fbpx
Wikipedia

Andricus quercuscalifornicus

Andricus quercuscalifornicus (occasionally Andricus californicus), or the California gall wasp, is a small wasp species that induces oak apple galls on white oaks, primarily the valley oak (Quercus lobata) but also other species such as Quercus berberidifolia. The California gall wasp is considered an ecosystem engineer, capable of manipulating the growth of galls for their own development. It is found from Washington, Oregon, and California to northern regions of Mexico. Often multiple wasps in different life stages occupy the same gall. The induced galls help establish complex insect communities, promoting the diversification in niche differentiation. Furthermore, the adaptive value of these galls could be attributed their ecological benefits such as nutrition, provision of microenvironment, and enemy avoidance.

Andricus quercuscalifornicus
Andricus quercuscalifornicus galls
Scientific classification
Domain: Eukaryota
Kingdom: Animalia
Phylum: Arthropoda
Class: Insecta
Order: Hymenoptera
Family: Cynipidae
Genus: Andricus
Species:
A. quercuscalifornicus
Binomial name
Andricus quercuscalifornicus
(Bassett, 1881)
Synonyms
  • Cynips Q. californica Bassett, 1881[1]
Adult Andricus quercuscalifornicus.[2]

Description edit

The adult wasps are small, stout and brown, about 5 mm long with clear wings nearly twice the length of the body. The antennae are filiform and about the same length as the legs.[3] Despite their size they are one of the largest species of cynipid wasps.

The gall itself is a typical oak apple gall in appearance, roughly spherical and varies from greenish to reddish or orange depending on host, age and environmental conditions. The galls range in size from a 2–14 cm across and often contain multiple larvae as well as parasites and other species that form a mutual relationship by feeding off the galls themselves. The outer galls are hard in texture and are not easy to penetrate.

Habitat edit

Andricus quercuscalifornicus can induce and inhabit the galls of a variety of oak species, but they are primarily found in the galls of the Valley Oak. Due to this, they are usually found in areas such as riparian forests, open foothill woodlands, valley savannas, plant groves, and suburban areas. The wasps typically induce galls on the twigs of the Valley Oak, but the inter-tree distribution of these galls can be influenced by a multitude of factors including shoot vigor and the genotype of each tree.[2]

Life cycle edit

Andricus quercuscalifornicus is believed to reproduce strictly by parthenogenesis, and no male specimens have ever been recovered.[4] According to phylogenetic studies, several species of the genus Andricus have cryptic sexual generations. [5] The adult female lays eggs in the cambium layer of oak twigs during the fall using her ovipositor.[4] More vigorous twigs will have more galls. The eggs overwinter on the twig, and then hatch in the spring, usually in early April. The resulting larvae induce galls immediately, where they can seem to balloon almost overnight onto the tree. This is the point where most of the parasitoids enter the gall, while it is still soft and small enough for their ovipositor to reach the larvae.[2] After anywhere from a few weeks to two months,[4] the gall stops growing and begins to desiccate, turning tan or brown. The larvae pupate and then bore their way out of the gall in late summer or early fall and fly off to lay eggs in other trees. A few larvae overwinter inside the gall and don't emerge until the following fall. The reason for this is unknown.[6]

These wasps form an important role in the ecosystem, with more than 20 known species that are parasitoids, inquilines, and hyperparasites that live on its life cycle, while the galls form a persistent shelter for various forms of fungi as well as many other insects. Several birds are also known to feed from the galls and their inhabitants.

Life history of the oak gallwasps edit

Andricus quercuscalifornicus is a parasitic species of gallwasp (Hymenoptera, Cynipidae, Cynipini). The cynipid gall-inducer induces galls of 5-20 cubic centimeters on the twigs of the valley oak (Quercus lobata), an endemic tree in California. Gall growth occurs twice annually, during late spring and mid summer. The abundance and distribution of these galls vary between individual trees, however, there is recorded evidence of trees supporting high densities of galls (50 galls per cubic meter).[7] The native range of these gall wasps spans from most of California (extremes of southern Washington) to northern Mexico.[8]

 
Andricus quercuscalifornicus induced gall on Quercus lobata.

