different polymorphs. The hot stage was invented and fitted to a polarized light microscope by Otto Lehmann in about 1877. This invention helped crystallographers determine melting points and observe polymorphic transitions.[8]

While the use of hot stage microscopes continued throughout the 1900s, thermal methods also became commonly used to observe the heat flow that occurs during phase changes such as melting and polymorphic transitions. One such technique, differential scanning calorimetry (DSC), continues to be used for determining the enthalpy of polymorphic transitions.[8]

In the 20th century, X-ray crystallography became commonly used for studying the crystal structure of polymorphs. Both single crystal x-ray diffraction and powder x-ray diffraction techniques are used to obtain measurements of the crystal unit cell. Each polymorph of a compound has a unique crystal structure. As a result, different polymorphs will produce different x-ray diffraction patterns.[8]

Vibrational spectroscopic methods came into use for investigating polymorphism in the second half of the twentieth century and have become more commonly used as optical, computer, and semiconductor technologies improved. These techniques include infrared (IR) spectroscopy, terahertz spectroscopy and Raman spectroscopy. Mid-frequency IR and Raman spectroscopies are sensitive to changes in hydrogen bonding patterns. Such changes can subsequently be related to structural differences. Additionally, terahertz and low frequency Raman spectroscopies reveal vibrational modes resulting from intermolecular interactions in crystalline solids. Again, these vibrational modes are related to crystal structure and can be used to uncover differences in 3-dimensional structure among polymorphs.[10]

Computational methods edit

Computational chemistry may be used in combination with vibrational spectroscopy techniques to understand the origins of vibrations within crystals.[10] The combination of techniques provides detailed information about crystal structures, similar to what can be achieved with x-ray crystallography. In addition to using computational methods for enhancing the understanding of spectroscopic data, the latest development in identifying polymorphism in crystals is the field of crystal structure prediction. This technique uses computational chemistry to model the formation of crystals and predict the existence of specific polymorphs of a compound before they have been observed experimentally by scientists.[11][12]

Examples edit

Many compounds exhibit polymorphism. It has been claimed that "every compound has different polymorphic forms, and that, in general, the number of forms known for a given compound is proportional to the time and money spent in research on that compound."[13][6][14]

Organic compounds edit

 
 
Calcite (on left) and Aragonite (on right), two forms of calcium carbonate. Note: the colors are from impurities.

Benzamide edit

The phenomenon was discovered in 1832 by Friedrich Wöhler and Justus von Liebig. They observed that the silky needles of freshly crystallized benzamide slowly converted to rhombic crystals.[15] Present-day analysis[16] identifies three polymorphs for benzamide: the least stable one, formed by flash cooling is the orthorhombic form II. This type is followed by the monoclinic form III (observed by Wöhler/Liebig). The most stable form is monoclinic form I. The hydrogen bonding mechanisms are the same for all three phases; however, they differ strongly in their pi-pi interactions.

Maleic acid edit

In 2006 a new polymorph of maleic acid was discovered, 124 years after the first crystal form was studied. Maleic acid is manufactured on an industrial scale in the chemical industry. It forms salt found in medicine. The new crystal type is produced when a co-crystal of caffeine and maleic acid (2:1) is dissolved in chloroform and when the solvent is allowed to evaporate slowly. Whereas form I has monoclinic space group P21/c, the new form has space group Pc. Both polymorphs consist of sheets of molecules connected through hydrogen bonding of the carboxylic acid groups: in form I, the sheets alternate with respect of the net dipole moment, while in form II, the sheets are oriented in the same direction.[17]

1,3,5-Trinitrobenzene edit

After 125 years of study, 1,3,5-trinitrobenzene yielded a second polymorph. The usual form has the space group Pbca, but in 2004, a second polymorph was obtained in the space group Pca21 when the compound was crystallised in the presence of an additive, trisindane. This experiment shows that additives can induce the appearance of polymorphic forms.[18]

Other organic compounds edit

Acridine has been obtained as eight polymorphs[19] and aripiprazole has nine.[20] The record for the largest number of well-characterised polymorphs is held by a compound known as ROY.[21][22] Glycine crystallizes as both monoclinic and hexagonal crystals. Polymorphism in organic compounds is often the result of conformational polymorphism.[23]

Inorganic compounds edit

Binary metal oxides edit

Polymorphism in binary metal oxides has attracted much attention because these materials are of significant economic value. One set of famous examples have the composition SiO2, which form many polymorphs. Important ones include: α-quartz, β-quartz, tridymite, cristobalite, moganite, coesite, and stishovite.[24] [25]

Metal oxides Phase Conditions of P and T Structure/Space Group
CrO2 α phase Ambient conditions Cl2-type Orthorhombic
RT and 12±3 GPa
Cr2O3 Corundum phase Ambient conditions Corundum-type Rhombohedral (R3c)
High pressure phase RT and 35 GPa Rh2O3-II type
Fe2O3 α phase Ambient conditions Corundum-type Rhombohedral (R3c)
β phase Below 773 K Body-centered cubic (Ia3)
γ phase Up to 933 K Cubic spinel structure (Fd3m)
ε phase -- Rhombic (Pna21)
Bi2O3 α phase Ambient conditions Monoclinic (P21/c)
β phase 603-923 K and 1 atm Tetragonal
γ phase 773-912 K or RT and 1 atm Body-centered cubic
δ phase 912-1097 K and 1 atm FCC (Fm3m)
In2O3 Bixbyite-type phase Ambient conditions Cubic (Ia3)
Corundum-type 15-25 GPa at 1273 K Corundum-type Hexagonal (R3c)
Rh2O3(II)-type 100 GPa and 1000 K Orthorhombic
Al2O3 α phase Ambient conditions Corundum-type Trigonal (R3c)
γ phase 773 K and 1 atm Cubic (Fd3m)
SnO2 α phase Ambient conditions Rutile-type Tetragonal (P42/mnm)
CaCl2-type phase 15 KBar at 1073 K Orthorhombic, CaCl2-type (Pnnm)
α-PbO2-type Above 18 KBar α-PbO2-type (Pbcn)
TiO2 Rutile Equilibrium phase Rutile-type Tetragonal
Anatase Metastable phase (Not stable)[26] Tetragonal (I41/amd)
Brookite Metastable phase (Not stable)[26] Orthorhombic (Pcab)
ZrO2 Monoclinic phase Ambient conditions Monoclinic (P21/c)
Tetragonal phase Above 1443 K Tetragonal (P42/nmc)
Fluorite-type phase Above 2643 K Cubic (Fm3m)
MoO3 α phase 553-673 K & 1 atm Orthorhombic (Pbnm)
β phase 553-673 K & 1 atm Monoclinic
h phase High-pressure and high-temperature phase Hexagonal (P6a/m or P6a)
MoO3-II 60 kbar and 973 K Monoclinic
WO3 ε phase Up to 220 K Monoclinic (Pc)
δ phase 220-300 K Triclinic (P1)
γ phase 300-623 K Monoclinic (P21/n)
β phase 623-900 K Orthorhombic (Pnma)
α phase Above 900 K Tetragonal (P4/ncc)

Other inorganic materials edit

Classical examples of polymorphism are the pair of minerals calcite and aragonite, both forms of calcium carbonate. Allotropy is the term used for elements, for example diamond versus graphite, and in metallurgy.

β-HgS precipitates as a black solid when Hg(II) salts are treated with H2S. With gentle heating of the slurry, the black polymorph converts to the red form.[27]

Factors affecting polymorphism edit

According to Ostwald's rule, usually less stable polymorphs crystallize before the stable form. The concept hinges on the idea that unstable polymorphs more closely resemble the state in solution, and thus are kinetically advantaged. The founding case of fibrous vs rhombic benzamide illustrates the case. Another example is provided by two polymorphs of titanium dioxide.[26] Nevertheless, there are known systems, such as metacetamol, where only narrow cooling rate favors obtaining metastable form II.[28]

Polymorphs have disparate stabilities. Some convert rapidly at room (or any) temperature. Most polymorphs of organic molecules only differ by a few kJ/mol in lattice energy. Approximately 50% of known polymorph pairs differ by less than 2 kJ/mol and stability differences of more than 10 kJ/mol are rare.[29] Valuable to mention that polymorph stability may change upon temperature[30][31][32] or pressure.[33][34] Important to note that structural and thermodybnamic stability are different. Thermodynamic stability may be studied using experimental or computational methods.[35][36]

Polymorphism is affected by the details of crystallisation. The solvent in all respects affects the nature of the polymorph, including concentration, other components of the solvent, i.e., species that inhibiting or promote certain growth patterns.[37] A decisive factor is often the temperature of the solvent from which crystallisation is carried out.[38]

Metastable polymorphs are not always reproducibly obtained, leading to cases of "disappearing polymorphs", with usually negative implications on law and business.[13][11][39]

In pharmaceuticals edit

Legal aspects edit

Drugs receive regulatory approval and are granted patents for only a single polymorph.

