fbpx
Wikipedia

Bifidobacterium longum

Bifidobacterium longum is a Gram-positive, catalase-negative, rod-shaped bacterium present in the human gastrointestinal tract and one of the 32 species that belong to the genus Bifidobacterium.[2][3] It is a microaerotolerant anaerobe and considered to be one of the earliest colonizers of the gastrointestinal tract of infants.[2] When grown on general anaerobic medium, B. longum forms white, glossy colonies with a convex shape.[4]B. longum is one of the most common bifidobacteria present in the gastrointestinal tracts of both children and adults.[5] B. longum is non-pathogenic, is often added to food products,[2][6] and its production of lactic acid is believed to prevent growth of pathogenic organisms.[7]

Bifidobacterium longum
Scientific classification
Domain: Bacteria
Phylum: Actinomycetota
Class: Actinomycetia
Order: Bifidobacteriales
Family: Bifidobacteriaceae
Genus: Bifidobacterium
Species:
B. longum
Binomial name
Bifidobacterium longum
Reuter 1963 (Approved Lists 1980)[1]
Representative morphologic characteristics of B. longum subsp. longum strains

Classification edit

In 2002, three previously distinct species of Bifidobacterium, B. infantis, B. longum, and B. suis, were unified into a single species named B. longum with the biotypes infantis, longum, and suis, respectively.[8] This occurred as the three species had extensive DNA similarity including a 16S rRNA gene sequence similarity greater than 97%.[9] In addition, the three original species were phenotypically difficult to distinguish due to different carbohydrate fermentation patterns among strains of the same species.[2] As probiotic activity varies among strains of B. longum, interest exists in the exact classification of new strains, although this is made difficult by the high gene similarity between the three biotypes.[10] Currently, strain identification is done through polymerase chain reaction (PCR) on the subtly different 16S rRNA gene sequences.[10]

Environment edit

B. longum colonizes the human gastrointestinal tract, where it, along with other Bifidobacterium species, represents up to 90% of the bacteria of an infant's gastrointestinal tract.[3] This number gradually drops to 3% in an adult's gastrointestinal tract as other enteric bacteria such as Bacteroides and Eubacterium begin to dominate.[7] Some strains of B. longum were found to have high tolerance for gastric acid and bile, suggesting that these strains would be able to survive the gastrointestinal tract to colonize the lower small and large intestines.[6][11] The persistence of B. longum in the gut is attributed to the glycoprotein-binding fimbriae structures and bacterial polysaccharides, the latter of which possess strong electrostatic charges that aid in the adhesion of B. longum to intestinal endothelial cells.[2][12] This adhesion is also enhanced by the fatty acids in the lipoteichoic acid of the B. longum cell wall.[12]

Metabolism edit

B. longum is considered to be a scavenger, possessing multiple catabolic pathways to use a large variety of nutrients to increase its competitiveness among the gut microbiota.[7] Up to 19 types of permease exist to transport various carbohydrates with 13 being ATP-binding cassette transporters.[13] B. longum has several glycosyl hydrolases to metabolise complex oligosaccharides for carbon and energy.[3] This is necessary as mono- and disaccharides have usually been consumed by the time they reach the lower gastrointestinal tract where B. longum resides.[2] In addition, B. longum can uniquely ferment galactomannan-rich natural gum using glucosaminidases and alpha-mannosidases that participate in the fermentation of glucosamine and mannose, respectively.[2] The high number of genes associated with oligosaccharide metabolism is a result of gene duplication and horizontal gene transfer, indicating that B. longum is under selective pressure to increase its capability to compete for various substrates in the gastrointestinal tract.[2] Furthermore, B. longum possesses hydrolases, deaminases, and dehydratases to ferment amino acids.[2] B. longum also has bile salt hydrolases to hydrolyze bile salts into amino acids and bile acids. The function of this is not clear, although B. longum could use the amino acids products to better tolerate bile salts.[14]

Pathogenesis edit

A number of cases of B. longum infection have been reported in the scientific literature. These are primarily cases in preterm infants that are undergoing probiotic treatment,[15][16][17] although there are also reports of infection in adults.[18][19][20] Infection in preterm infants manifests as bacteremia or necrotizing enterocolitis,[21] while in adults there have been reports of sepsis and peritonitis.[22][23]

Research edit

B. longum is a constituent in VSL#3.

Immune system regulation edit

The use of B. longum was shown to shorten the duration and minimize the severity of symptoms associated with the common cold with a similar effect to that of neuraminidase inhibitors for influenza.[24]