Adaptive value of gall induction edit

Andricus quercuscalifornicus is an example of an ecosystem engineer because of its ability to induce gall growth.[9] Several evolutionary hypotheses have been proposed to explain the adaptive nature of plant galls. Many of the benefits of induced galls include nutrition, a refuge from natural enemies, and a consistent environment with controlled abiotic factors. Each of these ecological functions can be described as the "nutrition hypothesis", "enemy-avoidance hypothesis", and "microenvironment hypothesis" respectively. According to recent findings, experimental manipulation of abiotic factors (i.e., relative ambient humidity) indicated that A. quercuscalifornicus larvae modify the internal environments of galls, thereby, supporting the microenvironment hypothesis.[10] Galls have hygrothermal inertia to slow down the rates of abiotic conditions, providing a buffer against desiccation; most apparent in immature galls.[11] Furthermore, support for the microenvironment hypothesis does not supersede both the natural enemies and nutrition hypotheses. The large galls produced by A. quercuscalifornicus may aid in the protection against other parasitoids however, this can also led to increase predation from avian species.[12] The moist conditions created in the internal microclimate of galls can also led to increased chance of fungal infection.[13]

A. quercuscalifornicus insect community edit

Through modifications of plant tissue, A. quercuscalifornicus is considered a keystone species, facilitating living conditions for a succession of other species. The induced galls are shared with a community of insects including transient occupants, opportunistic foragers, parasitoids, inquilines, and parasitoids of inquilines.[2] These galls are divided into microscale niches allowing for the coexistence of ecologically similar species that exploit similar feeding strategies. Differences in gall morphology, phenology, and location allows for patterns in differential niche uses to arise. It is possible that niche differentiation may account for the diversity of parasitoid species associated with gall wasps. Gall characteristics can also be predictors of community-level species composition.[14]

See also edit

References edit

  1. ^ Bassett, H. F. (1881). "New Species of Cynipidae". The Canadian Entomologist. 13 (3): 51–53. doi:10.4039/Ent1351-3. S2CID 84730995.
  2. ^ a b c d Joseph, Maxwell; Gentles, Pearse (1 December 2010). "The parasitoid community of Andricus quercuscalifornicus and its association with gall size, phenology, and location". Biodiversity and Conservation. 20: 203–216. doi:10.1007/s10531-010-9956-0.
  3. ^ "Gall Wasp Andricus quercuscalifornicus". Natural History of Orange County, California and nearby places. Retrieved 27 January 2015.
  4. ^ a b c Russo, Ron. (2007). Field Guide to Plant Galls of California and Other Western States. Berkeley: University of California Press. ISBN 978-0-520-93998-1. OCLC 794663693.
  5. ^ Stone, Graham N.; Atkinson, Rachel J.; Rokas, Antonis; Aldrey, José-Luis Nieves; Melika, George; Ács, Zoltan; Csóka, György; Hayward, Alexander; Bailey, Richard; Buckee, Caroline; McVEAN, Gilean a. T. (2008). "Evidence for widespread cryptic sexual generations in apparently purely asexual Andricus gallwasps". Molecular Ecology. 17 (2): 652–665. Bibcode:2008MolEc..17..652S. doi:10.1111/j.1365-294X.2007.03573.x. ISSN 1365-294X. PMID 18086197. S2CID 9851440.
  6. ^ Russo, Ronald (2006). Field Guide to Plant Galls of California and other Western States. Berkeley, California: University of California Press. ISBN 978-0-520-24885-4.
  7. ^ Rosenthal, S. S.; Koehler, C. S. (1971-05-17). "Intertree Distributions of Some Cynipid (Hymenoptera) Galls on Quercus lobata". Annals of the Entomological Society of America. 64 (3): 571–574. doi:10.1093/aesa/64.3.571. ISSN 1938-2901.
  8. ^ Russo, Ron (2006). Field guide to plant galls of California and other Western states. University of California Press. ISBN 978-0-520-24885-4.
  9. ^ Wetzel, William C.; Screen, Robyn M.; Li, Ivana; McKenzie, Jennifer; Phillips, Kyle A.; Cruz, Melissa; Zhang, Wenbo; Greene, Austin; Lee, Esther; Singh, Nuray; Tran, Carolyn (2016). "Ecosystem engineering by a gall-forming wasp indirectly suppresses diversity and density of herbivores on oak trees". Ecology. 97 (2): 427–438. Bibcode:2016Ecol...97..427W. doi:10.1890/15-1347.1. ISSN 1939-9170. PMID 27145617.
  10. ^ Miller, Donald G.; Ivey, Christopher T.; Shedd, Jackson D. (2009). "Support for the microenvironment hypothesis for adaptive value of gall induction in the California gall wasp, Andricus quercuscalifornicus". Entomologia Experimentalis et Applicata. 132 (2): 126–133. Bibcode:2009EEApp.132..126M. doi:10.1111/j.1570-7458.2009.00880.x. ISSN 1570-7458. S2CID 32277366.
  11. ^ Price, Peter W.; Fernandes, G. Wilson; Waring, Gwendolyn L. (1987-02-01). "Adaptive Nature of Insect Galls". Environmental Entomology. 16 (1): 15–24. doi:10.1093/ee/16.1.15. ISSN 0046-225X.
  12. ^ Abrahamson, Warren G.; Weis, Arthur E. (2020-03-31). Evolutionary Ecology across Three Trophic Levels: Goldenrods, Gallmakers, and Natural Enemies (MPB-29). Princeton University Press. ISBN 978-0-691-20943-2.
  13. ^ Wilson, Dennis (1995-08-01). "Fungal endophytes which invade insect galls: insect pathogens, benign saprophytes, or fungal inquilines?". Oecologia. 103 (2): 255–260. Bibcode:1995Oecol.103..255W. doi:10.1007/BF00329088. ISSN 1432-1939. PMID 28306781. S2CID 23151384.
  14. ^ Bailey, Richard; Schönrogge, Karsten; Cook, James M.; Melika, George; Csóka, György; Thuróczy, Csaba; Stone, Graham N. (2009-08-25). "Host Niches and Defensive Extended Phenotypes Structure Parasitoid Wasp Communities". PLOS Biology. 7 (8): e1000179. doi:10.1371/journal.pbio.1000179. ISSN 1545-7885. PMC 2719808. PMID 19707266.