In a classic patent dispute, the GlaxoSmithKline defended its patent for the Type II polymorph of the active ingredient in Zantac against competitors while that of the Type I polymorph had already expired.[40]

Polymorphism in drugs can also have direct medical implications since dissolution rates depend on the polymorph. Polymorphic purity of drug samples can be checked using techniques such as powder X-ray diffraction, IR/Raman spectroscopy, and utilizing the differences in their optical properties in some cases.[41]

Case studies edit

The known cases up to 2015 are discussed in a review article by Bučar, Lancaster, and Bernstein.[11]

Dibenzoxazepines

Multidisciplinary studies involving experimental and computational approaches were applied to pharmaceutical molecules to facilitate the comparison of their solid-state structures. Specifically, this study has focused on exploring how changes in molecular structure affect the molecular conformation, packing motifs, interactions in the resultant crystal lattices and the extent of solid-state diversity of these compounds. The results highlight the value of crystal structure prediction studies and PIXEL calculations in the interpretation of the observed solid-state behaviour and quantifying the intermolecular interactions in the packed structures and identifying the key stabilising interactions. An experimental screen yielded 4 physical forms for clozapine as compared to 60 distinct physical forms for olanzapine. The experimental screening results of clozapine are consistent with its crystal energy landscape which confirms that no alternate packing arrangement is thermodynamically competitive to the experimentally obtained structure. Whilst in case of olanzapine, crystal energy landscape highlights that the extensive experimental screening has probably not found all possible polymorphs of olanzapine, and further solid form diversity could be targeted with a better understanding of the role of kinetics in its crystallisation. CSP studies were able to offer an explanation for the absence of the centrosymmetric dimer in anhydrous clozapine. PIXEL calculations on all the crystal structures of clozapine revealed that similar to olanzapine, the intermolecular interaction energy in each structure is also dominated by the Ed. Despite the molecular structure similarity between amoxapine and loxapine (molecules in group 2), the crystal packing observed in polymorphs of loxa differs significantly from the amoxapine. A combined experimental and computational study demonstrated that the methyl group in loxapine has a significant influence in increasing the range of accessible solid forms and favouring various alternate packing arrangements. CSP studies have again helped in explaining the observed solid-state diversity of loxapine and amoxapine. PIXEL calculations showed that in absence of strong H-bonds, weak H-bonds such as C–H...O, C–H...N and dispersion interactions play a key role in stabilising the crystal lattice of both the molecules. Efficient crystal packing of amoxapine seems to be contributing towards its monomorphic behaviour as compared to the comparatively less efficient packing of loxapine molecules in both polymorphs. The combination of experimental and computational approaches has provided a deeper understanding of the factors influencing the solid-state structure and diversity in these compounds. Hirshfeld surfaces using Crystal Explorer represent another way of exploring packing modes and intermolecular interactions in molecular crystals. The influence of changes in the small substituents on shape and electron distribution can also be investigated by mapping the total electron density on the electrostatic potential for molecules in the gas phase. This allows straightforward visualisation and comparison of overall shape, electron-rich and electron-deficient regions within molecules. The shape of these molecules can be further investigated to study its influence on diverse solid-state diversity.[42]

Posaconazole

The original formulations of posaconazole on the market licensed as Noxafil(R) were formulated utilising form I of posaconazole. The discovery of polymorphs of posaconazole increased rapidly and resulted in much research in crystallography of posaconazole. A methanol solvate and a 1,4-dioxane co-crystal were added to the Cambridge Structural Database (CSD).[43]

Ritonavir edit

The antiviral drug ritonavir exists as two polymorphs, which differ greatly in efficacy. Such issues were solved by reformulating the medicine into gelcaps and tablets, rather than the original capsules.[44]

Aspirin edit

There was only one proven polymorph Form I of aspirin, though the existence of another polymorph was debated since the 1960s, and one report from 1981 reported that when crystallized in the presence of aspirin anhydride, the diffractogram of aspirin has weak additional peaks. Though at the time it was dismissed as mere impurity, it was, in retrospect, Form II aspirin.[11]

Form II was reported in 2005,[45][46] found after attempted co-crystallization of aspirin and levetiracetam from hot acetonitrile.

In form I, pairs of aspirin molecules form centrosymmetric dimers through the acetyl groups with the (acidic) methyl proton to carbonyl hydrogen bonds. In form II, each aspirin molecule forms the same hydrogen bonds, but with two neighbouring molecules instead of one. With respect to the hydrogen bonds formed by the carboxylic acid groups, both polymorphs form identical dimer structures. The aspirin polymorphs contain identical 2-dimensional sections and are therefore more precisely described as polytypes.[47]

Pure Form II aspirin could be prepared by seeding the batch with aspirin anhydrate in 15% weight.[11]

Paracetamol edit

Paracetamol powder has poor compression properties, which poses difficulty in making tablets. A second polymorph was found with more suitable compressive properties.[48]

Cortisone acetate edit

Cortisone acetate exists in at least five different polymorphs, four of which are unstable in water and change to a stable form.

Carbamazepine edit

Carbamazepine, estrogen, paroxetine,[49] and chloramphenicol also show polymorphism.

Pyrazinamide edit

Pyrazinamide has at least 4 polymorphs.[50] All of them transforms to stable α form at room temperature upon storage or mechanical treatment.[51] Recent studies prove that α form is thermodynamically stable at room temperature.[30][32]

Polytypism edit

Polytypes are a special case of polymorphs, where multiple close-packed crystal structures differ in one dimension only. Polytypes have identical close-packed planes, but differ in the stacking sequence in the third dimension perpendicular to these planes. Silicon carbide (SiC) has more than 170 known polytypes, although most are rare. All the polytypes of SiC have virtually the same density and Gibbs free energy. The most common SiC polytypes are shown in Table 1.

Table 1: Some polytypes of SiC.[52]

Phase Structure Ramsdell notation Stacking sequence Comment
α-SiC hexagonal 2H AB wurtzite form
α-SiC hexagonal 4H ABCB
α-SiC hexagonal 6H ABCACB the most stable and common form
α-SiC rhombohedral 15R ABCACBCABACABCB
β-SiC face-centered cubic 3C ABC sphalerite or zinc blende form

A second group of materials with different polytypes are the transition metal dichalcogenides, layered materials such as molybdenum disulfide (MoS2). For these materials the polytypes have more distinct effects on material properties, e.g. for MoS2, the 1T polytype is metallic in character, while the 2H form is more semiconducting.[53] Another example is tantalum disulfide, where the common 1T as well as 2H polytypes occur, but also more complex 'mixed coordination' types such as 4Hb and 6R, where the trigonal prismatic and the octahedral geometry layers are mixed.[54] Here, the 1T polytype exhibits a charge density wave, with distinct influence on the conductivity as a function of temperature, while the 2H polytype exhibits superconductivity.

ZnS and CdI2 are also polytypical.[55] It has been suggested that this type of polymorphism is due to kinetics where screw dislocations rapidly reproduce partly disordered sequences in a periodic fashion.

Theory edit

 
Solid phase transitions which transform reversibly without passing through the liquid or gaseous phases are called enantiotropic. In contrast, if the modifications are not convertible under these conditions, the system is monotropic. Experimental data are used to differentiate between enantiotropic and monotropic transitions and energy/temperature semi-quantitative diagrams can be drawn by applying several rules, principally the heat-of-transition rule, the heat-of-fusion rule and the density rule. These rules enable the deduction of the relative positions of the H and Gisobars in the E/T diagram. [1]

In terms of thermodynamics, two types of polymorphic behaviour are recognized. For a monotropic system, plots of the free energies of the various polymorphs against temperature do not cross before all polymorphs melt. As a result, any transition from one polymorph to another below the melting point will be irreversible. For an enantiotropic system, a plot of the free energy against temperature shows a crossing point before the various melting points.[56] It may also be possible to convert interchangeably between the two polymorphs by heating or cooling, or through physical contact with a lower energy polymorph.

A simple model of polymorphism is to model the Gibbs free energy of a ball-shaped crystal as  . Here, the first term   is the surface energy, and the second term   is the volume energy. Both parameters  . The function   rises to a maximum before dropping, crossing zero at  . In order to crystallize, a ball of crystal much overcome the energetic barrier to the   part of the energy landscape.[57]

 
Figure 2

Now, suppose there are two kinds of crystals, with different energies   and  , and if they have the same shape as in Figure 2, then the two curves intersect at some  . Then the system has three phases:

  •  . Crystals tend to dissolve. Amorphous phase.
  •  . Crystals tend to grow as form 1.
  •  . Crystals tend to grow as form 2.