Bifidobacterium longum 35624 edit

Bifidobacterium longum ssp. longum 35624, previously classified as Bifidobacterium longum ssp. infantis 35624, classified as Bifidobacterium infantis 35624 before that and still marketed as such. It is sold under the brand name Align in the US and Canada and Alflorex in Ireland, the UK and other European countries. It is patented. This strain was isolated directly from the epithelium of the terminal ileum of a healthy human subject, and is one of the most researched probiotic strains.[25] Large scale clinical trials have shown that the strain is effective in controlling the symptoms of IBS including bloating, diarrhoea, abdominal pain and discomfort[26]

Bifidobacterium longum BB536 edit

Bifidobacterium longum BB536 was discovered in the intestines of healthy breastfed infants in 1969.[27] It is often used in nutritional supplement. In some small clinical trials, it has been shown to help defecation and relieev lactose intolerance symptoms.[28][29]

See also edit

References edit

  1. ^ Parte, A.C. "Bifidobacterium". LPSN.
  2. ^ a b c d e f g h i Schell, M. A.; Karmirantzou, M.; Snel, B.; Vilanova, D.; Berger, B.; Pessi, G.; Zwahlen, M. -C.; Desiere, F.; Bork, P.; Delley, M.; Pridmore, R. D.; Arigoni, F. (2002). "The genome sequence of Bifidobacterium longum reflects its adaptation to the human gastrointestinal tract". Proceedings of the National Academy of Sciences. 99 (22): 14422–14427. Bibcode:2002PNAS...9914422S. doi:10.1073/pnas.212527599. PMC 137899. PMID 12381787.
  3. ^ a b c Garrido, D.; Ruiz-Moyano, S.; Jimenez-Espinoza, R.; Eom, H. J.; Block, D. E.; Mills, D. A. (2013). "Utilization of galactooligosaccharides by Bifidobacterium longum subsp. Infantis isolates". Food Microbiology. 33 (2): 262–270. doi:10.1016/j.fm.2012.10.003. PMC 3593662. PMID 23200660.
  4. ^ Young Park, Shin; Lee, Do Kyung; Mi An, Hyang; Gyeong Cha, Min; Baek, Eun Hae; Rae Kim, Jung; Lee, Si Won; Kim, Mi Jin; Lee, Kang Oh; Joo Ha, Nam (1 July 2011). "Phenotypic and genotypic characterization of Bifidobacterium isolates from healthy adult Koreans". Iranian Journal of Biotechnology. 9 (3): 173–180. CiteSeerX 10.1.1.833.1384.
  5. ^ Pasolli, Edoardo; Schiffer, Lucas; Manghi, Paolo; Renson, Audrey; Obenchain, Valerie; Truong, Duy Tin; Beghini, Francesco; Malik, Faizan; Ramos, Marcel; Dowd, Jennifer B; Huttenhower, Curtis; Morgan, Martin; Segata, Nicola; Waldron, Levi (November 2017). "Accessible, curated metagenomic data through ExperimentHub". Nature Methods. 14 (11): 1023–1024. doi:10.1038/nmeth.4468. PMC 5862039. PMID 29088129.
  6. ^ a b Yazawa, Kazuyuki; Fujimori, Minoru; Amano, Jun; Kano, Yasunobu; Taniguchi, Shun'ichiro (February 2000). "Bifidobacterium longum as a delivery system for cancer gene therapy: Selective localization and growth in hypoxic tumors". Cancer Gene Therapy. 7 (2): 269–274. doi:10.1038/sj.cgt.7700122. PMID 10770636. S2CID 7375660.
  7. ^ a b c Yuan, Jing; Zhu, Li; Liu, Xiankai; Li, Ting; Zhang, Ying; Ying, Tianyi; Wang, Bin; Wang, Junjun; Dong, Hua; Feng, Erling; Li, Qiang; Wang, Jie; Wang, Hongxia; Wei, Kaihua; Zhang, Xuemin; Huang, Cuifeng; Huang, Peitang; Huang, Liuyu; Zeng, Ming; Wang, Hengliang (June 2006). "A Proteome Reference Map and Proteomic Analysis of Bifidobacterium longum NCC2705". Molecular & Cellular Proteomics. 5 (6): 1105–1118. doi:10.1074/mcp.M500410-MCP200. PMID 16549425.
