fbpx
Wikipedia

Arrhenius equation

In physical chemistry, the Arrhenius equation is a formula for the temperature dependence of reaction rates. The equation was proposed by Svante Arrhenius in 1889, based on the work of Dutch chemist Jacobus Henricus van 't Hoff who had noted in 1884 that the van 't Hoff equation for the temperature dependence of equilibrium constants suggests such a formula for the rates of both forward and reverse reactions. This equation has a vast and important application in determining the rate of chemical reactions and for calculation of energy of activation. Arrhenius provided a physical justification and interpretation for the formula.[1][2][3][4] Currently, it is best seen as an empirical relationship.[5]: 188  It can be used to model the temperature variation of diffusion coefficients, population of crystal vacancies, creep rates, and many other thermally-induced processes/reactions. The Eyring equation, developed in 1935, also expresses the relationship between rate and energy.

Equation

 
In almost all practical cases,   and k increases rapidly with T.
 
Mathematically, at very high temperatures so that  , k levels off and approaches A as a limit, but this case does not occur under practical conditions.

The Arrhenius equation gives the dependence of the rate constant of a chemical reaction on the absolute temperature as

 
where

Alternatively, the equation may be expressed as

 
where

The only difference is the energy units of Ea: the former form uses energy per mole, which is common in chemistry, while the latter form uses energy per molecule directly, which is common in physics. The different units are accounted for in using either the gas constant, R, or the Boltzmann constant, kB, as the multiplier of temperature T.

The units of the pre-exponential factor A are identical to those of the rate constant and will vary depending on the order of the reaction. If the reaction is first order it has the units: s−1, and for that reason it is often called the frequency factor or attempt frequency of the reaction. Most simply, k is the number of collisions that result in a reaction per second, A is the number of collisions (leading to a reaction or not) per second occurring with the proper orientation to react[7] and   is the probability that any given collision will result in a reaction. It can be seen that either increasing the temperature or decreasing the activation energy (for example through the use of catalysts) will result in an increase in rate of reaction.

Given the small temperature range of kinetic studies, it is reasonable to approximate the activation energy as being independent of the temperature. Similarly, under a wide range of practical conditions, the weak temperature dependence of the pre-exponential factor is negligible compared to the temperature dependence of the   factor; except in the case of "barrierless" diffusion-limited reactions, in which case the pre-exponential factor is dominant and is directly observable.

With this equation it can be roughly estimated that the rate of reaction increases by a factor of about 2 or 3 for every 10°C rise in temperature.

The term   denotes the fraction of molecules with energy greater than or equal to  .[8]

Arrhenius plot

 
Arrhenius linear plot: ln k against 1/T.

Taking the natural logarithm of Arrhenius equation yields:

 

Rearranging yields:

 

This has the same form as an equation for a straight line:

 

where x is the reciprocal of T.

So, when a reaction has a rate constant that obeys the Arrhenius equation, a plot of ln k versus T−1 gives a straight line, whose gradient and intercept can be used to determine Ea and A . This procedure has become so common in experimental chemical kinetics that practitioners have taken to using it to define the activation energy for a reaction. That is the activation energy is defined to be (−R) times the slope of a plot of ln k vs. (1/T):

 

Modified Arrhenius equation

The modified Arrhenius equation[9] makes explicit the temperature dependence of the pre-exponential factor. The modified equation is usually of the form

 

The original Arrhenius expression above corresponds to n = 0. Fitted rate constants typically lie in the range −1 < n < 1. Theoretical analyses yield various predictions for n. It has been pointed out that "it is not feasible to establish, on the basis of temperature studies of the rate constant, whether the predicted T1/2 dependence of the pre-exponential factor is observed experimentally".[5]: 190  However, if additional evidence is available, from theory and/or from experiment (such as density dependence), there is no obstacle to incisive tests of the Arrhenius law.

Another common modification is the stretched exponential form[citation needed]

 

where β is a dimensionless number of order 1. This is typically regarded as a purely empirical correction or fudge factor to make the model fit the data, but can have theoretical meaning, for example showing the presence of a range of activation energies or in special cases like the Mott variable range hopping.

