fbpx
Wikipedia

Chelation

Chelation is a type of bonding of ions and molecules to metal ions. It involves the formation or presence of two or more separate coordinate bonds between a polydentate (multiple bonded) ligand and a single central metal atom.[1][2] These ligands are called chelants, chelators, chelating agents, or sequestering agents. They are usually organic compounds, but this is not a necessity.

The word chelation is derived from Greek χηλή, chēlē, meaning "claw"; the ligands lie around the central atom like the claws of a crab. The term chelate was first applied in 1920 by Sir Gilbert T. Morgan and H. D. K. Drew, who stated: "The adjective chelate, derived from the great claw or chele (Greek) of the crab or other crustaceans, is suggested for the caliperlike groups which function as two associating units and fasten to the central atom so as to produce heterocyclic rings."[3]

Chelation is useful in applications such as providing nutritional supplements, in chelation therapy to remove toxic metals from the body, as contrast agents in MRI scanning, in manufacturing using homogeneous catalysts, in chemical water treatment to assist in the removal of metals, and in fertilizers.

Chelate effect edit

 
Ethylenediamine ligand chelating to a metal with two bonds
 
Cu2+ complexes with nonchelating methylamine (left) and chelating ethylenediamine (right) ligands

The chelate effect is the greater affinity of chelating ligands for a metal ion than that of similar nonchelating (monodentate) ligands for the same metal.

The thermodynamic principles underpinning the chelate effect are illustrated by the contrasting affinities of copper(II) for ethylenediamine (en) vs. methylamine.

Cu2+ + en ⇌ [Cu(en)]2+

 

 

 

 

(1)

Cu2+ + 2 MeNH2 ⇌ [Cu(MeNH2)2]2+

 

 

 

 

(2)

In (1) the ethylenediamine forms a chelate complex with the copper ion. Chelation results in the formation of a five-membered CuC2N2 ring. In (2) the bidentate ligand is replaced by two monodentate methylamine ligands of approximately the same donor power, indicating that the Cu–N bonds are approximately the same in the two reactions.

The thermodynamic approach to describing the chelate effect considers the equilibrium constant for the reaction: the larger the equilibrium constant, the higher the concentration of the complex.

[Cu(en)] = β11[Cu][en]

 

 

 

 

(3)

[Cu(MeNH2)2] = β12[Cu][MeNH2]2

 

 

 

 

(4)

Electrical charges have been omitted for simplicity of notation. The square brackets indicate concentration, and the subscripts to the stability constants, β, indicate the stoichiometry of the complex. When the analytical concentration of methylamine is twice that of ethylenediamine and the concentration of copper is the same in both reactions, the concentration [Cu(en)] is much higher than the concentration [Cu(MeNH2)2] because β11 ≫ β12.

An equilibrium constant, K, is related to the standard Gibbs free energy,   by

 

where R is the gas constant and T is the temperature in kelvins.   is the standard enthalpy change of the reaction and   is the standard entropy change.

Since the enthalpy should be approximately the same for the two reactions, the difference between the two stability constants is due to the effects of entropy. In equation (1) there are two particles on the left and one on the right, whereas in equation (2) there are three particles on the left and one on the right. This difference means that less entropy of disorder is lost when the chelate complex is formed with bidentate ligand than when the complex with monodentate ligands is formed. This is one of the factors contributing to the entropy difference. Other factors include solvation changes and ring formation. Some experimental data to illustrate the effect are shown in the following table.[4]

Equilibrium log β      
Cu2+ + 2 MeNH2 ⇌ Cu(MeNH2)22+ 6.55 −37.4 −57.3 19.9
Cu2+ + en ⇌ Cu(en)2+ 10.62 −60.67 −56.48 −4.19

These data confirm that the enthalpy changes are approximately equal for the two reactions and that the main reason for the greater stability of the chelate complex is the entropy term, which is much less unfavorable. In general it is difficult to account precisely for thermodynamic values in terms of changes in solution at the molecular level, but it is clear that the chelate effect is predominantly an effect of entropy.

Other explanations, including that of Schwarzenbach,[5] are discussed in Greenwood and Earnshaw (loc.cit).

