fbpx
Wikipedia

Black-tailed prairie dog

The black-tailed prairie dog (Cynomys ludovicianus) is a rodent of the family Sciuridae found in the Great Plains of North America from about the United States-Canada border to the United States-Mexico border. Unlike some other prairie dogs, these animals do not truly hibernate. The black-tailed prairie dog can be seen above ground in midwinter. A black-tailed prairie dog town in Texas was reported to cover 25,000 sq mi (64,000 km2) and included 400,000,000 individuals.[3] Prior to habitat destruction, the species may have been the most abundant prairie dog in central North America. It was one of two prairie dogs described by the Lewis and Clark Expedition in the journals and diaries of their expedition.

Black-tailed prairie dog
At Wichita Mountains Wildlife Refuge
Scientific classification
Kingdom: Animalia
Phylum: Chordata
Class: Mammalia
Order: Rodentia
Family: Sciuridae
Genus: Cynomys
Species:
C. ludovicianus
Binomial name
Cynomys ludovicianus
(Ord, 1815)
Black-tailed prairie dog range[2]

Description

Black-tailed prairie dogs are generally tan in color, with lighter-colored bellies. They may have color variation in their pelt, such as dark fur on their back in black and brown tones. Their tails have black tips, from which their name is derived. Adults can weigh from 1.5 to 3.0 lb (0.68 to 1.36 kg), males are typically heavier than females. Body length is normally from 14 to 17 in (36 to 43 cm), with a 3-to-4 in (7.6-to-10.2 cm) tail. The black-tailed have black long claws used for digging. The body of the black-tailed prairie dog is compact, and the ears are small and close to the head.

Distribution

The historic range of the black-tailed prairie dog was from southern Saskatchewan and Alberta to Chihuahua, Mexico,[4] and included portions of Montana, North Dakota, South Dakota, Wyoming, Colorado, Nebraska, Kansas, Oklahoma, Texas, Arizona, and New Mexico.[5] As of 2007, black-tailed prairie dogs occur across most of their historic range, excluding Arizona;[6][7] however, their occupied acreage and populations are well below historic levels.[8]

Habits

Black-tailed prairie dogs are diurnal.[6][9][10] Above-ground activity is reduced when rain or snow is falling and during days when the temperature exceeds 100 °F (38 °C).[9][10] During the winter months, black-tailed prairie dogs do not fully hibernate. They continue to leave the burrow to forage, but will enter a state of torpor at night to conserve energy. Torpor is categorized by a drop in metabolism, heart rate and respiration similar to hibernation, but is involuntary and shorter in duration. On average, black-tailed prairie dogs will lose twenty percent of their body weight during the fall and winter seasons when they go through bouts of torpor. As winter progressed, the amount of time spent in torpor increases. Between different colonies the overall time spent in torpor varies, independent of prairie dog body mass. This may be due to weather during the previous growing season. As black-tailed prairie dogs receive most of their water from their diet, in years with poor rainfall, the black-tailed prairie dogs spend more time in torpor.[11]

Habitat

Black-tailed prairie dogs are native to grassland habitats in North America. They inhabit shortgrass prairie,[7][12][13] mixed-grass prairie,[7][14][15][16][17][18] sagebrush steppe,[12][19] and desert grassland.[4][20]

Habitat preferences for the black-tailed prairie dog are influenced by vegetative cover type, slope, soil type, and amount of rainfall.[21] Their foraging and burrowing activities influence environmental heterogeneity, hydrology, nutrient cycling, biodiversity, landscape architecture, and plant succession in grassland habitats.[9][10][15][17][22][23]

Landscape-scale habitat characteristics

 
At Paignton Zoo, Devon, England

Black-tailed prairie dogs inhabit grasslands, including short- and mixed-grass prairie, sagebrush steppe, and desert grasslands. Shortgrass prairies dominated by buffalo grass (Buchloe dactyloides), blue grama (Bouteloua gracilis), and western wheatgrass (Pascopyron smithii),[9][10][14][24] and mixed-grass prairies [7][14][15][16][17][18] that have been grazed by native and non-native herbivores are their preferred habitat.[10][19] Slopes of 2% to 5% and vegetation heights between 3 and 5 in (7–13 cm) are optimal for detecting predators and facilitating communication.[9][10][14]

In the Great Plains region, black-tailed prairie dog colonies commonly occur near rivers and creeks.[10] Of 86 colonies located in Mellette County, South Dakota, 30 were located on benches or terraces adjacent to a creek or floodplain, 30 occurred in rolling hills with a slope more than 5°, 20 were in flat areas, and six were in badland areas.[25] The slopes of playa lakes in the Texas Panhandle and surrounding regions are used as habitat for the black-tailed prairie dog.[26] Colonies in Phillips County, Montana, were often associated with reservoirs, cattle salting grounds, and other areas affected by humans.[21]

Black-tailed prairie dogs tolerate "high degrees" of disturbance over long periods of time. New colonies are rarely created on rangeland in "good" to "excellent" condition; however, continuously, long-term, heavily grazed land reduces habitat quality due to soil erosion.[27] Black-tailed prairie dogs may colonize heavily grazed sites, but do not necessarily specialize in colonizing overgrazed areas. Overgrazing may occur subsequent to their colonization.[28] Black-tailed prairie dogs were associated with areas intensively grazed by livestock and/or areas where topsoil had been disturbed by human activities in sagebrush-grassland habitat on the Charles M. Russell National Wildlife Refuge and Fort Belknap Agency, Montana. Roads and cattle trails were found in 150 of 154 black-tailed prairie dog colonies, and colonies were located significantly closer to livestock water developments and homestead sites than randomly located points.[19]

Soil

Black-tailed prairie dog distribution is not limited by soil type, but by indirect effects of soil texture on moisture and vegetation. Colonies occur in many types of soil, including deep, alluvial soils with medium to fine textures, and occasionally gravel. Soil not prone to collapsing or flooding is preferred.[10] Though they do not select specific types of soil to dig burrows,[9] silty loam clay soils are best for tunnel construction.[10] Surface soil textures in colonies near Fort Collins, Colorado, varied from sandy loam to sandy clay loam in the top 6 in (15 cm), with a sandy clay loam subsoil. In northern latitudes, colonies commonly occur on south aspects due to the dominance of grasses over shrubs and increased solar radiation during winter. Burrows usually occur on slopes more than 10°.[10]

Black-tailed prairie dogs mix the soil horizons by raising soil from deeper layers to the surface. This may significantly affect the texture and composition of soil at different layers. Their feces, urine, and carcasses also affect soil characteristics.[10]

Home range and population density

The home range and territorial boundaries of black-tailed prairie dogs are determined by the area occupied by an individual coterie. Coteries typically occupy about 1.0 acre (0.4 ha).[10]

Population density and growth are influenced by habitat quality [9] and are restricted by topographic barriers, soil structure, tall vegetation, and social conditions.[9][10] Urbanization and other types of human development may restrict colony size and spatial distribution. Most plains habitats support at least 13 black-tailed prairie dogs/ha.[10]

Cover requirements

 
Two adults

Burrows created by black-tailed prairie dogs serve as refuges from the external environment and are one of the most important features of their colonies. Burrows are used for breeding, rearing young, and hiding from predators, and are maintained from generation to generation, and serve as stabilizers on the physical and social aspects of the colony.[9] Black-tailed prairie dog nests are located underground in burrows and are composed of fine, dried grass. Nest material is collected throughout the year by both sexes and all age classes.[6][9] Tunnel depths in central Oklahoma were typically 50–60 in deep.[29] Most colonies contain 20 to 57 burrows/acre.[9][10]

The three types of burrow entrances are: dome mounds, rimmed crater mounds, and entrances without structures around them. Entrance features may prevent flooding and/or aid in ventilation.[6][9][10] Dome mounds consist of loosely packed subterranean soil spread widely around the entrance of the burrow, and tend to be vegetated by prostrate forbs. Rimmed crater mounds are cone-shaped and constructed of humus, litter, uprooted vegetation, and mineral soil. Black-tailed prairie dogs compact the soil of these mounds with their noses, creating poor sites for seedling establishment.[16] Rimmed crater mounds may be used as wallowing sites for American bison. Burrow entrances without structures around them are usually located on slopes more than 10°.[9] The density of burrow openings depends on both substrate and duration of occupation of an area.[10]

Vegetation heights between 3 and 5 in (7–13 cm) and a slope of 2° to 5° are optimal for detecting predators and facilitating communication among black-tailed prairie dogs.[9][10][14] Grazing cattle keep vegetation short in the vicinity of colonies, reducing susceptibility to predators and potentially expanding colony size.[9][10][20][24] Black-tailed prairie dogs were rarely seen feeding more than 16 ft (5 m) from colony edges in Wind Cave National Park.[17]

