fbpx
Wikipedia

Peroxisome proliferator-activated receptor gamma

Peroxisome proliferator-activated receptor gamma (PPAR-γ or PPARG), also known as the glitazone reverse insulin resistance receptor, or NR1C3 (nuclear receptor subfamily 1, group C, member 3) is a type II nuclear receptor functioning as a transcription factor that in humans is encoded by the PPARG gene.[5][6][7]

PPARG
Available structures
PDBOrtholog search: PDBe RCSB
Identifiers
AliasesPPARG, CIMT1, GLM1, NR1C3, PPARG1, PPARG2, PPARgamma, peroxisome proliferator activated receptor gamma, PPARG5
External IDsOMIM: 601487 MGI: 97747 HomoloGene: 7899 GeneCards: PPARG
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_001127330
NM_011146
NM_001308352
NM_001308354

RefSeq (protein)

NP_001120802
NP_001295281
NP_001295283
NP_035276

Location (UCSC)Chr 3: 12.29 – 12.43 MbChr 6: 115.34 – 115.47 Mb
PubMed search[3][4]
Wikidata
View/Edit HumanView/Edit Mouse

Tissue distribution edit

PPARG is mainly present in adipose tissue, colon and macrophages. Two isoforms of PPARG are detected in the human and in the mouse: PPAR-γ1 (found in nearly all tissues except muscle) and PPAR-γ2 (mostly found in adipose tissue and the intestine).[8][9]

Gene expression edit

This gene encodes a member of the peroxisome proliferator-activated receptor (PPAR) subfamily of nuclear receptors. PPARs form heterodimers with retinoid X receptors (RXRs) and these heterodimers regulate transcription of various genes. Three subtypes of PPARs are known: PPAR-alpha, PPAR-delta, and PPAR-gamma. The protein encoded by this gene is PPAR-gamma and is a regulator of adipocyte differentiation. Alternatively spliced transcript variants that encode different isoforms have been described.[10]

The activity of PPARG can be regulated via phosphorylation through the MEK/ERK pathway. This modification decreases transcriptional activity of PPARG and leads to diabetic gene modifications, and results in insulin insensitivity. For example, the phosphorylation of serine 112 will inhibit PPARG function, and enhance adipogenic potential of fibroblasts.[11]

Function edit

PPARG regulates fatty acid storage and glucose metabolism. The genes activated by PPARG stimulate lipid uptake and adipogenesis by fat cells. PPARG knockout mice are devoid of adipose tissue, establishing PPARG as a master regulator of adipocyte differentiation.[12]

PPARG increases insulin sensitivity by enhancing storage of fatty acids in fat cells (reducing lipotoxicity), by enhancing adiponectin release from fat cells, by inducing FGF21,[12] and by enhancing nicotinic acid adenine dinucleotide phosphate production through upregulation of the CD38 enzyme.[13]

PPARG promotes anti-inflammatory M2 macrophage activation in mice.[14]

Adiponectin induces ABCA1-mediated reverse cholesterol transport by activation of PPAR-γ and LXRα/β.[15]

Many naturally occurring agents directly bind with and activate PPAR gamma. These agents include various polyunsaturated fatty acids like arachidonic acid and arachidonic acid metabolites such as certain members of the 5-hydroxyicosatetraenoic acid and 5-oxo-eicosatetraenoic acid family, e.g., 5-oxo-15(S)-HETE and 5-oxo-ETE or 15-hydroxyicosatetraenoic acid family including 15(S)-HETE, 15(R)-HETE, and 15(S)-HpETE,[16][17][18] the phytocannabinoid tetrahydrocannabinol (THC),[19] its metabolite THC-COOH, and its synthetic analog ajulemic acid (AJA).[20] The activation of PPAR gamma by these and other ligands may be responsible for inhibiting the growth of cultured human breast, gastric, lung, prostate and other cancer cell lines.[21][22]

During embryogenesis, PPARG first substantially expresses in interscapular brown fat pad.[23] The depletion of PPARG will result in embryonic lethality at E10.5, due to the vascular anomalies in placenta, with no permeation of fetal blood vessels and dilation and rupture of maternal blood sinuses.[24] The expression PPARG can be detected in placenta as early as E8.5 and through the remainder of gestation, mainly located in the primary trophoblast cell in the human placenta.[23] PPARG is required for epithelial differentiation of trophoblast tissue, which is critical for proper placenta vascularization. PPARG agonists inhibit extravillous cytotrophoblast invasion. PPARG is also required for the accumulation of lipid droplets by the placenta.[11]

Interactions edit

Peroxisome proliferator-activated receptor gamma has been shown to interact with:

Research edit

PPAR-gamma agonists have been used in the treatment of hyperlipidaemia and hyperglycemia.[36][37]

Many insulin sensitizing drugs (namely, the thiazolidinediones) used in the treatment of diabetes activate PPARG as a means to lower serum glucose without increasing pancreatic insulin secretion. Activation of PPARG is more effective for skeletal muscle insulin resistance than for insulin resistance of the liver.[38]