  8. ^ Sakata, Shinji; Kitahara, Maki; Sakamoto, Mitsuo; Hayashi, Hidenori; Fukuyama, Masafumi; Benno, Yoshimi (1 November 2002). "Unification of Bifidobacterium infantis and Bifidobacterium suis as Bifidobacterium longum". International Journal of Systematic and Evolutionary Microbiology. 52 (6): 1945–1951. doi:10.1099/00207713-52-6-1945. PMID 12508852.
  9. ^ Mattarelli, P.; Bonaparte, C.; Pot, B.; Biavati, B. (1 April 2008). "Proposal to reclassify the three biotypes of Bifidobacterium longum as three subspecies: Bifidobacterium longum subsp. longum subsp. nov., Bifidobacterium longum subsp. infantis comb. nov. and Bifidobacterium longum subsp. suis comb. nov". International Journal of Systematic and Evolutionary Microbiology. 58 (4): 767–772. doi:10.1099/ijs.0.65319-0. PMID 18398167.
  10. ^ a b Šrůtková, Dagmar; Španova, Alena; Špano, Miroslav; Dráb, Vladimír; Schwarzer, Martin; Kozaková, Hana; Rittich, Bohuslav (October 2011). "Efficiency of PCR-based methods in discriminating Bifidobacterium longum ssp. longum and Bifidobacterium longum ssp. infantis strains of human origin". Journal of Microbiological Methods. 87 (1): 10–16. doi:10.1016/j.mimet.2011.06.014. PMID 21756944.
  11. ^ Xiao, J.Z.; Kondo, S.; Takahashi, N.; Miyaji, K.; Oshida, K.; Hiramatsu, A.; Iwatsuki, K.; Kokubo, S.; Hosono, A. (July 2003). "Effects of Milk Products Fermented by Bifidobacterium longum on Blood Lipids in Rats and Healthy Adult Male Volunteers". Journal of Dairy Science. 86 (7): 2452–2461. doi:10.3168/jds.S0022-0302(03)73839-9. PMID 12906063.
  12. ^ a b Abbad Andaloussi, S.; Talbaoui, H.; Marczak, R.; Bonaly, R. (November 1995). "Isolation and characterization of exocellular polysaccharides produced by Bifidobacterium longum". Applied Microbiology and Biotechnology. 43 (6): 995–1000. doi:10.1007/BF00166915. PMID 8590666. S2CID 10837355.
  13. ^ Parche, S.; Amon, J.; Jankovic, I.; Rezzonico, E.; Beleut, M.; Barutçu, H.; Schendel, I.; Eddy, M. P.; Burkovski, A.; Arigoni, F.; Titgemeyer, F. (2007). "Sugar Transport Systems of Bifidobacterium longum NCC2705". Journal of Molecular Microbiology and Biotechnology. 12 (1–2): 9–19. doi:10.1159/000096455. PMID 17183207. S2CID 21532161.
  14. ^ Tanaka, H.; Hashiba, H.; Kok, J.; Mierau, I. (2000). "Bile salt hydrolase of Bifidobacterium longum-biochemical and genetic characterization". Applied and Environmental Microbiology. 66 (6): 2502–2512. Bibcode:2000ApEnM..66.2502T. doi:10.1128/aem.66.6.2502-2512.2000. PMC 110569. PMID 10831430.
  15. ^ Zbinden, Andrea; Zbinden, Reinhard; Berger, Christoph; Arlettaz, Romaine (2015). "Case Series of Bifidobacterium longum Bacteremia in Three Preterm Infants on Probiotic Therapy" (PDF). Neonatology. 107 (1): 56–59. doi:10.1159/000367985. PMID 25402825. S2CID 33816095.
  16. ^ Esaiassen, Eirin; Cavanagh, Pauline; Hjerde, Erik; Simonsen, Gunnar S.; Støen, Ragnhild; Klingenberg, Claus (September 2016). "Subspecies Bacteremia in 3 Extremely Preterm Infants Receiving Probiotics". Emerging Infectious Diseases. 22 (9): 1664–1666. doi:10.3201/eid2209.160033. PMC 4994345. PMID 27532215.
  17. ^ Bertelli, Claire; Pillonel, Trestan; Torregrossa, Anaïs; Prod'hom, Guy; Fischer, Céline Julie; Greub, Gilbert; Giannoni, Eric (15 March 2015). "Bifidobacterium longum Bacteremia in Preterm Infants Receiving Probiotics". Clinical Infectious Diseases. 60 (6): 924–927. doi:10.1093/cid/ciu946. PMID 25472946.
  18. ^ Ha, Gyoung Yim; Yang, Chang Heon; Kim, Heesoo; Chong, Yunsop (April 1999). "Case of Sepsis Caused by Bifidobacterium longum". Journal of Clinical Microbiology. 37 (4): 1227–1228. doi:10.1128/JCM.37.4.1227-1228.1999. ISSN 0095-1137. PMC 88684. PMID 10074561.