In nature edit

Numerous biomolecules exhibit the ability to dissolve certain metal cations. Thus, proteins, polysaccharides, and polynucleic acids are excellent polydentate ligands for many metal ions. Organic compounds such as the amino acids glutamic acid and histidine, organic diacids such as malate, and polypeptides such as phytochelatin are also typical chelators. In addition to these adventitious chelators, several biomolecules are specifically produced to bind certain metals (see next section).[6][7][8][9]

Virtually all metalloenzymes feature metals that are chelated, usually to peptides or cofactors and prosthetic groups.[9] Such chelating agents include the porphyrin rings in hemoglobin and chlorophyll. Many microbial species produce water-soluble pigments that serve as chelating agents, termed siderophores. For example, species of Pseudomonas are known to secrete pyochelin and pyoverdine that bind iron. Enterobactin, produced by E. coli, is the strongest chelating agent known. The marine mussels use metal chelation esp. Fe3+ chelation with the Dopa residues in mussel foot protein-1 to improve the strength of the threads that they use to secure themselves to surfaces.[10][11][12]

In earth science, chemical weathering is attributed to organic chelating agents (e.g., peptides and sugars) that extract metal ions from minerals and rocks.[13] Most metal complexes in the environment and in nature are bound in some form of chelate ring (e.g., with a humic acid or a protein). Thus, metal chelates are relevant to the mobilization of metals in the soil, the uptake and the accumulation of metals into plants and microorganisms. Selective chelation of heavy metals is relevant to bioremediation (e.g., removal of 137Cs from radioactive waste).[14]

Applications edit

In the 1960s, scientists developed the concept of chelating a metal ion prior to feeding the element to the animal. They believed that this would create a neutral compound, protecting the mineral from being complexed with insoluble salts within the stomach, which would render the metal unavailable for absorption. Amino acids, being effective metal binders, were chosen as the prospective ligands, and research was conducted on the metal–amino acid combinations. The research supported that the metal–amino acid chelates were able to enhance mineral absorption.[citation needed] During this period, synthetic chelates such as ethylenediaminetetraacetic acid (EDTA) were being developed. These applied the same concept of chelation and did create chelated compounds; but these synthetics were too stable and not nutritionally viable. If the mineral was taken from the EDTA ligand, the ligand could not be used by the body and would be expelled. During the expulsion process the EDTA ligand randomly chelated and stripped another mineral from the body.[15] According to the Association of American Feed Control Officials (AAFCO), a metal–amino acid chelate is defined as the product resulting from the reaction of metal ions from a soluble metal salt with amino acids, with a mole ratio in the range of 1–3 (preferably 2) moles of amino acids for one mole of metal.[citation needed] The average weight of the hydrolyzed amino acids must be approximately 150 and the resulting molecular weight of the chelate must not exceed 800 Da.[citation needed] Since the early development of these compounds, much more research has been conducted, and has been applied to human nutrition products in a similar manner to the animal nutrition experiments that pioneered the technology. Ferrous bis-glycinate is an example of one of these compounds that has been developed for human nutrition.[16]

Dentin adhesives were first designed and produced in the 1950s based on a co-monomer chelate with calcium on the surface of the tooth and generated very weak water-resistant chemical bonding (2–3 MPa).[17]

Chelation therapy is an antidote for poisoning by mercury, arsenic, and lead. Chelating agents convert these metal ions into a chemically and biochemically inert form that can be excreted. Chelation using calcium disodium EDTA has been approved by the U.S. Food and Drug Administration (FDA) for serious cases of lead poisoning. It is not approved for treating "heavy metal toxicity".[18] Although beneficial in cases of serious lead poisoning, use of disodium EDTA (edetate disodium) instead of calcium disodium EDTA has resulted in fatalities due to hypocalcemia.[19] Disodium EDTA is not approved by the FDA for any use,[18] and all FDA-approved chelation therapy products require a prescription.[20]

Chelate complexes of gadolinium are often used as contrast agents in MRI scans, although iron particle and manganese chelate complexes have also been explored.[21][22] Bifunctional chelate complexes of zirconium, gallium, fluorine, copper, yttrium, bromine, or iodine are often used for conjugation to monoclonal antibodies for use in antibody-based PET imaging.[23] These chelate complexes often employ the usage of hexadentate ligands such as desferrioxamine B (DFO), according to Meijs et al.,[24] and the gadolinium complexes often employ the usage of octadentate ligands such as DTPA, according to Desreux et al.[25] Auranofin, a chelate complex of gold, is used in the treatment of rheumatoid arthritis, and penicillamine, which forms chelate complexes of copper, is used in the treatment of Wilson's disease and cystinuria, as well as refractory rheumatoid arthritis.[26][27]

Chelation in the intestinal tract is a cause of numerous interactions between drugs and metal ions (also known as "minerals" in nutrition). As examples, antibiotic drugs of the tetracycline and quinolone families are chelators of Fe2+, Ca2+, and Mg2+ ions.[28][29]

EDTA, which binds to calcium, is used to alleviate the hypercalcemia that often results from band keratopathy. The calcium may then be removed from the cornea, allowing for some increase in clarity of vision for the patient.[citation needed]

Homogeneous catalysts are often chelated complexes. A representative example is the use of BINAP (a bidentate phosphine) in Noyori asymmetric hydrogenation and asymmetric isomerization. The latter has the practical use of manufacture of synthetic (–)-menthol.