Diet

 
Cynomys ludovicianus gathering grass

Black-tailed prairie dogs are selective opportunists, preferring certain phenological stages or types of vegetation according to their needs.[9][14][30] When forage is stressed by grazing, drought, or herbicides, they change their diets quickly. Grasses are preferred over forbs,[10][24] and may comprise more than 75% of their diets, especially during summer.[24][30] Western wheatgrass, buffalo grass, blue grama [9][10][30] and sedges (Carex spp.) are preferred during spring and summer. Scarlet globemallow (Sphaeralcea coccinea) [9][15][24][30] and Russian thistle (Salsola kali) [31] are preferred during late summer and fall, but are sought out during every season.[10][15][24] During winter, plains prickly pear (Opuntia polyacantha), Russian thistle, and underground roots are preferred.[9][30] Shrubs such as rabbitbrush (Chrysothamnus spp.), winterfat (Krascheninnikovia lanata), saltbush (Atriplex spp.), and sagebrush (Artemisia spp.) are also commonly eaten.[31] Water, which is generally not available on the short-grass prairie, is obtained from vegetation such as plains prickly pear.[30] Koford [10] estimated one black-tailed prairie dog eats about 7 lb (3 kg) of herbage per month during summer.[31] Cutworms,[31] grasshoppers,[10] and old or fresh American bison scat are occasionally eaten.[6] For a detailed list of foods eaten by black-tailed prairie dogs by month, and ratings of those foods' forage value to cattle and sheep, see.[31] For a complete list of vegetation preferred by the black-tailed prairie dog, see.[32]

Social organization

 
Two black-tailed prairie dogs grooming themselves

Black-tailed prairie dogs live in colonies. Colony size may range from five to thousands of individuals, and may be subdivided into two or more wards, based on topographic features, such as hills. Wards are usually subdivided into two or more coteries, which are composed of aggregates of highly territorial, harem-polygynous social groups.[9][10] Individuals within coteries are amicable with each other and hostile towards outside individuals. At the beginning of the breeding season, a coterie is typically composed of one adult male, three to four adult females, and several yearlings and juveniles of both sexes. After the breeding season and prior to dispersal of juveniles, coterie size increases.[9]

Dispersal

Reasons for dispersal include new vegetative growth at colony peripheries, shortage of unrelated females in a coterie, harassment of females by juveniles, and probably an innate genetic mechanism responding to increased density within a colony. Males typically leave the natal territory 12 to 14 months after weaning, during May and June,[33] but dispersal may occur throughout the year. Females generally remain in their natal coterie territories for their lifetimes. Intercolony dispersers moved an average distance of 1.5 mi (2.4 km) from their natal site.[33] Roads and trails may facilitate black-tailed prairie dog dispersal.[10]

Hearing

Black-tailed prairie dogs have sensory adaptions for avoiding predators. Black-tailed prairie dogs have very sensitive hearing at low frequencies that allows them to detect predators early, especially while in their burrows. Black-tailed prairie dog hearing can range from 29 Hz to 26 kHz, and can hear as low as 4 Hz.[34]

Communication

Constantine Slobodchikoff and others assert that prairie dogs use a sophisticated system of vocal communication to describe specific predators.[35] According to them, prairie dog calls contain specific information as to what the predator is, how big it is, and how fast it is approaching.[35] These have been described as a form of grammar. According to Slobodchikoff, these calls, with their individuality in response to a specific predator, imply prairie dogs have highly developed cognitive abilities.[35] He also asserts prairie dogs have calls for things that are not predators to them. This is cited as evidence that the animals have a very descriptive language and have calls for any potential threat.[35]

Debate exists over whether the alarm calling of prairie dogs is selfish or altruistic. Prairie dogs possibly alarm others to the presence of a predator so they can protect themselves. However, the calls possibly are meant to cause confusion and panic in the groups and cause the others to be more conspicuous to the predator than the caller. Studies of black-tailed prairie dogs suggest alarm calling is a form of kin selection, as a prairie dog's call alerts both offspring and kin of indirect descent, such as cousins, nephews, and nieces.[36] Prairie dogs with kin close by called more often than those without. In addition, the caller may be trying to make itself more noticeable to the predator.[36] However, a predator seems to have difficulty determining which prairie dog is making the call due to its "ventriloquistic" nature.[36] Also, when a prairie dog makes a call, the others seem not to run into the burrows, but stand on the mounds to see where the predator is, making themselves visible to the predator.[36]

Perhaps the most conspicuous prairie dog communication is the territorial call or "jump-yip" display. A prairie dog will stretch the length of its body vertically and throw its forefeet into the air while making a call.[37] A jump-yip from one prairie dog causes others nearby to do the same.[38] The instigator of the jump-yip 'wave' uses the jump-yip to assess the vigilance or watchfulness of others in the colony - a longer jump-yip wave indicates watchful neighbors and leads to increased foraging by the instigator.[39]

Reproduction and development

 
Six-week-old black-tailed prairie dog
 
Two juveniles at the Rio Grande Zoo

Age of first reproduction, pregnancy rate, litter size, juvenile growth rate, and first-year survival of the black-tailed prairie dog vary depending on food availability.[17]

Mating

Minimum breeding age for the black-tailed prairie dog is usually two years,[6][9][10] but yearlings may breed if space and food are abundant.[9][10] In Wind Cave National Park, South Dakota, 40% (213 individuals) of yearling females copulated and 9% successfully weaned a litter.[40]

The mating season occurs from late February through April, but varies with latitude and site location of the colony.[9][10] Estrus occurs for only one day during the breeding season.[40]

Reproductive success

In Wind Cave National Park, the mean percentage of adult females that weaned a litter each year was 47% ± 14%.[33] Reproductive success and survival may be greater in young colonies that have space for expansion. In a young colony (five years) with space for expansion, in Wind Cave National Park, 88% females were pregnant and 81% of young weaned, compared to an old colony (30 years) with no room for expansion, where 90% of females were pregnant and 41% of young were weaned.[17]

Gestation period and litter size

Black-tailed prairie dog gestation is 34 days.[6][9] Parturition occurs underground. Information about litter size at time of birth is unavailable, but the mean litter size observed above ground ranges from 3.0 to 4.9 young/litter.[9][10][40][33] Only one litter is produced each year.[40][33]

Development

In captivity, black-tailed prairie dog pups open their eyes at 30 days old.[9] Pups are altricial and remain below ground for up to seven weeks to nurse.[9][10][40] Maturity is complete at 15 months old.[9] Lifespan of the black-tailed prairie dog in the wild is unknown, but males more than 3 years old experience high mortality. Females may live longer than males.[9] According to Hoogland and others,[33] lifespan is about 5 years for males and 7 years for females.

Mortality

Major mortality factors include predation, disease, infanticide, habitat loss, poisoning, trapping, and shooting.[6][40][12][33] Survival for the first year was 54% for females and less than 50% for males in Wind Cave National Park. Primary causes of death were predation and infanticide.[40] Infanticide partially or totally eliminated 39% (361 individuals) of all litters. Lactating females were the most common killers.[40] Mortality of young was highest due to heavy predation during the winter and early spring following birth.[9] Mortality increases with dispersal from a colony or coterie.[10]

Sylvatic plague, caused by the bacterium Yersinia pestis, can quickly eliminate entire black-tailed prairie dog colonies. Once infected, death occurs within a few days.[6][12] Black-tailed prairie dogs are also susceptible to diseases transmitted by introduced animals.[41]

Predators

The most common predators of black-tailed prairie dogs are coyotes (Canis latrans),[6][9][17][42] American badgers (Taxidea taxus),[6][10][17][42] bobcats (Lynx rufus),[6][9][42] golden eagles (Aquila chrysaetos),[6][9][10][42] ferruginous hawks (Buteo regalis),[6][42] red-tailed hawks (Buteo jamaicensis),[9] and prairie rattlesnakes (Crotalus viridis).[9][10][42] Although now very rare, black-footed ferrets (Mustela nigripes) were once a major predator of the black-tailed prairie dog.[42]

Ecological role and threats

Black-tailed prairie dogs have been called "ecosystem engineers" due to their influence on the biotic and abiotic characteristics of their habitat, landscape architecture, and ecosystem structure and function.[4][43] Research suggests black-tailed prairie dogs are a keystone species[4][40][43] in some, but not all, geographic areas.[4] Black-tailed prairie dogs enhance the diversity of vegetation, vertebrates, and invertebrates through their foraging and burrowing activities and by their presence as prey items.[4][29][43][44] Grasslands inhabited by black-tailed prairie dogs support higher biodiversity than grasslands not occupied by them.

