fbpx
Wikipedia

Integral domain

In mathematics, an integral domain is a nonzero commutative ring in which the product of any two nonzero elements is nonzero.[1][2] Integral domains are generalizations of the ring of integers and provide a natural setting for studying divisibility. In an integral domain, every nonzero element a has the cancellation property, that is, if a ≠ 0, an equality ab = ac implies b = c.

"Integral domain" is defined almost universally as above, but there is some variation. This article follows the convention that rings have a multiplicative identity, generally denoted 1, but some authors do not follow this, by not requiring integral domains to have a multiplicative identity.[3][4] Noncommutative integral domains are sometimes admitted.[5] This article, however, follows the much more usual convention of reserving the term "integral domain" for the commutative case and using "domain" for the general case including noncommutative rings.

Some sources, notably Lang, use the term entire ring for integral domain.[6]

Some specific kinds of integral domains are given with the following chain of class inclusions:

rngsringscommutative ringsintegral domainsintegrally closed domainsGCD domainsunique factorization domainsprincipal ideal domainsEuclidean domainsfieldsalgebraically closed fields

Definition edit

An integral domain is a nonzero commutative ring in which the product of any two nonzero elements is nonzero. Equivalently:

  • An integral domain is a nonzero commutative ring with no nonzero zero divisors.
  • An integral domain is a commutative ring in which the zero ideal {0} is a prime ideal.
  • An integral domain is a nonzero commutative ring for which every nonzero element is cancellable under multiplication.
  • An integral domain is a ring for which the set of nonzero elements is a commutative monoid under multiplication (because a monoid must be closed under multiplication).
  • An integral domain is a nonzero commutative ring in which for every nonzero element r, the function that maps each element x of the ring to the product xr is injective. Elements r with this property are called regular, so it is equivalent to require that every nonzero element of the ring be regular.
  • An integral domain is a ring that is isomorphic to a subring of a field. (Given an integral domain, one can embed it in its field of fractions.)

Examples edit

  • The archetypical example is the ring   of all integers.
  • Every field is an integral domain. For example, the field   of all real numbers is an integral domain. Conversely, every Artinian integral domain is a field. In particular, all finite integral domains are finite fields (more generally, by Wedderburn's little theorem, finite domains are finite fields). The ring of integers   provides an example of a non-Artinian infinite integral domain that is not a field, possessing infinite descending sequences of ideals such as:
     
  • Rings of polynomials are integral domains if the coefficients come from an integral domain. For instance, the ring   of all polynomials in one variable with integer coefficients is an integral domain; so is the ring   of all polynomials in n-variables with complex coefficients.
  • The previous example can be further exploited by taking quotients from prime ideals. For example, the ring  corresponding to a plane elliptic curve is an integral domain. Integrality can be checked by showing  is an irreducible polynomial.
  • The ring   is an integral domain for any non-square integer  . If  , then this ring is always a subring of  , otherwise, it is a subring of  
  • The ring of p-adic integers   is an integral domain.
  • The ring of formal power series of an integral domain is an integral domain.
  • If   is a connected open subset of the complex plane  , then the ring   consisting of all holomorphic functions is an integral domain. The same is true for rings of analytic functions on connected open subsets of analytic manifolds.
  • A regular local ring is an integral domain. In fact, a regular local ring is a UFD.[7][8]

Non-examples edit

The following rings are not integral domains.

  • The zero ring (the ring in which  ).
  • The quotient ring   when m is a composite number. Indeed, choose a proper factorization   (meaning that   and   are not equal to   or  ). Then   and  , but  .
  • A product of two nonzero commutative rings. In such a product  , one has  .
  • The quotient ring   for any  . The images of   and   are nonzero, while their product is 0 in this ring.
  • The ring of n × n matrices over any nonzero ring when n ≥ 2. If   and   are matrices such that the image of   is contained in the kernel of  , then  . For example, this happens for  .
  • The quotient ring   for any field   and any non-constant polynomials  . The images of f and g in this quotient ring are nonzero elements whose product is 0. This argument shows, equivalently, that   is not a prime ideal. The geometric interpretation of this result is that the zeros of fg form an affine algebraic set that is not irreducible (that is, not an algebraic variety) in general. The only case where this algebraic set may be irreducible is when fg is a power of an irreducible polynomial, which defines the same algebraic set.
  • The ring of continuous functions on the unit interval. Consider the functions
     
Neither   nor   is everywhere zero, but   is.
  • The tensor product  . This ring has two non-trivial idempotents,   and  . They are orthogonal, meaning that  , and hence   is not a domain. In fact, there is an isomorphism   defined by  . Its inverse is defined by  . This example shows that a fiber product of irreducible affine schemes need not be irreducible.