Theoretical interpretation of the equation

Arrhenius's concept of activation energy

Arrhenius argued that for reactants to transform into products, they must first acquire a minimum amount of energy, called the activation energy Ea. At an absolute temperature T, the fraction of molecules that have a kinetic energy greater than Ea can be calculated from statistical mechanics. The concept of activation energy explains the exponential nature of the relationship, and in one way or another, it is present in all kinetic theories.

The calculations for reaction rate constants involve an energy averaging over a Maxwell–Boltzmann distribution with   as lower bound and so are often of the type of incomplete gamma functions, which turn out to be proportional to  .

Collision theory

One approach is the collision theory of chemical reactions, developed by Max Trautz and William Lewis in the years 1916–18. In this theory, molecules are supposed to react if they collide with a relative kinetic energy along their line of centers that exceeds Ea. The number of binary collisions between two unlike molecules per second per unit volume is found to be[10]

 
where NA is the Avogadro constant, dAB is the average diameter of A and B, T is the temperature which is multiplied by the Boltzmann constant kB to convert to energy units, and μAB is the reduced mass.

The rate constant is then calculated as   so that the collision theory predicts that the pre-exponential factor is equal to the collision number zAB. However for many reactions this agrees poorly with experiment, so the rate constant is written instead as  . Here   is an empirical steric factor, often much less than 1.00, which is interpreted as the fraction of sufficiently energetic collisions in which the two molecules have the correct mutual orientation to react.[10]

Transition state theory

The Eyring equation, another Arrhenius-like expression, appears in the "transition state theory" of chemical reactions, formulated by Wigner, Eyring, Polanyi and Evans in the 1930s. The Eyring equation can be written:

 

where   is the Gibbs energy of activation,   is the entropy of activation,   is the enthalpy of activation,   is the Boltzmann constant, and   is Planck's constant.[11]

At first sight this looks like an exponential multiplied by a factor that is linear in temperature. However, free energy is itself a temperature dependent quantity. The free energy of activation   is the difference of an enthalpy term and an entropy term multiplied by the absolute temperature. The pre-exponential factor depends primarily on the entropy of activation. The overall expression again takes the form of an Arrhenius exponential (of enthalpy rather than energy) multiplied by a slowly varying function of T. The precise form of the temperature dependence depends upon the reaction, and can be calculated using formulas from statistical mechanics involving the partition functions of the reactants and of the activated complex.

Limitations of the idea of Arrhenius activation energy

Both the Arrhenius activation energy and the rate constant k are experimentally determined, and represent macroscopic reaction-specific parameters that are not simply related to threshold energies and the success of individual collisions at the molecular level. Consider a particular collision (an elementary reaction) between molecules A and B. The collision angle, the relative translational energy, the internal (particularly vibrational) energy will all determine the chance that the collision will produce a product molecule AB. Macroscopic measurements of E and k are the result of many individual collisions with differing collision parameters. To probe reaction rates at molecular level, experiments are conducted under near-collisional conditions and this subject is often called molecular reaction dynamics.[12]

Another situation where the explanation of the Arrhenius equation parameters fall short is in heterogeneous catalysis, especially for reactions that show Langmuir-Hinshelwood kinetics. Clearly, molecules on surfaces do not "collide" directly, and a simple molecular cross-section does not apply here. Instead, the pre-exponential factor reflects the travel across the surface towards the active site.[13]

There are deviations from the Arrhenius law during the glass transition in all classes of glass-forming matter.[14] The Arrhenius law predicts that the motion of the structural units (atoms, molecules, ions, etc.) should slow down at a slower rate through the glass transition than is experimentally observed. In other words, the structural units slow down at a faster rate than is predicted by the Arrhenius law. This observation is made reasonable assuming that the units must overcome an energy barrier by means of a thermal activation energy. The thermal energy must be high enough to allow for translational motion of the units which leads to viscous flow of the material.