Citric acid is used to soften water in soaps and laundry detergents. A common synthetic chelator is EDTA. Phosphonates are also well-known chelating agents. Chelators are used in water treatment programs and specifically in steam engineering.[citation needed] Although the treatment is often referred to as "softening," chelation has little effect on the water's mineral content, other than to make it soluble and lower the water's pH level.

Metal chelate compounds are common components of fertilizers to provide micronutrients. These micronutrients (manganese, iron, zinc, copper) are required for the health of the plants. Most fertilizers contain phosphate salts that, in the absence of chelating agents, typically convert these metal ions into insoluble solids that are of no nutritional value to the plants. EDTA is the typical chelating agent that keeps these metal ions in a soluble form.[30]

A chelating agent is the main component of some rust removal formulations.

Reversal edit

Dechelation (or de-chelation) is a reverse process of the chelation in which the chelating agent is recovered by acidifying solution with a mineral acid to form a precipitate.[31]: 7 

See also edit

  • EDDS – chemical compound

References edit

  1. ^ IUPAC definition of chelation.
  2. ^ Latin chela, from Greek, denotes a claw.
  3. ^ Morgan GT, Drew HD (1920). "CLXII.—Researches on residual affinity and co-ordination. Part II. Acetylacetones of selenium and tellurium". Journal of the Chemical Society, Transactions. 117: 1456–65. doi:10.1039/ct9201701456.
  4. ^ Greenwood NN, Earnshaw A (1997). Chemistry of the Elements (2nd ed.). Butterworth-Heinemann. p. 910. ISBN 978-0-08-037941-8.
  5. ^ Schwarzenbach G (1952). "Der Chelateffekt" [The Chelation Effect]. Helvetica Chimica Acta (in German). 35 (7): 2344–59. doi:10.1002/hlca.19520350721.
  6. ^ Krämer U, Cotter-Howells JD, Charnock JM, Baker AJ, Smith JA (1996). "Free histidine as a metal chelator in plants that accumulate nickel". Nature. 379 (6566): 635–8. Bibcode:1996Natur.379..635K. doi:10.1038/379635a0. S2CID 4318712.
  7. ^ Magalhaes JV (June 2006). "Aluminum tolerance genes are conserved between monocots and dicots". Proceedings of the National Academy of Sciences of the United States of America. 103 (26): 9749–50. Bibcode:2006PNAS..103.9749M. doi:10.1073/pnas.0603957103. PMC 1502523. PMID 16785425.
  8. ^ Ha SB, Smith AP, Howden R, Dietrich WM, Bugg S, O'Connell MJ, Goldsbrough PB, Cobbett CS (June 1999). "Phytochelatin synthase genes from Arabidopsis and the yeast Schizosaccharomyces pombe". The Plant Cell. 11 (6): 1153–64. doi:10.1105/tpc.11.6.1153. PMC 144235. PMID 10368185.
  9. ^ a b Lippard SJ, Berg JM (1994). Principles of Bioinorganic Chemistry. Mill Valley, CA: University Science Books. ISBN 978-0-935702-73-6..[page needed]
  10. ^ Das S, Miller DR, Kaufman Y, Martinez Rodriguez NR, Pallaoro A, Harrington MJ, Gylys M, Israelachvili JN, Waite JH (March 2015). "Tough coating proteins: subtle sequence variation modulates cohesion". Biomacromolecules. 16 (3): 1002–8. doi:10.1021/bm501893y. PMC 4514026. PMID 25692318.
  11. ^ Harrington MJ, Masic A, Holten-Andersen N, Waite JH, Fratzl P (April 2010). "Iron-clad fibers: a metal-based biological strategy for hard flexible coatings". Science. 328 (5975): 216–20. Bibcode:2010Sci...328..216H. doi:10.1126/science.1181044. PMC 3087814. PMID 20203014.
  12. ^ Das S, Martinez Rodriguez NR, Wei W, Waite JH, Israelachvili JN (September 2015). "Peptide Length and Dopa Determine Iron-Mediated Cohesion of Mussel Foot Proteins". Advanced Functional Materials. 25 (36): 5840–5847. doi:10.1002/adfm.201502256. PMC 5488267. PMID 28670243.