See also edit

References edit

  1. ^ a b c GRCh38: Ensembl release 89: ENSG00000132170 - Ensembl, May 2017
  2. ^ a b c GRCm38: Ensembl release 89: ENSMUSG00000000440 - Ensembl, May 2017
  3. ^ "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. ^ "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. ^ Greene ME, Blumberg B, McBride OW, Yi HF, Kronquist K, Kwan K, et al. (1995). "Isolation of the human peroxisome proliferator activated receptor gamma cDNA: expression in hematopoietic cells and chromosomal mapping". Gene Expression. 4 (4–5): 281–99. PMC 6134382. PMID 7787419.
  6. ^ Elbrecht A, Chen Y, Cullinan CA, Hayes N, Leibowitz MD, Moller DE, Berger J (July 1996). "Molecular cloning, expression and characterization of human peroxisome proliferator activated receptors gamma 1 and gamma 2". Biochemical and Biophysical Research Communications. 224 (2): 431–7. doi:10.1006/bbrc.1996.1044. PMID 8702406.
  7. ^ Michalik L, Auwerx J, Berger JP, Chatterjee VK, Glass CK, Gonzalez FJ, et al. (December 2006). "International Union of Pharmacology. LXI. Peroxisome proliferator-activated receptors". Pharmacological Reviews. 58 (4): 726–41. doi:10.1124/pr.58.4.5. PMID 17132851. S2CID 2240461.
  8. ^ Fajas L, Auboeuf D, Raspé E, Schoonjans K, Lefebvre AM, Saladin R, et al. (July 1997). "The organization, promoter analysis, and expression of the human PPARgamma gene". The Journal of Biological Chemistry. 272 (30): 18779–89. doi:10.1074/jbc.272.30.18779. PMID 9228052.
  9. ^ Park YK, Wang L, Giampietro A, Lai B, Lee JE, Ge K (January 2017). "Distinct Roles of Transcription Factors KLF4, Krox20, and Peroxisome Proliferator-Activated Receptor γ in Adipogenesis". Molecular and Cellular Biology. 37 (2): 18779–89. doi:10.1128/MCB.00554-16. PMC 5214852. PMID 27777310.
  10. ^ "Entrez Gene: PPARG peroxisome proliferator-activated receptor gamma".
  11. ^ a b Suwaki N, Masuyama H, Masumoto A, Takamoto N, Hiramatsu Y (April 2007). "Expression and potential role of peroxisome proliferator-activated receptor gamma in the placenta of diabetic pregnancy". Placenta. 28 (4): 315–23. doi:10.1016/j.placenta.2006.04.002. PMID 16753211.
  12. ^ a b Ahmadian M, Suh JM, Hah N, Liddle C, Atkins AR, Downes M, Evans RM (May 2013). "PPARγ signaling and metabolism: the good, the bad and the future". Nature Medicine. 19 (5): 557–66. doi:10.1038/nm.3159. PMC 3870016. PMID 23652116.
  13. ^ Song EK, Lee YR, Kim YR, Yeom JH, Yoo CH, Kim HK, et al. (December 2012). "NAADP mediates insulin-stimulated glucose uptake and insulin sensitization by PPARγ in adipocytes". Cell Reports. 2 (6): 1607–19. doi:10.1016/j.celrep.2012.10.018. PMID 23177620.
  14. ^ a b Peluso I, Morabito G, Urban L, Ioannone F, Serafini M (December 2012). "Oxidative stress in atherosclerosis development: the central role of LDL and oxidative burst". Endocrine, Metabolic & Immune Disorders Drug Targets. 12 (4): 351–60. doi:10.2174/187153012803832602. PMID 23061409.
  15. ^ Hafiane A, Gasbarrino K, Daskalopoulou SS (November 2019). "The role of adiponectin in cholesterol efflux and HDL biogenesis and metabolism". Metabolism. 100: 153953. doi:10.1016/j.metabol.2019.153953. PMID 31377319. S2CID 203413137.
  16. ^ Dreyer C, Keller H, Mahfoudi A, Laudet V, Krey G, Wahli W (1993). "Positive regulation of the peroxisomal beta-oxidation pathway by fatty acids through activation of peroxisome proliferator-activated receptors (PPAR)". Biology of the Cell. 77 (1): 67–76. doi:10.1016/s0248-4900(05)80176-5. PMID 8390886. S2CID 10746292.
  17. ^ O'Flaherty JT, Rogers LC, Paumi CM, Hantgan RR, Thomas LR, Clay CE, et al. (October 2005). "5-Oxo-ETE analogs and the proliferation of cancer cells". Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids. 1736 (3): 228–36. doi:10.1016/j.bbalip.2005.08.009. PMID 16154383.
  18. ^ Naruhn S, Meissner W, Adhikary T, Kaddatz K, Klein T, Watzer B, et al. (February 2010). "15-hydroxyeicosatetraenoic acid is a preferential peroxisome proliferator-activated receptor beta/delta agonist". Molecular Pharmacology. 77 (2): 171–84. doi:10.1124/mol.109.060541. PMID 19903832. S2CID 30996954.
  19. ^ O'Sullivan SE, Tarling EJ, Bennett AJ, Kendall DA, Randall MD (November 2005). "Novel time-dependent vascular actions of Delta9-tetrahydrocannabinol mediated by peroxisome proliferator-activated receptor gamma". Biochemical and Biophysical Research Communications. 337 (3): 824–31. doi:10.1016/j.bbrc.2005.09.121. PMID 16213464.
  20. ^ Liu J, Li H, Burstein SH, Zurier RB, Chen JD (May 2003). "Activation and binding of peroxisome proliferator-activated receptor gamma by synthetic cannabinoid ajulemic acid". Molecular Pharmacology. 63 (5): 983–92. doi:10.1124/mol.63.5.983. PMID 12695526. S2CID 22671555.
  21. ^ Krishnan A, Nair SA, Pillai MR (September 2007). "Biology of PPAR gamma in cancer: a critical review on existing lacunae". Current Molecular Medicine. 7 (6): 532–40. doi:10.2174/156652407781695765. PMID 17896990.