  19. ^ Wilson, Heather L.; Ong, Chong Wei (October 2017). "Bifidobacterium longum vertebrodiscitis in a patient with cirrhosis and prostate cancer". Anaerobe. 47: 47–50. doi:10.1016/j.anaerobe.2017.04.004. PMID 28408274.
  20. ^ Tena, Daniel; Losa, Cristina; Medina, María José; Sáez-Nieto, Juan Antonio (June 2014). "Peritonitis caused by Bifidobacterium longum: Case report and literature review". Anaerobe. 27: 27–30. doi:10.1016/j.anaerobe.2014.03.005. PMID 24657157.
  21. ^ Zbinden, Andrea; Zbinden, Reinhard; Berger, Christoph; Arlettaz, Romaine (2015). "Case Series of Bifidobacterium longum Bacteremia in Three Preterm Infants on Probiotic Therapy" (PDF). Neonatology. 107 (1): 56–59. doi:10.1159/000367985. PMID 25402825. S2CID 33816095.
  22. ^ Ha, Gyoung Yim; Yang, Chang Heon; Kim, Heesoo; Chong, Yunsop (April 1999). "Case of Sepsis Caused by Bifidobacterium longum". Journal of Clinical Microbiology. 37 (4): 1227–1228. doi:10.1128/JCM.37.4.1227-1228.1999. ISSN 0095-1137. PMC 88684. PMID 10074561.
  23. ^ Tena, Daniel; Losa, Cristina; Medina, María José; Sáez-Nieto, Juan Antonio (June 2014). "Peritonitis caused by Bifidobacterium longum: Case report and literature review". Anaerobe. 27: 27–30. doi:10.1016/j.anaerobe.2014.03.005. PMID 24657157.
  24. ^ De Vrese, M.; Winkler, P.; Rautenberg, P.; Harder, T.; Noah, C.; Laue, C.; Ott, S.; Hampe, J.; Schreiber, S.; Heller, K.; Schrezenmeir, J. R. (2005). "Effect of Lactobacillus gasseri PA 16/8, Bifidobacterium longum SP 07/3, B. Bifidum MF 20/5 on common cold episodes: A double blind, randomized, controlled trial". Clinical Nutrition. 24 (4): 481–491. doi:10.1016/j.clnu.2005.02.006. PMID 16054520.
  25. ^ (PDF). Procter & Gamble. 2007. Archived from the original (PDF) on 7 March 2017. Retrieved 4 January 2018.
  26. ^ Whorwell, Peter J; Altringer, Linda; Morel, Jorge; Bond, Yvonne; Charbonneau, Duane; O'Mahony, Liam; Kiely, Barry; Shanahan, Fergus; Quigley, Eamonn M M (July 2006). "Efficacy of an Encapsulated Probiotic Bifidobacterium infantis 35624 in Women with Irritable Bowel Syndrome". The American Journal of Gastroenterology. 101 (7): 1581–1590. doi:10.1111/j.1572-0241.2006.00734.x. PMID 16863564. S2CID 3352959.
  27. ^ Minami, Miki; Tsuji, Shoji; Akagawa, Shohei; Akagawa, Yuko; Yoshimoto, Yuki; Kawakami, Hirosato; Kohno, Mamiko; Kaneko, Kazunari (2022-11-15). "Effect of a Bifidobacterium-Containing Acid-Resistant Microcapsule Formulation on Gut Microbiota: A Pilot Study". Nutrients. 14 (22): 4829. doi:10.3390/nu14224829. ISSN 2072-6643. PMC 9693766. PMID 36432516.
  28. ^ Takeda, Tsutomu; Asaoka, Daisuke; Nojiri, Shuko; Yanagisawa, Naotake; Nishizaki, Yuji; Osada, Taro; Koido, Shigeo; Nagahara, Akihito; Katsumata, Noriko; Odamaki, Toshitaka; Xiao, Jin-Zhong; Ohkusa, Toshifumi; Sato, Nobuhiro (March 2023). "Usefulness of Bifidobacterium longum BB536 in Elderly Individuals With Chronic Constipation: A Randomized Controlled Trial". American Journal of Gastroenterology. 118 (3): 561–568. doi:10.14309/ajg.0000000000002028. ISSN 0002-9270. PMC 9973440. PMID 36216361.
  29. ^ Vitellio, Paola; Celano, Giuseppe; Bonfrate, Leonilde; Gobbetti, Marco; Portincasa, Piero; De Angelis, Maria (2019-04-19). "Effects of Bifidobacterium longum and Lactobacillus rhamnosus on Gut Microbiota in Patients with Lactose Intolerance and Persisting Functional Gastrointestinal Symptoms: A Randomised, Double-Blind, Cross-Over Study". Nutrients. 11 (4): 886. doi:10.3390/nu11040886. ISSN 2072-6643. PMC 6520754. PMID 31010241.