  13. ^ Pidwirny M. "Introduction to the Lithosphere: Weathering". University of British Columbia Okanagan.
  14. ^ Prasad M (2001). Metals in the Environment: Analysis by Biodiversity. New York, NY: Marcel Dekker. ISBN 978-0-8247-0523-7.[page needed]
  15. ^ Ashmead HD (1993). The Roles of Amino Acid Chelates in Animal Nutrition. Westwood: Noyes Publications.[page needed]
  16. ^ . Albion Laboratories, Inc. Archived from the original on September 3, 2011. Retrieved July 12, 2011.
  17. ^ Anusavice KJ (2012-09-27). "Chapter 12: Bonding and Bonding Agents". Phillips' Science of Dental Materials (12th ed.). Elsevier Health. pp. 257–268. ISBN 978-1-4377-2418-9. OCLC 785080357.
  18. ^ a b "FDA Issues Chelation Therapy Warning". September 26, 2008. Retrieved May 14, 2016.
  19. ^ Centers for Disease Control Prevention (CDC) (March 2006). "Deaths associated with hypocalcemia from chelation therapy--Texas, Pennsylvania, and Oregon, 2003–2005". MMWR. Morbidity and Mortality Weekly Report. 55 (8): 204–7. PMID 16511441.
  20. ^ "Questions and Answers on Unapproved Chelation Products". FDA. February 2, 2016. Retrieved May 14, 2016.
  21. ^ Caravan P, Ellison JJ, McMurry TJ, Lauffer RB (September 1999). "Gadolinium(III) Chelates as MRI Contrast Agents: Structure, Dynamics, and Applications". Chemical Reviews. 99 (9): 2293–352. doi:10.1021/cr980440x. PMID 11749483.
  22. ^ Pan D, Schmieder AH, Wickline SA, Lanza GM (November 2011). "Manganese-based MRI contrast agents: past, present and future". Tetrahedron. 67 (44): 8431–8444. doi:10.1016/j.tet.2011.07.076. PMC 3203535. PMID 22043109.
  23. ^ Vosjan MJ, Perk LR, Visser GW, Budde M, Jurek P, Kiefer GE, van Dongen GA (April 2010). "Conjugation and radiolabeling of monoclonal antibodies with zirconium-89 for PET imaging using the bifunctional chelate p-isothiocyanatobenzyl-desferrioxamine". Nature Protocols. 5 (4): 739–43. doi:10.1038/nprot.2010.13. PMID 20360768. S2CID 5087493.
  24. ^ Price, Eric W.; Orvig, Chris (2014-01-07). "Matching chelators to radiometals for radiopharmaceuticals". Chemical Society Reviews. 43 (1): 260–290. doi:10.1039/c3cs60304k. ISSN 1460-4744. PMID 24173525.
  25. ^ Parac-Vogt, Tatjana N.; Kimpe, Kristof; Laurent, Sophie; Vander Elst, Luce; Burtea, Carmen; Chen, Feng; Muller, Robert N.; Ni, Yicheng; Verbruggen, Alfons (2005-05-06). "Synthesis, characterization, and pharmacokinetic evaluation of a potential MRI contrast agent containing two paramagnetic centers with albumin binding affinity". Chemistry: A European Journal. 11 (10): 3077–3086. doi:10.1002/chem.200401207. ISSN 0947-6539. PMID 15776492.
  26. ^ Kean WF, Hart L, Buchanan WW (May 1997). "Auranofin". British Journal of Rheumatology. 36 (5): 560–72. doi:10.1093/rheumatology/36.5.560. PMID 9189058.
  27. ^ Wax PM (December 2013). "Current use of chelation in American health care". Journal of Medical Toxicology. 9 (4): 303–307. doi:10.1007/s13181-013-0347-2. PMC 3846961. PMID 24113860.
  28. ^ Campbell NR, Hasinoff BB (March 1991). "Iron supplements: a common cause of drug interactions". British Journal of Clinical Pharmacology. 31 (3): 251–5. doi:10.1111/j.1365-2125.1991.tb05525.x. PMC 1368348. PMID 2054263.
  29. ^ Lomaestro BM, Bailie GR (May 1995). "Absorption interactions with fluoroquinolones. 1995 update". Drug Safety. 12 (5): 314–33. doi:10.2165/00002018-199512050-00004. PMID 7669261. S2CID 2006138.
  30. ^ Hart JR (2011). "Ethylenediaminetetraacetic Acid and Related Chelating Agents". Ullmann's Encyclopedia of Industrial Chemistry. doi:10.1002/14356007.a10_095.pub2. ISBN 978-3527306732.
  31. ^ Ryczkowski, Janusz (2019). "EDTA – synthesis and selected applications". Annales Universitatis Mariae Curie-Sklodowska. 74. ISSN 2083-358X.