Hundreds of species of vertebrates [7][45] and invertebrates[29] are associated with black-tailed prairie dog colonies. Vertebrate species richness on their colonies increases with colony size and density.[21] West of the Missouri River in Montana, 40% (100 species) of all vertebrate fauna in prairie habitats rely on black-tailed prairie dog colonies for food, nesting, and/or denning. Rare and declining species, such as the black-footed ferret,[7][42][45] swift fox (Vulpes velox), mountain plover (Charadrius montanus),[21] and burrowing owl (Athene cunicularia)[6] are associated with colonies.[7] Because their foraging activities keep plant development in a suppressed vegetative state with higher nutritional qualities,[20][45] herbivores, including American bison, pronghorn (Antilocapra americana), and domestic cattle often prefer foraging in black-tailed prairie dog colonies.[6][9][10][15][19][22][24][44][45] Animals that depend on herbaceous cover in sagebrush habitat, such as mule deer (Odocoileus hemionus) and sage grouse (Centrocercus spp.), may be deterred by the decreased vegetative cover on black-tailed prairie dog colonies.[18] For a list of vertebrate species associated with black-tailed prairie dog colonies, see.[46]

Biodiversity in shortgrass prairies may be at risk due to the reductions in distribution and occurrence of black-tailed prairie dog. Threats include fragmentation and loss of habitat, unregulated eradication or control efforts, and sylvatic plague.[7][8] As a result of habitat fragmentation and prairie dog eradication programs, colonies are now smaller and more fragmented than in presettlement times. Agriculture, livestock use, and other development have reduced habitat to 2% of its former range.[7] Fragmented colonies are more susceptible to extirpation, primarily by sylvatic plague. The effect of roads on black-tailed prairie dogs is debatable. Roads may either facilitate or hinder their movement, depending on the landscape setting. Roads may be easy routes for dispersal, but those with heavy automobile use may increase mortality.[12][19] Roads, streams, and lakes may serve as barriers to sylvatic plague.[12]

Conservation status

 
Kissing prairie dogs

Black-tailed prairie dogs are frequently exterminated from ranchland, being viewed as pests. Their habitat has been fragmented, and their numbers have been greatly reduced. Additionally, they are remarkably susceptible to plague.[47] In 2006, all eight appearances of plague in black-tailed prairie dog colonies resulted in total colony loss. Studies in 1961 estimated only 364,000 acres (1,470 km2) of occupied black-tailed prairie dog habitat in the United States. A second study in 2000 showed 676,000 acres (2,740 km2). However, a comprehensive study between 10 states and various tribes in 2004 estimated 1,842,000 acres (7,450 km2) in the United States, plus an additional 51,589 acres (208.77 km2) in Mexico and Canada. Based on the 2004 studies, the US Fish and Wildlife Service removed the black-tailed prairie dog from the Endangered Species Act Candidate Species List in August 2004.[48]

Interactions with domestic livestock

 
A black-tailed prairie dog eating a peanut

While black-tailed prairie dogs are often regarded as competitors with livestock for available forage, evidence of impacts on rangelands are mixed. Some research suggests they have either neutral or beneficial effects on rangeland used by livestock;[10][15][24][44] however, their effects on rangelands are not uniform.[18][22] In Cimarron National Grassland in southwest Kansas and adjacent private lands in Baca County, Colorado, some vegetational differences were detected between areas colonized by black-tailed prairie dogs and uncolonized areas, although not all differences were consistent between sample years. Species richness and diversity indices did not differ among colonized and uncolonized sites in either year, nor did the amount of bare ground. The authors conclude while prairie dogs alter shortgrass prairie such that the vegetation of colonies tends to be distinct from adjacent uncolonized areas, "prairie dogs do not substantially alter the essential character of shortgrass vegetation".[23] Cattle neither significantly preferred nor avoided black-tailed prairie dog colonies in a study in the shortgrass steppe of northeastern Colorado. Cattle used colonies in proportion to the colony's availability, and grazed as intensively on colonies as on areas not occupied by black-tailed prairie dogs.[13]

Competitive interactions between black-tailed prairie dogs and domestic livestock for preferred forage species are unclear. Several studies suggest black-tailed prairie dogs avoid eating many plants that livestock prefer, and prefer many plants livestock avoid.[22][44] Conversely, on shortgrass prairie in Colorado, cattle and black-tailed prairie dogs had a 64% similarity in annual diets.[24]

Some changes in plant composition brought about by black-tailed prairie dogs may benefit livestock by encouraging an increase in plants more tolerant of grazing, such as needleleaf sedge (Carex duriuscula), sixweeks grass (Vulpia octoflora), and scarlet globemallow.[15][45] Grazing by black-tailed prairie dogs may also improve the nutritional qualities of some plants.[20][45] On a shortgrass prairie near Fort Collins, Colorado, plant species diversity was greater inside black-tailed prairie dog colonies than outside of colonies, and perennial grasses such as buffalo grass and forbs increased.[15] While black-tailed prairie dog colonies at Wind Cave National Park typically had lower levels of plant biomass and were dominated by forbs, plants growing on prairie dog colonies had higher leaf nitrogen concentrations than plants in mixed-grass prairie outside colonies. Foraging by black-tailed prairie dogs does not significantly affect steer weights.[24][44] While forage availability and use by cattle decreased in black-tailed prairie dog foraging areas, steer weight was not reduced significantly in either of two years of study at the USDA's Southern Great Plains Experimental Range near Woodward, Oklahoma. Nutrient cycling, increased soil fertility, and subsequent changes in forage quality partly compensated for reduced forage availability.[44]

Pet trade

Black-tailed prairie dogs were the most common prairie dog species collected in the wild for sale as exotic pets, until this trade was banned in 2003 by the United States federal government. Prairie dogs in captivity at the time of the ban are allowed to be possessed under a grandfather clause, but no more may be caught, traded, or sold, and transport is only permitted to and from a veterinarian under proper quarantine procedures. The ban was officially lifted on September 8, 2008.[49]

References

  This article incorporates public domain material from Cynomys ludovicianus. United States Department of Agriculture.