Divisibility, prime elements, and irreducible elements edit

In this section, R is an integral domain.

Given elements a and b of R, one says that a divides b, or that a is a divisor of b, or that b is a multiple of a, if there exists an element x in R such that ax = b.

The units of R are the elements that divide 1; these are precisely the invertible elements in R. Units divide all other elements.

If a divides b and b divides a, then a and b are associated elements or associates.[9] Equivalently, a and b are associates if a = ub for some unit u.

An irreducible element is a nonzero non-unit that cannot be written as a product of two non-units.

A nonzero non-unit p is a prime element if, whenever p divides a product ab, then p divides a or p divides b. Equivalently, an element p is prime if and only if the principal ideal (p) is a nonzero prime ideal.

Both notions of irreducible elements and prime elements generalize the ordinary definition of prime numbers in the ring   if one considers as prime the negative primes.

Every prime element is irreducible. The converse is not true in general: for example, in the quadratic integer ring   the element 3 is irreducible (if it factored nontrivially, the factors would each have to have norm 3, but there are no norm 3 elements since   has no integer solutions), but not prime (since 3 divides   without dividing either factor). In a unique factorization domain (or more generally, a GCD domain), an irreducible element is a prime element.

While unique factorization does not hold in  , there is unique factorization of ideals. See Lasker–Noether theorem.

Properties edit

  • A commutative ring R is an integral domain if and only if the ideal (0) of R is a prime ideal.
  • If R is a commutative ring and P is an ideal in R, then the quotient ring R/P is an integral domain if and only if P is a prime ideal.
  • Let R be an integral domain. Then the polynomial rings over R (in any number of indeterminates) are integral domains. This is in particular the case if R is a field.
  • The cancellation property holds in any integral domain: for any a, b, and c in an integral domain, if a0 and ab = ac then b = c. Another way to state this is that the function xax is injective for any nonzero a in the domain.
  • The cancellation property holds for ideals in any integral domain: if xI = xJ, then either x is zero or I = J.
  • An integral domain is equal to the intersection of its localizations at maximal ideals.
  • An inductive limit of integral domains is an integral domain.
  • If A, B are integral domains over an algebraically closed field k, then Ak B is an integral domain. This is a consequence of Hilbert's nullstellensatz,[a] and, in algebraic geometry, it implies the statement that the coordinate ring of the product of two affine algebraic varieties over an algebraically closed field is again an integral domain.

Field of fractions edit

The field of fractions K of an integral domain R is the set of fractions a/b with a and b in R and b ≠ 0 modulo an appropriate equivalence relation, equipped with the usual addition and multiplication operations. It is "the smallest field containing R" in the sense that there is an injective ring homomorphism RK such that any injective ring homomorphism from R to a field factors through K. The field of fractions of the ring of integers   is the field of rational numbers   The field of fractions of a field is isomorphic to the field itself.

Algebraic geometry edit

Integral domains are characterized by the condition that they are reduced (that is x2 = 0 implies x = 0) and irreducible (that is there is only one minimal prime ideal). The former condition ensures that the nilradical of the ring is zero, so that the intersection of all the ring's minimal primes is zero. The latter condition is that the ring have only one minimal prime. It follows that the unique minimal prime ideal of a reduced and irreducible ring is the zero ideal, so such rings are integral domains. The converse is clear: an integral domain has no nonzero nilpotent elements, and the zero ideal is the unique minimal prime ideal.

This translates, in algebraic geometry, into the fact that the coordinate ring of an affine algebraic set is an integral domain if and only if the algebraic set is an algebraic variety.

More generally, a commutative ring is an integral domain if and only if its spectrum is an integral affine scheme.

Characteristic and homomorphisms edit

The characteristic of an integral domain is either 0 or a prime number.

If R is an integral domain of prime characteristic p, then the Frobenius endomorphism xxp is injective.