Further reading edit

  • von Dalla Torre, K. W.; Kieffer, J. J. (1910). "A. quercus-californicus". Cynipidae. Das Tierreich. Vol. 24. Berlin: R. Friedländer und Sohn. p. 531.
  • Felt, Ephraim Porter (1917). "Key to American Insect Galls". New York State Museum Bulletin. 200: 62.
  • Fullaway, David T. (1911). "Monograph of the Gall-Making Cynipidae (Cynipinae) of California". Annals of the Entomological Society of America. 4: 346. doi:10.1093/aesa/4.4.331.
  • Kinsey, Alfred C. (1922). "Studies of Some New and Described Cynipidae (Hymenoptera)". Indiana University Studies. 9 (53): 8–14.

andricus, quercuscalifornicus, occasionally, andricus, californicus, california, gall, wasp, small, wasp, species, that, induces, apple, galls, white, oaks, primarily, valley, quercus, lobata, also, other, species, such, quercus, berberidifolia, california, ga. Andricus quercuscalifornicus occasionally Andricus californicus or the California gall wasp is a small wasp species that induces oak apple galls on white oaks primarily the valley oak Quercus lobata but also other species such as Quercus berberidifolia The California gall wasp is considered an ecosystem engineer capable of manipulating the growth of galls for their own development It is found from Washington Oregon and California to northern regions of Mexico Often multiple wasps in different life stages occupy the same gall The induced galls help establish complex insect communities promoting the diversification in niche differentiation Furthermore the adaptive value of these galls could be attributed their ecological benefits such as nutrition provision of microenvironment and enemy avoidance Andricus quercuscalifornicusAndricus quercuscalifornicus gallsScientific classificationDomain EukaryotaKingdom AnimaliaPhylum ArthropodaClass InsectaOrder HymenopteraFamily CynipidaeGenus AndricusSpecies A quercuscalifornicusBinomial nameAndricus quercuscalifornicus Bassett 1881 SynonymsCynips Q californica Bassett 1881 1 Adult Andricus quercuscalifornicus 2 Contents 1 Description 2 Habitat 3 Life cycle 4 Life history of the oak gallwasps 5 Adaptive value of gall induction 6 A quercuscalifornicus insect community 7 See also 8 References 9 Further readingDescription editThe adult wasps are small stout and brown about 5 mm long with clear wings nearly twice the length of the body The antennae are filiform and about the same length as the legs 3 Despite their size they are one of the largest species of cynipid wasps The gall itself is a typical oak apple gall in appearance roughly spherical and varies from greenish to reddish or orange depending on host age and environmental conditions The galls range in size from a 2 14 cm across and often contain multiple larvae as well as parasites and other species that form a mutual relationship by feeding off the galls themselves The outer galls are hard in texture and are not easy to penetrate Habitat editAndricus quercuscalifornicus can induce and inhabit the galls of a variety of oak species but they are primarily found in the galls of the Valley Oak Due to this they are usually found in areas such as riparian forests open foothill woodlands valley savannas plant groves and suburban areas The wasps typically induce galls on the twigs of the Valley Oak but the inter tree distribution of these galls can be influenced by a multitude of factors including shoot vigor and the genotype of each tree 2 Life cycle editAndricus quercuscalifornicus is believed to reproduce strictly by parthenogenesis and no male specimens have ever been recovered 4 According to phylogenetic studies several species of the genus Andricus have cryptic sexual generations 5 The adult female lays eggs in the cambium layer of oak twigs during the fall using her ovipositor 4 More vigorous twigs will have more galls The eggs overwinter on the twig and then hatch in the spring