  1. ^ Cassola, F. (2017) [errata version of 2016 assessment]. "Cynomys ludovicianus". IUCN Red List of Threatened Species. 2016: e.T6091A115080297. doi:10.2305/IUCN.UK.2016-3.RLTS.T6091A22261137.en. Retrieved 19 February 2022.
  2. ^ IUCN (International Union for Conservation of Nature) 2008. Cynomys ludovicianus. In: IUCN 2014. The IUCN Red List of Threatened Species. Version 2014.3
    . Archived from the original on 2014-06-27. Retrieved 2014-06-27.. Downloaded on 29 January 2015.
  3. ^ "Prairie Dogs | National Geographic". 2010-11-11. Retrieved 2018-06-13.
  4. ^ a b c d e f Davidson, Ana D.; Lightfoot, David C. (2006). (PDF). Ecography. 29 (5): 755–765. doi:10.1111/j.2006.0906-7590.04699.x. Archived from the original (PDF) on 2012-09-29.
  5. ^ Hall, E. Raymond; Kelson, Keith R. (1959). The mammals of North America. New York: Ronald Press Company.
  6. ^ a b c d e f g h i j k l m n o p Johnsgard, Paul A. (2005). Prairie dog empire: A saga of the shortgrass prairie. Lincoln, NE: University of Nebraska Press. ISBN 978-0803254879
  7. ^ a b c d e f g h i Mulhern, Daniel W.; Knowles, Craig J. (1997). "Black-tailed prairie dog status and future conservation planning". In: Uresk, Daniel W.; Schenbeck, Greg L.; O'Rourke, James T., tech. coords. Conserving biodiversity on native rangelands: symposium proceedings; 1995 August 17; Fort Robinson State Park, NE. Gen. Tech. Rep. RM-GTR-298. Fort Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Forest and Range Experiment Station: pp. 19–29.
  8. ^ a b Luce, Robert J. (2006). "A multi-state approach to black-tailed prairie dog conservation and management in the United States". In: Basurto, Xavier; Hadley, Diana, eds. Grasslands ecosystems, endangered species, and sustainable ranching in the Mexico-U.S. borderlands: conference proceedings. Fort Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station: pp. 48–52.
  9. ^ a b c d e f g h i j k l m n o p q r s t u v w x y z aa ab ac ad ae af ag ah ai aj ak King, John A. (1955). "Social behavior, social organization, and population dynamics in a black-tailed prairie dog town in the Black Hills of South Dakota". In: Contributions from the Laboratory of Vertebrate Biology. Vol. 67. Ann Arbor, MI: University of Michigan.
  10. ^ a b c d e f g h i j k l m n o p q r s t u v w x y z aa ab ac ad ae af ag ah ai aj ak Koford, Carl B. (1958). "Prairie dogs, whitefaces, and blue grama". Wildlife Monographs No. 3. Washington, DC: The Wildlife Society.
  11. ^ Lehmer, E; Savage, L; Antolin, M; Biggins, D (2006). "Extreme plasticity in thermoregulatory behaviors of free-ranging black-tailed prairie dogs". Physiological and Biochemical Zoology. 79 (3): 454–67. doi:10.1086/502816. PMID 16691512. S2CID 38149270.
  12. ^ a b c d e f Collinge, Sharon K.; Johnson, Whitney C.; Ray, Chris; Matchett, Randy; Grensten, John; Cully Jr., Jack F.; Gage, Kenneth L.; Kosoy, Michael Y.; et al. (2005). "Landscape Structure and Plague Occurrence in Black-tailed Prairie Dogs on Grasslands of the Western USA". Landscape Ecology. 20 (8): 941–955. doi:10.1007/s10980-005-4617-5. S2CID 22446023.
  13. ^ a b Guenther, Debra A.; Detling, James K. (2003). "Observations of cattle use of prairie dog towns". Journal of Range Management. 56 (5): 410–417. doi:10.2458/azu_jrm_v56i5_guenther. hdl:10217/83517. JSTOR 4003830.
  14. ^ a b c d e f Clippinger, Norman W. (1989). Habitat suitability index models: black-tailed prairie dog. Biol. Rep. 82 (10.156). Washington, DC: U.S. Department of the Interior, Fish and Wildlife Service.
  15. ^ a b c d e f g h i Bonham, Charles D.; Lerwick, Alton (1976). "Vegetation changes induced by prairie dogs on shortgrass range". Journal of Range Management. 29 (3): 221–225. doi:10.2307/3897280. hdl:10150/646828. JSTOR 3897280. S2CID 90644141.
  16. ^ a b c Cincotta, Richard P.; Uresk, Daniel W.; Hansen, Richard M. (1989). "Plant compositional change in a colony of black-tailed prairie dogs in South Dakota". In: Bjugstad, Ardell J.; Uresk, Daniel W.; Hamre, R. H., tech. coords. 9th Great Plains wildlife damage control workshop proceedings; 1989 April 17–20; Fort Collins, CO. Gen. Tech. Rep. RM-171. Fort Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Forest and Range Experiment Station: pp. 171–177. doi:10.2737/RM-GTR-171
  17. ^ a b c d e f g h Garrett, Monte G.; Hoogland, John L.; Franklin, William L. (1982). "Demographic differences between an old and a new colony of black-tailed prairie dogs (Cynomys ludovicianus)". The American Midland Naturalist. 108 (1): 51–59. doi:10.2307/2425291. JSTOR 2425291.
  18. ^ a b c d Johnson-Nistler, Carolyn M.; Sowell, Bok F.; Sherwood, Harrie W.; Wambolt, Carl L. (2004). (PDF). Rangeland Ecology & Management. 57 (6): 641. doi:10.2111/1551-5028(2004)057[0641:BPDEOM]2.0.CO;2. hdl:10150/643220. ISSN 1551-5028. S2CID 54773504. Archived from the original (PDF) on 2012-03-23. Retrieved 2011-05-10.
  19. ^ a b c d e Craig J. Knowles (1986). "Some relationships of black-tailed prairie dogs to livestock grazing". Western North American Naturalist. 46 (2): 198–203.
  20. ^ a b c d Long, Dustin; Truett, Joe. (2006). "Ranching and prairie dogs". In: Basurto, Xavier; Hadley, Diana, eds. Grasslands ecosystems, endangered species, and sustainable ranching in the Mexico-U.S. borderlands: conference proceedings. Fort Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station: pp. 87–89.
  21. ^ a b c d Reading, Richard P.; Beissinger, Steven R.; Grensten, John J.; Clark, Tim W. (1989). "Attributes of black-tailed prairie dog colonies in northcentral Montana, with management recommendations for the conservation of biodiversity". In: Clark, Tim W.; Hinckley, Dan; Rich, Terrell, eds. The prairie dog ecosystem: managing for biological diversity. Montana BLM Wildlife Tech. Bull. No. 2. Billings, MT: U.S. Department of the Interior, Bureau of Land Management: pp. 13–27. In cooperation with: Montana Department of Fish, Wildlife, and Parks.
  22. ^ a b c d Coppock, D. L.; Detling, J. K.; Ellis, J. E.; Dyer, M. I. (1983). "Plant-herbivore interactions on a North American mixed-grass prairie". Oecologia. 56 (1): 1–9. Bibcode:1983Oecol..56....1C. doi:10.1007/BF00378210. JSTOR 4216853. PMID 28310762. S2CID 23797752.
  23. ^ a b Winter, Stephen L.; Cully, Jack F.; Pontius, Jeffrey S. (2002). (PDF). Journal of Range Management. 55 (5): 502–508. doi:10.2307/4003230. hdl:10150/643691. JSTOR 4003230. Archived from the original (PDF) on 2011-08-23.
  24. ^ a b c d e f g h i j Hansen, Richard M.; Gold, Ilyse K. (1977). "Black-tailed prairie dogs, desert cottontails and cattle trophic relations on shortgrass range". Journal of Range Management. 30 (3): 210–214. doi:10.2307/3897472. hdl:10150/646845. JSTOR 3897472.
  25. ^ Hillman, Conrad N.; Linder, Raymond L.; Dahlgren, Robert B. (1979). "Prairie dog distribution in areas inhabited by black-footed ferrets". American Midland Naturalist. 102 (1): 185–187. doi:10.2307/2425083. JSTOR 2425083.
  26. ^ Pruett, Alison L.; Boal, Clint W.; Wallace, Mark C.; Whitlaw, Heather; Ray, Jim. 2004. Playa lakes as habitat reserves for black-tailed prairie dogs. In: Wallace, Mark C.; Britton, Carlton, eds. Research Highlights – 2004: Range, wildlife, and fisheries management. Volume 35. Lubbock, TX: Texas Tech University: 17.
  27. ^ Rickel, Bryce. (2005). Chapter 3: "Small mammals, reptiles, and amphibians". In: Finch, Deborah M., ed. Assessment of grassland ecosystem conditions in the southwestern United States: wildlife and fish. Vol. 2. Gen. Tech. Rep. RMRS-GTR-135-vol. 2. Fort Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station: 35–69
  28. ^ Stobodchikoff, C. N.; Robinson, Anthony; Schaack, Clark. (1988). "Habitat use by Gunnison's prairie dogs". In: Szaro, Robert C.; Severson, Kieth E.; Patton, David R., technical coordinators. Management of amphibians, reptiles, and small mammals in North America: Proceedings of the symposium; 1988 July 19–21; Flagstaff, AZ. Gen. Tech. Rep. RM-166. Fort Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Forest and Range Experiment Station: pp. 403–408.
  29. ^ a b c Wilcomb, Maxwell Jeffers, Jr. (1954). A study of prairie dog burrow systems and the ecology of their arthropod inhabitants in central Oklahoma. Norman, OK: University of Oklahoma. Dissertation. ISBN 9781258355432
  30. ^ a b c d e f Fagerstone, K. A.; Tietjen, H. P.; Williams, O. (1981). "Seasonal variation in the diet of black-tailed prairie dogs". Journal of Mammalogy. 62 (4): 820–824. doi:10.2307/1380605. JSTOR 1380605.
  31. ^ a b c d e Kelso, Leon H. (1939). "Food habits of prairie dogs". Circ. No. 529. Washington, DC: U.S. Department of Agriculture. pp. 1–15
  32. ^ Roe, Kelly A.; Roe, Christopher M (2003). "Habitat selection guidelines for black-tailed prairie dog relocations". Wildlife Society Bulletin. 31 (4): 1246–1253. JSTOR 3784475.
  33. ^ a b c d e f g Hoogland, John L.; Angell, Diane K.; Daley, James G.; Radcliffe, Matthew C. (1988). "Demography and population dynamics of prairie dogs". In: Uresk, Daniel W.; Schenbeck, Greg L.; Cefkin, Rose, tech coords. 8th Great Plains wildlife damage control workshop proceedings; 1987 April 28–30; Rapid City, SD. Gen. Tech. Rep. RM-154. Fort Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Forest and Range Experiment station: 18–22. doi:10.2737/RM-GTR-154
  34. ^ Heffner, R. S.; Heffner, H. E.; Contos, C; Kearns, D (1994). "Hearing in prairie dogs: Transition between surface and subterranean rodents". Hearing Research. 73 (2): 185–9. doi:10.1016/0378-5955(94)90233-x. PMID 8188546. S2CID 4763545.
  35. ^ a b c d Slobodchikoff, C. N. (2002) "Cognition and Communication in Prairie Dogs", In: The Cognitive Animal (pp. 257–264), M. Beckoff, C. Allen, and G. M. Burghardt (eds) Cambridge: A Bradford Book.
  36. ^ a b c d Hoogland, J.L. (1995) The Black- tailed Prairie Dog: Social Life of a Burrowing Mammal, Chicago, IL: The University of Chicago Press
  37. ^ Examples of Jump-Yip type behavior in prairie dogs on YouTube
  38. ^ Hoogland J (1996). "Cynomys ludovicianus" (PDF). Mammalian Species (535): 1–10. doi:10.2307/3504202. JSTOR 3504202.
  39. ^ Crew, Bec. "Catch the Wave: Decoding the Prairie Dog's Contagious Jump-Yip". Scientific American Blog Network. Retrieved 2018-08-09.
  40. ^ a b c d e f g h i Hoogland, John L (2001). "Black-tailed, Gunnison's, and Utah prairie dogs reproduce slowly". Journal of Mammalogy. 82 (4): 917–927. doi:10.1644/1545-1542(2001)082<0917:BTGSAU>2.0.CO;2. JSTOR 1383470.
  41. ^ Brown, David E.; Davis, Russell. (1998). "Terrestrial bird and mammal distribution changes in the American Southwest, 1890–1990". In: Tellman, Barbara; Finch, Deborah M.; Edminster, Carl; Hamre, Robert, eds. The future of arid grasslands: identifying issues, seeking solutions: Proceedings; 1996 October 9–13; Tucson, AZ. Proceedings RMRS-P-3. Fort Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station: pp. 47–64.
  42. ^ a b c d e f g h Hillman, Conrad N. (1968). Life history and ecology of the black-footed ferret in the wild. Brookings, SD: South Dakota State University. Thesis.
  43. ^ a b c Ceballos, G; Pacheco, Jesús; List, Rurik (1999). "Influence of prairie dogs (Cynomys ludovicianus) on habitat heterogeneity and mammalian diversity in Mexico". Journal of Arid Environments. 41 (2): 161–172. Bibcode:1999JArEn..41..161C. doi:10.1006/jare.1998.0479.
  44. ^ a b c d e f O'Meilia, M. E.; Knopf, F. L.; Lewis, J. C. (1982). "Some consequences of competition between prairie dogs and beef cattle". Journal of Range Management. 35 (5): 580–585. doi:10.2307/3898641. JSTOR 3898641.
  45. ^ a b c d e f Sharps, Jon C.; Uresk, Daniel W (1990). "Ecological review of black-tailed prairie dogs and associated species in western South Dakota" (PDF). The Great Basin Naturalist. 50 (4): 339–344.
  46. ^ Campbell, Thomas M. III; Clark, Tim W (1981). "Colony characteristics and vertebrate associates of white-tailed and black-tailed prairie dogs in Wyoming". The American Midland Naturalist. 105 (2): 269–276. doi:10.2307/2424745. JSTOR 2424745.
  47. ^ Webb, C. T.; Brooks, C. P.; Gage, K. L.; Antolin, M. F. (2006). "Classic flea-borne transmission does not drive plague epizootics in prairie dogs". Proceedings of the National Academy of Sciences. 103 (16): 6236–6241. Bibcode:2006PNAS..103.6236W. doi:10.1073/pnas.0510090103. PMC 1434514. PMID 16603630.
  48. ^ Black-tailed prairie dog United States Fish and Wildlife Service
  49. ^ (PDF). Archived from the original (PDF) on 2012-02-25. Retrieved 2008-11-03.