See also

References

  1. ^ a b Arrhenius, S. A. (1889). "Über die Dissociationswärme und den Einfluß der Temperatur auf den Dissociationsgrad der Elektrolyte". Z. Phys. Chem. 4: 96–116. doi:10.1515/zpch-1889-0408. S2CID 202553486.
  2. ^ a b Arrhenius, S. A. (1889). "Über die Reaktionsgeschwindigkeit bei der Inversion von Rohrzucker durch Säuren". Z. Phys. Chem. 4: 226–48. doi:10.1515/zpch-1889-0416. S2CID 100032801.
  3. ^ Laidler, K. J. (1984). "The development of the Arrhenius equation". J. Chem. Educ. 61 (6): 494–498. Bibcode:1984JChEd..61..494L. doi:10.1021/ed061p494.
  4. ^ a b Laidler, K. J. (1987) Chemical Kinetics, Third Edition, Harper & Row, p. 42
  5. ^ a b Kenneth Connors, Chemical Kinetics, 1990, VCH Publishers Chemical Kinetics: The Study of Reaction Rates in Solution at Google Books
  6. ^ IUPAC Goldbook definition of Arrhenius equation.
  7. ^ Silberberg, Martin S. (2006). Chemistry (fourth ed.). NY: McGraw-Hill. p. 696. ISBN 0-07-111658-3.
  8. ^ "6.2.3.3: The Arrhenius Law - Activation Energies". Chemistry LibreTexts. 2013-10-02.
  9. ^ IUPAC Goldbook definition of modified Arrhenius equation.
  10. ^ a b Laidler, Keith J.; Meiser, John H. (1982). Physical Chemistry (1st ed.). Benjamin/Cummings. pp. 376–78. ISBN 0-8053-5682-7.
  11. ^ Laidler, Keith J.; Meiser, John H. (1982). Physical Chemistry (1st ed.). Benjamin/Cummings. pp. 378–83. ISBN 0-8053-5682-7.
  12. ^ Levine, R.D. (2005) Molecular Reaction Dynamics, Cambridge University Press
  13. ^ Slot, Thierry K.; Riley, Nathan; Shiju, N. Raveendran; Medlin, J. Will; Rothenberg, Gadi (2020). "An experimental approach for controlling confinement effects at catalyst interfaces". Chemical Science. 11 (40): 11024–11029. doi:10.1039/D0SC04118A. ISSN 2041-6520. PMC 8162257. PMID 34123192.
  14. ^ Bauer, Th.; Lunkenheimer, P.; Loidl, A. (2013). "Cooperativity and the Freezing of Molecular Motion at the Glass Transition". Physical Review Letters. 111 (22): 225702. arXiv:1306.4630. Bibcode:2013PhRvL.111v5702B. doi:10.1103/PhysRevLett.111.225702. PMID 24329455. S2CID 13720989.

Bibliography

  • Pauling, L. C. (1988). General Chemistry. Dover Publications.
  • Laidler, K. J. (1987). Chemical Kinetics (3rd ed.). Harper & Row.
  • Laidler, K. J. (1993). The World of Physical Chemistry. Oxford University Press.