External links edit

  •   The dictionary definition of chelate at Wiktionary

chelation, this, article, about, sequestering, agents, general, chemicals, used, food, processing, sequestrant, type, bonding, ions, molecules, metal, ions, involves, formation, presence, more, separate, coordinate, bonds, between, polydentate, multiple, bonde. This article is about sequestering agents in general For chemicals used in food processing see Sequestrant Chelation is a type of bonding of ions and molecules to metal ions It involves the formation or presence of two or more separate coordinate bonds between a polydentate multiple bonded ligand and a single central metal atom 1 2 These ligands are called chelants chelators chelating agents or sequestering agents They are usually organic compounds but this is not a necessity The word chelation is derived from Greek xhlh chele meaning claw the ligands lie around the central atom like the claws of a crab The term chelate was first applied in 1920 by Sir Gilbert T Morgan and H D K Drew who stated The adjective chelate derived from the great claw or chele Greek of the crab or other crustaceans is suggested for the caliperlike groups which function as two associating units and fasten to the central atom so as to produce heterocyclic rings 3 Chelation is useful in applications such as providing nutritional supplements in chelation therapy to remove toxic metals from the body as contrast agents in MRI scanning in manufacturing using homogeneous catalysts in chemical water treatment to assist in the removal of metals and in fertilizers Contents 1 Chelate effect 2 In nature 3 Applications 4 Reversal 5 See also 6 References 7 External linksChelate effect edit nbsp Ethylenediamine ligand chelating to a metal with two bonds nbsp Cu2 complexes with nonchelating methylamine left and chelating ethylenediamine right ligandsThe chelate effect is the greater affinity of chelating ligands for a metal ion than that of similar nonchelating monodentate ligands for the same metal The thermodynamic principles underpinning the chelate effect are illustrated by the contrasting affinities of copper II for ethylenediamine en vs methylamine Cu2 en Cu en 2 1 Cu2 2 MeNH2 Cu MeNH2 2 2 2 In 1 the ethylenediamine forms a chelate complex with the copper ion Chelation results in the formation of a five membered CuC2N2 ring In 2 the bidentate ligand is replaced by two monodentate methylamine ligands of approximately the same donor power indicating that the Cu N bonds are approximately the same in the two reactions The thermodynamic approach to describing the chelate effect considers the equilibrium constant for the reaction the larger the equilibrium constant the higher the concentration of the complex Cu en b11 Cu en 3 Cu MeNH2 2 b12 Cu MeNH2 2 4 Electrical charges have been omitted for simplicity of notation The square brackets indicate concentration and the subscripts to the stability constants b indicate the stoichiometry of the complex When the analytical concentration of methylamine is twice that of ethylenediamine and the concentration of copper is the same in both reactions the concentration Cu en is much higher than the concentration Cu MeNH2 2 because b11 b12 An equilibrium constant K is related to the standard Gibbs free energy D G displaystyle Delta G ominus nbsp by D G R T ln K D H T D S displaystyle Delta G ominus RT ln K Delta H ominus T Delta S ominus nbsp where R is the gas constant and T is the temperature in kelvins D H displaystyle Delta H ominus nbsp is the standard enthalpy change of the reaction and D S displaystyle Delta S ominus nbsp is the standard entropy change Since the enthalpy should be approximately the same for the two reactions the difference between the two stability constants is due to the effects of entropy In equation 1 there are two particles on the left and one on the right whereas in equation 2 there are three particles on the left and one on the right This difference means that less entropy of disorder is lost when the chelate complex is formed with bidentate ligand than when the complex with monodentate ligands is formed This is one of the factors contributing to the entropy difference Other factors include solvation changes and ring formation Some experimental data to illustrate the effect are shown in the following table 4 Equilibrium log b D G displaystyle Delta G ominus nbsp D H k J m o l 1 displaystyle Delta H ominus mathrm kJ mol 1 nbsp T D S k J m o l 1 displaystyle T Delta S ominus mathrm kJ mol 1 nbsp Cu2 2 