If the crystal is grown slowly, it could be kinetically stuck in form 1.

See also edit

References edit

  1. ^ a b Bernstein, Joel (2002). Polymorphism in Molecular Crystals. New York, USA: Oxford University Press. pp. 1–27. ISBN 0198506058.
  2. ^ a b c Brog, Jean-Pierre; Chanez, Claire-Lise; Crochet, Aurelien; Fromm, Katharina M. (2013). "Polymorphism, what it is and how to identify it: a systematic review". RSC Advances. 3 (38): 16905–31. Bibcode:2013RSCAd...316905B. doi:10.1039/c3ra41559g.
  3. ^ Cruz-Cabeza, Aurora J.; Reutzel-Edens, Susan M.; Bernstein, Joel (2015). "Facts and fictions about polymorphism". Chemical Society Reviews. 44 (23): 8619–8635. doi:10.1039/c5cs00227c. PMID 26400501 – via MEDLINE.
  4. ^ "Definition of trimorphism - mindat.org glossary". www.mindat.org. Retrieved 2016-10-23.
  5. ^ Gold, Victor, ed. (2019). "Polymorphic transition". IUPAC Gold Book. doi:10.1351/goldbook. Retrieved January 28, 2024.
  6. ^ a b McCrone, W. C. (1965). "Polymorphism". In Fox, D.; Labes, M.; Weissberger, A. (eds.). Physics and Chemistry of the Organic Solid State. Vol. 2. Wiley-Interscience. pp. 726–767.
  7. ^ Dunitz, Jack D.; Bernstein, Joel (1995-04-01). "Disappearing Polymorphs". Accounts of Chemical Research. 28 (4): 193–200. doi:10.1021/ar00052a005. ISSN 0001-4842.
  8. ^ a b c d Bernstein, Joel (2002). Polymorphism in Molecular Crystals. New York, USA: Oxford University Press. pp. 94–149. ISBN 0198506058.
  9. ^ Cardew, Peter T. (2023). "Ostwald Rule of Stages - Myth or Reality?". Crystal Growth and Design. 23 (6): 3958−3969. doi:10.1021/acs.cgd.2c00141.
  10. ^ a b Parrott, Edward P.J.; Zeitler, J. Axel (2015). "Terahertz Time-Domain and Low-Frequency Raman Spectroscopy of Organic Materials". Applied Spectroscopy. 69 (1): 1–25. Bibcode:2015ApSpe..69....1P. doi:10.1366/14-07707. PMID 25506684. S2CID 7699996.
  11. ^ a b c d e Bučar, D.-K.; Lancaster, R. W.; Bernstein, J. (2015). "Disappearing Polymorphs Revisited". Angewandte Chemie International Edition. 54 (24): 6972–6993. doi:10.1002/anie.201410356. PMC 4479028. PMID 26031248.
  12. ^ Bowskill, David H.; Sugden, Isaac J.; Konstantinopoulos, Stefanos; Adjiman, Claire S.; Pantelides, Constantinos C. (2021). "Crystal Structure Prediction Methods for Organic Molecules: State of the Art". Annu. Rev. Chem. Biomol. Eng. 12: 593–623. doi:10.1146/annurev-chembioeng-060718-030256. PMID 33770462. S2CID 232377397.
  13. ^ a b Crystal Engineering: The Design and Application of Functional Solids, Volume 539, Kenneth Richard Seddon, Michael Zaworotk 1999
  14. ^ Pharmaceutical Stress Testing: Predicting Drug Degradation, Second Edition Steven W. Baertschi, Karen M. Alsante, Robert A. Reed 2011 CRC Press
  15. ^ Wöhler, F.; Liebig, J.; Ann (1832). "Untersuchungen über das Radikal der Benzoesäure". Annalen der Pharmacie (in German). 3 (3). Wiley: 249–282. doi:10.1002/jlac.18320030302. hdl:2027/hvd.hxdg3f. ISSN 0365-5490.
  16. ^ Thun, Jürgen (2007). "Polymorphism in Benzamide: Solving a 175-Year-Old Riddle". Angewandte Chemie International Edition. 46 (35): 6729–6731. doi:10.1002/anie.200701383. PMID 17665385.
  17. ^ Graeme M. Day; Andrew V. Trask; W. D. Samuel Motherwell; William Jones (2006). "Investigating the Latent Polymorphism of Maleic Acid". Chemical Communications. 1 (1): 54–56. doi:10.1039/b513442k. PMID 16353090.
  18. ^ Thallapally PK, Jetti RK, Katz AK (2004). "Polymorphism of 1,3,5-trinitrobenzene Induced by a Trisindane Additive". Angewandte Chemie International Edition. 43 (9): 1149–1155. doi:10.1002/anie.200352253. PMID 14983460.
  19. ^ Schur, Einat; Bernstein, Joel; Price, Louise S.; Guo, Rui; Price, Sarah L.; Lapidus, Saul H.; Stephens, Peter W. (2019). "The (Current) Acridine Solid Form Landscape: Eight Polymorphs and a Hydrate" (PDF). Crystal Growth & Design. 19 (8): 4884–4893. doi:10.1021/acs.cgd.9b00557. S2CID 198349955.
  20. ^ Serezhkin, Viktor N.; Savchenkov, Anton V. (2020). "Application of the Method of Molecular Voronoi–Dirichlet Polyhedra for Analysis of Noncovalent Interactions in Aripiprazole Polymorphs". Crystal Growth & Design. 20 (3): 1997–2003. doi:10.1021/acs.cgd.9b01645. S2CID 213824513.
  21. ^ Krämer, Katrina (2020-07-29). "Red–orange–yellow reclaims polymorph record with help from molecular cousin". chemistryworld.com. Retrieved 2021-05-07.
  22. ^ Tyler, Andrew R.; Ragbirsingh, Ronnie; McMonagle, Charles J.; Waddell, Paul G.; Heaps, Sarah E.; Steed, Jonathan W.; Thaw, Paul; Hall, Michael J.; Probert, Michael R. (2020). "Encapsulated Nanodroplet Crystallization of Organic-Soluble Small Molecules". Chem. 6 (7): 1755–1765. doi:10.1016/j.chempr.2020.04.009. PMC 7357602. PMID 32685768.
  23. ^ Cruz-Cabeza, Aurora J.; Bernstein, Joel (2014). "Conformational Polymorphism". Chemical Reviews. 114 (4): 2170–2191. doi:10.1021/cr400249d. PMID 24350653.
  24. ^ "Definition of polymorphism - mindat.org glossary". www.mindat.org. Retrieved 2016-10-23.
  25. ^ "Polymorphism in nanocrystalline binary metal oxides", S. Sood, P.Gouma, Nanomaterials and Energy, 2(NME2), 1-15(2013).
  26. ^ a b c Anatase to Rutile Transformation(ART) summarized in the Journal of Materials Science 2011
  27. ^ Newell, Lyman C.; Maxson, R. N.; Filson, M. H. (1939). "Red Mercuric Sulfide". Inorganic Syntheses. Vol. 1. pp. 19–20. doi:10.1002/9780470132326.ch7. ISBN 9780470132326.
  28. ^ Drebushchak, V. A.; McGregor, L.; Rychkov, D. A. (February 2017). "Cooling rate "window" in the crystallization of metacetamol form II". Journal of Thermal Analysis and Calorimetry. 127 (2): 1807–1814. doi:10.1007/s10973-016-5954-0. ISSN 1388-6150. S2CID 99391719.
  29. ^ Nyman, Jonas; Day, Graeme M. (2015). "Static and lattice vibrational energy differences between polymorphs". CrystEngComm. 17 (28): 5154–5165. doi:10.1039/C5CE00045A.
  30. ^ a b Dubok, Aleksandr S.; Rychkov, Denis A. (2023-04-04). "Relative Stability of Pyrazinamide Polymorphs Revisited: A Computational Study of Bending and Brittle Forms Phase Transitions in a Broad Temperature Range". Crystals. 13 (4): 617. doi:10.3390/cryst13040617. ISSN 2073-4352.
  31. ^ Borba, Ana; Albrecht, Merwe; Gómez-Zavaglia, Andrea; Suhm, Martin A.; Fausto, Rui (2010-01-14). "Low Temperature Infrared Spectroscopy Study of Pyrazinamide: From the Isolated Monomer to the Stable Low Temperature Crystalline Phase". The Journal of Physical Chemistry A. 114 (1): 151–161. Bibcode:2010JPCA..114..151B. doi:10.1021/jp907466h. hdl:11336/131247. ISSN 1089-5639. PMID 20055514.