External links edit

  • Type strain of Bifidobacterium longum at BacDive – the Bacterial Diversity Metadatabase
  • New Strain of Bifidobacterium May Help Improve Metabolic and Mental Health. On: sci-news. Dec 22, 2020. About APC1472.
  • Wang, Huiying; Braun, Christoph; Murphy, Eileen F.; Enck, Paul (July 2019). "Bifidobacterium longum 1714™ Strain Modulates Brain Activity of Healthy Volunteers During Social Stress". American Journal of Gastroenterology. 114 (7): 1152–1162. doi:10.14309/ajg.0000000000000203. PMC 6615936. PMID 30998517.

bifidobacterium, longum, gram, positive, catalase, negative, shaped, bacterium, present, human, gastrointestinal, tract, species, that, belong, genus, bifidobacterium, microaerotolerant, anaerobe, considered, earliest, colonizers, gastrointestinal, tract, infa. Bifidobacterium longum is a Gram positive catalase negative rod shaped bacterium present in the human gastrointestinal tract and one of the 32 species that belong to the genus Bifidobacterium 2 3 It is a microaerotolerant anaerobe and considered to be one of the earliest colonizers of the gastrointestinal tract of infants 2 When grown on general anaerobic medium B longum forms white glossy colonies with a convex shape 4 B longum is one of the most common bifidobacteria present in the gastrointestinal tracts of both children and adults 5 B longum is non pathogenic is often added to food products 2 6 and its production of lactic acid is believed to prevent growth of pathogenic organisms 7 Bifidobacterium longumScientific classificationDomain BacteriaPhylum ActinomycetotaClass ActinomycetiaOrder BifidobacterialesFamily BifidobacteriaceaeGenus BifidobacteriumSpecies B longumBinomial nameBifidobacterium longumReuter 1963 Approved Lists 1980 1 Representative morphologic characteristics of B longum subsp longum strains Contents 1 Classification 2 Environment 3 Metabolism 4 Pathogenesis 5 Research 5 1 Immune system regulation 5 2 Bifidobacterium longum 35624 5 3 Bifidobacterium longum BB536 6 See also 7 References 8 External linksClassification editIn 2002 three previously distinct species of Bifidobacterium B infantis B longum and B suis were unified into a single species named B longum with the biotypes infantis longum and suis respectively 8 This occurred as the three species had extensive DNA similarity including a 16S rRNA gene sequence similarity greater than 97 9 In addition the three original species were phenotypically difficult to distinguish due to different carbohydrate fermentation patterns among strains of the same species 2 As probiotic activity varies among strains of B longum interest exists in the exact classification of new strains although this is made difficult by the high gene similarity between the three biotypes 10 Currently strain identification is done through polymerase chain reaction PCR on the subtly different 16S rRNA gene sequences 10 Environment editB longum colonizes the human gastrointestinal tract where it along with other Bifidobacterium species represents up to 90 of the bacteria of an infant s gastrointestinal tract 3 This number gradually drops to 3 in an adult s gastrointestinal tract as other enteric bacteria such as Bacteroides and Eubacterium begin to dominate 7 Some strains of B longum were found to have high tolerance for gastric acid and bile suggesting that these strains would be able to survive the gastrointestinal tract to colonize the lower small and large intestines 6 11 The persistence of B longum in the gut is attributed to the glycoprotein binding fimbriae structures and bacterial polysaccharides the latter of which possess strong electrostatic charges that aid in the adhesion of B longum to intestinal endothelial cells 2 12 This adhesion is also enhanced by the fatty acids in the lipoteichoic acid of the B longum cell wall 12 Metabolism editB longum is considered to be a scavenger possessing multiple catabolic pathways to use a large variety of nutrients to increase its competitiveness among the gut microbiota 7 Up to 