MeNH2 Cu MeNH2 22 6 55 37 4 57 3 19 9Cu2 en Cu en 2 10 62 60 67 56 48 4 19These data confirm that the enthalpy changes are approximately equal for the two reactions and that the main reason for the greater stability of the chelate complex is the entropy term which is much less unfavorable In general it is difficult to account precisely for thermodynamic values in terms of changes in solution at the molecular level but it is clear that the chelate effect is predominantly an effect of entropy Other explanations including that of Schwarzenbach 5 are discussed in Greenwood and Earnshaw loc cit In nature editNumerous biomolecules exhibit the ability to dissolve certain metal cations Thus proteins polysaccharides and polynucleic acids are excellent polydentate ligands for many metal ions Organic compounds such as the amino acids glutamic acid and histidine organic diacids such as malate and polypeptides such as phytochelatin are also typical chelators In addition to these adventitious chelators several biomolecules are specifically produced to bind certain metals see next section 6 7 8 9 Virtually all metalloenzymes feature metals that are chelated usually to peptides or cofactors and prosthetic groups 9 Such chelating agents include the porphyrin rings in hemoglobin and chlorophyll Many microbial species produce water soluble pigments that serve as chelating agents termed siderophores For example species of Pseudomonas are known to secrete pyochelin and pyoverdine that bind iron Enterobactin produced by E coli is the strongest chelating agent known The marine mussels use metal chelation esp Fe3 chelation with the Dopa residues in mussel foot protein 1 to improve the strength of the threads that they use to secure themselves to surfaces 10 11 12 In earth science chemical weathering is attributed to organic chelating agents e g peptides and sugars that extract metal ions from minerals and rocks 13 Most metal complexes in the environment and in nature are bound in some form of chelate ring e g with a humic acid or a protein Thus metal chelates are relevant to the mobilization of metals in the soil the uptake and the accumulation of metals into plants and microorganisms Selective chelation of heavy metals is relevant to bioremediation e g removal of 137Cs from radioactive waste 14 Applications editIn the 1960s scientists developed the concept of chelating a metal ion prior to feeding the element to the animal They believed that this would create a neutral compound protecting the mineral from being complexed with insoluble salts within the stomach which would render the metal unavailable for absorption Amino acids being effective metal binders were chosen as the prospective ligands and research was conducted on the metal amino acid combinations The research supported that the metal amino acid chelates were able to enhance mineral absorption citation needed During this period synthetic chelates such as ethylenediaminetetraacetic acid EDTA were being developed These applied the same concept of chelation and did create chelated compounds but these synthetics were too stable and not nutritionally viable If the mineral was taken from the EDTA ligand the ligand could not be used by the body and would be expelled During the expulsion process the EDTA ligand randomly chelated and stripped another mineral from the body 15 According to the Association of American Feed Control Officials AAFCO a metal amino acid chelate is defined as the product resulting from the reaction of metal ions from a soluble metal salt with amino acids with a mole ratio in the range of 1 3 preferably 2 moles of amino acids for one mole of metal citation needed The average weight of the hydrolyzed amino acids must be approximately 150 and the resulting molecular weight of the chelate must not exceed 800 Da citation needed Since the early development of these compounds much more research has been conducted and has been applied to human nutrition products in a similar manner to the animal nutrition experiments that pioneered the technology Ferrous bis glycinate is an example of one of these compounds that has been developed for human nutrition 16 Dentin adhesives were first designed and produced in the 1950s based on a co monomer chelate with calcium on the surface of the tooth and generated very weak water resistant chemical bonding 2 3 MPa 17 Chelation therapy is an antidote for poisoning by mercury arsenic and lead Chelating agents convert these metal ions into a chemically and biochemically inert form that