  32. ^ a b Hoser, Anna Agnieszka; Rekis, Toms; Madsen, Anders Østergaard (2022-06-01). "Dynamics and disorder: on the stability of pyrazinamide polymorphs". Acta Crystallographica Section B Structural Science, Crystal Engineering and Materials. 78 (3): 416–424. Bibcode:2022AcCrB..78..416H. doi:10.1107/S2052520622004577. ISSN 2052-5206. PMC 9254588. PMID 35695115.
  33. ^ Smirnova, Valeriya Yu.; Iurchenkova, Anna A.; Rychkov, Denis A. (2022-08-17). "Computational Investigation of the Stability of Di-p-Tolyl Disulfide "Hidden" and "Conventional" Polymorphs at High Pressures". Crystals. 12 (8): 1157. doi:10.3390/cryst12081157. ISSN 2073-4352.
  34. ^ Rychkov, Denis A.; Stare, Jernej; Boldyreva, Elena V. (2017). "Pressure-driven phase transition mechanisms revealed by quantum chemistry: l -serine polymorphs". Physical Chemistry Chemical Physics. 19 (9): 6671–6676. Bibcode:2017PCCP...19.6671R. doi:10.1039/C6CP07721H. ISSN 1463-9076. PMID 28210731.
  35. ^ Rychkov, Denis A. (2020-01-31). "A Short Review of Current Computational Concepts for High-Pressure Phase Transition Studies in Molecular Crystals". Crystals. 10 (2): 81. doi:10.3390/cryst10020081. ISSN 2073-4352.
  36. ^ Fedorov, A. Yu.; Rychkov, D. A. (September 2020). "Comparison of Different Computational Approaches for Unveiling the High-Pressure Behavior of Organic Crystals at a Molecular Level. Case Study of Tolazamide Polymorphs". Journal of Structural Chemistry. 61 (9): 1356–1366. doi:10.1134/S0022476620090024. ISSN 0022-4766. S2CID 222299340.
  37. ^ Rychkov, Denis A.; Arkhipov, Sergey G.; Boldyreva, Elena V. (2014-08-01). "Simple and efficient modifications of well known techniques for reliable growth of high-quality crystals of small bioorganic molecules". Journal of Applied Crystallography. 47 (4): 1435–1442. doi:10.1107/S1600576714011273. ISSN 1600-5767.
  38. ^ Buckley, Harold Eugene (1951). Crystal Growth. Wiley.
  39. ^ Surov, Artem O.; Vasilev, Nikita A.; Churakov, Andrei V.; Stroh, Julia; Emmerling, Franziska; Perlovich, German L. (2019). "Solid Forms of Ciprofloxacin Salicylate: Polymorphism, Formation Pathways and Thermodynamic Stability". Crystal Growth & Design. 19 (5): 2979–2990. doi:10.1021/acs.cgd.9b00185. S2CID 132854494.
  40. ^ "Accredited Degree Programmes" (PDF).
  41. ^ Thomas, Sajesh P.; Nagarajan, K.; Row, T. N. Guru (2012). "Polymorphism and tautomeric preference in fenobam and the utility of NLO response to detect polymorphic impurities". Chemical Communications. 48 (85): 10559–10561. doi:10.1039/C2CC34912D. PMID 23000909.
  42. ^ Bhardwaj, Rajni M. (2016), "Exploring the Physical Form Landscape of Clozapine, Amoxapine and Loxapine", Control and Prediction of Solid-State of Pharmaceuticals, Springer Theses, Cham: Springer International Publishing, pp. 153–193, doi:10.1007/978-3-319-27555-0_7, ISBN 978-3-319-27554-3, retrieved 2023-12-20
  43. ^ McQuiston, Dylan K.; Mucalo, Michael R.; Saunders, Graham C. (2019-03-05). "The structure of posaconazole and its solvates with methanol, and dioxane and water: Difluorophenyl as a hydrogen bond donor". Journal of Molecular Structure. 1179: 477–486. Bibcode:2019JMoSt1179..477M. doi:10.1016/j.molstruc.2018.11.031. ISSN 0022-2860. S2CID 105578644.
  44. ^ Bauer J, et al. (2004). "Ritonavir: An Extraordinary Example of Conformational Polymorphism". Pharmaceutical Research. 18 (6): 859–866. doi:10.1023/A:1011052932607. PMID 11474792. S2CID 20923508.
  45. ^ Peddy Vishweshwar; Jennifer A. McMahon; Mark Oliveira; Matthew L. Peterson & Michael J. Zaworotko (2005). "The Predictably Elusive Form II of Aspirin". J. Am. Chem. Soc. 127 (48): 16802–16803. doi:10.1021/ja056455b. PMID 16316223.
  46. ^ Andrew D. Bond; Roland Boese; Gautam R. Desiraju (2007). "On the Polymorphism of Aspirin: Crystalline Aspirin as Intergrowths of Two "Polymorphic" Domains". Angewandte Chemie International Edition. 46 (4): 618–622. doi:10.1002/anie.200603373. PMID 17139692.
  47. ^ "Polytypism - Online Dictionary of Crystallography". reference.iucr.org.
  48. ^ Wang, In-Chun; Lee, Min-Jeong; Seo, Da-Young; Lee, Hea-Eun; Choi, Yongsun; Kim, Woo-Sik; Kim, Chang-Sam; Jeong, Myung-Yung; Choi, Guang Jin (14 June 2011). "Polymorph Transformation in Paracetamol Monitored by In-line NIR Spectroscopy During a Cooling Crystallization Process". AAPS PharmSciTech. 12 (2): 764–770. doi:10.1208/s12249-011-9642-x. PMC 3134639. PMID 21671200.
  49. ^ "Disappearing Polymorphs and Gastrointestinal Infringement". blakes.com. 20 July 2012. Archived from the original on 20 July 2012.
  50. ^ Castro, Ricardo A. E.; Maria, Teresa M. R.; Évora, António O. L.; Feiteira, Joana C.; Silva, M. Ramos; Beja, A. Matos; Canotilho, João; Eusébio, M. Ermelinda S. (2010-01-06). "A New Insight into Pyrazinamide Polymorphic Forms and their Thermodynamic Relationships". Crystal Growth & Design. 10 (1): 274–282. doi:10.1021/cg900890n. ISSN 1528-7483.
  51. ^ Cherukuvada, Suryanarayan; Thakuria, Ranjit; Nangia, Ashwini (2010-09-01). "Pyrazinamide Polymorphs: Relative Stability and Vibrational Spectroscopy". Crystal Growth & Design. 10 (9): 3931–3941. doi:10.1021/cg1004424. ISSN 1528-7483.
  52. ^ "The basics of crystallography and diffraction", Christopher Hammond, Second edition, Oxford science publishers, IUCr, page 28 ISBN 0 19 8505531.
  53. ^ Li, Xiao; Zhu, Hongwei (2015-03-01). "Two-dimensional MoS2: Properties, preparation, and applications". Journal of Materiomics. 1 (1): 33–44. doi:10.1016/j.jmat.2015.03.003.
  54. ^ Wilson, J.A.; Di Salvo, F. J.; Mahajan, S. (October 1974). "Charge-density waves and superlattices in the metallic layered transition metal dichalcogenides". Advances in Physics. 50 (8): 1171–1248. doi:10.1080/00018730110102718. S2CID 218647397.
  55. ^ C.E. Ryan, R.C. Marshall, J.J. Hawley, I. Berman & D.P. Considine, "The Conversion of Cubic to Hexagonal Silicon Carbide as a Function of Temperature and Pressure," U.S. Air Force, Physical Sciences Research Papers, #336, Aug 1967, p 1-26.
  56. ^ Carletta, Andrea (2015). "Solid-State Investigation of Polymorphism and Tautomerism of Phenylthiazole-thione: A Combined Crystallographic, Calorimetric, and Theoretical Survey". Crystal Growth & Design. 15 (5): 2461–2473. doi:10.1021/acs.cgd.5b00237.
  57. ^ Ward, Michael D. (February 2017). "Perils of Polymorphism: Size Matters". Israel Journal of Chemistry. 57 (1–2): 82–92. doi:10.1002/ijch.201600071. ISSN 0021-2148.