usually in early April The resulting larvae induce galls immediately where they can seem to balloon almost overnight onto the tree This is the point where most of the parasitoids enter the gall while it is still soft and small enough for their ovipositor to reach the larvae 2 After anywhere from a few weeks to two months 4 the gall stops growing and begins to desiccate turning tan or brown The larvae pupate and then bore their way out of the gall in late summer or early fall and fly off to lay eggs in other trees A few larvae overwinter inside the gall and don t emerge until the following fall The reason for this is unknown 6 These wasps form an important role in the ecosystem with more than 20 known species that are parasitoids inquilines and hyperparasites that live on its life cycle while the galls form a persistent shelter for various forms of fungi as well as many other insects Several birds are also known to feed from the galls and their inhabitants Life history of the oak gallwasps editAndricus quercuscalifornicus is a parasitic species of gallwasp Hymenoptera Cynipidae Cynipini The cynipid gall inducer induces galls of 5 20 cubic centimeters on the twigs of the valley oak Quercus lobata an endemic tree in California Gall growth occurs twice annually during late spring and mid summer The abundance and distribution of these galls vary between individual trees however there is recorded evidence of trees supporting high densities of galls 50 galls per cubic meter 7 The native range of these gall wasps spans from most of California extremes of southern Washington to northern Mexico 8 nbsp Andricus quercuscalifornicus induced gall on Quercus lobata Adaptive value of gall induction editAndricus quercuscalifornicus is an example of an ecosystem engineer because of its ability to induce gall growth 9 Several evolutionary hypotheses have been proposed to explain the adaptive nature of plant galls Many of the benefits of induced galls include nutrition a refuge from natural enemies and a consistent environment with controlled abiotic factors Each of these ecological functions can be described as the nutrition hypothesis enemy avoidance hypothesis and microenvironment hypothesis respectively According to recent findings experimental manipulation of abiotic factors i e relative ambient humidity indicated that A quercuscalifornicus larvae modify the internal environments of galls thereby supporting the microenvironment hypothesis 10 Galls have hygrothermal inertia to slow down the rates of abiotic conditions providing a buffer against desiccation most apparent in immature galls 11 Furthermore support for the microenvironment hypothesis does not supersede both the natural enemies and nutrition hypotheses The large galls produced by A quercuscalifornicus may aid in the protection against other parasitoids however this can also led to increase predation from avian species 12 The moist conditions created in the internal microclimate of galls can also led to increased chance of fungal infection 13 A quercuscalifornicus insect community editThrough modifications of plant tissue A quercuscalifornicus is considered a keystone species facilitating living conditions for a succession of other species The induced galls are shared with a community of insects including transient occupants opportunistic foragers parasitoids inquilines and parasitoids of inquilines 2 These galls are divided into microscale niches allowing for the coexistence of ecologically similar species that exploit similar feeding strategies Differences in gall morphology phenology and location allows for patterns in differential niche uses to arise It is possible that niche differentiation may account for the diversity of parasitoid species associated with gall wasps Gall characteristics can also be predictors of community level species composition 14 See also editOak