can be excreted Chelation using calcium disodium EDTA has been approved by the U S Food and Drug Administration FDA for serious cases of lead poisoning It is not approved for treating heavy metal toxicity 18 Although beneficial in cases of serious lead poisoning use of disodium EDTA edetate disodium instead of calcium disodium EDTA has resulted in fatalities due to hypocalcemia 19 Disodium EDTA is not approved by the FDA for any use 18 and all FDA approved chelation therapy products require a prescription 20 Chelate complexes of gadolinium are often used as contrast agents in MRI scans although iron particle and manganese chelate complexes have also been explored 21 22 Bifunctional chelate complexes of zirconium gallium fluorine copper yttrium bromine or iodine are often used for conjugation to monoclonal antibodies for use in antibody based PET imaging 23 These chelate complexes often employ the usage of hexadentate ligands such as desferrioxamine B DFO according to Meijs et al 24 and the gadolinium complexes often employ the usage of octadentate ligands such as DTPA according to Desreux et al 25 Auranofin a chelate complex of gold is used in the treatment of rheumatoid arthritis and penicillamine which forms chelate complexes of copper is used in the treatment of Wilson s disease and cystinuria as well as refractory rheumatoid arthritis 26 27 Chelation in the intestinal tract is a cause of numerous interactions between drugs and metal ions also known as minerals in nutrition As examples antibiotic drugs of the tetracycline and quinolone families are chelators of Fe2 Ca2 and Mg2 ions 28 29 EDTA which binds to calcium is used to alleviate the hypercalcemia that often results from band keratopathy The calcium may then be removed from the cornea allowing for some increase in clarity of vision for the patient citation needed Homogeneous catalysts are often chelated complexes A representative example is the use of BINAP a bidentate phosphine in Noyori asymmetric hydrogenation and asymmetric isomerization The latter has the practical use of manufacture of synthetic menthol Citric acid is used to soften water in soaps and laundry detergents A common synthetic chelator is EDTA Phosphonates are also well known chelating agents Chelators are used in water treatment programs and specifically in steam engineering citation needed Although the treatment is often referred to as softening chelation has little effect on the water s mineral content other than to make it soluble and lower the water s pH level Metal chelate compounds are common components of fertilizers to provide micronutrients These micronutrients manganese iron zinc copper are required for the health of the plants Most fertilizers contain phosphate salts that in the absence of chelating agents typically convert these metal ions into insoluble solids that are of no nutritional value to the plants EDTA is the typical chelating agent that keeps these metal ions in a soluble form 30 A chelating agent is the main component of some rust removal formulations Reversal editSee also Transmetalation Dechelation or de chelation is a reverse process of the chelation in which the chelating agent is recovered by acidifying solution with a mineral acid to form a precipitate 31 7 See also editEDDS chemical compoundPages displaying wikidata descriptions as a fallbackReferences edit IUPAC definition of chelation Latin chela from Greek denotes a claw Morgan GT Drew HD 1920 CLXII Researches on residual affinity and co ordination Part II Acetylacetones of selenium and tellurium Journal of the Chemical Society Transactions 117 1456 65 doi 10 1039 ct9201701456 Greenwood NN Earnshaw A 1997 Chemistry of the Elements 2nd ed Butterworth Heinemann p 910 ISBN 978 0 08 037941 8 Schwarzenbach G 1952 Der Chelateffekt The Chelation Effect Helvetica Chimica Acta in German 35 7 2344 59 doi 10 1002 hlca 19520350721 Kramer U Cotter Howells JD Charnock JM Baker AJ Smith JA 1996 Free histidine as a metal chelator in plants that accumulate nickel Nature 379 6566 635 8 Bibcode 1996Natur 379 635K doi 10 1038 379635a0 S2CID 4318712 Magalhaes JV June 2006 Aluminum tolerance genes are conserved between monocots and dicots Proceedings of the National Academy of Sciences of the United States of America 103 26 9749 50 Bibcode 2006PNAS 103 9749M doi 10 1073 pnas 0603957103 PMC 1502523 PMID 16785425 Ha SB Smith AP Howden R Dietrich WM Bugg S O Connell MJ Goldsbrough PB Cobbett CS June 1999 Phytochelatin synthase genes from Arabidopsis and the yeast Schizosaccharomyces