See also edit

Notes edit

  1. ^ Proof: First assume A is finitely generated as a k-algebra and pick a k-basis   of B. Suppose   (only finitely many   are nonzero). For each maximal ideal   of A, consider the ring homomorphism  . Then the image is   and thus either   or   and, by linear independence,   for all   or   for all  . Since   is arbitrary, we have   the intersection of all maximal ideals   where the last equality is by the Nullstellensatz. Since   is a prime ideal, this implies either   or   is the zero ideal; i.e., either   are all zero or   are all zero. Finally, A is an inductive limit of finitely generated k-algebras that are integral domains and thus, using the previous property,   is an integral domain.  

Citations edit

  1. ^ Bourbaki 1998, p. 116
  2. ^ Dummit & Foote 2004, p. 228
  3. ^ van der Waerden 1966, p. 36
  4. ^ Herstein 1964, pp. 88–90
  5. ^ McConnell & Robson
  6. ^ Lang 1993, pp. 91–92
  7. ^ Auslander & Buchsbaum 1959
  8. ^ Nagata 1958
  9. ^ Durbin 1993, p. 224, "Elements a and b of [an integral domain] are called associates if a | b and b | a."

References edit

  • Adamson, Iain T. (1972). Elementary rings and modules. University Mathematical Texts. Oliver and Boyd. ISBN 0-05-002192-3.
  • Bourbaki, Nicolas (1998). Algebra, Chapters 1–3. Berlin, New York: Springer-Verlag. ISBN 978-3-540-64243-5.
  • Dummit, David S.; Foote, Richard M. (2004). Abstract Algebra (3rd ed.). New York: Wiley. ISBN 978-0-471-43334-7.
  • Durbin, John R. (1993). Modern Algebra: An Introduction (3rd ed.). John Wiley and Sons. ISBN 0-471-51001-7.
  • Herstein, I.N. (1964), Topics in Algebra, London: Blaisdell Publishing Company
  • Hungerford, Thomas W. (2013). Abstract Algebra: An Introduction (3rd ed.). Cengage Learning. ISBN 978-1-111-56962-4.
  • Lang, Serge (1993), Algebra (Third ed.), Reading, Mass.: Addison-Wesley, ISBN 978-0-201-55540-0, Zbl 0848.13001
  • Lang, Serge (2002). Algebra. Graduate Texts in Mathematics. Vol. 211. Berlin, New York: Springer-Verlag. ISBN 978-0-387-95385-4. MR 1878556.
  • Mac Lane, Saunders; Birkhoff, Garrett (1967). Algebra. New York: The Macmillan Co. ISBN 1-56881-068-7. MR 0214415.
  • McConnell, J.C.; Robson, J.C., Noncommutative Noetherian Rings, Graduate Studies in Mathematics, vol. 30, AMS
  • Milies, César Polcino; Sehgal, Sudarshan K. (2002). An introduction to group rings. Springer. ISBN 1-4020-0238-6.
  • Lanski, Charles (2005). Concepts in abstract algebra. AMS Bookstore. ISBN 0-534-42323-X.
  • Rowen, Louis Halle (1994). Algebra: groups, rings, and fields. A K Peters. ISBN 1-56881-028-8.
  • Sharpe, David (1987). Rings and factorization. Cambridge University Press. ISBN 0-521-33718-6.
  • van der Waerden, Bartel Leendert (1966), Algebra, vol. 1, Berlin, Heidelberg: Springer-Verlag
  • Auslander, M; Buchsbaum, D A (1959). "Unique factorization in regular local rings". Proceedings of the National Academy of Sciences of the United States of America. 45 (5) (published May 1959): 733–4. Bibcode:1959PNAS...45..733A. doi:10.1073/PNAS.45.5.733. ISSN 0027-8424. PMC 222624. PMID 16590434. Zbl 0084.26504. Wikidata Q24655880.
  • Nagata, Masayoshi (1958). "A General Theory of Algebraic Geometry Over Dedekind Domains, II: Separably Generated Extensions and Regular Local Rings". American Journal of Mathematics. 80 (2) (published April 1958): 382. doi:10.2307/2372791. ISSN 0002-9327. JSTOR 2372791. Zbl 0089.26501. Wikidata Q56049883.