appleReferences edit Bassett H F 1881 New Species of Cynipidae The Canadian Entomologist 13 3 51 53 doi 10 4039 Ent1351 3 S2CID 84730995 a b c d Joseph Maxwell Gentles Pearse 1 December 2010 The parasitoid community of Andricus quercuscalifornicus and its association with gall size phenology and location Biodiversity and Conservation 20 203 216 doi 10 1007 s10531 010 9956 0 Gall Wasp Andricus quercuscalifornicus Natural History of Orange County California and nearby places Retrieved 27 January 2015 a b c Russo Ron 2007 Field Guide to Plant Galls of California and Other Western States Berkeley University of California Press ISBN 978 0 520 93998 1 OCLC 794663693 Stone Graham N Atkinson Rachel J Rokas Antonis Aldrey Jose Luis Nieves Melika George Acs Zoltan Csoka Gyorgy Hayward Alexander Bailey Richard Buckee Caroline McVEAN Gilean a T 2008 Evidence for widespread cryptic sexual generations in apparently purely asexual Andricus gallwasps Molecular Ecology 17 2 652 665 Bibcode 2008MolEc 17 652S doi 10 1111 j 1365 294X 2007 03573 x ISSN 1365 294X PMID 18086197 S2CID 9851440 Russo Ronald 2006 Field Guide to Plant Galls of California and other Western States Berkeley California University of California Press ISBN 978 0 520 24885 4 Rosenthal S S Koehler C S 1971 05 17 Intertree Distributions of Some Cynipid Hymenoptera Galls on Quercus lobata Annals of the Entomological Society of America 64 3 571 574 doi 10 1093 aesa 64 3 571 ISSN 1938 2901 Russo Ron 2006 Field guide to plant galls of California and other Western states University of California Press ISBN 978 0 520 24885 4 Wetzel William C Screen Robyn M Li Ivana McKenzie Jennifer Phillips Kyle A Cruz Melissa Zhang Wenbo Greene Austin Lee Esther Singh Nuray Tran Carolyn 2016 Ecosystem engineering by a gall forming wasp indirectly suppresses diversity and density of herbivores on oak trees Ecology 97 2 427 438 Bibcode 2016Ecol 97 427W doi 10 1890 15 1347 1 ISSN 1939 9170 PMID 27145617 Miller Donald G Ivey Christopher T Shedd Jackson D 2009 Support for the microenvironment hypothesis for adaptive value of gall induction in the California gall wasp Andricus quercuscalifornicus Entomologia Experimentalis et Applicata 132 2 126 133 Bibcode 2009EEApp 132 126M doi 10 1111 j 1570 7458 2009 00880 x ISSN 1570 7458 S2CID 32277366 Price Peter W Fernandes G Wilson Waring Gwendolyn L 1987 02 01 Adaptive Nature of Insect Galls Environmental Entomology 16 1 15 24 doi 10 1093 ee 16 1 15 ISSN 0046 225X Abrahamson Warren G Weis Arthur E 2020 03 31 Evolutionary Ecology across Three Trophic Levels Goldenrods Gallmakers and Natural Enemies MPB 29 Princeton University Press ISBN 978 0 691 20943 2 Wilson Dennis 1995 08 01 Fungal endophytes which invade insect galls insect pathogens benign saprophytes or fungal inquilines Oecologia 103 2 255 260 Bibcode 1995Oecol 103 255W doi 10 1007 BF00329088 ISSN 1432 1939 PMID 28306781 S2CID 23151384 Bailey Richard Schonrogge Karsten Cook James M Melika George Csoka Gyorgy Thuroczy Csaba Stone Graham N 2009 08 25 Host Niches and Defensive Extended Phenotypes Structure Parasitoid Wasp Communities PLOS Biology 7 8 e1000179 doi 10 1371 journal pbio 1000179 ISSN 1545 7885 PMC 2719808 PMID 19707266 Further reading editvon Dalla Torre K W Kieffer J J 1910 A quercus californicus Cynipidae Das Tierreich Vol 24 Berlin R Friedlander und Sohn p 531 Felt Ephraim Porter 1917 Key to American Insect Galls New York State Museum Bulletin 200 62 Fullaway David T 1911 Monograph of the Gall Making Cynipidae Cynipinae of California Annals of the Entomological Society of America 4 346 doi 10 1093 aesa 4 4 331 Kinsey Alfred C 1922 Studies of Some New and Described Cynipidae Hymenoptera Indiana University Studies 9 53 8 14 Retrieved from https en wikipedia org w index php title Andricus quercuscalifornicus amp oldid 1205930732, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.