fbpx
Wikipedia

Film speed

Film speed is the measure of a photographic film's sensitivity to light, determined by sensitometry and measured on various numerical scales, the most recent being the ISO system. A closely related ISO system is used to describe the relationship between exposure and output image lightness in digital cameras.

Relatively insensitive film, with a correspondingly lower speed index, requires more exposure to light to produce the same image density as a more sensitive film, and is thus commonly termed a slow film. Highly sensitive films are correspondingly termed fast films. In both digital and film photography, the reduction of exposure corresponding to use of higher sensitivities generally leads to reduced image quality (via coarser film grain or higher image noise of other types). In short, the higher the sensitivity, the grainier the image will be. Ultimately sensitivity is limited by the quantum efficiency of the film or sensor.

This film container denotes its speed as ISO 100/21°, including both arithmetic (100 ASA) and logarithmic (21 DIN) components. The second is often dropped, making (e.g.) "ISO 100" effectively equivalent to the older ASA speed. (As is common, the "100" in the film name alludes to its ISO rating.)

Film speed measurement systems

Historical systems

Warnerke

The first known practical sensitometer, which allowed measurements of the speed of photographic materials, was invented by the Polish engineer Leon Warnerke[1] – pseudonym of Władysław Małachowski (1837–1900) – in 1880, among the achievements for which he was awarded the Progress Medal of the Photographic Society of Great Britain in 1882.[2][3] It was commercialized since 1881.

The Warnerke Standard Sensitometer consisted of a frame holding an opaque screen with an array of typically 25 numbered, gradually pigmented squares brought into contact with the photographic plate during a timed test exposure under a phosphorescent tablet excited before by the light of a burning magnesium ribbon.[3] The speed of the emulsion was then expressed in 'degrees' Warnerke (sometimes seen as Warn. or °W.) corresponding with the last number visible on the exposed plate after development and fixation. Each number represented an increase of 1/3 in speed, typical plate speeds were between 10° and 25° Warnerke at the time.

His system saw some success but proved to be unreliable[1] due to its spectral sensitivity to light, the fading intensity of the light emitted by the phosphorescent tablet after its excitation as well as high built-tolerances.[3] The concept, however, was later built upon in 1900 by Henry Chapman Jones (1855–1932) in the development of his plate tester and modified speed system.[3][4]

Hurter & Driffield

Another early practical system for measuring the sensitivity of an emulsion was that of Hurter and Driffield (H&D), originally described in 1890, by the Swiss-born Ferdinand Hurter (1844–1898) and British Vero Charles Driffield (1848–1915). In their system, speed numbers were inversely proportional to the exposure required. For example, an emulsion rated at 250 H&D would require ten times the exposure of an emulsion rated at 2500 H&D.[5]

The methods to determine the sensitivity were later modified in 1925 (in regard to the light source used) and in 1928 (regarding light source, developer and proportional factor)—this later variant was sometimes called "H&D 10". The H&D system was officially[6] accepted as a standard in the former Soviet Union from 1928 until September 1951, when it was superseded by GOST 2817–50.

Scheiner

The Scheinergrade (Sch.) system was devised by the German astronomer Julius Scheiner (1858–1913) in 1894 originally as a method of comparing the speeds of plates used for astronomical photography. Scheiner's system rated the speed of a plate by the least exposure to produce a visible darkening upon development. Speed was expressed in degrees Scheiner, originally ranging from 1° Sch. to 20° Sch., where an increment of 19° Sch. corresponded to a hundredfold increase in sensitivity, which meant that an increment of 3° Sch. came close to a doubling of sensitivity.[5][7]

 

The system was later extended to cover larger ranges and some of its practical shortcomings were addressed by the Austrian scientist Josef Maria Eder (1855–1944)[1] and Flemish-born botanist Walter Hecht [de] (1896–1960), (who, in 1919/1920, jointly developed their Eder–Hecht neutral wedge sensitometer measuring emulsion speeds in Eder–Hecht grades). Still, it remained difficult for manufacturers to reliably determine film speeds, often only by comparing with competing products,[1] so that an increasing number of modified semi-Scheiner-based systems started to spread, which no longer followed Scheiner's original procedures and thereby defeated the idea of comparability.[1][8]

Scheiner's system was eventually abandoned in Germany, when the standardized DIN system was introduced in 1934. In various forms, it continued to be in widespread use in other countries for some time.