External links edit

  • "where does the term "integral domain" come from?".

integral, domain, confused, with, domain, integration, mathematics, integral, domain, nonzero, commutative, ring, which, product, nonzero, elements, nonzero, generalizations, ring, integers, provide, natural, setting, studying, divisibility, integral, domain, . Not to be confused with domain of integration In mathematics an integral domain is a nonzero commutative ring in which the product of any two nonzero elements is nonzero 1 2 Integral domains are generalizations of the ring of integers and provide a natural setting for studying divisibility In an integral domain every nonzero element a has the cancellation property that is if a 0 an equality ab ac implies b c Integral domain is defined almost universally as above but there is some variation This article follows the convention that rings have a multiplicative identity generally denoted 1 but some authors do not follow this by not requiring integral domains to have a multiplicative identity 3 4 Noncommutative integral domains are sometimes admitted 5 This article however follows the much more usual convention of reserving the term integral domain for the commutative case and using domain for the general case including noncommutative rings Some sources notably Lang use the term entire ring for integral domain 6 Some specific kinds of integral domains are given with the following chain of class inclusions rngs rings commutative rings integral domains integrally closed domains GCD domains unique factorization domains principal ideal domains Euclidean domains fields algebraically closed fieldsContents 1 Definition 2 Examples 3 Non examples 4 Divisibility prime elements and irreducible elements 5 Properties 6 Field of fractions 7 Algebraic geometry 8 Characteristic and homomorphisms 9 See also 10 Notes 11 Citations 12 References 13 External linksDefinition editAn integral domain is a nonzero commutative ring in which the product of any two nonzero elements is nonzero Equivalently An integral domain is a nonzero commutative ring with no nonzero zero divisors An integral domain is a commutative ring in which the zero ideal 0 is a prime ideal An integral domain is a nonzero commutative ring for which every nonzero element is cancellable under multiplication An integral domain is a ring for which the set of nonzero elements is a commutative monoid under multiplication because a monoid must be closed under multiplication An integral domain is a nonzero commutative ring in which for every nonzero element r the function that maps each element x of the ring to the product xr is injective Elements r with this property are called regular so it is equivalent to require that every nonzero element of the ring be regular An integral domain is a ring that is isomorphic to a subring of a field Given an integral domain one can embed it in its field of fractions Examples editThe archetypical example is the ring Z displaystyle mathbb Z nbsp of all integers Every field is an integral domain For example the field R displaystyle mathbb R nbsp of all real numbers is an integral domain Conversely every Artinian integral domain is a field In particular all finite integral domains are finite fields more generally by Wedderburn s little theorem finite domains are finite fields The ring of integers Z displaystyle mathbb Z nbsp provides an example of a non Artinian infinite integral domain that is not a field possessing infinite descending sequences of ideals such as Z 2Z 2nZ 2n 1Z displaystyle mathbb Z supset 2 mathbb Z supset cdots supset 2 n mathbb Z supset 2 n 1 mathbb Z supset cdots nbsp Rings of polynomials are integral domains if the coefficients come from an integral domain For instance the ring Z x displaystyle mathbb Z x nbsp of all polynomials in one variable with integer coefficients is an integral domain so is the ring C x1 xn displaystyle mathbb C x 1 ldots x n nbsp of all polynomials in n variables with complex coefficients The previous example can be further exploited by taking quotients from prime ideals For example the ring C x y y2 x x 1 x 2 displaystyle mathbb C x y y 2 x x 1 x 2 nbsp corresponding to a plane elliptic curve is an integral domain Integrality can be checked by showing y2 x x 1 x 2 displaystyle y 2 x x 1 x 2 nbsp is an irreducible polynomial The ring Z x x2 n Z n displaystyle mathbb Z x x 2 n