19 types of permease exist to transport various carbohydrates with 13 being ATP binding cassette transporters 13 B longum has several glycosyl hydrolases to metabolise complex oligosaccharides for carbon and energy 3 This is necessary as mono and disaccharides have usually been consumed by the time they reach the lower gastrointestinal tract where B longum resides 2 In addition B longum can uniquely ferment galactomannan rich natural gum using glucosaminidases and alpha mannosidases that participate in the fermentation of glucosamine and mannose respectively 2 The high number of genes associated with oligosaccharide metabolism is a result of gene duplication and horizontal gene transfer indicating that B longum is under selective pressure to increase its capability to compete for various substrates in the gastrointestinal tract 2 Furthermore B longum possesses hydrolases deaminases and dehydratases to ferment amino acids 2 B longum also has bile salt hydrolases to hydrolyze bile salts into amino acids and bile acids The function of this is not clear although B longum could use the amino acids products to better tolerate bile salts 14 Pathogenesis editA number of cases of B longum infection have been reported in the scientific literature These are primarily cases in preterm infants that are undergoing probiotic treatment 15 16 17 although there are also reports of infection in adults 18 19 20 Infection in preterm infants manifests as bacteremia or necrotizing enterocolitis 21 while in adults there have been reports of sepsis and peritonitis 22 23 Research editB longum is a constituent in VSL 3 Immune system regulation edit The use of B longum was shown to shorten the duration and minimize the severity of symptoms associated with the common cold with a similar effect to that of neuraminidase inhibitors for influenza 24 Bifidobacterium longum 35624 edit Bifidobacterium longum ssp longum 35624 previously classified as Bifidobacterium longum ssp infantis 35624 classified as Bifidobacterium infantis 35624 before that and still marketed as such It is sold under the brand name Align in the US and Canada and Alflorex in Ireland the UK and other European countries It is patented This strain was isolated directly from the epithelium of the terminal ileum of a healthy human subject and is one of the most researched probiotic strains 25 Large scale clinical trials have shown that the strain is effective in controlling the symptoms of IBS including bloating diarrhoea abdominal pain and discomfort 26 Bifidobacterium longum BB536 edit Bifidobacterium longum BB536 was discovered in the intestines of healthy breastfed infants in 1969 27 It is often used in nutritional supplement In some small clinical trials it has been shown to help defecation and relieev lactose intolerance symptoms 28 29 See also editPsychobiotic Probiotic Gut flora MicroorganismReferences edit Parte A C Bifidobacterium LPSN a b c d e f g h i Schell M A Karmirantzou M Snel B Vilanova D Berger B Pessi G Zwahlen M C Desiere F Bork P Delley M Pridmore R D Arigoni F 2002 The genome sequence of Bifidobacterium longum reflects its adaptation to the human gastrointestinal tract Proceedings of the National Academy of Sciences 99 22 14422 14427 Bibcode 2002PNAS 9914422S doi 10 1073 pnas 212527599 PMC 137899 PMID 12381787 a b c Garrido D Ruiz Moyano S Jimenez Espinoza R Eom H J Block D E Mills D A 2013 Utilization of galactooligosaccharides by Bifidobacterium longum subsp Infantis isolates Food Microbiology 33 2 262 270 doi 10 1016 j fm 2012 10 003 PMC 3593662 PMID 23200660 Young Park Shin Lee Do Kyung Mi An Hyang Gyeong Cha Min Baek Eun Hae Rae Kim Jung Lee Si Won Kim Mi Jin Lee Kang Oh Joo Ha Nam 1 July 2011 Phenotypic and genotypic characterization of Bifidobacterium isolates from healthy adult Koreans Iranian Journal of Biotechnology 9 3 173 180 CiteSeerX 10 1 1 833 1384 Pasolli Edoardo Schiffer Lucas Manghi Paolo Renson Audrey Obenchain Valerie Truong Duy Tin Beghini Francesco Malik Faizan Ramos Marcel Dowd