External links

  • – Using Arrhenius equation for calculating species solubility in polymers

arrhenius, equation, physical, chemistry, formula, temperature, dependence, reaction, rates, equation, proposed, svante, arrhenius, 1889, based, work, dutch, chemist, jacobus, henricus, hoff, noted, 1884, that, hoff, equation, temperature, dependence, equilibr. In physical chemistry the Arrhenius equation is a formula for the temperature dependence of reaction rates The equation was proposed by Svante Arrhenius in 1889 based on the work of Dutch chemist Jacobus Henricus van t Hoff who had noted in 1884 that the van t Hoff equation for the temperature dependence of equilibrium constants suggests such a formula for the rates of both forward and reverse reactions This equation has a vast and important application in determining the rate of chemical reactions and for calculation of energy of activation Arrhenius provided a physical justification and interpretation for the formula 1 2 3 4 Currently it is best seen as an empirical relationship 5 188 It can be used to model the temperature variation of diffusion coefficients population of crystal vacancies creep rates and many other thermally induced processes reactions The Eyring equation developed in 1935 also expresses the relationship between rate and energy Contents 1 Equation 2 Arrhenius plot 3 Modified Arrhenius equation 4 Theoretical interpretation of the equation 4 1 Arrhenius s concept of activation energy 4 2 Collision theory 4 3 Transition state theory 4 4 Limitations of the idea of Arrhenius activation energy 5 See also 6 References 7 Bibliography 8 External linksEquation Edit In almost all practical cases E a R T displaystyle E a gg RT and k increases rapidly with T Mathematically at very high temperatures so that E a R T displaystyle E a ll RT k levels off and approaches A as a limit but this case does not occur under practical conditions The Arrhenius equation gives the dependence of the rate constant of a chemical reaction on the absolute temperature ask A e E a R T displaystyle k Ae frac E rm a RT where k is the rate constant frequency of collisions resulting in a reaction T is the absolute temperature in Kelvin or degree Rankine A is the pre exponential factor Arrhenius originally considered A to be a temperature independent constant for each chemical reaction 6 However more recent treatments include some temperature dependence see Modified Arrhenius equation below Ea is the activation energy for the reaction in the same units as RT R is the universal gas constant 1 2 4 Alternatively the equation may be expressed ask A e E a k B T displaystyle k Ae frac E rm a k rm B T where Ea is the activation energy for the reaction in the same units as kBT kB is the Boltzmann constant The only difference is the energy units of Ea the former form uses energy per mole which is common in chemistry while the latter form uses energy per molecule directly which is common in physics The different units are accounted for in using either the gas constant R or the Boltzmann constant kB as the multiplier of temperature T The units of the pre exponential factor A are identical to those of the rate constant and will vary depending on the order of the reaction If the reaction is first order it has the units s 1 and for that reason it is often called the frequency factor or attempt frequency of the reaction Most simply k is the number of collisions that result in a reaction per second A is the number of collisions leading to a reaction or not per second occurring with the proper orientation to react 7 and e E a R T displaystyle e E rm a RT is the probability that any given collision will result in a reaction It can be seen that either increasing the temperature or decreasing the activation energy for example through the use of catalysts will result in an increase in rate of reaction Given the small temperature range of kinetic studies it is reasonable to approximate the activation energy as being independent of the temperature Similarly under a wide range of practical conditions the weak temperature dependence of the pre exponential factor is negligible compared to the temperature dependence of the exp E a R T displaystyle exp E rm a RT factor except in the case of barrierless diffusion limited reactions in which case the pre exponential factor is dominant and is directly observable With this equation it can be roughly estimated that the rate of reaction increases by a factor of about 2 or 3 for every 10 C rise in temperature The term e E a R T displaystyle e frac E a RT denotes the fraction of molecules with energy greater than or equal to E a displaystyle E a 8 Arrhenius plot EditMain article Arrhenius plot Arrhenius linear plot ln k against 1 T Taking the natural logarithm of Arrhenius equation yields ln k ln A E a R 1 T displaystyle ln k ln A frac E rm a R frac 1 T Rearranging yields ln k E a R 1 T ln A displaystyle ln k frac E rm a R left frac 1 T