  22. ^ Ezzeddini R, Taghikhani M, Salek Farrokhi A, Somi MH, Samadi N, Esfahani A, Rasaee, MJ (May 2021). "Downregulation of fatty acid oxidation by involvement of HIF-1α and PPARγ in human gastric adenocarcinoma and its related clinical significance". Journal of Physiology and Biochemistry. 77 (2): 249–260. doi:10.1007/s13105-021-00791-3. PMID 33730333. S2CID 232300877.
  23. ^ a b Barak Y, Nelson MC, Ong ES, Jones YZ, Ruiz-Lozano P, Chien KR, et al. (October 1999). "PPAR gamma is required for placental, cardiac, and adipose tissue development". Molecular Cell. 4 (4): 585–95. doi:10.1016/s1097-2765(00)80209-9. PMID 10549290.
  24. ^ Schaiff WT, Barak Y, Sadovsky Y (April 2006). "The pleiotropic function of PPAR gamma in the placenta". Molecular and Cellular Endocrinology. 249 (1–2): 10–5. doi:10.1016/j.mce.2006.02.009. PMID 16574314. S2CID 54322301.
  25. ^ Brendel C, Gelman L, Auwerx J (June 2002). "Multiprotein bridging factor-1 (MBF-1) is a cofactor for nuclear receptors that regulate lipid metabolism". Molecular Endocrinology. 16 (6): 1367–77. doi:10.1210/mend.16.6.0843. PMID 12040021.
  26. ^ Berger J, Patel HV, Woods J, Hayes NS, Parent SA, Clemas J, et al. (April 2000). "A PPARgamma mutant serves as a dominant negative inhibitor of PPAR signaling and is localized in the nucleus". Molecular and Cellular Endocrinology. 162 (1–2): 57–67. doi:10.1016/S0303-7207(00)00211-2. PMID 10854698. S2CID 20343538.
  27. ^ Gampe RT, Montana VG, Lambert MH, Miller AB, Bledsoe RK, Milburn MV, et al. (March 2000). "Asymmetry in the PPARgamma/RXRalpha crystal structure reveals the molecular basis of heterodimerization among nuclear receptors". Molecular Cell. 5 (3): 545–55. doi:10.1016/S1097-2765(00)80448-7. PMID 10882139.
  28. ^ a b c Fajas L, Egler V, Reiter R, Hansen J, Kristiansen K, Debril MB, et al. (December 2002). "The retinoblastoma-histone deacetylase 3 complex inhibits PPARgamma and adipocyte differentiation". Developmental Cell. 3 (6): 903–10. doi:10.1016/S1534-5807(02)00360-X. PMID 12479814.
  29. ^ a b c d Kodera Y, Takeyama K, Murayama A, Suzawa M, Masuhiro Y, Kato S (October 2000). "Ligand type-specific interactions of peroxisome proliferator-activated receptor gamma with transcriptional coactivators". The Journal of Biological Chemistry. 275 (43): 33201–4. doi:10.1074/jbc.C000517200. PMID 10944516.
  30. ^ Franco PJ, Li G, Wei LN (August 2003). "Interaction of nuclear receptor zinc finger DNA binding domains with histone deacetylase". Molecular and Cellular Endocrinology. 206 (1–2): 1–12. doi:10.1016/S0303-7207(03)00254-5. PMID 12943985. S2CID 19487189.
  31. ^ Heinlein CA, Ting HJ, Yeh S, Chang C (June 1999). "Identification of ARA70 as a ligand-enhanced coactivator for the peroxisome proliferator-activated receptor gamma". The Journal of Biological Chemistry. 274 (23): 16147–52. doi:10.1074/jbc.274.23.16147. PMID 10347167.
  32. ^ Nishizawa H, Yamagata K, Shimomura I, Takahashi M, Kuriyama H, Kishida K, et al. (January 2002). "Small heterodimer partner, an orphan nuclear receptor, augments peroxisome proliferator-activated receptor gamma transactivation". The Journal of Biological Chemistry. 277 (2): 1586–92. doi:10.1074/jbc.M104301200. PMID 11696534.
  33. ^ Wallberg AE, Yamamura S, Malik S, Spiegelman BM, Roeder RG (November 2003). "Coordination of p300-mediated chromatin remodeling and TRAP/mediator function through coactivator PGC-1alpha". Molecular Cell. 12 (5): 1137–49. doi:10.1016/S1097-2765(03)00391-5. PMID 14636573.
  34. ^ Puigserver P, Adelmant G, Wu Z, Fan M, Xu J, O'Malley B, Spiegelman BM (November 1999). "Activation of PPARgamma coactivator-1 through transcription factor docking". Science. 286 (5443): 1368–71. doi:10.1126/science.286.5443.1368. PMID 10558993.
  35. ^ Mittal S, Inamdar S, Acharya J, Pekhale K, Kalamkar S, Boppana R, Ghaskadbi S (October 2020). "miR-3666 inhibits development of hepatic steatosis by negatively regulating PPARγ". Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids. 1865 (10): 158777. doi:10.1016/j.bbalip.2020.158777. PMID 32755726. S2CID 221017099.
  36. ^ Lehrke M, Lazar MA (December 2005). "The many faces of PPARgamma". review. Cell. 123 (6): 993–9. doi:10.1016/j.cell.2005.11.026. PMID 16360030. S2CID 18526710.
  37. ^ Kim JH, Song J, Park KW (March 2015). "The multifaceted factor peroxisome proliferator-activated receptor γ (PPARγ) in metabolism, immunity, and cancer". review. Archives of Pharmacal Research. 38 (3): 302–12. doi:10.1007/s12272-015-0559-x. PMID 25579849. S2CID 12296573.
  38. ^ Abdul-Ghani MA, Tripathy D, DeFronzo RA (May 2006). "Contributions of beta-cell dysfunction and insulin resistance to the pathogenesis of impaired glucose tolerance and impaired fasting glucose". review. Diabetes Care. 29 (5): 1130–9. doi:10.2337/dc05-2179. PMID 16644654.