cong mathbb Z sqrt n nbsp is an integral domain for any non square integer n displaystyle n nbsp If n gt 0 displaystyle n gt 0 nbsp then this ring is always a subring of R displaystyle mathbb R nbsp otherwise it is a subring of C displaystyle mathbb C nbsp The ring of p adic integers Zp displaystyle mathbb Z p nbsp is an integral domain The ring of formal power series of an integral domain is an integral domain If U displaystyle U nbsp is a connected open subset of the complex plane C displaystyle mathbb C nbsp then the ring H U displaystyle mathcal H U nbsp consisting of all holomorphic functions is an integral domain The same is true for rings of analytic functions on connected open subsets of analytic manifolds A regular local ring is an integral domain In fact a regular local ring is a UFD 7 8 Non examples editThe following rings are not integral domains The zero ring the ring in which 0 1 displaystyle 0 1 nbsp The quotient ring Z mZ displaystyle mathbb Z m mathbb Z nbsp when m is a composite number Indeed choose a proper factorization m xy displaystyle m xy nbsp meaning that x displaystyle x nbsp and y displaystyle y nbsp are not equal to 1 displaystyle 1 nbsp or m displaystyle m nbsp Then x 0modm displaystyle x not equiv 0 bmod m nbsp and y 0modm displaystyle y not equiv 0 bmod m nbsp but xy 0modm displaystyle xy equiv 0 bmod m nbsp A product of two nonzero commutative rings In such a product R S displaystyle R times S nbsp one has 1 0 0 1 0 0 displaystyle 1 0 cdot 0 1 0 0 nbsp The quotient ring Z x x2 n2 displaystyle mathbb Z x x 2 n 2 nbsp for any n Z displaystyle n in mathbb Z nbsp The images of x n displaystyle x n nbsp and x n displaystyle x n nbsp are nonzero while their product is 0 in this ring The ring of n n matrices over any nonzero ring when n 2 If M displaystyle M nbsp and N displaystyle N nbsp are matrices such that the image of N displaystyle N nbsp is contained in the kernel of M displaystyle M nbsp then MN 0 displaystyle MN 0 nbsp For example this happens for M N 0100 displaystyle M N begin smallmatrix 0 amp 1 0 amp 0 end smallmatrix nbsp The quotient ring k x1 xn fg displaystyle k x 1 ldots x n fg nbsp for any field k displaystyle k nbsp and any non constant polynomials f g k x1 xn displaystyle f g in k x 1 ldots x n nbsp The images of f and g in this quotient ring are nonzero elements whose product is 0 This argument shows equivalently that fg displaystyle fg nbsp is not a prime ideal The geometric interpretation of this result is that the zeros of fg form an affine algebraic set that is not irreducible that is not an algebraic variety in general The only case where this algebraic set may be irreducible is when fg is a power of an irreducible polynomial which defines the same algebraic set The ring of continuous functions on the unit interval Consider the functions f x 1 2xx 0 12 0x 12 1 g x 0x 0 12 2x 1x 12 1 displaystyle f x begin cases 1 2x amp x in left 0 tfrac 1 2 right 0 amp x in left tfrac 1 2 1 right end cases qquad g x begin cases 0 amp x in left 0 tfrac 1 2 right 2x 1 amp x in left tfrac 1 2 1 right end cases nbsp Neither f displaystyle f nbsp nor g displaystyle g nbsp is everywhere zero but fg displaystyle fg nbsp is The tensor product C RC displaystyle mathbb C otimes mathbb R mathbb C nbsp This ring has two non trivial idempotents e1 12 1 1 12 i i displaystyle e 1 tfrac 1 2 1 otimes 1 tfrac 1 2 i otimes i nbsp and e2 12 1 1 12 i i displaystyle e 2 tfrac 1 2 1 otimes 1 tfrac 1 2 i otimes i nbsp They are orthogonal meaning that e1e2 0 displaystyle e 1 e 2 0 nbsp and hence C RC displaystyle mathbb C otimes mathbb R mathbb C nbsp is not a domain In fact there is an isomorphism C C C RC displaystyle mathbb C times mathbb C to mathbb C otimes mathbb R mathbb C nbsp defined by z w z e1 w e2 displaystyle z w mapsto z cdot e 1 w cdot e 2 nbsp Its inverse is defined by z w zw zw displaystyle z otimes w mapsto zw z overline w nbsp This example shows that a fiber product of irreducible affine schemes need not be irreducible Divisibility prime elements and irreducible elements editSee also Divisibility ring theory In this section R is an integral domain Given elements a and b of R one says that a divides b or that a is a divisor of b or that b is a multiple of a if there exists an element x in R such that ax b The units of R are the elements that divide 1 these are precisely the invertible elements