right ln A This has the same form as an equation for a straight line y m x c displaystyle y mx c where x is the reciprocal of T So when a reaction has a rate constant that obeys the Arrhenius equation a plot of ln k versus T 1 gives a straight line whose gradient and intercept can be used to determine Ea and A This procedure has become so common in experimental chemical kinetics that practitioners have taken to using it to define the activation energy for a reaction That is the activation energy is defined to be R times the slope of a plot of ln k vs 1 T E a R ln k 1 T P displaystyle E rm a equiv R left frac partial ln k partial 1 T right P Modified Arrhenius equation EditThe modified Arrhenius equation 9 makes explicit the temperature dependence of the pre exponential factor The modified equation is usually of the formk A T n e E a R T displaystyle k AT n e E rm a RT The original Arrhenius expression above corresponds to n 0 Fitted rate constants typically lie in the range 1 lt n lt 1 Theoretical analyses yield various predictions for n It has been pointed out that it is not feasible to establish on the basis of temperature studies of the rate constant whether the predicted T1 2 dependence of the pre exponential factor is observed experimentally 5 190 However if additional evidence is available from theory and or from experiment such as density dependence there is no obstacle to incisive tests of the Arrhenius law Another common modification is the stretched exponential form citation needed k A exp E a R T b displaystyle k A exp left left frac E a RT right beta right where b is a dimensionless number of order 1 This is typically regarded as a purely empirical correction or fudge factor to make the model fit the data but can have theoretical meaning for example showing the presence of a range of activation energies or in special cases like the Mott variable range hopping Theoretical interpretation of the equation EditArrhenius s concept of activation energy Edit Arrhenius argued that for reactants to transform into products they must first acquire a minimum amount of energy called the activation energy Ea At an absolute temperature T the fraction of molecules that have a kinetic energy greater than Ea can be calculated from statistical mechanics The concept of activation energy explains the exponential nature of the relationship and in one way or another it is present in all kinetic theories The calculations for reaction rate constants involve an energy averaging over a Maxwell Boltzmann distribution with E a displaystyle E rm a as lower bound and so are often of the type of incomplete gamma functions which turn out to be proportional to e E a R T displaystyle e frac E rm a RT Collision theory Edit Main article Collision theory One approach is the collision theory of chemical reactions developed by Max Trautz and William Lewis in the years 1916 18 In this theory molecules are supposed to react if they collide with a relative kinetic energy along their line of centers that exceeds Ea The number of binary collisions between two unlike molecules per second per unit volume is found to be 10 z A B N A d A B 2 8 p k B T m A B displaystyle z AB N rm A d AB 2 sqrt frac 8 pi k rm B T mu AB where NA is the Avogadro constant dAB is the average diameter of A and B T is the temperature which is multiplied by the Boltzmann constant kB to convert to energy units and mAB is the reduced mass The rate constant is then calculated as k z A B e E a R T displaystyle k z AB e frac E rm a RT so that the collision theory predicts that the pre exponential factor is equal to the collision number zAB However for many reactions this agrees poorly with experiment so the rate constant is written instead as k r z A B e E a R T displaystyle k rho z AB e frac E rm a RT Here r displaystyle rho is an empirical steric factor often much less than 1 00 which is interpreted as the fraction of sufficiently energetic collisions in which the two molecules have the correct mutual orientation to react 10 Transition state theory Edit The Eyring equation another Arrhenius like expression appears in the transition state theory of chemical reactions formulated by Wigner Eyring Polanyi and Evans in the 1930s The Eyring equation can be written k k B T h e D G R T k B T h e D S R e D H R T displaystyle k frac k rm B T h e frac Delta G ddagger RT frac k rm B T h e frac Delta S ddagger R e frac Delta H ddagger RT where D G displaystyle Delta G ddagger is the Gibbs energy of activation D S displaystyle Delta S ddagger is the entropy of activation D H displaystyle Delta H ddagger is the enthalpy of activation k B displaystyle k rm B is the Boltzmann constant and h displaystyle h is Planck s constant 11 At first sight this looks like an exponential multiplied by a factor that is linear in temperature However free energy is itself a temperature dependent quantity The free energy of activation D G D H T D S displaystyle Delta G ddagger Delta