Further reading

External links

  • Arkive –
  • Prairie Dogs-Biodiversity Conservation Alliance

black, tailed, prairie, black, tailed, prairie, cynomys, ludovicianus, rodent, family, sciuridae, found, great, plains, north, america, from, about, united, states, canada, border, united, states, mexico, border, unlike, some, other, prairie, dogs, these, anim. The black tailed prairie dog Cynomys ludovicianus is a rodent of the family Sciuridae found in the Great Plains of North America from about the United States Canada border to the United States Mexico border Unlike some other prairie dogs these animals do not truly hibernate The black tailed prairie dog can be seen above ground in midwinter A black tailed prairie dog town in Texas was reported to cover 25 000 sq mi 64 000 km2 and included 400 000 000 individuals 3 Prior to habitat destruction the species may have been the most abundant prairie dog in central North America It was one of two prairie dogs described by the Lewis and Clark Expedition in the journals and diaries of their expedition Black tailed prairie dogAt Wichita Mountains Wildlife RefugeConservation statusLeast Concern IUCN 3 1 1 Scientific classificationKingdom AnimaliaPhylum ChordataClass MammaliaOrder RodentiaFamily SciuridaeGenus CynomysSpecies C ludovicianusBinomial nameCynomys ludovicianus Ord 1815 Black tailed prairie dog range 2 Contents 1 Description 2 Distribution 3 Habits 4 Habitat 4 1 Landscape scale habitat characteristics 4 2 Soil 4 3 Home range and population density 4 4 Cover requirements 5 Diet 6 Social organization 6 1 Dispersal 6 2 Hearing 6 3 Communication 7 Reproduction and development 7 1 Mating 7 2 Reproductive success 7 3 Gestation period and litter size 7 4 Development 8 Mortality 8 1 Predators 9 Ecological role and threats 10 Conservation status 11 Interactions with domestic livestock 12 Pet trade 13 References 14 Further reading 15 External linksDescription EditBlack tailed prairie dogs are generally tan in color with lighter colored bellies They may have color variation in their pelt such as dark fur on their back in black and brown tones Their tails have black tips from which their name is derived Adults can weigh from 1 5 to 3 0 lb 0 68 to 1 36 kg males are typically heavier than females Body length is normally from 14 to 17 in 36 to 43 cm with a 3 to 4 in 7 6 to 10 2 cm tail The black tailed have black long claws used for digging The body of the black tailed prairie dog is compact and the ears are small and close to the head Distribution EditThe historic range of the black tailed prairie dog was from southern Saskatchewan and Alberta to Chihuahua Mexico 4 and included portions of Montana North Dakota South Dakota Wyoming Colorado Nebraska Kansas Oklahoma Texas Arizona and New Mexico 5 As of 2007 black tailed prairie dogs occur across most of their historic range excluding Arizona 6 7 however their occupied acreage and populations are well below historic levels 8 Habits EditBlack tailed prairie dogs are diurnal 6 9 10 Above ground activity is reduced when rain or snow is falling and during days when the temperature exceeds 100 F 38 C 9 10 During the winter months black tailed prairie dogs do not fully hibernate They continue to leave the burrow to forage but will enter a state of torpor at night to conserve energy Torpor is categorized by a drop in metabolism heart rate and respiration similar to hibernation but is involuntary and shorter in duration On average black tailed prairie dogs will lose twenty percent of their body weight during the fall and winter seasons when they go through bouts of torpor As winter progressed the amount of time spent in torpor increases Between different colonies the overall time spent in torpor varies independent of prairie dog body mass This may be due to weather during the previous growing season As black tailed prairie dogs receive most of their water from their diet in years with poor rainfall the black tailed prairie dogs spend more time in torpor 11 Habitat EditBlack tailed prairie dogs are native to grassland habitats in North America They inhabit shortgrass prairie 7 12 13 mixed grass prairie 7 14 15 16 17 18 sagebrush steppe 12 19 and desert grassland 4 20 Habitat preferences for the black tailed prairie dog are influenced by vegetative cover type slope soil type and amount of rainfall 21 Their foraging and burrowing activities influence environmental heterogeneity hydrology nutrient cycling biodiversity landscape architecture and plant succession in grassland habitats 9 10 15 17 22 23 Landscape scale habitat characteristics Edit At Paignton Zoo Devon England Black tailed prairie dogs inhabit grasslands including short and mixed grass prairie sagebrush steppe and desert grasslands Shortgrass prairies dominated by buffalo grass Buchloe dactyloides blue grama Bouteloua gracilis and western wheatgrass Pascopyron smithii 9 10 14 24 and mixed grass prairies 7 14 15 16 17 18 that have been grazed by native and non native herbivores are their preferred habitat 10 19 Slopes of 2 to 5 and vegetation heights between 3 and 5 in 7 13 cm are optimal for detecting predators and facilitating communication 9 10 14 In the Great Plains region black tailed prairie dog colonies commonly occur near rivers and creeks 10 Of 86 colonies located in Mellette County South Dakota 30 were located on benches or terraces adjacent to a creek or floodplain 30 occurred in rolling hills with a slope more than 5 20 were in flat areas and six were in badland areas 25 The slopes of playa lakes in the Texas Panhandle and surrounding regions are used as habitat for the black tailed prairie dog 26 Colonies in Phillips County Montana were often associated with reservoirs cattle salting grounds and other areas affected by humans 21 Black tailed prairie dogs tolerate high degrees of disturbance over long periods of time New colonies are rarely created on rangeland in good to excellent condition however continuously long term heavily grazed land reduces habitat quality due to soil erosion 27 Black tailed prairie dogs may colonize heavily grazed sites but do not necessarily specialize in colonizing overgrazed areas Overgrazing may occur subsequent to their colonization 28 Black tailed prairie dogs were associated with areas intensively grazed by livestock and or areas where topsoil had been disturbed by human activities in sagebrush grassland habitat on the Charles M Russell National Wildlife Refuge and Fort Belknap Agency Montana Roads and cattle trails were found in 150 of 154 black tailed prairie dog colonies and colonies were located significantly closer to livestock water developments and homestead sites than randomly located points 19 Soil Edit At the National Zoo in Washington DC Black tailed prairie dog distribution is not limited by soil type but by indirect effects of soil texture on moisture and vegetation Colonies occur in many types of soil including deep alluvial soils with medium to fine textures and occasionally gravel Soil not prone to collapsing or flooding is preferred 10 Though they do not select specific types of soil to dig burrows 9 silty loam clay soils are best for tunnel construction 10 Surface soil textures in colonies near Fort Collins Colorado varied from sandy loam to sandy clay loam in the top 6 in 15 cm with a sandy clay loam subsoil In northern latitudes colonies commonly occur on south aspects due to the dominance of grasses over shrubs and increased solar radiation during winter Burrows usually occur on slopes more than 10 10 Black tailed prairie dogs mix the soil horizons by raising soil from deeper layers to the surface This may significantly affect the texture and composition of soil at different layers Their feces urine and carcasses also affect soil characteristics 10 Home range and population density Edit The home range and territorial boundaries of black tailed prairie dogs are determined by the area occupied by an individual coterie Coteries typically occupy about 1 0 acre 0 4 ha 10 Population density and growth are influenced by habitat quality 9 and are restricted by topographic barriers soil structure tall vegetation and social conditions 9 10 Urbanization and other types of human development may restrict colony size and spatial distribution Most plains habitats support at least 13 black tailed prairie dogs ha 10 Cover requirements Edit Two adults Burrows created by black tailed prairie dogs serve as refuges from the external environment and are one of the most important features of their colonies Burrows are used for breeding rearing young and hiding from predators and are maintained from generation to generation and serve as stabilizers on the physical and social aspects of the colony 9 Black tailed prairie dog nests are located underground in burrows and are composed of fine dried grass Nest material is collected throughout the year by both sexes and all age classes 6 9 Tunnel depths in central Oklahoma were typically 50 60 in deep 29 Most colonies contain 20 to 57 burrows acre 9 10 The three types of burrow entrances are dome mounds rimmed crater mounds and entrances without structures around them Entrance features may prevent flooding and or aid in ventilation 6 9 10 Dome mounds consist of loosely packed subterranean soil spread widely around the entrance of the burrow and tend to be vegetated by prostrate forbs Rimmed crater mounds are cone shaped and constructed of humus litter uprooted vegetation and mineral soil Black tailed prairie dogs compact the soil of these mounds with their noses creating poor sites for seedling establishment 16 Rimmed crater mounds may be used as wallowing sites for American bison Burrow