This article incorporates text from the United States National Library of Medicine, which is in the public domain.

peroxisome, proliferator, activated, receptor, gamma, ppar, pparg, also, known, glitazone, reverse, insulin, resistance, receptor, nr1c3, nuclear, receptor, subfamily, group, member, type, nuclear, receptor, functioning, transcription, factor, that, humans, en. Peroxisome proliferator activated receptor gamma PPAR g or PPARG also known as the glitazone reverse insulin resistance receptor or NR1C3 nuclear receptor subfamily 1 group C member 3 is a type II nuclear receptor functioning as a transcription factor that in humans is encoded by the PPARG gene 5 6 7 PPARGAvailable structuresPDBOrtholog search PDBe RCSBList of PDB id codes1FM6 1FM9 1I7I 1K74 1KNU 1NYX 1PRG 1RDT 1WM0 1ZEO 1ZGY 2ATH 2F4B 2FVJ 2G0G 2G0H 2GTK 2HFP 2HWQ 2HWR 2I4J 2I4P 2I4Z 2OM9 2P4Y 2POB 2PRG 2Q59 2Q5P 2Q5S 2Q61 2Q6R 2Q6S 2Q8S 2QMV 2VSR 2VST 2VV0 2VV1 2VV2 2VV3 2VV4 2XKW 2YFE 2ZK0 2ZK1 2ZK2 2ZK3 2ZK4 2ZK5 2ZK6 2ZNO 2ZVT 3ADS 3ADT 3ADU 3ADV 3ADW 3ADX 3AN3 3AN4 3B0Q 3B0R 3B1M 3B3K 3BC5 3CDP 3CDS 3CS8 3CWD 3D6D 3DZU 3DZY 3E00 3ET0 3ET3 3FEJ 3FUR 3G9E 3GBK 3H0A 3HO0 3HOD 3IA6 3K8S 3KMG 3LMP 3NOA 3OSI 3OSW 3PBA 3PO9 3PRG 3QT0 3R5N 3R8A 3R8I 3S9S 3SZ1 3T03 3TY0 3U9Q 3V9T 3V9V 3V9Y 3VJH 3VJI 3VN2 3VSO 3VSP 3WJ4 3WJ5 3WMH 3X1H 3X1I 4A4V 4A4W 4CI5 4E4K 4E4Q 4EM9 4EMA 4F9M 4FGY 4HEE 4JAZ 4JL4 4L96 4L98 4O8F 4OJ4 4PRG 4PVU 4PWL 4R2U 4R6S 4XLD 4R06 4Y29 4XTA 4XUM 4YT1 4XUH 5F9B 5AZVIdentifiersAliasesPPARG CIMT1 GLM1 NR1C3 PPARG1 PPARG2 PPARgamma peroxisome proliferator activated receptor gamma PPARG5External IDsOMIM 601487 MGI 97747 HomoloGene 7899 GeneCards PPARGGene location Human Chr Chromosome 3 human 1 Band3p25 2Start12 287 368 bp 1 End12 434 356 bp 1 Gene location Mouse Chr Chromosome 6 mouse 2 Band6 E3 6 53 41 cMStart115 337 912 bp 2 End115 467 360 bp 2 RNA expression patternBgeeHumanMouse ortholog Top expressed insubcutaneous adipose tissuerectumright lungurinary bladderAchilles tendonjejunal mucosaplacentaupper lobe of left lungbody of stomachright lobe of thyroid glandTop expressed inbrown adipose tissuewhite adipose tissuemucous cell of stomachsubcutaneous adipose tissueepithelium of stomachpyloric antrumsecondary oocytemammary glandcumulus cellintercostal muscleMore reference expression dataBioGPSMore reference expression dataGene ontologyMolecular functionprotein binding alpha actinin binding chromatin binding prostaglandin receptor activity core promoter sequence specific DNA binding enzyme binding protein phosphatase binding metal ion binding arachidonic acid binding nuclear receptor coactivator activity steroid hormone receptor activity sequence specific DNA binding identical protein binding nuclear receptor activity DNA binding transcription factor activity DNA binding double stranded DNA binding protein C terminus binding zinc ion binding peptide binding protein self association retinoid X receptor binding protein heterodimerization activity DNA binding domain binding LBD domain binding DNA binding transcription factor activity RNA polymerase II specific transcription factor binding estrogen receptor binding E box binding transcription cis regulatory region binding RNA polymerase II transcription regulatory region sequence specific DNA binding DNA binding transcription repressor activity RNA polymerase II specific fatty acid binding lipid binding signaling receptor activityCellular componentcytosol RNA polymerase II transcription regulator complex perinuclear region of cytoplasm cytoplasm nucleus intracellular membrane bounded organelle nucleoplasm protein containing complexBiological processnegative regulation of cell population proliferation epithelial cell differentiation negative regulation of smooth muscle cell proliferation positive regulation of oligodendrocyte differentiation transcription DNA templated activation of cysteine type endopeptidase activity involved in apoptotic process response to lipid placenta development cellular response to vitamin E negative regulation of interferon gamma mediated signaling pathway negative regulation of sequestering of triglyceride regulation of fat cell differentiation cellular response to retinoic acid glucose