DIN

The DIN system, officially DIN standard 4512 by the Deutsches Institut für Normung (then known as the Deutscher Normenausschuß (DNA)), was published in January 1934. It grew out of drafts for a standardized method of sensitometry put forward by the Deutscher Normenausschuß für Phototechnik[8] as proposed by the committee for sensitometry of the Deutsche Gesellschaft für photographische Forschung[9] since 1930[10][11] and presented by Robert Luther [de][11][12] (1868–1945) and Emanuel Goldberg[12] (1881–1970) at the influential VIII. International Congress of Photography (German: Internationaler Kongreß für wissenschaftliche und angewandte Photographie) held in Dresden from 3 to 8 August 1931.[8][13]

The DIN system was inspired by Scheiner's system,[1] but the sensitivities were represented as the base 10 logarithm of the sensitivity multiplied by 10, similar to decibels. Thus an increase of 20° (and not 19° as in Scheiner's system) represented a hundredfold increase in sensitivity, and a difference of 3° was much closer to the base 10 logarithm of 2 (0.30103...):[7]

 
 
A box of Agfacolor Neu with the instruction "expose as 15/10° DIN" (in German).

As in the Scheiner system, speeds were expressed in 'degrees'. Originally the sensitivity was written as a fraction with 'tenths' (for example "18/10° DIN"),[14] where the resultant value 1.8 represented the relative base 10 logarithm of the speed. 'Tenths' were later abandoned with DIN 4512:1957-11, and the example above would be written as "18° DIN".[5] The degree symbol was finally dropped with DIN 4512:1961-10. This revision also saw significant changes in the definition of film speeds in order to accommodate then-recent changes in the American ASA PH2.5-1960 standard, so that film speeds of black-and-white negative film effectively would become doubled, that is, a film previously marked as "18° DIN" would now be labeled as "21 DIN" without emulsion changes.

Originally only meant for black-and-white negative film, the system was later extended and regrouped into nine parts, including DIN 4512-1:1971-04 for black-and-white negative film, DIN 4512-4:1977-06 for color reversal film and DIN 4512-5:1977-10 for color negative film.

On an international level the German DIN 4512 system has been effectively superseded in the 1980s by ISO 6:1974,[15] ISO 2240:1982,[16] and ISO 5800:1979[17] where the same sensitivity is written in linear and logarithmic form as "ISO 100/21°" (now again with degree symbol). These ISO standards were subsequently adopted by DIN as well. Finally, the latest DIN 4512 revisions were replaced by corresponding ISO standards, DIN 4512-1:1993-05 by DIN ISO 6:1996-02 in September 2000, DIN 4512-4:1985-08 by DIN ISO 2240:1998-06 and DIN 4512-5:1990-11 by DIN ISO 5800:1998-06 both in July 2002.

BSI

The film speed scale recommended by the British Standards Institution (BSI) was almost identical to the DIN system except that the BS number was 10 degrees greater than the DIN number.[citation needed]

Weston

 
Weston Model 650 light meter from about 1935
 
Early Weston Master light meter 1935-1945

Before the advent of the ASA system, the system of Weston film speed ratings was introduced by Edward Faraday Weston (1878–1971) and his father Dr. Edward Weston (1850–1936), a British-born electrical engineer, industrialist and founder of the US-based Weston Electrical Instrument Corporation,[18] with the Weston model 617, one of the earliest photo-electric exposure meters, in August 1932. The meter and film rating system were invented by William Nelson Goodwin, Jr.,[19][20] who worked for them[21] and later received a Howard N. Potts Medal for his contributions to engineering.