External links edit

crystal, polymorphism, crystallography, polymorphism, describes, phenomenon, where, compound, element, crystallize, into, more, than, crystal, structure, preceding, definition, evolved, over, many, years, still, under, discussion, today, discussion, defining, . In crystallography polymorphism describes the phenomenon where a compound or element can crystallize into more than one crystal structure The preceding definition has evolved over many years and is still under discussion today 1 2 3 Discussion of the defining characteristics of polymorphism involves distinguishing among types of transitions and structural changes occurring in polymorphism versus those in other phenomena It is also useful to note that materials with two polymorphic phases can be called dimorphic those with three polymorphic phases trimorphic etc 4 Contents 1 Overview 2 Detection 2 1 Experimental methods 2 2 Computational methods 3 Examples 3 1 Organic compounds 3 1 1 Benzamide 3 1 2 Maleic acid 3 1 3 1 3 5 Trinitrobenzene 3 1 4 Other organic compounds 3 2 Inorganic compounds 3 2 1 Binary metal oxides 3 2 2 Other inorganic materials 4 Factors affecting polymorphism 5 In pharmaceuticals 5 1 Legal aspects 5 2 Case studies 5 2 1 Ritonavir 5 2 2 Aspirin 5 2 3 Paracetamol 5 2 4 Cortisone acetate 5 2 5 Carbamazepine 5 2 6 Pyrazinamide 6 Polytypism 7 Theory 8 See also 9 References 10 External linksOverview editPhase transitions phase changes that help describe polymorphism include polymorphic transitions as well as melting and vaporization transitions According to IUPAC a polymorphic transition is A reversible transition of a solid crystalline phase at a certain temperature and pressure the inversion point to another phase of the same chemical composition with a different crystal structure 5 Additionally Walter McCrone described the phases in polymorphic matter as different in crystal structure but identical in the liquid or vapor states McCrone also defines a polymorph as a crystalline phase of a given compound resulting from the possibility of at least two different arrangements of the molecules of that compound in the solid state 6 7 These defining facts imply that polymorphism involves changes in physical properties but cannot include chemical change Some early definitions do not make this distinction Eliminating chemical change from those changes permissible during a polymorphic transition delineates polymorphism For example isomerization can often lead to polymorphic transitions However tautomerism dynamic isomerization leads to chemical change not polymorphism 1 As well allotropy of elements and polymorphism have been linked historically However allotropes of an element are not always polymorphs A common example is the allotropes of carbon which include graphite diamond and londsdaleite While all three forms are allotropes graphite is not a polymorph of diamond and londsdaleite The reason is that graphite is chemically distinct having sp2 hybridized bonding while diamond and londsdaleite are chemically identical both having sp3 hybridized bonding Diamond and londsdaleite differ in their crystal structures but do not differ chemically 2 Isomerization and allotropy are only two of the phenomena linked to polymorphism For additional information about identifying polymorphism and distinguishing it from other phenomena see the review by Brog et al 2 Polymorphism is of practical relevance to pharmaceuticals agrochemicals pigments dyestuffs foods and explosives Detection editExperimental methods edit Early records of the discovery of polymorphism credit Eilhard Mitscerlich and Jons Jacob Berzelius for their studies of phosphates and arsenates in the early 1800s The studies involved measuring the interfacial angles of the crystals to show that chemically identical salts could have two different forms Mitscerlich originally called this discovery isomorphism 8 The measurement of crystal density was also used by Wilhelm Ostwald and expressed in Ostwald s Ratio 9 The development of the microscope enhanced observations of polymorphism and aided Moritz Ludwig Frankenheim s studies in the 1830s He was able to demonstrate methods to induce crystal phase changes and formally summarized his findings on the nature of polymorphism Soon after the more sophisticated polarized light microscope came into use and it provided better visualization of crystalline phases allowing crystallographers to distinguish between different polymorphs The hot stage was invented and fitted to a polarized light microscope by Otto Lehmann in about 1877 This invention helped crystallographers determine melting points and observe polymorphic transitions 8 While the use of hot stage microscopes continued throughout the 1900s thermal methods also became commonly used to observe the heat flow that occurs during phase changes such as melting and polymorphic transitions One such technique differential scanning calorimetry DSC continues to be used for determining the enthalpy of polymorphic transitions 8 In the 20th century X ray crystallography became commonly used for studying the crystal structure of polymorphs Both single crystal x ray diffraction and powder x ray diffraction techniques are used to obtain measurements of the crystal unit cell Each polymorph of a compound has a unique crystal structure As a result different polymorphs will produce different x ray diffraction patterns 8 Vibrational spectroscopic methods came into use for investigating polymorphism in the second half of the twentieth century and have become more commonly used as optical computer and semiconductor technologies improved These techniques include infrared IR spectroscopy terahertz spectroscopy and Raman spectroscopy Mid frequency IR and Raman spectroscopies are sensitive to changes in hydrogen bonding patterns Such changes can subsequently be related to structural differences Additionally terahertz and low frequency Raman spectroscopies reveal vibrational modes resulting from intermolecular interactions in crystalline solids Again these vibrational modes are related to crystal structure and can be used to uncover differences in 3 dimensional structure among polymorphs 10 Computational methods edit Computational chemistry may be used in combination with vibrational spectroscopy techniques to understand the origins of vibrations within crystals 10 The combination of techniques provides detailed information about crystal structures similar to what can be achieved with x ray crystallography In addition to using computational methods for enhancing the understanding of spectroscopic data the latest development in identifying polymorphism in crystals is the field of crystal structure prediction This technique uses computational chemistry to model the formation of crystals and predict the existence of specific polymorphs of a compound before they have been observed experimentally by scientists 11 12 Examples editMany compounds exhibit polymorphism It has been claimed that every compound has different polymorphic forms and that in general the number of forms known for a given compound is proportional to the time and money spent in research on that compound 13 6 14 Organic compounds edit nbsp nbsp Calcite on left and Aragonite on right two forms of calcium carbonate Note the colors are from impurities Benzamide edit The phenomenon was discovered in 1832 by Friedrich Wohler and Justus von Liebig They observed that the silky needles of freshly crystallized benzamide slowly converted to rhombic crystals 15 Present day analysis 16 identifies three polymorphs for benzamide the least stable one formed by flash cooling is the orthorhombic form II This type is followed by the monoclinic form III observed by Wohler Liebig The most stable form is monoclinic form I The hydrogen bonding mechanisms are the same for all three phases however they differ strongly in their pi pi interactions Maleic acid edit In 2006 a new polymorph of maleic acid was discovered 124 years after the first crystal form was studied Maleic acid is manufactured on an industrial scale in the chemical industry It forms salt found in medicine The new crystal type is produced when a co crystal of caffeine and maleic acid 2 1 is dissolved in chloroform and when the solvent is allowed to evaporate slowly Whereas form I has monoclinic space group P21 c the new form has space group Pc Both polymorphs consist of sheets of molecules connected through hydrogen bonding of the carboxylic acid groups in form I the sheets alternate with respect of the net dipole moment while in form II the sheets are oriented in the same direction 17 1 3 5 Trinitrobenzene edit After 125 years of study 1 3 5 trinitrobenzene yielded a second polymorph The usual form has the space group Pbca but in 2004 a second polymorph was obtained in the space group Pca21 when the compound was crystallised in the presence of an additive trisindane This experiment shows that additives can induce the appearance of polymorphic forms 18 Other organic compounds edit