homeostasis negative regulation of collagen biosynthetic process cellular response to hyperoxia response to estrogen regulation of cholesterol transporter activity regulation of circadian rhythm negative regulation of telomerase activity signal transduction cellular response to insulin stimulus monocyte differentiation regulation of transcription by RNA polymerase II regulation of blood pressure positive regulation of apoptotic process positive regulation of fat cell differentiation negative regulation of cholesterol storage regulation of transcription DNA templated negative regulation of cell growth negative regulation of transcription DNA templated cellular response to prostaglandin stimulus animal organ regeneration positive regulation of DNA binding transcription factor activity lipoprotein transport response to metformin heart development response to cold negative regulation of acute inflammatory response fatty acid oxidation lipid homeostasis transcription initiation from RNA polymerase II promoter response to vitamin A innate immune response response to retinoic acid cell maturation cell fate commitment peroxisome proliferator activated receptor signaling pathway rhythmic process response to mechanical stimulus long chain fatty acid transport lipid metabolism response to caffeine positive regulation of fatty acid oxidation response to immobilization stress positive regulation of phagocytosis engulfment negative regulation of pancreatic stellate cell proliferation response to starvation response to organic cyclic compound regulation of lipid metabolic process steroid hormone mediated signaling pathway response to organic substance response to nutrient cellular response to prostaglandin E stimulus negative regulation of transcription by RNA polymerase II white fat cell differentiation negative regulation of macrophage derived foam cell differentiation positive regulation of transcription by RNA polymerase II G protein coupled receptor signaling pathway macrophage derived foam cell differentiation positive regulation of DNA binding positive regulation of transcription DNA templated negative regulation of angiogenesis negative regulation of blood vessel endothelial cell migration pri miRNA transcription by RNA polymerase II negative regulation of gene silencing by miRNA cellular response to low density lipoprotein particle stimulus positive regulation of vascular associated smooth muscle cell apoptotic process negative regulation of vascular endothelial cell proliferation negative regulation of vascular associated smooth muscle cell proliferation fatty acid metabolic process multicellular organism development hormone mediated signaling pathway cell differentiation intracellular receptor signaling pathwaySources Amigo QuickGOOrthologsSpeciesHumanMouseEntrez546819016EnsemblENSG00000132170ENSMUSG00000000440UniProtP37231P37238RefSeq mRNA NM 005037NM 015869NM 138711NM 138712NM 001330615NM 001354666NM 001354667NM 001354668NM 001354669NM 001354670NM 001374261NM 001374262NM 001374263NM 001374264NM 001374265NM 001374266NM 001127330NM 011146NM 001308352NM 001308354RefSeq protein NP 001317544NP 005028NP 056953NP 619725NP 619726NP 001341595NP 001341596NP 001341597NP 001341598NP 001341599NP 001361190NP 001361191NP 001361192NP 001361193NP 001361194NP 001361195NP 001120802NP 001295281NP 001295283NP 035276Location UCSC Chr 3 12 29 12 43 MbChr 6 115 34 115 47 MbPubMed search 3 4 WikidataView Edit HumanView Edit Mouse Contents 1 Tissue distribution 2 Gene expression 3 Function 4 Interactions 5 Research 6 See also 7 ReferencesTissue distribution editPPARG is mainly present in adipose tissue colon and macrophages Two isoforms of PPARG are detected in the human and in the mouse PPAR g1 found in nearly all tissues except muscle and PPAR g2 mostly found in adipose tissue and the intestine 8 9 Gene expression editThis gene encodes a member of the peroxisome proliferator activated receptor PPAR subfamily of nuclear receptors PPARs form heterodimers with retinoid X receptors RXRs and these heterodimers regulate transcription of various genes Three subtypes of PPARs are known PPAR alpha PPAR delta and PPAR gamma The protein encoded by this gene is PPAR gamma and