The company tested and frequently published speed ratings for most films of the time. Weston film speed ratings could since be found on most Weston exposure meters and were sometimes referred to by film manufacturers and third parties[22] in their exposure guidelines. Since manufacturers were sometimes creative about film speeds, the company went as far as to warn users about unauthorized uses of their film ratings in their "Weston film ratings" booklets.[23]

The Weston Cadet (model 852 introduced in 1949), Direct Reading (model 853 introduced 1954) and Master III (models 737 and S141.3 introduced in 1956) were the first in their line of exposure meters to switch and utilize the meanwhile established ASA scale instead. Other models used the original Weston scale up until ca. 1955. The company continued to publish Weston film ratings after 1955,[24] but while their recommended values often differed slightly from the ASA film speeds found on film boxes, these newer Weston values were based on the ASA system and had to be converted for use with older Weston meters by subtracting 1/3 exposure stop as per Weston's recommendation.[24] Vice versa, "old" Weston film speed ratings could be converted into "new" Westons and the ASA scale by adding the same amount, that is, a film rating of 100 Weston (up to 1955) corresponded with 125 ASA (as per ASA PH2.5-1954 and before). This conversion was not necessary on Weston meters manufactured and Weston film ratings published since 1956 due to their inherent use of the ASA system; however the changes of the ASA PH2.5-1960 revision may be taken into account when comparing with newer ASA or ISO values.

General Electric

Prior to the establishment of the ASA scale[25] and similar to Weston film speed ratings another manufacturer of photo-electric exposure meters, General Electric, developed its own rating system of so-called General Electric film values (often abbreviated as G-E or GE) around 1937.

Film speed values for use with their meters were published in regularly updated General Electric Film Values[26] leaflets and in the General Electric Photo Data Book.[27]

General Electric switched to use the ASA scale in 1946. Meters manufactured since February 1946 are equipped with the ASA scale (labeled "Exposure Index") already. For some of the older meters with scales in "Film Speed" or "Film Value" (e.g. models DW-48, DW-49 as well as early DW-58 and GW-68 variants), replaceable hoods with ASA scales were available from the manufacturer.[26][28] The company continued to publish recommended film values after that date, however, they were then aligned to the ASA scale.

ASA

Based on earlier research work by Loyd Ancile Jones (1884–1954) of Kodak and inspired by the systems of Weston film speed ratings[24] and General Electric film values,[26] the American Standards Association (now named ANSI) defined a new method to determine and specify film speeds of black-and-white negative films in 1943. ASA Z38.2.1–1943 was revised in 1946 and 1947 before the standard grew into ASA PH2.5-1954. Originally, ASA values were frequently referred to as American standard speed numbers or ASA exposure-index numbers. (See also: Exposure Index (EI).)

The ASA scale is a linear scale, that is, a film denoted as having a film speed of 200 ASA is twice as fast as a film with 100 ASA.

The ASA standard underwent a major revision in 1960 with ASA PH2.5-1960, when the method to determine film speed was refined and previously applied safety factors against under-exposure were abandoned, effectively doubling the nominal speed of many black-and-white negative films. For example, an Ilford HP3 that had been rated at 200 ASA before 1960 was labeled 400 ASA afterwards without any change to the emulsion. Similar changes were applied to the DIN system with DIN 4512:1961-10 and the BS system with BS 1380:1963 in the following years.

In addition to the established arithmetic speed scale, ASA PH2.5-1960 also introduced logarithmic ASA grades (100 ASA = 5° ASA), where a difference of 1° ASA represented a full exposure stop and therefore the doubling of a film speed. For some while, ASA grades were also printed on film boxes, and they saw life in the form of the APEX speed value Sv (without degree symbol) as well.