Acridine has been obtained as eight polymorphs 19 and aripiprazole has nine 20 The record for the largest number of well characterised polymorphs is held by a compound known as ROY 21 22 Glycine crystallizes as both monoclinic and hexagonal crystals Polymorphism in organic compounds is often the result of conformational polymorphism 23 Inorganic compounds edit Binary metal oxides edit Polymorphism in binary metal oxides has attracted much attention because these materials are of significant economic value One set of famous examples have the composition SiO2 which form many polymorphs Important ones include a quartz b quartz tridymite cristobalite moganite coesite and stishovite 24 25 Metal oxides Phase Conditions of P and T Structure Space Group CrO2 a phase Ambient conditions Cl2 type Orthorhombic RT and 12 3 GPa Cr2O3 Corundum phase Ambient conditions Corundum type Rhombohedral R3 c High pressure phase RT and 35 GPa Rh2O3 II type Fe2O3 a phase Ambient conditions Corundum type Rhombohedral R3 c b phase Below 773 K Body centered cubic Ia3 g phase Up to 933 K Cubic spinel structure Fd3 m e phase Rhombic Pna21 Bi2O3 a phase Ambient conditions Monoclinic P21 c b phase 603 923 K and 1 atm Tetragonal g phase 773 912 K or RT and 1 atm Body centered cubic d phase 912 1097 K and 1 atm FCC Fm3 m In2O3 Bixbyite type phase Ambient conditions Cubic Ia3 Corundum type 15 25 GPa at 1273 K Corundum type Hexagonal R3 c Rh2O3 II type 100 GPa and 1000 K Orthorhombic Al2O3 a phase Ambient conditions Corundum type Trigonal R3 c g phase 773 K and 1 atm Cubic Fd3 m SnO2 a phase Ambient conditions Rutile type Tetragonal P42 mnm CaCl2 type phase 15 KBar at 1073 K Orthorhombic CaCl2 type Pnnm a PbO2 type Above 18 KBar a PbO2 type Pbcn TiO2 Rutile Equilibrium phase Rutile type Tetragonal Anatase Metastable phase Not stable 26 Tetragonal I41 amd Brookite Metastable phase Not stable 26 Orthorhombic Pcab ZrO2 Monoclinic phase Ambient conditions Monoclinic P21 c Tetragonal phase Above 1443 K Tetragonal P42 nmc Fluorite type phase Above 2643 K Cubic Fm3 m MoO3 a phase 553 673 K amp 1 atm Orthorhombic Pbnm b phase 553 673 K amp 1 atm Monoclinic h phase High pressure and high temperature phase Hexagonal P6a m or P6a MoO3 II 60 kbar and 973 K Monoclinic WO3 e phase Up to 220 K Monoclinic Pc d phase 220 300 K Triclinic P1 g phase 300 623 K Monoclinic P21 n b phase 623 900 K Orthorhombic Pnma a phase Above 900 K Tetragonal P4 ncc Other inorganic materials edit Classical examples of polymorphism are the pair of minerals calcite and aragonite both forms of calcium carbonate Allotropy is the term used for elements for example diamond versus graphite and in metallurgy b HgS precipitates as a black solid when Hg II salts are treated with H2S With gentle heating of the slurry the black polymorph converts to the red form 27 Factors affecting polymorphism editAccording to Ostwald s rule usually less stable polymorphs crystallize before the stable form The concept hinges on the idea that unstable polymorphs more closely resemble the state in solution and thus are kinetically advantaged The founding case of fibrous vs rhombic benzamide illustrates the case Another example is provided by two polymorphs of titanium dioxide 26 Nevertheless there are known systems such as metacetamol where only narrow cooling rate favors obtaining metastable form II 28 Polymorphs have disparate stabilities Some convert rapidly at room or any temperature Most polymorphs of organic molecules only differ by a few kJ mol in lattice energy Approximately 50 of known polymorph pairs differ by less than 2 kJ mol and stability differences of more than 10 kJ mol are rare 29 Valuable to mention that polymorph stability may change upon temperature 30 31 32 or pressure 33 34 Important to note that structural and thermodybnamic stability are different Thermodynamic stability may be studied using experimental or computational methods 35 36 Polymorphism is affected by the details of crystallisation The solvent in all respects affects the nature of the polymorph including concentration other components of the solvent i e species that inhibiting or promote certain growth patterns 37 A decisive factor is often the temperature of the solvent from which crystallisation is carried out 38 Metastable polymorphs are not always reproducibly obtained leading to cases of disappearing polymorphs with usually negative implications on law and business 13 11 39 In pharmaceuticals editMain article Disappearing polymorphs Legal aspects edit Drugs receive regulatory approval and are granted patents for only a single polymorph In a classic patent dispute the GlaxoSmithKline defended its patent for the Type II polymorph of the active ingredient in Zantac against competitors while that of the Type I polymorph had already expired 40 Polymorphism in drugs can also have direct medical implications since dissolution rates depend on the polymorph Polymorphic purity of drug samples can be checked using techniques such as powder X ray diffraction IR Raman spectroscopy and utilizing the differences in their optical properties in some cases 41 Case studies edit The known cases up to 2015 are discussed in a review article by Bucar Lancaster and Bernstein 11 Dibenzoxazepines This section may be too technical for most readers to understand Please help improve it to make it understandable to non experts without removing the technical details January 2024 Learn how and when to remove this message Multidisciplinary studies involving experimental and computational approaches were applied to pharmaceutical molecules to facilitate the comparison of their solid state structures Specifically this study has focused on exploring how changes in molecular structure affect the molecular conformation packing motifs interactions in the resultant crystal lattices and the extent of solid state diversity of these compounds The results highlight the value of crystal structure prediction studies and PIXEL calculations in the interpretation of the observed solid state behaviour and quantifying the intermolecular interactions in the packed structures and identifying the key stabilising interactions An experimental screen yielded 4 physical forms for clozapine as compared to 60 distinct physical forms for olanzapine The experimental screening results of clozapine are consistent with its crystal energy landscape which confirms that no alternate packing arrangement is thermodynamically competitive to the experimentally obtained structure Whilst in case of olanzapine crystal energy landscape highlights that the extensive experimental screening has probably not found all possible polymorphs of olanzapine and further solid form diversity could be targeted with a better understanding of the role of kinetics in its crystallisation CSP studies were able to offer an explanation for the absence of the centrosymmetric dimer in anhydrous clozapine PIXEL calculations on all the crystal structures of clozapine revealed that similar to olanzapine the intermolecular interaction energy in each structure is also dominated by the Ed Despite the molecular structure similarity between amoxapine and loxapine molecules in group 2 the crystal packing observed in polymorphs of loxa differs significantly from the amoxapine A combined experimental and computational study demonstrated that the methyl group in loxapine has a significant influence in increasing the range of accessible solid forms and favouring various alternate packing arrangements CSP studies have again helped in explaining the observed solid state diversity of loxapine and amoxapine PIXEL calculations showed that in absence of strong H bonds weak H bonds such as C H O C H N and dispersion interactions play a key role in stabilising the crystal lattice of both the molecules Efficient crystal packing of amoxapine seems to be contributing towards its monomorphic behaviour as compared to the comparatively less efficient packing of loxapine molecules in both polymorphs The combination of experimental and computational approaches has provided a deeper understanding of the factors influencing the solid state structure and diversity in these compounds Hirshfeld surfaces using Crystal Explorer represent another way of exploring packing modes and intermolecular interactions in molecular crystals The influence of changes in the small substituents on shape and electron distribution can also be investigated by mapping the total electron density on the electrostatic potential for molecules in the gas phase This allows straightforward visualisation and comparison of overall shape electron rich and electron deficient regions within molecules The shape of these molecules can be further investigated to study its influence on diverse solid state diversity 42 PosaconazoleThe original formulations of posaconazole on the market licensed as Noxafil R were formulated utilising form I of posaconazole The discovery of polymorphs of posaconazole increased rapidly and resulted in much research in crystallography of