entrances without structures around them are usually located on slopes more than 10 9 The density of burrow openings depends on both substrate and duration of occupation of an area 10 Vegetation heights between 3 and 5 in 7 13 cm and a slope of 2 to 5 are optimal for detecting predators and facilitating communication among black tailed prairie dogs 9 10 14 Grazing cattle keep vegetation short in the vicinity of colonies reducing susceptibility to predators and potentially expanding colony size 9 10 20 24 Black tailed prairie dogs were rarely seen feeding more than 16 ft 5 m from colony edges in Wind Cave National Park 17 Diet Edit Cynomys ludovicianus gathering grass Black tailed prairie dogs are selective opportunists preferring certain phenological stages or types of vegetation according to their needs 9 14 30 When forage is stressed by grazing drought or herbicides they change their diets quickly Grasses are preferred over forbs 10 24 and may comprise more than 75 of their diets especially during summer 24 30 Western wheatgrass buffalo grass blue grama 9 10 30 and sedges Carex spp are preferred during spring and summer Scarlet globemallow Sphaeralcea coccinea 9 15 24 30 and Russian thistle Salsola kali 31 are preferred during late summer and fall but are sought out during every season 10 15 24 During winter plains prickly pear Opuntia polyacantha Russian thistle and underground roots are preferred 9 30 Shrubs such as rabbitbrush Chrysothamnus spp winterfat Krascheninnikovia lanata saltbush Atriplex spp and sagebrush Artemisia spp are also commonly eaten 31 Water which is generally not available on the short grass prairie is obtained from vegetation such as plains prickly pear 30 Koford 10 estimated one black tailed prairie dog eats about 7 lb 3 kg of herbage per month during summer 31 Cutworms 31 grasshoppers 10 and old or fresh American bison scat are occasionally eaten 6 For a detailed list of foods eaten by black tailed prairie dogs by month and ratings of those foods forage value to cattle and sheep see 31 For a complete list of vegetation preferred by the black tailed prairie dog see 32 Social organization Edit Two black tailed prairie dogs grooming themselves Black tailed prairie dogs live in colonies Colony size may range from five to thousands of individuals and may be subdivided into two or more wards based on topographic features such as hills Wards are usually subdivided into two or more coteries which are composed of aggregates of highly territorial harem polygynous social groups 9 10 Individuals within coteries are amicable with each other and hostile towards outside individuals At the beginning of the breeding season a coterie is typically composed of one adult male three to four adult females and several yearlings and juveniles of both sexes After the breeding season and prior to dispersal of juveniles coterie size increases 9 Dispersal Edit Reasons for dispersal include new vegetative growth at colony peripheries shortage of unrelated females in a coterie harassment of females by juveniles and probably an innate genetic mechanism responding to increased density within a colony Males typically leave the natal territory 12 to 14 months after weaning during May and June 33 but dispersal may occur throughout the year Females generally remain in their natal coterie territories for their lifetimes Intercolony dispersers moved an average distance of 1 5 mi 2 4 km from their natal site 33 Roads and trails may facilitate black tailed prairie dog dispersal 10 Hearing Edit Black tailed prairie dogs have sensory adaptions for avoiding predators Black tailed prairie dogs have very sensitive hearing at low frequencies that allows them to detect predators early especially while in their burrows Black tailed prairie dog hearing can range from 29 Hz to 26 kHz and can hear as low as 4 Hz 34 Communication Edit Constantine Slobodchikoff and others assert that prairie dogs use a sophisticated system of vocal communication to describe specific predators 35 According to them prairie dog calls contain specific information as to what the predator is how big it is and how fast it is approaching 35 These have been described as a form of grammar According to Slobodchikoff these calls with their individuality in response to a specific predator imply prairie dogs have highly developed cognitive abilities 35 He also asserts prairie dogs have calls for things that are not predators to them This is cited as evidence that the animals have a very descriptive language and have calls for any potential threat 35 Debate exists over whether the alarm calling of prairie dogs is selfish or altruistic Prairie dogs possibly alarm others to the presence of a predator so they can protect themselves However the calls possibly are meant to cause confusion and panic in the groups and cause the others to be more conspicuous to the predator than the caller Studies of black tailed prairie dogs suggest alarm calling is a form of kin selection as a prairie dog s call alerts both offspring and kin of indirect descent such as cousins nephews and nieces 36 Prairie dogs with kin close by called more often than those without In addition the caller may be trying to make itself more noticeable to the predator 36 However a predator seems to have difficulty determining which prairie dog is making the call due to its ventriloquistic nature 36 Also when a prairie dog makes a call the others seem not to run into the burrows but stand on the mounds to see where the predator is making themselves visible to the predator 36 Perhaps the most conspicuous prairie dog communication is the territorial call or jump yip display A prairie dog will stretch the length of its body vertically and throw its forefeet into the air while making a call 37 A jump yip from one prairie dog causes others nearby to do the same 38 The instigator of the jump yip wave uses the jump yip to assess the vigilance or watchfulness of others in the colony a longer jump yip wave indicates watchful neighbors and leads to increased foraging by the instigator 39 Reproduction and development Edit Six week old black tailed prairie dog Two juveniles at the Rio Grande Zoo Age of first reproduction pregnancy rate litter size juvenile growth rate and first year survival of the black tailed prairie dog vary depending on food availability 17 Mating Edit Minimum breeding age for the black tailed prairie dog is usually two years 6 9 10 but yearlings may breed if space and food are abundant 9 10 In Wind Cave National Park South Dakota 40 213 individuals of yearling females copulated and 9 successfully weaned a litter 40 The mating season occurs from late February through April but varies with latitude and site location of the colony 9 10 Estrus occurs for only one day during the breeding season 40 Reproductive success Edit In Wind Cave National Park the mean percentage of adult females that weaned a litter each year was 47 14 33 Reproductive success and survival may be greater in young colonies that have space for expansion In a young colony five years with space for expansion in Wind Cave National Park 88 females were pregnant and 81 of young weaned compared to an old colony 30 years with no room for expansion where 90 of females were pregnant and 41 of young were weaned 17 Gestation period and litter size Edit Black tailed prairie dog gestation is 34 days 6 9 Parturition occurs underground Information about litter size at time of birth is unavailable but the mean litter size observed above ground ranges from 3 0 to 4 9 young litter 9 10 40 33 Only one litter is produced each year 40 33 Development Edit In captivity black tailed prairie dog pups open their eyes at 30 days old 9 Pups are altricial and remain below ground for up to seven weeks to nurse 9 10 40 Maturity is complete at 15 months old 9 Lifespan of the black tailed prairie dog in the wild is unknown but males more than 3 years old experience high mortality Females may live longer than males 9 According to Hoogland and others 33 lifespan is about 5 years for males and 7 years for females Mortality EditMajor mortality factors include predation disease infanticide habitat loss poisoning trapping and shooting 6 40 12 33 Survival for the first year was 54 for females and less than 50 for males in Wind Cave National Park Primary causes of death were predation and infanticide 40 Infanticide partially or totally eliminated 39 361 individuals of all litters Lactating females were the most common killers 40 Mortality of young was highest due to heavy predation during the winter and early spring following birth 9 Mortality increases with dispersal from a colony or coterie 10 Sylvatic plague caused by the bacterium Yersinia pestis can quickly eliminate entire black tailed prairie dog colonies Once infected death occurs within a few days 6 12 Black tailed prairie dogs are also susceptible to diseases transmitted by introduced animals 41 Predators Edit The most common predators of black tailed prairie dogs are coyotes Canis latrans 6 9 17 42 American badgers Taxidea taxus 6 10 17 42 bobcats Lynx rufus 6 9 42 golden eagles Aquila chrysaetos 6 9 10 42 ferruginous hawks Buteo regalis 6 42 red tailed hawks Buteo jamaicensis 9 and prairie rattlesnakes Crotalus viridis 9 10 42 Although now very rare black footed ferrets Mustela nigripes were once a major predator of the black tailed prairie dog 42 Ecological role and threats EditBlack tailed prairie dogs have been called ecosystem engineers due to their influence on the biotic and abiotic characteristics of their habitat landscape architecture and ecosystem structure and function 4 43 Research suggests black