is a regulator of adipocyte differentiation Alternatively spliced transcript variants that encode different isoforms have been described 10 The activity of PPARG can be regulated via phosphorylation through the MEK ERK pathway This modification decreases transcriptional activity of PPARG and leads to diabetic gene modifications and results in insulin insensitivity For example the phosphorylation of serine 112 will inhibit PPARG function and enhance adipogenic potential of fibroblasts 11 Function editPPARG regulates fatty acid storage and glucose metabolism The genes activated by PPARG stimulate lipid uptake and adipogenesis by fat cells PPARG knockout mice are devoid of adipose tissue establishing PPARG as a master regulator of adipocyte differentiation 12 PPARG increases insulin sensitivity by enhancing storage of fatty acids in fat cells reducing lipotoxicity by enhancing adiponectin release from fat cells by inducing FGF21 12 and by enhancing nicotinic acid adenine dinucleotide phosphate production through upregulation of the CD38 enzyme 13 PPARG promotes anti inflammatory M2 macrophage activation in mice 14 Adiponectin induces ABCA1 mediated reverse cholesterol transport by activation of PPAR g and LXRa b 15 Many naturally occurring agents directly bind with and activate PPAR gamma These agents include various polyunsaturated fatty acids like arachidonic acid and arachidonic acid metabolites such as certain members of the 5 hydroxyicosatetraenoic acid and 5 oxo eicosatetraenoic acid family e g 5 oxo 15 S HETE and 5 oxo ETE or 15 hydroxyicosatetraenoic acid family including 15 S HETE 15 R HETE and 15 S HpETE 16 17 18 the phytocannabinoid tetrahydrocannabinol THC 19 its metabolite THC COOH and its synthetic analog ajulemic acid AJA 20 The activation of PPAR gamma by these and other ligands may be responsible for inhibiting the growth of cultured human breast gastric lung prostate and other cancer cell lines 21 22 During embryogenesis PPARG first substantially expresses in interscapular brown fat pad 23 The depletion of PPARG will result in embryonic lethality at E10 5 due to the vascular anomalies in placenta with no permeation of fetal blood vessels and dilation and rupture of maternal blood sinuses 24 The expression PPARG can be detected in placenta as early as E8 5 and through the remainder of gestation mainly located in the primary trophoblast cell in the human placenta 23 PPARG is required for epithelial differentiation of trophoblast tissue which is critical for proper placenta vascularization PPARG agonists inhibit extravillous cytotrophoblast invasion PPARG is also required for the accumulation of lipid droplets by the placenta 11 Interactions editPeroxisome proliferator activated receptor gamma has been shown to interact with Tetrahydrocannabivarin Cannabidiol Anandamide CD36 14 EDF1 25 26 27 EP300 28 29 HDAC3 28 30 MED1 29 NCOA3 29 NCOA4 31 NCOA2 29 NR0B2 32 PPARGC1A 33 34 RB1 28 miR3666 35 Research editPPAR gamma agonists have been used in the treatment of hyperlipidaemia and hyperglycemia 36 37 Many insulin sensitizing drugs namely the thiazolidinediones used in the treatment of diabetes activate PPARG as a means to lower serum glucose without increasing pancreatic insulin secretion Activation of PPARG is more effective for skeletal muscle insulin resistance than for insulin resistance of the liver 38 See also editEndocannabinoid system EndocannainoidomeReferences edit a b c GRCh38 Ensembl release 89 ENSG00000132170 Ensembl May 2017 a b c GRCm38 Ensembl release 89 ENSMUSG00000000440 Ensembl May 2017 Human PubMed Reference National Center for Biotechnology Information U S National Library of Medicine Mouse PubMed Reference National Center for Biotechnology Information U S National Library of Medicine Greene ME Blumberg B McBride OW Yi HF Kronquist K Kwan K et al 1995 Isolation of the human peroxisome proliferator activated receptor gamma cDNA expression in hematopoietic cells and chromosomal mapping Gene Expression 4 4 5 281 99 PMC 6134382 PMID 7787419 Elbrecht A Chen Y Cullinan CA Hayes N Leibowitz MD Moller DE Berger J July 1996 Molecular cloning expression and characterization of human peroxisome proliferator activated receptors