posaconazole A methanol solvate and a 1 4 dioxane co crystal were added to the Cambridge Structural Database CSD 43 Ritonavir edit The antiviral drug ritonavir exists as two polymorphs which differ greatly in efficacy Such issues were solved by reformulating the medicine into gelcaps and tablets rather than the original capsules 44 Aspirin edit There was only one proven polymorph Form I of aspirin though the existence of another polymorph was debated since the 1960s and one report from 1981 reported that when crystallized in the presence of aspirin anhydride the diffractogram of aspirin has weak additional peaks Though at the time it was dismissed as mere impurity it was in retrospect Form II aspirin 11 Form II was reported in 2005 45 46 found after attempted co crystallization of aspirin and levetiracetam from hot acetonitrile In form I pairs of aspirin molecules form centrosymmetric dimers through the acetyl groups with the acidic methyl proton to carbonyl hydrogen bonds In form II each aspirin molecule forms the same hydrogen bonds but with two neighbouring molecules instead of one With respect to the hydrogen bonds formed by the carboxylic acid groups both polymorphs form identical dimer structures The aspirin polymorphs contain identical 2 dimensional sections and are therefore more precisely described as polytypes 47 Pure Form II aspirin could be prepared by seeding the batch with aspirin anhydrate in 15 weight 11 Paracetamol edit Paracetamol powder has poor compression properties which poses difficulty in making tablets A second polymorph was found with more suitable compressive properties 48 Cortisone acetate edit Cortisone acetate exists in at least five different polymorphs four of which are unstable in water and change to a stable form Carbamazepine edit Carbamazepine estrogen paroxetine 49 and chloramphenicol also show polymorphism Pyrazinamide edit Pyrazinamide has at least 4 polymorphs 50 All of them transforms to stable a form at room temperature upon storage or mechanical treatment 51 Recent studies prove that a form is thermodynamically stable at room temperature 30 32 Polytypism editPolytypes are a special case of polymorphs where multiple close packed crystal structures differ in one dimension only Polytypes have identical close packed planes but differ in the stacking sequence in the third dimension perpendicular to these planes Silicon carbide SiC has more than 170 known polytypes although most are rare All the polytypes of SiC have virtually the same density and Gibbs free energy The most common SiC polytypes are shown in Table 1 Table 1 Some polytypes of SiC 52 Phase Structure Ramsdell notation Stacking sequence Comment a SiC hexagonal 2H AB wurtzite form a SiC hexagonal 4H ABCB a SiC hexagonal 6H ABCACB the most stable and common form a SiC rhombohedral 15R ABCACBCABACABCB b SiC face centered cubic 3C ABC sphalerite or zinc blende form A second group of materials with different polytypes are the transition metal dichalcogenides layered materials such as molybdenum disulfide MoS2 For these materials the polytypes have more distinct effects on material properties e g for MoS2 the 1T polytype is metallic in character while the 2H form is more semiconducting 53 Another example is tantalum disulfide where the common 1T as well as 2H polytypes occur but also more complex mixed coordination types such as 4Hb and 6R where the trigonal prismatic and the octahedral geometry layers are mixed 54 Here the 1T polytype exhibits a charge density wave with distinct influence on the conductivity as a function of temperature while the 2H polytype exhibits superconductivity ZnS and CdI2 are also polytypical 55 It has been suggested that this type of polymorphism is due to kinetics where screw dislocations rapidly reproduce partly disordered sequences in a periodic fashion Theory edit nbsp Solid phase transitions which transform reversibly without passing through the liquid or gaseous phases are called enantiotropic In contrast if the modifications are not convertible under these conditions the system is monotropic Experimental data are used to differentiate between enantiotropic and monotropic transitions and energy temperature semi quantitative diagrams can be drawn by applying several rules principally the heat of transition rule the heat of fusion rule and the density rule These rules enable the deduction of the relative positions of the H and Gisobars in the E T diagram 1 In terms of thermodynamics two types of polymorphic behaviour are recognized For a monotropic system plots of the free energies of the various polymorphs against temperature do not cross before all polymorphs melt As a result any transition from one polymorph to another below the melting point will be irreversible For an enantiotropic system a plot of the free energy against temperature shows a crossing point before the various melting points 56 It may also be possible to convert interchangeably between the two polymorphs by heating or cooling or through physical contact with a lower energy polymorph A simple model of polymorphism is to model the Gibbs free energy of a ball shaped crystal as G a r 2 b r 3 displaystyle G ar 2 br 3 nbsp Here the first term a r 2 displaystyle ar 2 nbsp is the surface energy and the second term b r 3 displaystyle br 3 nbsp is the volume energy Both parameters a b gt 0 displaystyle a b gt 0 nbsp The function G r displaystyle G r nbsp rises to a maximum before dropping crossing zero at r c r i t displaystyle r crit nbsp In order to crystallize a ball of crystal much overcome the energetic barrier to the r gt r c r i t displaystyle r gt r crit nbsp part of the energy landscape 57 nbsp Figure 2 Now suppose there are two kinds of crystals with different energies G 1 a 1 r 2 b 1 r 3 displaystyle G 1 a 1 r 2 b 1 r 3 nbsp and G 2 a 2 r 2 b 2 r 3 displaystyle G 2 a 2 r 2 b 2 r 3 nbsp and if they have the same shape as in Figure 2 then the two curves intersect at some r c r i t gt r c r i t 1 displaystyle r crit gt r crit 1 nbsp Then the system has three phases r lt r c r i t 1 displaystyle r lt r crit 1 nbsp Crystals tend to dissolve Amorphous phase r c r i t 1 lt r lt r c r i t displaystyle r crit 1 lt r lt r crit nbsp Crystals tend to grow as form 1 r gt r c r i t displaystyle r gt r crit nbsp Crystals tend to grow as form 2 If the crystal is grown slowly it could be kinetically stuck in form 1 See also edit nbsp Wikimedia Commons has media related to Polymorphism Allotropy Isomorphism crystallography Dimorphism Wiktionary PolyamorphismReferences edit a b Bernstein Joel 2002 Polymorphism in Molecular Crystals New York USA Oxford University Press pp 1 27 ISBN 0198506058 a b c Brog Jean Pierre Chanez Claire Lise Crochet Aurelien Fromm Katharina M 2013 Polymorphism what it is and how to identify it a systematic review RSC Advances 3 38 16905 31 Bibcode 2013RSCAd 316905B doi 10 1039 c3ra41559g Cruz Cabeza Aurora J Reutzel Edens Susan M Bernstein Joel 2015 Facts and fictions about polymorphism Chemical Society Reviews 44 23 8619 8635 doi 10 1039 c5cs00227c PMID 26400501 via MEDLINE Definition of trimorphism mindat org glossary www mindat org Retrieved 2016 10 23 Gold Victor ed 2019 Polymorphic transition IUPAC Gold Book doi 10 1351 goldbook Retrieved January 28 2024 a b McCrone W C 1965 Polymorphism In Fox D Labes M Weissberger A eds Physics and Chemistry of the Organic Solid State Vol 2 Wiley Interscience pp 726 767 Dunitz Jack D Bernstein Joel 1995 04 01 Disappearing Polymorphs Accounts of Chemical Research 28 4 193 200 doi 10 1021 ar00052a005 ISSN 0001 4842 a b c d Bernstein Joel 2002 Polymorphism in Molecular Crystals New York USA Oxford University Press pp 94 149 ISBN 0198506058 Cardew Peter T 2023 Ostwald Rule of Stages Myth or Reality Crystal Growth and Design 23 6 3958 3969 doi 10 1021 acs cgd 2c00141 a b Parrott Edward P J Zeitler J Axel 2015 Terahertz Time Domain and Low Frequency Raman Spectroscopy of Organic Materials Applied Spectroscopy 69 1 1 25 Bibcode 2015ApSpe 69 1P doi 10 1366 14 07707 PMID 25506684 S2CID 7699996 a b c d e Bucar D K Lancaster R W Bernstein J 2015 Disappearing Polymorphs Revisited Angewandte Chemie International Edition 54 24 6972 6993 doi 10 1002 anie 201410356 PMC 4479028 PMID 26031248 Bowskill David H Sugden Isaac J Konstantinopoulos Stefanos Adjiman Claire S Pantelides Constantinos C 2021 Crystal Structure Prediction Methods for Organic Molecules State of the Art Annu Rev Chem Biomol Eng 12 593 623 doi 10 1146 annurev chembioeng 060718 030256 PMID 33770462 S2CID 232377397 a b Crystal Engineering The Design and Application of Functional Solids Volume 539 Kenneth Richard Seddon Michael Zaworotk 1999 Pharmaceutical Stress Testing Predicting Drug Degradation Second Edition Steven W Baertschi Karen M Alsante Robert A Reed 2011 CRC Press Wohler F Liebig J Ann 1832 Untersuchungen uber das Radikal der Benzoesaure Annalen der Pharmacie in German 3 3 Wiley 249 282 doi 10 1002 jlac 18320030302 hdl 2027 hvd hxdg3f ISSN 0365 5490 Thun Jurgen 2007 Polymorphism in Benzamide