tailed prairie dogs are a keystone species 4 40 43 in some but not all geographic areas 4 Black tailed prairie dogs enhance the diversity of vegetation vertebrates and invertebrates through their foraging and burrowing activities and by their presence as prey items 4 29 43 44 Grasslands inhabited by black tailed prairie dogs support higher biodiversity than grasslands not occupied by them Hundreds of species of vertebrates 7 45 and invertebrates 29 are associated with black tailed prairie dog colonies Vertebrate species richness on their colonies increases with colony size and density 21 West of the Missouri River in Montana 40 100 species of all vertebrate fauna in prairie habitats rely on black tailed prairie dog colonies for food nesting and or denning Rare and declining species such as the black footed ferret 7 42 45 swift fox Vulpes velox mountain plover Charadrius montanus 21 and burrowing owl Athene cunicularia 6 are associated with colonies 7 Because their foraging activities keep plant development in a suppressed vegetative state with higher nutritional qualities 20 45 herbivores including American bison pronghorn Antilocapra americana and domestic cattle often prefer foraging in black tailed prairie dog colonies 6 9 10 15 19 22 24 44 45 Animals that depend on herbaceous cover in sagebrush habitat such as mule deer Odocoileus hemionus and sage grouse Centrocercus spp may be deterred by the decreased vegetative cover on black tailed prairie dog colonies 18 For a list of vertebrate species associated with black tailed prairie dog colonies see 46 Biodiversity in shortgrass prairies may be at risk due to the reductions in distribution and occurrence of black tailed prairie dog Threats include fragmentation and loss of habitat unregulated eradication or control efforts and sylvatic plague 7 8 As a result of habitat fragmentation and prairie dog eradication programs colonies are now smaller and more fragmented than in presettlement times Agriculture livestock use and other development have reduced habitat to 2 of its former range 7 Fragmented colonies are more susceptible to extirpation primarily by sylvatic plague The effect of roads on black tailed prairie dogs is debatable Roads may either facilitate or hinder their movement depending on the landscape setting Roads may be easy routes for dispersal but those with heavy automobile use may increase mortality 12 19 Roads streams and lakes may serve as barriers to sylvatic plague 12 Conservation status Edit Kissing prairie dogs Black tailed prairie dogs are frequently exterminated from ranchland being viewed as pests Their habitat has been fragmented and their numbers have been greatly reduced Additionally they are remarkably susceptible to plague 47 In 2006 all eight appearances of plague in black tailed prairie dog colonies resulted in total colony loss Studies in 1961 estimated only 364 000 acres 1 470 km2 of occupied black tailed prairie dog habitat in the United States A second study in 2000 showed 676 000 acres 2 740 km2 However a comprehensive study between 10 states and various tribes in 2004 estimated 1 842 000 acres 7 450 km2 in the United States plus an additional 51 589 acres 208 77 km2 in Mexico and Canada Based on the 2004 studies the US Fish and Wildlife Service removed the black tailed prairie dog from the Endangered Species Act Candidate Species List in August 2004 48 Interactions with domestic livestock Edit A black tailed prairie dog eating a peanut While black tailed prairie dogs are often regarded as competitors with livestock for available forage evidence of impacts on rangelands are mixed Some research suggests they have either neutral or beneficial effects on rangeland used by livestock 10 15 24 44 however their effects on rangelands are not uniform 18 22 In Cimarron National Grassland in southwest Kansas and adjacent private lands in Baca County Colorado some vegetational differences were detected between areas colonized by black tailed prairie dogs and uncolonized areas although not all differences were consistent between sample years Species richness and diversity indices did not differ among colonized and uncolonized sites in either year nor did the amount of bare ground The authors conclude while prairie dogs alter shortgrass prairie such that the vegetation of colonies tends to be distinct from adjacent uncolonized areas prairie dogs do not substantially alter the essential character of shortgrass vegetation 23 Cattle neither significantly preferred nor avoided black tailed prairie dog colonies in a study in the shortgrass steppe of northeastern Colorado Cattle used colonies in proportion to the colony s availability and grazed as intensively on colonies as on areas not occupied by black tailed prairie dogs 13 Competitive interactions between black tailed prairie dogs and domestic livestock for preferred forage species are unclear Several studies suggest black tailed prairie dogs avoid eating many plants that livestock prefer and prefer many plants livestock avoid 22 44 Conversely on shortgrass prairie in Colorado cattle and black tailed prairie dogs had a 64 similarity in annual diets 24 Some changes in plant composition brought about by black tailed prairie dogs may benefit livestock by encouraging an increase in plants more tolerant of grazing such as needleleaf sedge Carex duriuscula sixweeks grass Vulpia octoflora and scarlet globemallow 15 45 Grazing by black tailed prairie dogs may also improve the nutritional qualities of some plants 20 45 On a shortgrass prairie near Fort Collins Colorado plant species diversity was greater inside black tailed prairie dog colonies than outside of colonies and perennial grasses such as buffalo grass and forbs increased 15 While black tailed prairie dog colonies at Wind Cave National Park typically had lower levels of plant biomass and were dominated by forbs plants growing on prairie dog colonies had higher leaf nitrogen concentrations than plants in mixed grass prairie outside colonies Foraging by black tailed prairie dogs does not significantly affect steer weights 24 44 While forage availability and use by cattle decreased in black tailed prairie dog foraging areas steer weight was not reduced significantly in either of two years of study at the USDA s Southern Great Plains Experimental Range near Woodward Oklahoma Nutrient cycling increased soil fertility and subsequent changes in forage quality partly compensated for reduced forage availability 44 Pet trade EditBlack tailed prairie dogs were the most common prairie dog species collected in the wild for sale as exotic pets until this trade was banned in 2003 by the United States federal government Prairie dogs in captivity at the time of the ban are allowed to be possessed under a grandfather clause but no more may be caught traded or sold and transport is only permitted to and from a veterinarian under proper quarantine procedures The ban was officially lifted on September 8 2008 49 References Edit This article incorporates public domain material from Cynomys ludovicianus United States Department of Agriculture Cassola F 2017 errata version of 2016 assessment Cynomys ludovicianus IUCN Red List of Threatened Species 2016 e T6091A115080297 doi 10 2305 IUCN UK 2016 3 RLTS T6091A22261137 en Retrieved 19 February 2022 IUCN International Union for Conservation of Nature 2008 Cynomys ludovicianus In IUCN 2014 The IUCN Red List of Threatened Species Version 2014 3 The IUCN Red List of Threatened Species Archived from the original on 2014 06 27 Retrieved 2014 06 27 Downloaded on 29 January 2015 Prairie Dogs National Geographic 2010 11 11 Retrieved 2018 06 13 a b c d e f Davidson Ana D Lightfoot David C 2006 Keystone rodent interactions prairie dogs and kangaroo rats structure the biotic composition of a desertified grassland PDF Ecography 29 5 755 765 doi 10 1111 j 2006 0906 7590 04699 x Archived from the original PDF on 2012 09 29 Hall E Raymond Kelson Keith R 1959 The mammals of North America New York Ronald Press Company a b c d e f g h i j k l m n o p Johnsgard Paul A 2005 Prairie dog empire A saga of the shortgrass prairie Lincoln NE University of Nebraska Press ISBN 978 0803254879 a b c d e f g h i Mulhern Daniel W Knowles Craig J 1997 Black tailed prairie dog status and future conservation planning In Uresk Daniel W Schenbeck Greg L O Rourke James T tech coords Conserving biodiversity on native rangelands symposium proceedings 1995 August 17 Fort Robinson State Park NE Gen Tech Rep RM GTR 298 Fort Collins CO U S Department of Agriculture Forest Service Rocky Mountain Forest and Range Experiment Station pp 19 29 a b Luce Robert J 2006 A multi state approach to black tailed prairie dog conservation and management in the United States In Basurto Xavier Hadley Diana eds Grasslands ecosystems endangered species and sustainable ranching in the Mexico U S borderlands conference proceedings Fort Collins CO U S Department of Agriculture Forest Service Rocky Mountain Research Station pp 48 52 a b c d e f g h i j k l m n o p q r s t u v w x y z aa ab ac ad ae af ag ah ai aj ak King John A 1955 Social behavior social organization and population dynamics in a black tailed prairie dog town in the Black Hills of South Dakota In Contributions from the Laboratory of Vertebrate Biology Vol 67 Ann Arbor MI University of Michigan a b c d e f g h i j k l m n o p q r s t u v w x y z aa ab ac ad ae af ag ah ai aj ak Koford Carl B 1958 Prairie dogs whitefaces and blue grama Wildlife Monographs No 3 Washington DC The Wildlife Society Lehmer E Savage L Antolin M Biggins D 2006 Extreme plasticity in thermoregulatory behaviors of free ranging black tailed prairie