pombe The Plant Cell 11 6 1153 64 doi 10 1105 tpc 11 6 1153 PMC 144235 PMID 10368185 a b Lippard SJ Berg JM 1994 Principles of Bioinorganic Chemistry Mill Valley CA University Science Books ISBN 978 0 935702 73 6 page needed Das S Miller DR Kaufman Y Martinez Rodriguez NR Pallaoro A Harrington MJ Gylys M Israelachvili JN Waite JH March 2015 Tough coating proteins subtle sequence variation modulates cohesion Biomacromolecules 16 3 1002 8 doi 10 1021 bm501893y PMC 4514026 PMID 25692318 Harrington MJ Masic A Holten Andersen N Waite JH Fratzl P April 2010 Iron clad fibers a metal based biological strategy for hard flexible coatings Science 328 5975 216 20 Bibcode 2010Sci 328 216H doi 10 1126 science 1181044 PMC 3087814 PMID 20203014 Das S Martinez Rodriguez NR Wei W Waite JH Israelachvili JN September 2015 Peptide Length and Dopa Determine Iron Mediated Cohesion of Mussel Foot Proteins Advanced Functional Materials 25 36 5840 5847 doi 10 1002 adfm 201502256 PMC 5488267 PMID 28670243 Pidwirny M Introduction to the Lithosphere Weathering University of British Columbia Okanagan Prasad M 2001 Metals in the Environment Analysis by Biodiversity New York NY Marcel Dekker ISBN 978 0 8247 0523 7 page needed Ashmead HD 1993 The Roles of Amino Acid Chelates in Animal Nutrition Westwood Noyes Publications page needed Albion Ferrochel Website Albion Laboratories Inc Archived from the original on September 3 2011 Retrieved July 12 2011 Anusavice KJ 2012 09 27 Chapter 12 Bonding and Bonding Agents Phillips Science of Dental Materials 12th ed Elsevier Health pp 257 268 ISBN 978 1 4377 2418 9 OCLC 785080357 a b FDA Issues Chelation Therapy Warning September 26 2008 Retrieved May 14 2016 Centers for Disease Control Prevention CDC March 2006 Deaths associated with hypocalcemia from chelation therapy Texas Pennsylvania and Oregon 2003 2005 MMWR Morbidity and Mortality Weekly Report 55 8 204 7 PMID 16511441 Questions and Answers on Unapproved Chelation Products FDA February 2 2016 Retrieved May 14 2016 Caravan P Ellison JJ McMurry TJ Lauffer RB September 1999 Gadolinium III Chelates as MRI Contrast Agents Structure Dynamics and Applications Chemical Reviews 99 9 2293 352 doi 10 1021 cr980440x PMID 11749483 Pan D Schmieder AH Wickline SA Lanza GM November 2011 Manganese based MRI contrast agents past present and future Tetrahedron 67 44 8431 8444 doi 10 1016 j tet 2011 07 076 PMC 3203535 PMID 22043109 Vosjan MJ Perk LR Visser GW Budde M Jurek P Kiefer GE van Dongen GA April 2010 Conjugation and radiolabeling of monoclonal antibodies with zirconium 89 for PET imaging using the bifunctional chelate p isothiocyanatobenzyl desferrioxamine Nature Protocols 5 4 739 43 doi 10 1038 nprot 2010 13 PMID 20360768 S2CID 5087493 Price Eric W Orvig Chris 2014 01 07 Matching chelators to radiometals for radiopharmaceuticals Chemical Society Reviews 43 1 260 290 doi 10 1039 c3cs60304k ISSN 1460 4744 PMID 24173525 Parac Vogt Tatjana N Kimpe Kristof Laurent Sophie Vander Elst Luce Burtea Carmen Chen Feng Muller Robert N Ni Yicheng Verbruggen Alfons 2005 05 06 Synthesis characterization and pharmacokinetic evaluation of a potential MRI contrast agent containing two paramagnetic centers with albumin binding affinity Chemistry A European Journal 11 10 3077 3086 doi 10 1002 chem 200401207 ISSN 0947 6539 PMID 15776492 Kean WF Hart L Buchanan WW May 1997 Auranofin British Journal of Rheumatology 36 5 560 72 doi 10 1093 rheumatology 36 5 560 PMID 9189058 Wax PM December 2013 Current use of chelation in American health care Journal of Medical Toxicology 9 4 303 307 doi 10 1007 s13181 013 0347 2 PMC 3846961 PMID 24113860 Campbell NR Hasinoff BB March 1991 Iron supplements a common cause of drug interactions British Journal of Clinical Pharmacology 31 3 251 5 doi 10 1111 j 1365 2125 1991 tb05525 x PMC 1368348 PMID 2054263 Lomaestro BM Bailie GR May 1995 Absorption interactions with fluoroquinolones 1995 update Drug Safety 12 5 314 33 doi 10 2165 00002018 199512050 00004 PMID 7669261 S2CID 2006138 Hart JR 2011 Ethylenediaminetetraacetic Acid and Related Chelating Agents Ullmann s Encyclopedia of Industrial Chemistry doi 10 1002 14356007 a10 095 pub2 ISBN 978 3527306732 Ryczkowski Janusz 2019 EDTA synthesis and selected applications Annales Universitatis Mariae Curie Sklodowska 74 ISSN 2083 358X External links edit nbsp The dictionary definition of chelate at Wiktionary Retrieved from https en wikipedia org w index php title Chelation amp oldid 1194426395, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.