Solving a 175 Year Old Riddle Angewandte Chemie International Edition 46 35 6729 6731 doi 10 1002 anie 200701383 PMID 17665385 Graeme M Day Andrew V Trask W D Samuel Motherwell William Jones 2006 Investigating the Latent Polymorphism of Maleic Acid Chemical Communications 1 1 54 56 doi 10 1039 b513442k PMID 16353090 Thallapally PK Jetti RK Katz AK 2004 Polymorphism of 1 3 5 trinitrobenzene Induced by a Trisindane Additive Angewandte Chemie International Edition 43 9 1149 1155 doi 10 1002 anie 200352253 PMID 14983460 Schur Einat Bernstein Joel Price Louise S Guo Rui Price Sarah L Lapidus Saul H Stephens Peter W 2019 The Current Acridine Solid Form Landscape Eight Polymorphs and a Hydrate PDF Crystal Growth amp Design 19 8 4884 4893 doi 10 1021 acs cgd 9b00557 S2CID 198349955 Serezhkin Viktor N Savchenkov Anton V 2020 Application of the Method of Molecular Voronoi Dirichlet Polyhedra for Analysis of Noncovalent Interactions in Aripiprazole Polymorphs Crystal Growth amp Design 20 3 1997 2003 doi 10 1021 acs cgd 9b01645 S2CID 213824513 Kramer Katrina 2020 07 29 Red orange yellow reclaims polymorph record with help from molecular cousin chemistryworld com Retrieved 2021 05 07 Tyler Andrew R Ragbirsingh Ronnie McMonagle Charles J Waddell Paul G Heaps Sarah E Steed Jonathan W Thaw Paul Hall Michael J Probert Michael R 2020 Encapsulated Nanodroplet Crystallization of Organic Soluble Small Molecules Chem 6 7 1755 1765 doi 10 1016 j chempr 2020 04 009 PMC 7357602 PMID 32685768 Cruz Cabeza Aurora J Bernstein Joel 2014 Conformational Polymorphism Chemical Reviews 114 4 2170 2191 doi 10 1021 cr400249d PMID 24350653 Definition of polymorphism mindat org glossary www mindat org Retrieved 2016 10 23 Polymorphism in nanocrystalline binary metal oxides S Sood P Gouma Nanomaterials and Energy 2 NME2 1 15 2013 a b c Anatase to Rutile Transformation ART summarized in the Journal of Materials Science 2011 Newell Lyman C Maxson R N Filson M H 1939 Red Mercuric Sulfide Inorganic Syntheses Vol 1 pp 19 20 doi 10 1002 9780470132326 ch7 ISBN 9780470132326 Drebushchak V A McGregor L Rychkov D A February 2017 Cooling rate window in the crystallization of metacetamol form II Journal of Thermal Analysis and Calorimetry 127 2 1807 1814 doi 10 1007 s10973 016 5954 0 ISSN 1388 6150 S2CID 99391719 Nyman Jonas Day Graeme M 2015 Static and lattice vibrational energy differences between polymorphs CrystEngComm 17 28 5154 5165 doi 10 1039 C5CE00045A a b Dubok Aleksandr S Rychkov Denis A 2023 04 04 Relative Stability of Pyrazinamide Polymorphs Revisited A Computational Study of Bending and Brittle Forms Phase Transitions in a Broad Temperature Range Crystals 13 4 617 doi 10 3390 cryst13040617 ISSN 2073 4352 Borba Ana Albrecht Merwe Gomez Zavaglia Andrea Suhm Martin A Fausto Rui 2010 01 14 Low Temperature Infrared Spectroscopy Study of Pyrazinamide From the Isolated Monomer to the Stable Low Temperature Crystalline Phase The Journal of Physical Chemistry A 114 1 151 161 Bibcode 2010JPCA 114 151B doi 10 1021 jp907466h hdl 11336 131247 ISSN 1089 5639 PMID 20055514 a b Hoser Anna Agnieszka Rekis Toms Madsen Anders Ostergaard 2022 06 01 Dynamics and disorder on the stability of pyrazinamide polymorphs Acta Crystallographica Section B Structural Science Crystal Engineering and Materials 78 3 416 424 Bibcode 2022AcCrB 78 416H doi 10 1107 S2052520622004577 ISSN 2052 5206 PMC 9254588 PMID 35695115 Smirnova Valeriya Yu Iurchenkova Anna A Rychkov Denis A 2022 08 17 Computational Investigation of the Stability of Di p Tolyl Disulfide Hidden and Conventional Polymorphs at High Pressures Crystals 12 8 1157 doi 10 3390 cryst12081157 ISSN 2073 4352 Rychkov Denis A Stare Jernej Boldyreva Elena V 2017 Pressure driven phase transition mechanisms revealed by quantum chemistry l serine polymorphs Physical Chemistry Chemical Physics 19 9 6671 6676 Bibcode 2017PCCP 19 6671R doi 10 1039 C6CP07721H ISSN 1463 9076 PMID 28210731 Rychkov Denis A 2020 01 31 A Short Review of Current Computational Concepts for High Pressure Phase Transition Studies in Molecular Crystals Crystals 10 2 81 doi 10 3390 cryst10020081 ISSN 2073 4352 Fedorov A Yu Rychkov D A September 2020 Comparison of Different Computational Approaches for Unveiling the High Pressure Behavior of Organic Crystals at a Molecular Level Case Study of Tolazamide Polymorphs Journal of Structural Chemistry 61 9 1356 1366 doi 10 1134 S0022476620090024 ISSN 0022 4766 S2CID 222299340 Rychkov Denis A Arkhipov Sergey G Boldyreva Elena V 2014 08 01 Simple and efficient modifications of well known techniques for reliable growth of high quality crystals of small bioorganic molecules Journal of Applied Crystallography 47 4 1435 1442 doi 10 1107 S1600576714011273 ISSN 1600 5767 Buckley Harold Eugene 1951 Crystal Growth Wiley Surov Artem O Vasilev Nikita A Churakov Andrei V Stroh Julia Emmerling Franziska Perlovich German L 2019 Solid Forms of Ciprofloxacin Salicylate Polymorphism Formation Pathways and Thermodynamic Stability Crystal Growth amp Design 19 5 2979 2990 doi 10 1021 acs cgd 9b00185 S2CID 132854494 Accredited Degree Programmes PDF Thomas Sajesh P Nagarajan K Row T N Guru 2012 Polymorphism and tautomeric preference in fenobam and the utility of NLO response to detect polymorphic impurities Chemical Communications 48 85 10559 10561 doi 10 1039 C2CC34912D PMID 23000909 Bhardwaj Rajni M 2016 Exploring the Physical Form Landscape of Clozapine Amoxapine and Loxapine Control and Prediction of Solid State of Pharmaceuticals Springer Theses Cham Springer International Publishing pp 153 193 doi 10 1007 978 3 319 27555 0 7 ISBN 978 3 319 27554 3 retrieved 2023 12 20 McQuiston Dylan K Mucalo Michael R Saunders Graham C 2019 03 05 The structure of posaconazole and its solvates with methanol and dioxane and water Difluorophenyl as a hydrogen bond donor Journal of Molecular Structure 1179 477 486 Bibcode 2019JMoSt1179 477M doi 10 1016 j molstruc 2018 11 031 ISSN 0022 2860 S2CID 105578644 Bauer J et al 2004 Ritonavir An Extraordinary Example of Conformational Polymorphism Pharmaceutical Research 18 6 859 866 doi 10 1023 A 1011052932607 PMID 11474792 S2CID 20923508 Peddy Vishweshwar Jennifer A McMahon Mark Oliveira Matthew L Peterson amp Michael J Zaworotko 2005 The Predictably Elusive Form II of Aspirin J Am Chem Soc 127 48 16802 16803 doi 10 1021 ja056455b PMID 16316223 Andrew D Bond Roland Boese Gautam R Desiraju 2007 On the Polymorphism of Aspirin Crystalline Aspirin as Intergrowths of Two Polymorphic Domains Angewandte Chemie International Edition 46 4 618 622 doi 10 1002 anie 200603373 PMID 17139692 Polytypism Online Dictionary of Crystallography reference iucr org Wang In Chun Lee Min Jeong Seo Da Young Lee Hea Eun Choi Yongsun Kim Woo Sik Kim Chang Sam Jeong Myung Yung Choi Guang Jin 14 June 2011 Polymorph Transformation in Paracetamol Monitored by In line NIR Spectroscopy During a Cooling Crystallization Process AAPS PharmSciTech 12 2 764 770 doi 10 1208 s12249 011 9642 x PMC 3134639 PMID 21671200 Disappearing Polymorphs and Gastrointestinal Infringement blakes com 20 July 2012 Archived from the original on 20 July 2012 Castro Ricardo A E Maria Teresa M R Evora Antonio O L Feiteira Joana C Silva M Ramos Beja A Matos Canotilho Joao Eusebio M Ermelinda S 2010 01 06 A New Insight into Pyrazinamide Polymorphic Forms and their Thermodynamic Relationships Crystal Growth amp Design 10 1 274 282 doi 10 1021 cg900890n ISSN 1528 7483 Cherukuvada Suryanarayan Thakuria Ranjit Nangia Ashwini 2010 09 01 Pyrazinamide Polymorphs Relative Stability and Vibrational Spectroscopy Crystal Growth amp Design 10 9 3931 3941 doi 10 1021 cg1004424 ISSN 1528 7483 The basics of crystallography and diffraction Christopher Hammond Second edition Oxford science publishers IUCr page 28 ISBN 0 19 8505531 Li Xiao Zhu Hongwei 2015 03 01 Two dimensional MoS2 Properties preparation and applications Journal of Materiomics 1 1 33 44 doi 10 1016 j jmat 2015 03 003 Wilson J A Di Salvo F J Mahajan S October 1974 Charge density waves and superlattices in the metallic layered transition metal dichalcogenides Advances in Physics 50 8 1171 1248 doi 10 1080 00018730110102718 S2CID 218647397 C E Ryan R C Marshall J J Hawley I Berman amp D P Considine The Conversion of Cubic to Hexagonal Silicon Carbide as a Function of Temperature and Pressure U S Air Force Physical Sciences Research Papers 336 Aug 1967 p 1 26 Carletta Andrea 2015 Solid State Investigation of Polymorphism and Tautomerism of Phenylthiazole thione A Combined Crystallographic Calorimetric and Theoretical Survey Crystal Growth amp Design 15 5 2461 2473 doi 10 1021 acs cgd 5b00237 Ward Michael D February 2017 Perils of Polymorphism Size Matters Israel Journal of Chemistry 57 1 2 82 92 doi 10 1002 ijch 201600071 ISSN 0021 2148 External links edit Small Molecule Crystallization PDF at Illinois Institute of Technology website SiC and Polytpism Retrieved from https en wikipedia org w index php title Crystal polymorphism amp oldid 1217744985 Types, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.