ASA PH2.5-1960 was revised as ANSI PH2.5-1979, without the logarithmic speeds, and later replaced by NAPM IT2.5–1986 of the National Association of Photographic Manufacturers, which represented the US adoption of the international standard ISO 6. The latest issue of ANSI/NAPM IT2.5 was published in 1993.

The standard for color negative film was introduced as ASA PH2.27-1965 and saw a string of revisions in 1971, 1976, 1979 and 1981, before it finally became ANSI IT2.27–1988 prior to its withdrawal.

Color reversal film speeds were defined in ANSI PH2.21-1983, which was revised in 1989 before it became ANSI/NAPM IT2.21 in 1994, the US adoption of the ISO 2240 standard.

On an international level, the ASA system was superseded by the ISO film speed system between 1982 and 1987, however, the arithmetic ASA speed scale continued to live on as the linear speed value of the ISO system.

GOST

 
A box of Svema film, with a sensitivity of 65 ГОСТ

GOST (Cyrillic: ГОСТ) was an arithmetic film speed scale defined in GOST 2817-45 and GOST 2817–50.[29][30] It was used in the former Soviet Union since October 1951,[citation needed] replacing Hurter & Driffield (H&D, Cyrillic: ХиД) numbers,[29] which had been used since 1928.[citation needed]

GOST 2817-50 was similar to the ASA standard, having been based on a speed point at a density 0.2 above base plus fog, as opposed to the ASA's 0.1.[31] GOST markings are only found on pre-1987 photographic equipment (film, cameras, lightmeters, etc.) of Soviet Union manufacture.[32]

On 1 January 1987, the GOST scale was realigned to the ISO scale with GOST 10691–84,[33]

This evolved into multiple parts including GOST 10691.6–88[34] and GOST 10691.5–88,[35] which both became functional on 1 January 1991.

Current system: ISO

The ASA and DIN film speed standards have been combined into the ISO standards since 1974.

The current International Standard for measuring the speed of colour negative film is ISO 5800:2001[17] (first published in 1979, revised in November 1987) from the International Organization for Standardization (ISO). Related standards ISO 6:1993[15] (first published in 1974) and ISO 2240:2003[16] (first published in July 1982, revised in September 1994 and corrected in October 2003) define scales for speeds of black-and-white negative film and colour reversal film, respectively.

The determination of ISO speeds with digital still-cameras is described in ISO 12232:2019 (first published in August 1998, revised in April 2006, corrected in October 2006 and again revised in February 2019).[36][37]

The ISO system defines both an arithmetic and a logarithmic scale.[38] The arithmetic ISO scale corresponds to the arithmetic ASA system, where a doubling of film sensitivity is represented by a doubling of the numerical film speed value. In the logarithmic ISO scale, which corresponds to the DIN scale, adding 3° to the numerical value constitutes a doubling of sensitivity. For example, a film rated ISO 200/24° is twice as sensitive as one rated ISO 100/21°.[38]

Commonly, the logarithmic speed is omitted; for example, "ISO 100" denotes "ISO 100/21°",[39] while logarithmic ISO speeds are written as "ISO 21°" as per the standard.

Conversion between current scales

 
A Yashica FR with both ASA and DIN markings

Conversion from arithmetic speed S to logarithmic speed S° is given by[15]

 

and rounding to the nearest integer; the log is base 10. Conversion from logarithmic speed to arithmetic speed is given by[40]

 

and rounding to the nearest standard arithmetic speed in Table 1 below.