gamma 1 and gamma 2 Biochemical and Biophysical Research Communications 224 2 431 7 doi 10 1006 bbrc 1996 1044 PMID 8702406 Michalik L Auwerx J Berger JP Chatterjee VK Glass CK Gonzalez FJ et al December 2006 International Union of Pharmacology LXI Peroxisome proliferator activated receptors Pharmacological Reviews 58 4 726 41 doi 10 1124 pr 58 4 5 PMID 17132851 S2CID 2240461 Fajas L Auboeuf D Raspe E Schoonjans K Lefebvre AM Saladin R et al July 1997 The organization promoter analysis and expression of the human PPARgamma gene The Journal of Biological Chemistry 272 30 18779 89 doi 10 1074 jbc 272 30 18779 PMID 9228052 Park YK Wang L Giampietro A Lai B Lee JE Ge K January 2017 Distinct Roles of Transcription Factors KLF4 Krox20 and Peroxisome Proliferator Activated Receptor g in Adipogenesis Molecular and Cellular Biology 37 2 18779 89 doi 10 1128 MCB 00554 16 PMC 5214852 PMID 27777310 Entrez Gene PPARG peroxisome proliferator activated receptor gamma a b Suwaki N Masuyama H Masumoto A Takamoto N Hiramatsu Y April 2007 Expression and potential role of peroxisome proliferator activated receptor gamma in the placenta of diabetic pregnancy Placenta 28 4 315 23 doi 10 1016 j placenta 2006 04 002 PMID 16753211 a b Ahmadian M Suh JM Hah N Liddle C Atkins AR Downes M Evans RM May 2013 PPARg signaling and metabolism the good the bad and the future Nature Medicine 19 5 557 66 doi 10 1038 nm 3159 PMC 3870016 PMID 23652116 Song EK Lee YR Kim YR Yeom JH Yoo CH Kim HK et al December 2012 NAADP mediates insulin stimulated glucose uptake and insulin sensitization by PPARg in adipocytes Cell Reports 2 6 1607 19 doi 10 1016 j celrep 2012 10 018 PMID 23177620 a b Peluso I Morabito G Urban L Ioannone F Serafini M December 2012 Oxidative stress in atherosclerosis development the central role of LDL and oxidative burst Endocrine Metabolic amp Immune Disorders Drug Targets 12 4 351 60 doi 10 2174 187153012803832602 PMID 23061409 Hafiane A Gasbarrino K Daskalopoulou SS November 2019 The role of adiponectin in cholesterol efflux and HDL biogenesis and metabolism Metabolism 100 153953 doi 10 1016 j metabol 2019 153953 PMID 31377319 S2CID 203413137 Dreyer C Keller H Mahfoudi A Laudet V Krey G Wahli W 1993 Positive regulation of the peroxisomal beta oxidation pathway by fatty acids through activation of peroxisome proliferator activated receptors PPAR Biology of the Cell 77 1 67 76 doi 10 1016 s0248 4900 05 80176 5 PMID 8390886 S2CID 10746292 O Flaherty JT Rogers LC Paumi CM Hantgan RR Thomas LR Clay CE et al October 2005 5 Oxo ETE analogs and the proliferation of cancer cells Biochimica et Biophysica Acta BBA Molecular and Cell Biology of Lipids 1736 3 228 36 doi 10 1016 j bbalip 2005 08 009 PMID 16154383 Naruhn S Meissner W Adhikary T Kaddatz K Klein T Watzer B et al February 2010 15 hydroxyeicosatetraenoic acid is a preferential peroxisome proliferator activated receptor beta delta agonist Molecular Pharmacology 77 2 171 84 doi 10 1124 mol 109 060541 PMID 19903832 S2CID 30996954 O Sullivan SE Tarling EJ Bennett AJ Kendall DA Randall MD November 2005 Novel time dependent vascular actions of Delta9 tetrahydrocannabinol mediated by peroxisome proliferator activated receptor gamma Biochemical and Biophysical Research Communications 337 3 824 31 doi 10 1016 j bbrc 2005 09 121 PMID 16213464 Liu J Li H Burstein SH Zurier RB Chen JD May 2003 Activation and binding of peroxisome proliferator activated receptor gamma by synthetic cannabinoid ajulemic acid Molecular Pharmacology 63 5 983 92 doi 10 1124 mol 63 5 983 PMID 12695526 S2CID 22671555 Krishnan A Nair SA Pillai MR September 2007 Biology of PPAR gamma in cancer a critical review on existing lacunae Current Molecular Medicine 7 6 532 40 doi 10 2174 156652407781695765 PMID 17896990 Ezzeddini R Taghikhani M Salek Farrokhi A Somi MH Samadi N Esfahani A Rasaee MJ May 2021 Downregulation of fatty acid oxidation by involvement of HIF 1a and PPARg in human gastric adenocarcinoma and its related clinical significance Journal of Physiology and Biochemistry 77 2 249 260 doi 10 1007 s13105 021 00791 3 PMID 33730333 S2CID 232300877 a b Barak Y Nelson MC Ong ES Jones YZ Ruiz Lozano P Chien KR et al October 1999 PPAR gamma is