in R Units divide all other elements If a divides b and b divides a then a and b are associated elements or associates 9 Equivalently a and b are associates if a ub for some unit u An irreducible element is a nonzero non unit that cannot be written as a product of two non units A nonzero non unit p is a prime element if whenever p divides a product ab then p divides a or p divides b Equivalently an element p is prime if and only if the principal ideal p is a nonzero prime ideal Both notions of irreducible elements and prime elements generalize the ordinary definition of prime numbers in the ring Z displaystyle mathbb Z nbsp if one considers as prime the negative primes Every prime element is irreducible The converse is not true in general for example in the quadratic integer ring Z 5 displaystyle mathbb Z left sqrt 5 right nbsp the element 3 is irreducible if it factored nontrivially the factors would each have to have norm 3 but there are no norm 3 elements since a2 5b2 3 displaystyle a 2 5b 2 3 nbsp has no integer solutions but not prime since 3 divides 2 5 2 5 displaystyle left 2 sqrt 5 right left 2 sqrt 5 right nbsp without dividing either factor In a unique factorization domain or more generally a GCD domain an irreducible element is a prime element While unique factorization does not hold in Z 5 displaystyle mathbb Z left sqrt 5 right nbsp there is unique factorization of ideals See Lasker Noether theorem Properties editA commutative ring R is an integral domain if and only if the ideal 0 of R is a prime ideal If R is a commutative ring and P is an ideal in R then the quotient ring R P is an integral domain if and only if P is a prime ideal Let R be an integral domain Then the polynomial rings over R in any number of indeterminates are integral domains This is in particular the case if R is a field The cancellation property holds in any integral domain for any a b and c in an integral domain if a 0 and ab ac then b c Another way to state this is that the function x ax is injective for any nonzero a in the domain The cancellation property holds for ideals in any integral domain if xI xJ then either x is zero or I J An integral domain is equal to the intersection of its localizations at maximal ideals An inductive limit of integral domains is an integral domain If A B are integral domains over an algebraically closed field k then A k B is an integral domain This is a consequence of Hilbert s nullstellensatz a and in algebraic geometry it implies the statement that the coordinate ring of the product of two affine algebraic varieties over an algebraically closed field is again an integral domain Field of fractions editMain article Field of fractions The field of fractions K of an integral domain R is the set of fractions a b with a and b in R and b 0 modulo an appropriate equivalence relation equipped with the usual addition and multiplication operations It is the smallest field containing R in the sense that there is an injective ring homomorphism R K such that any injective ring homomorphism from R to a field factors through K The field of fractions of the ring of integers Z displaystyle mathbb Z nbsp is the field of rational numbers Q displaystyle mathbb Q nbsp The field of fractions of a field is isomorphic to the field itself Algebraic geometry editIntegral domains are characterized by the condition that they are reduced that is x2 0 implies x 0 and irreducible that is there is only one minimal prime ideal The former condition ensures that the nilradical of the ring is zero so that the intersection of all the ring s minimal primes is zero The latter condition is that the ring have only one minimal prime It follows that the unique minimal prime ideal of a reduced and irreducible ring is the zero ideal so such rings are integral domains The converse is clear an integral domain has no nonzero nilpotent elements and the zero ideal is the unique minimal prime ideal This translates in algebraic geometry into the fact that the coordinate ring of an affine algebraic set is an integral domain if and only if the algebraic set is an algebraic variety More generally a commutative ring is an integral domain if and only if its spectrum is an integral affine scheme Characteristic and homomorphisms editThe characteristic of an integral domain is either 0 or a prime number If R is an integral domain of prime characteristic p then