H ddagger T Delta S ddagger is the difference of an enthalpy term and an entropy term multiplied by the absolute temperature The pre exponential factor depends primarily on the entropy of activation The overall expression again takes the form of an Arrhenius exponential of enthalpy rather than energy multiplied by a slowly varying function of T The precise form of the temperature dependence depends upon the reaction and can be calculated using formulas from statistical mechanics involving the partition functions of the reactants and of the activated complex Limitations of the idea of Arrhenius activation energy Edit Both the Arrhenius activation energy and the rate constant k are experimentally determined and represent macroscopic reaction specific parameters that are not simply related to threshold energies and the success of individual collisions at the molecular level Consider a particular collision an elementary reaction between molecules A and B The collision angle the relative translational energy the internal particularly vibrational energy will all determine the chance that the collision will produce a product molecule AB Macroscopic measurements of E and k are the result of many individual collisions with differing collision parameters To probe reaction rates at molecular level experiments are conducted under near collisional conditions and this subject is often called molecular reaction dynamics 12 Another situation where the explanation of the Arrhenius equation parameters fall short is in heterogeneous catalysis especially for reactions that show Langmuir Hinshelwood kinetics Clearly molecules on surfaces do not collide directly and a simple molecular cross section does not apply here Instead the pre exponential factor reflects the travel across the surface towards the active site 13 There are deviations from the Arrhenius law during the glass transition in all classes of glass forming matter 14 The Arrhenius law predicts that the motion of the structural units atoms molecules ions etc should slow down at a slower rate through the glass transition than is experimentally observed In other words the structural units slow down at a faster rate than is predicted by the Arrhenius law This observation is made reasonable assuming that the units must overcome an energy barrier by means of a thermal activation energy The thermal energy must be high enough to allow for translational motion of the units which leads to viscous flow of the material See also EditAccelerated aging Eyring equation Q10 temperature coefficient Van t Hoff equation Clausius Clapeyron relation Gibbs Helmholtz equation Cherry blossom front predicted using the Arrhenius equationReferences Edit a b Arrhenius S A 1889 Uber die Dissociationswarme und den Einfluss der Temperatur auf den Dissociationsgrad der Elektrolyte Z Phys Chem 4 96 116 doi 10 1515 zpch 1889 0408 S2CID 202553486 a b Arrhenius S A 1889 Uber die Reaktionsgeschwindigkeit bei der Inversion von Rohrzucker durch Sauren Z Phys Chem 4 226 48 doi 10 1515 zpch 1889 0416 S2CID 100032801 Laidler K J 1984 The development of the Arrhenius equation J Chem Educ 61 6 494 498 Bibcode 1984JChEd 61 494L doi 10 1021 ed061p494 a b Laidler K J 1987 Chemical Kinetics Third Edition Harper amp Row p 42 a b Kenneth Connors Chemical Kinetics 1990 VCH Publishers Chemical Kinetics The Study of Reaction Rates in Solution at Google Books IUPAC Goldbook definition of Arrhenius equation Silberberg Martin S 2006 Chemistry fourth ed NY McGraw Hill p 696 ISBN 0 07 111658 3 6 2 3 3 The Arrhenius Law Activation Energies Chemistry LibreTexts 2013 10 02 IUPAC Goldbook definition of modified Arrhenius equation a b Laidler Keith J Meiser John H 1982 Physical Chemistry 1st ed Benjamin Cummings pp 376 78 ISBN 0 8053 5682 7 Laidler Keith J Meiser John H 1982 Physical Chemistry 1st ed Benjamin Cummings pp 378 83 ISBN 0 8053 5682 7 Levine R D 2005 Molecular Reaction Dynamics Cambridge University Press Slot Thierry K Riley Nathan Shiju N Raveendran Medlin J Will Rothenberg Gadi 2020 An experimental approach for controlling confinement effects at catalyst interfaces Chemical Science 11 40 11024 11029 doi 10 1039 D0SC04118A ISSN 2041 6520 PMC 8162257 PMID 34123192 Bauer Th Lunkenheimer P Loidl A 2013 Cooperativity and the Freezing of Molecular Motion at the Glass Transition Physical Review Letters 111 22 225702 arXiv 1306 4630 Bibcode 2013PhRvL 111v5702B doi 10 1103 PhysRevLett 111 225702 PMID 24329455 S2CID 13720989 Bibliography EditPauling L C 1988 General Chemistry Dover Publications Laidler K J 1987 Chemical Kinetics 3rd ed Harper amp Row Laidler K J 1993 The World of Physical Chemistry Oxford University Press External links EditCarbon Dioxide solubility in Polyethylene Using Arrhenius equation for calculating species solubility in polymers Retrieved from https en wikipedia org w index php title Arrhenius equation amp oldid 1123333780, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.