Jennifer B Huttenhower Curtis Morgan Martin Segata Nicola Waldron Levi November 2017 Accessible curated metagenomic data through ExperimentHub Nature Methods 14 11 1023 1024 doi 10 1038 nmeth 4468 PMC 5862039 PMID 29088129 a b Yazawa Kazuyuki Fujimori Minoru Amano Jun Kano Yasunobu Taniguchi Shun ichiro February 2000 Bifidobacterium longum as a delivery system for cancer gene therapy Selective localization and growth in hypoxic tumors Cancer Gene Therapy 7 2 269 274 doi 10 1038 sj cgt 7700122 PMID 10770636 S2CID 7375660 a b c Yuan Jing Zhu Li Liu Xiankai Li Ting Zhang Ying Ying Tianyi Wang Bin Wang Junjun Dong Hua Feng Erling Li Qiang Wang Jie Wang Hongxia Wei Kaihua Zhang Xuemin Huang Cuifeng Huang Peitang Huang Liuyu Zeng Ming Wang Hengliang June 2006 A Proteome Reference Map and Proteomic Analysis of Bifidobacterium longum NCC2705 Molecular amp Cellular Proteomics 5 6 1105 1118 doi 10 1074 mcp M500410 MCP200 PMID 16549425 Sakata Shinji Kitahara Maki Sakamoto Mitsuo Hayashi Hidenori Fukuyama Masafumi Benno Yoshimi 1 November 2002 Unification of Bifidobacterium infantis and Bifidobacterium suis as Bifidobacterium longum International Journal of Systematic and Evolutionary Microbiology 52 6 1945 1951 doi 10 1099 00207713 52 6 1945 PMID 12508852 Mattarelli P Bonaparte C Pot B Biavati B 1 April 2008 Proposal to reclassify the three biotypes of Bifidobacterium longum as three subspecies Bifidobacterium longum subsp longum subsp nov Bifidobacterium longum subsp infantis comb nov and Bifidobacterium longum subsp suis comb nov International Journal of Systematic and Evolutionary Microbiology 58 4 767 772 doi 10 1099 ijs 0 65319 0 PMID 18398167 a b Srutkova Dagmar Spanova Alena Spano Miroslav Drab Vladimir Schwarzer Martin Kozakova Hana Rittich Bohuslav October 2011 Efficiency of PCR based methods in discriminating Bifidobacterium longum ssp longum and Bifidobacterium longum ssp infantis strains of human origin Journal of Microbiological Methods 87 1 10 16 doi 10 1016 j mimet 2011 06 014 PMID 21756944 Xiao J Z Kondo S Takahashi N Miyaji K Oshida K Hiramatsu A Iwatsuki K Kokubo S Hosono A July 2003 Effects of Milk Products Fermented by Bifidobacterium longum on Blood Lipids in Rats and Healthy Adult Male Volunteers Journal of Dairy Science 86 7 2452 2461 doi 10 3168 jds S0022 0302 03 73839 9 PMID 12906063 a b Abbad Andaloussi S Talbaoui H Marczak R Bonaly R November 1995 Isolation and characterization of exocellular polysaccharides produced by Bifidobacterium longum Applied Microbiology and Biotechnology 43 6 995 1000 doi 10 1007 BF00166915 PMID 8590666 S2CID 10837355 Parche S Amon J Jankovic I Rezzonico E Beleut M Barutcu H Schendel I Eddy M P Burkovski A Arigoni F Titgemeyer F 2007 Sugar Transport Systems ofBifidobacterium longumNCC2705 Journal of Molecular Microbiology and Biotechnology 12 1 2 9 19 doi 10 1159 000096455 PMID 17183207 S2CID 21532161 Tanaka H Hashiba H Kok J Mierau I 2000 Bile salt hydrolase of Bifidobacterium longum biochemical and genetic characterization Applied and Environmental Microbiology 66 6 2502 2512 Bibcode 2000ApEnM 66 2502T doi 10 1128 aem 66 6 2502 2512 2000 PMC 110569 PMID 10831430 Zbinden Andrea Zbinden Reinhard Berger Christoph Arlettaz Romaine 2015 Case Series ofBifidobacterium longum Bacteremia in Three Preterm Infants on Probiotic Therapy PDF Neonatology 107 1 56 59 doi 10 1159 000367985 PMID 25402825 S2CID 33816095 Esaiassen Eirin Cavanagh Pauline Hjerde Erik Simonsen Gunnar S Stoen Ragnhild Klingenberg Claus September 2016 Subspecies Bacteremia in 3 Extremely Preterm Infants Receiving Probiotics Emerging Infectious Diseases 22 9 1664 1666 doi 10 3201 eid2209 160033 PMC 4994345 PMID 27532215 Bertelli Claire Pillonel Trestan Torregrossa Anais Prod hom Guy Fischer Celine Julie Greub Gilbert Giannoni Eric 15 March 2015 Bifidobacterium longum Bacteremia in Preterm Infants Receiving Probiotics Clinical Infectious Diseases 60 6 924 927 doi 10 1093 cid ciu946 PMID 25472946 Ha Gyoung Yim Yang Chang Heon Kim Heesoo Chong Yunsop April 