the Frobenius endomorphism x xp is injective See also edit nbsp The Wikibook Abstract algebra has a page on the topic of Integral domains Dedekind Hasse norm the extra structure needed for an integral domain to be principal Zero product propertyNotes edit Proof First assume A is finitely generated as a k algebra and pick a k basis gi displaystyle g i nbsp of B Suppose fi gi hj gj 0 textstyle sum f i otimes g i sum h j otimes g j 0 nbsp only finitely many fi hj displaystyle f i h j nbsp are nonzero For each maximal ideal m displaystyle mathfrak m nbsp of A consider the ring homomorphism A kB A m kB k kB B displaystyle A otimes k B to A mathfrak m otimes k B k otimes k B simeq B nbsp Then the image is fi gi hi gi 0 textstyle sum overline f i g i sum overline h i g i 0 nbsp and thus either fi gi 0 textstyle sum overline f i g i 0 nbsp or hi gi 0 textstyle sum overline h i g i 0 nbsp and by linear independence fi 0 displaystyle overline f i 0 nbsp for all i displaystyle i nbsp or hi 0 displaystyle overline h i 0 nbsp for all i displaystyle i nbsp Since m displaystyle mathfrak m nbsp is arbitrary we have fiA hiA Jac A textstyle sum f i A sum h i A subset operatorname Jac A nbsp the intersection of all maximal ideals 0 displaystyle 0 nbsp where the last equality is by the Nullstellensatz Since 0 displaystyle 0 nbsp is a prime ideal this implies either fiA textstyle sum f i A nbsp or hiA textstyle sum h i A nbsp is the zero ideal i e either fi displaystyle f i nbsp are all zero or hi displaystyle h i nbsp are all zero Finally A is an inductive limit of finitely generated k algebras that are integral domains and thus using the previous property A kB lim Ai kB displaystyle A otimes k B varinjlim A i otimes k B nbsp is an integral domain displaystyle square nbsp Citations edit Bourbaki 1998 p 116 Dummit amp Foote 2004 p 228 van der Waerden 1966 p 36 Herstein 1964 pp 88 90 McConnell amp Robson Lang 1993 pp 91 92 Auslander amp Buchsbaum 1959 Nagata 1958 Durbin 1993 p 224 Elements a and b of an integral domain are called associates if a b and b a References editAdamson Iain T 1972 Elementary rings and modules University Mathematical Texts Oliver and Boyd ISBN 0 05 002192 3 Bourbaki Nicolas 1998 Algebra Chapters 1 3 Berlin New York Springer Verlag ISBN 978 3 540 64243 5 Dummit David S Foote Richard M 2004 Abstract Algebra 3rd ed New York Wiley ISBN 978 0 471 43334 7 Durbin John R 1993 Modern Algebra An Introduction 3rd ed John Wiley and Sons ISBN 0 471 51001 7 Herstein I N 1964 Topics in Algebra London Blaisdell Publishing Company Hungerford Thomas W 2013 Abstract Algebra An Introduction 3rd ed Cengage Learning ISBN 978 1 111 56962 4 Lang Serge 1993 Algebra Third ed Reading Mass Addison Wesley ISBN 978 0 201 55540 0 Zbl 0848 13001 Lang Serge 2002 Algebra Graduate Texts in Mathematics Vol 211 Berlin New York Springer Verlag ISBN 978 0 387 95385 4 MR 1878556 Mac Lane Saunders Birkhoff Garrett 1967 Algebra New York The Macmillan Co ISBN 1 56881 068 7 MR 0214415 McConnell J C Robson J C Noncommutative Noetherian Rings Graduate Studies in Mathematics vol 30 AMS Milies Cesar Polcino Sehgal Sudarshan K 2002 An introduction to group rings Springer ISBN 1 4020 0238 6 Lanski Charles 2005 Concepts in abstract algebra AMS Bookstore ISBN 0 534 42323 X Rowen Louis Halle 1994 Algebra groups rings and fields A K Peters ISBN 1 56881 028 8 Sharpe David 1987 Rings and factorization Cambridge University Press ISBN 0 521 33718 6 van der Waerden Bartel Leendert 1966 Algebra vol 1 Berlin Heidelberg Springer Verlag Auslander M Buchsbaum D A 1959 Unique factorization in regular local rings Proceedings of the National Academy of Sciences of the United States of America 45 5 published May 1959 733 4 Bibcode 1959PNAS 45 733A doi 10 1073 PNAS 45 5 733 ISSN 0027 8424 PMC 222624 PMID 16590434 Zbl 0084 26504 Wikidata Q24655880 Nagata Masayoshi 1958 A General Theory of Algebraic Geometry Over Dedekind Domains II Separably Generated Extensions and Regular Local Rings American Journal of Mathematics 80 2 published April 1958 382 doi 10 2307 2372791 ISSN 0002 9327 JSTOR 2372791 Zbl 0089 26501 Wikidata Q56049883 External links edit where does the term integral domain come from Retrieved from https en wikipedia org w index php title Integral domain amp oldid 1198224596 Divisibility prime elements and irreducible elements, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.