required for placental cardiac and adipose tissue development Molecular Cell 4 4 585 95 doi 10 1016 s1097 2765 00 80209 9 PMID 10549290 Schaiff WT Barak Y Sadovsky Y April 2006 The pleiotropic function of PPAR gamma in the placenta Molecular and Cellular Endocrinology 249 1 2 10 5 doi 10 1016 j mce 2006 02 009 PMID 16574314 S2CID 54322301 Brendel C Gelman L Auwerx J June 2002 Multiprotein bridging factor 1 MBF 1 is a cofactor for nuclear receptors that regulate lipid metabolism Molecular Endocrinology 16 6 1367 77 doi 10 1210 mend 16 6 0843 PMID 12040021 Berger J Patel HV Woods J Hayes NS Parent SA Clemas J et al April 2000 A PPARgamma mutant serves as a dominant negative inhibitor of PPAR signaling and is localized in the nucleus Molecular and Cellular Endocrinology 162 1 2 57 67 doi 10 1016 S0303 7207 00 00211 2 PMID 10854698 S2CID 20343538 Gampe RT Montana VG Lambert MH Miller AB Bledsoe RK Milburn MV et al March 2000 Asymmetry in the PPARgamma RXRalpha crystal structure reveals the molecular basis of heterodimerization among nuclear receptors Molecular Cell 5 3 545 55 doi 10 1016 S1097 2765 00 80448 7 PMID 10882139 a b c Fajas L Egler V Reiter R Hansen J Kristiansen K Debril MB et al December 2002 The retinoblastoma histone deacetylase 3 complex inhibits PPARgamma and adipocyte differentiation Developmental Cell 3 6 903 10 doi 10 1016 S1534 5807 02 00360 X PMID 12479814 a b c d Kodera Y Takeyama K Murayama A Suzawa M Masuhiro Y Kato S October 2000 Ligand type specific interactions of peroxisome proliferator activated receptor gamma with transcriptional coactivators The Journal of Biological Chemistry 275 43 33201 4 doi 10 1074 jbc C000517200 PMID 10944516 Franco PJ Li G Wei LN August 2003 Interaction of nuclear receptor zinc finger DNA binding domains with histone deacetylase Molecular and Cellular Endocrinology 206 1 2 1 12 doi 10 1016 S0303 7207 03 00254 5 PMID 12943985 S2CID 19487189 Heinlein CA Ting HJ Yeh S Chang C June 1999 Identification of ARA70 as a ligand enhanced coactivator for the peroxisome proliferator activated receptor gamma The Journal of Biological Chemistry 274 23 16147 52 doi 10 1074 jbc 274 23 16147 PMID 10347167 Nishizawa H Yamagata K Shimomura I Takahashi M Kuriyama H Kishida K et al January 2002 Small heterodimer partner an orphan nuclear receptor augments peroxisome proliferator activated receptor gamma transactivation The Journal of Biological Chemistry 277 2 1586 92 doi 10 1074 jbc M104301200 PMID 11696534 Wallberg AE Yamamura S Malik S Spiegelman BM Roeder RG November 2003 Coordination of p300 mediated chromatin remodeling and TRAP mediator function through coactivator PGC 1alpha Molecular Cell 12 5 1137 49 doi 10 1016 S1097 2765 03 00391 5 PMID 14636573 Puigserver P Adelmant G Wu Z Fan M Xu J O Malley B Spiegelman BM November 1999 Activation of PPARgamma coactivator 1 through transcription factor docking Science 286 5443 1368 71 doi 10 1126 science 286 5443 1368 PMID 10558993 Mittal S Inamdar S Acharya J Pekhale K Kalamkar S Boppana R Ghaskadbi S October 2020 miR 3666 inhibits development of hepatic steatosis by negatively regulating PPARg Biochimica et Biophysica Acta BBA Molecular and Cell Biology of Lipids 1865 10 158777 doi 10 1016 j bbalip 2020 158777 PMID 32755726 S2CID 221017099 Lehrke M Lazar MA December 2005 The many faces of PPARgamma review Cell 123 6 993 9 doi 10 1016 j cell 2005 11 026 PMID 16360030 S2CID 18526710 Kim JH Song J Park KW March 2015 The multifaceted factor peroxisome proliferator activated receptor g PPARg in metabolism immunity and cancer review Archives of Pharmacal Research 38 3 302 12 doi 10 1007 s12272 015 0559 x PMID 25579849 S2CID 12296573 Abdul Ghani MA Tripathy D DeFronzo RA May 2006 Contributions of beta cell dysfunction and insulin resistance to the pathogenesis of impaired glucose tolerance and impaired fasting glucose review Diabetes Care 29 5 1130 9 doi 10 2337 dc05 2179 PMID 16644654 This article incorporates text from the United States National Library of Medicine which is in the public domain Retrieved from https en wikipedia org w index php title Peroxisome proliferator activated receptor gamma amp oldid 1193520834, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.