1999 Case of Sepsis Caused by Bifidobacterium longum Journal of Clinical Microbiology 37 4 1227 1228 doi 10 1128 JCM 37 4 1227 1228 1999 ISSN 0095 1137 PMC 88684 PMID 10074561 Wilson Heather L Ong Chong Wei October 2017 Bifidobacterium longum vertebrodiscitis in a patient with cirrhosis and prostate cancer Anaerobe 47 47 50 doi 10 1016 j anaerobe 2017 04 004 PMID 28408274 Tena Daniel Losa Cristina Medina Maria Jose Saez Nieto Juan Antonio June 2014 Peritonitis caused by Bifidobacterium longum Case report and literature review Anaerobe 27 27 30 doi 10 1016 j anaerobe 2014 03 005 PMID 24657157 Zbinden Andrea Zbinden Reinhard Berger Christoph Arlettaz Romaine 2015 Case Series of Bifidobacterium longum Bacteremia in Three Preterm Infants on Probiotic Therapy PDF Neonatology 107 1 56 59 doi 10 1159 000367985 PMID 25402825 S2CID 33816095 Ha Gyoung Yim Yang Chang Heon Kim Heesoo Chong Yunsop April 1999 Case of Sepsis Caused by Bifidobacterium longum Journal of Clinical Microbiology 37 4 1227 1228 doi 10 1128 JCM 37 4 1227 1228 1999 ISSN 0095 1137 PMC 88684 PMID 10074561 Tena Daniel Losa Cristina Medina Maria Jose Saez Nieto Juan Antonio June 2014 Peritonitis caused by Bifidobacterium longum Case report and literature review Anaerobe 27 27 30 doi 10 1016 j anaerobe 2014 03 005 PMID 24657157 De Vrese M Winkler P Rautenberg P Harder T Noah C Laue C Ott S Hampe J Schreiber S Heller K Schrezenmeir J R 2005 Effect of Lactobacillus gasseri PA 16 8 Bifidobacterium longum SP 07 3 B Bifidum MF 20 5 on common cold episodes A double blind randomized controlled trial Clinical Nutrition 24 4 481 491 doi 10 1016 j clnu 2005 02 006 PMID 16054520 Bifantis Bifidobacterium infantis 35624 Professional Monograph PDF Procter amp Gamble 2007 Archived from the original PDF on 7 March 2017 Retrieved 4 January 2018 Whorwell Peter J Altringer Linda Morel Jorge Bond Yvonne Charbonneau Duane O Mahony Liam Kiely Barry Shanahan Fergus Quigley Eamonn M M July 2006 Efficacy of an Encapsulated Probiotic Bifidobacterium infantis 35624 in Women with Irritable Bowel Syndrome The American Journal of Gastroenterology 101 7 1581 1590 doi 10 1111 j 1572 0241 2006 00734 x PMID 16863564 S2CID 3352959 Minami Miki Tsuji Shoji Akagawa Shohei Akagawa Yuko Yoshimoto Yuki Kawakami Hirosato Kohno Mamiko Kaneko Kazunari 2022 11 15 Effect of a Bifidobacterium Containing Acid Resistant Microcapsule Formulation on Gut Microbiota A Pilot Study Nutrients 14 22 4829 doi 10 3390 nu14224829 ISSN 2072 6643 PMC 9693766 PMID 36432516 Takeda Tsutomu Asaoka Daisuke Nojiri Shuko Yanagisawa Naotake Nishizaki Yuji Osada Taro Koido Shigeo Nagahara Akihito Katsumata Noriko Odamaki Toshitaka Xiao Jin Zhong Ohkusa Toshifumi Sato Nobuhiro March 2023 Usefulness of Bifidobacterium longum BB536 in Elderly Individuals With Chronic Constipation A Randomized Controlled Trial American Journal of Gastroenterology 118 3 561 568 doi 10 14309 ajg 0000000000002028 ISSN 0002 9270 PMC 9973440 PMID 36216361 Vitellio Paola Celano Giuseppe Bonfrate Leonilde Gobbetti Marco Portincasa Piero De Angelis Maria 2019 04 19 Effects of Bifidobacterium longum and Lactobacillus rhamnosus on Gut Microbiota in Patients with Lactose Intolerance and Persisting Functional Gastrointestinal Symptoms A Randomised Double Blind Cross Over Study Nutrients 11 4 886 doi 10 3390 nu11040886 ISSN 2072 6643 PMC 6520754 PMID 31010241 External links editType strain of Bifidobacterium longum at BacDive the Bacterial Diversity Metadatabase New Strain of Bifidobacterium May Help Improve Metabolic and Mental Health On sci news Dec 22 2020 About APC1472 Wang Huiying Braun Christoph Murphy Eileen F Enck Paul July 2019 Bifidobacterium longum 1714 Strain Modulates Brain Activity of Healthy Volunteers During Social Stress American Journal of Gastroenterology 114 7 1152 1162 doi 10 14309 ajg 0000000000000203 PMC 6615936 PMID 30998517 Retrieved from https en wikipedia org w index php title Bifidobacterium longum amp oldid 1215949610, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.