dogs Physiological and Biochemical Zoology 79 3 454 67 doi 10 1086 502816 PMID 16691512 S2CID 38149270 a b c d e f Collinge Sharon K Johnson Whitney C Ray Chris Matchett Randy Grensten John Cully Jr Jack F Gage Kenneth L Kosoy Michael Y et al 2005 Landscape Structure and Plague Occurrence in Black tailed Prairie Dogs on Grasslands of the Western USA Landscape Ecology 20 8 941 955 doi 10 1007 s10980 005 4617 5 S2CID 22446023 a b Guenther Debra A Detling James K 2003 Observations of cattle use of prairie dog towns Journal of Range Management 56 5 410 417 doi 10 2458 azu jrm v56i5 guenther hdl 10217 83517 JSTOR 4003830 a b c d e f Clippinger Norman W 1989 Habitat suitability index models black tailed prairie dog Biol Rep 82 10 156 Washington DC U S Department of the Interior Fish and Wildlife Service a b c d e f g h i Bonham Charles D Lerwick Alton 1976 Vegetation changes induced by prairie dogs on shortgrass range Journal of Range Management 29 3 221 225 doi 10 2307 3897280 hdl 10150 646828 JSTOR 3897280 S2CID 90644141 a b c Cincotta Richard P Uresk Daniel W Hansen Richard M 1989 Plant compositional change in a colony of black tailed prairie dogs in South Dakota In Bjugstad Ardell J Uresk Daniel W Hamre R H tech coords 9th Great Plains wildlife damage control workshop proceedings 1989 April 17 20 Fort Collins CO Gen Tech Rep RM 171 Fort Collins CO U S Department of Agriculture Forest Service Rocky Mountain Forest and Range Experiment Station pp 171 177 doi 10 2737 RM GTR 171 a b c d e f g h Garrett Monte G Hoogland John L Franklin William L 1982 Demographic differences between an old and a new colony of black tailed prairie dogs Cynomys ludovicianus The American Midland Naturalist 108 1 51 59 doi 10 2307 2425291 JSTOR 2425291 a b c d Johnson Nistler Carolyn M Sowell Bok F Sherwood Harrie W Wambolt Carl L 2004 Black tailed prairie dog effects on Montana s mixed grass prairie PDF Rangeland Ecology amp Management 57 6 641 doi 10 2111 1551 5028 2004 057 0641 BPDEOM 2 0 CO 2 hdl 10150 643220 ISSN 1551 5028 S2CID 54773504 Archived from the original PDF on 2012 03 23 Retrieved 2011 05 10 a b c d e Craig J Knowles 1986 Some relationships of black tailed prairie dogs to livestock grazing Western North American Naturalist 46 2 198 203 a b c d Long Dustin Truett Joe 2006 Ranching and prairie dogs In Basurto Xavier Hadley Diana eds Grasslands ecosystems endangered species and sustainable ranching in the Mexico U S borderlands conference proceedings Fort Collins CO U S Department of Agriculture Forest Service Rocky Mountain Research Station pp 87 89 a b c d Reading Richard P Beissinger Steven R Grensten John J Clark Tim W 1989 Attributes of black tailed prairie dog colonies in northcentral Montana with management recommendations for the conservation of biodiversity In Clark Tim W Hinckley Dan Rich Terrell eds The prairie dog ecosystem managing for biological diversity Montana BLM Wildlife Tech Bull No 2 Billings MT U S Department of the Interior Bureau of Land Management pp 13 27 In cooperation with Montana Department of Fish Wildlife and Parks a b c d Coppock D L Detling J K Ellis J E Dyer M I 1983 Plant herbivore interactions on a North American mixed grass prairie Oecologia 56 1 1 9 Bibcode 1983Oecol 56 1C doi 10 1007 BF00378210 JSTOR 4216853 PMID 28310762 S2CID 23797752 a b Winter Stephen L Cully Jack F Pontius Jeffrey S 2002 Vegetation of prairie dog colonies and non colonized shortgrass prairie PDF Journal of Range Management 55 5 502 508 doi 10 2307 4003230 hdl 10150 643691 JSTOR 4003230 Archived from the original PDF on 2011 08 23 a b c d e f g h i j Hansen Richard M Gold Ilyse K 1977 Black tailed prairie dogs desert cottontails and cattle trophic relations on shortgrass range Journal of Range Management 30 3 210 214 doi 10 2307 3897472 hdl 10150 646845 JSTOR 3897472 Hillman Conrad N Linder Raymond L Dahlgren Robert B 1979 Prairie dog distribution in areas inhabited by black footed ferrets American Midland Naturalist 102 1 185 187 doi 10 2307 2425083 JSTOR 2425083 Pruett Alison L Boal Clint W Wallace Mark C Whitlaw Heather Ray Jim 2004 Playa lakes as habitat reserves for black tailed prairie dogs In Wallace Mark C Britton Carlton eds Research Highlights 2004 Range wildlife and fisheries management Volume 35 Lubbock TX Texas Tech University 17 Rickel Bryce 2005 Chapter 3 Small mammals reptiles and amphibians In Finch Deborah M ed Assessment of grassland ecosystem conditions in the southwestern United States wildlife and fish Vol 2 Gen Tech Rep RMRS GTR 135 vol 2 Fort Collins CO U S Department of Agriculture Forest Service Rocky Mountain Research Station 35 69 Stobodchikoff C N Robinson Anthony Schaack Clark 1988 Habitat use by Gunnison s prairie dogs In Szaro Robert C Severson Kieth E Patton David R technical coordinators Management of amphibians reptiles and small mammals in North America Proceedings of the symposium 1988 July 19 21 Flagstaff AZ Gen Tech Rep RM 166 Fort Collins CO U S Department of Agriculture Forest Service Rocky Mountain Forest and Range Experiment Station pp 403 408 a b c Wilcomb Maxwell Jeffers Jr 1954 A study of prairie dog burrow systems and the ecology of their arthropod inhabitants in central Oklahoma Norman OK University of Oklahoma Dissertation ISBN 9781258355432 a b c d e f Fagerstone K A Tietjen H P Williams O 1981 Seasonal variation in the diet of black tailed prairie dogs Journal of Mammalogy 62 4 820 824 doi 10 2307 1380605 JSTOR 1380605 a b c d e Kelso Leon H 1939 Food habits of prairie dogs Circ No 529 Washington DC U S Department of Agriculture pp 1 15 Roe Kelly A Roe Christopher M 2003 Habitat selection guidelines for black tailed prairie dog relocations Wildlife Society Bulletin 31 4 1246 1253 JSTOR 3784475 a b c d e f g Hoogland John L Angell Diane K Daley James G Radcliffe Matthew C 1988 Demography and population dynamics of prairie dogs In Uresk Daniel W Schenbeck Greg L Cefkin Rose tech coords 8th Great Plains wildlife damage control workshop proceedings 1987 April 28 30 Rapid City SD Gen Tech Rep RM 154 Fort Collins CO U S Department of Agriculture Forest Service Rocky Mountain Forest and Range Experiment station 18 22 doi 10 2737 RM GTR 154 Heffner R S Heffner H E Contos C Kearns D 1994 Hearing in prairie dogs Transition between surface and subterranean rodents Hearing Research 73 2 185 9 doi 10 1016 0378 5955 94 90233 x PMID 8188546 S2CID 4763545 a b c d Slobodchikoff C N 2002 Cognition and Communication in Prairie Dogs In The Cognitive Animal pp 257 264 M Beckoff C Allen and G M Burghardt eds Cambridge A Bradford Book a b c d Hoogland J L 1995 The Black tailed Prairie Dog Social Life of a Burrowing Mammal Chicago IL The University of Chicago Press Examples of Jump Yip type behavior in prairie dogs on YouTube Hoogland J 1996 Cynomys ludovicianus PDF Mammalian Species 535 1 10 doi 10 2307 3504202 JSTOR 3504202 Crew Bec Catch the Wave Decoding the Prairie Dog s Contagious Jump Yip Scientific American Blog Network Retrieved 2018 08 09 a b c d e f g h i Hoogland John L 2001 Black tailed Gunnison s and Utah prairie dogs reproduce slowly Journal of Mammalogy 82 4 917 927 doi 10 1644 1545 1542 2001 082 lt 0917 BTGSAU gt 2 0 CO 2 JSTOR 1383470 Brown David E Davis Russell 1998 Terrestrial bird and mammal distribution changes in the American Southwest 1890 1990 In Tellman Barbara Finch Deborah M Edminster Carl Hamre Robert eds The future of arid grasslands identifying issues seeking solutions Proceedings 1996 October 9 13 Tucson AZ Proceedings RMRS P 3 Fort Collins CO U S Department of Agriculture Forest Service Rocky Mountain Research Station pp 47 64 a b c d e f g h Hillman Conrad N 1968 Life history and ecology of the black footed ferret in the wild Brookings SD South Dakota State University Thesis a b c Ceballos G Pacheco Jesus List Rurik 1999 Influence of prairie dogs Cynomys ludovicianus on habitat heterogeneity and mammalian diversity in Mexico Journal of Arid Environments 41 2 161 172 Bibcode 1999JArEn 41 161C doi 10 1006 jare 1998 0479 a b c d e f O Meilia M E Knopf F L Lewis J C 1982 Some consequences of competition between prairie dogs and beef cattle Journal of Range Management 35 5 580 585 doi 10 2307 3898641 JSTOR 3898641 a b c d e f Sharps Jon C Uresk Daniel W 1990 Ecological review of black tailed prairie dogs and associated species in western South Dakota PDF The Great Basin Naturalist 50 4 339 344 Campbell Thomas M III Clark Tim W 1981 Colony characteristics and vertebrate associates of white tailed and black tailed prairie dogs in Wyoming The American Midland Naturalist 105 2 269 276 doi 10 2307 2424745 JSTOR 2424745 Webb C T Brooks C P Gage K L Antolin M F 2006 Classic flea borne transmission does not drive plague epizootics in prairie dogs Proceedings of the National Academy of Sciences 103 16 6236 6241 Bibcode 2006PNAS 103 6236W doi 10 1073 pnas 0510090103 PMC 1434514 PMID 16603630 Black tailed prairie dog United States Fish and Wildlife Service Federal Register Control of Communicable Diseases Restrictions on African Rodents prairie dogs and Certain Other Animals PDF Archived from the original PDF on 2012 02 25 Retrieved 2008 11 03 Further reading Edit Cynomys ludovicianus Integrated Taxonomic Information System Retrieved 16 February 2006 Prairie Dogs Are A Keystone Species Of The Great Plains Desert USA Prairie DogsExternal links Edit Wikimedia Commons has media related to Cynomys ludovicianus Arkive images and movies of the prairie dog Cynomys ludovicianus Prairie Dogs Biodiversity Conservation Alliance Retrieved from https en wikipedia org w index php title Black tailed prairie dog amp oldid 1147482373, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.