Table 1. Comparison of various film speed scales
APEX Sv (1960–) ISO (1974–)
arith./log.°
Camera mfrs. (2009–) ASA (1960–1987)
arith.
DIN (1961–2002)
log.
GOST (1951–1986)
arith.
Example of film stock
with this nominal speed
−2 0.8/0°[41]   0.8 0[42]    
  1/1°   1 1 (1) Svema Micrat-orto, Astrum Micrat-orto
  1.2/2°   1.2 2 (1)  
−1 1.6/3°   1.6 3 1.4  
  2/4°   2 4 (2)  
  2.5/5°   2.5 5 (2)  
0 3/6°   3 6 2.8 Svema MZ-3, Astrum MZ-3
  4/7°   4 7 (4)  
  5/8°   5 8 (4) original three-strip Technicolor
1 6/9°   6 9 5.5 original Kodachrome
  8/10°   8 10 (8) Polaroid PolaBlue
  10/11°   10 11 (8) Kodachrome 8 mm film
2 12/12°   12 12 11 Gevacolor 8 mm reversal film, later Agfa Dia-Direct
  16/13°   16 13 (16) Agfacolor 8 mm reversal film
  20/14°   20 14 (16) Adox CMS 20
3 25/15°   25 15 22 old Agfacolor, Kodachrome II and (later) Kodachrome 25, Efke 25
  32/16°   32 16 (32) Kodak Panatomic-X
  40/17°   40 17 (32) Kodachrome 40 (movie)
4 50/18°   50 18 45 Fuji RVP (Velvia), Ilford Pan F Plus, Kodak Vision2 50D 5201 (movie), AGFA CT18, Efke 50, Polaroid type 55
  64/19°   64 19 (65) Kodachrome 64, Ektachrome-X, Polaroid type 64T
  80/20°   80 20 (65) Ilford Commercial Ortho, Polaroid type 669
5 100/21°   100 21 90 Kodacolor Gold, Kodak T-MAX 100 (TMX), Kodak Ektar, Fujichrome Provia 100F, Efke 100, Fomapan/Arista 100
  125/22°   125 22 (130) Ilford FP4+, Kodak Plus-X Pan, Svema Color 125
  160/23°   160 23 (130) Fujicolor Pro 160C/S, Kodak High-Speed Ektachrome, Kodak Portra 160NC and 160VC
6 200/24°   200 24 180 Kodak Gold 200, Fujicolor Superia 200, Agfa Scala 200x, Fomapan/Arista 200, Wittner Chrome 200D/Agfa Aviphot Chrome 200 PE1
  250/25°   250 25 (250) Tasma Foto-250
  320/26°   320 26 (250) Kodak Tri-X Pan Professional (TXP)
7 400/27°   400 27 350 Kodak T-Max 400 (TMY), Kodak Tri-X 400, Kodak Portra 400, Ilford HP5+, Fujifilm Superia X-tra 400, Fujichrome Provia 400X, Fomapan/Arista 400
  500/28°   500 28 (500) Kodak Vision3 500T 5219 (movie)
  640/29°   640 29 (500) Polaroid 600
8 800/30°   800 30 700 Fuji Pro 800Z, Fuji Instax
  1000/31°   1000 31 (1000) Ilford Delta 3200, Kodak P3200 TMAX[43]

Kodak Professional T-Max P3200[44] (see Marketing anomalies below)

  1250/32°   1250 32 (1000) Kodak Royal-X Panchromatic
9 1600/33°   1600 33 1400 (1440) Fujicolor 1600, Fuji Natura 1600 and Superia 1600
  2000/34°   2000 34 (2000)  
  2500/35°   2500 35 (2000)  
10 3200/36°   3200 36 2800 (2880) Konica 3200, Polaroid type 667, Fujifilm FP-3000B, Kodak Tmax 3200 B&W
  4000/37°     37 (4000)  
  5000/38°     38 (4000)  
11 6400/39°   6400[45] 39 5600  
  8000/40°[41][42]          
  10000/41°[41][42][46]          
12 12500/42°[41][46] 12800[42][47][48][49][50]   12500[45]     ISO speeds greater than 10000 have not been defined officially before ISO 12232:2019.[36]
  16000/43°[46]          
  20000/44°[46]         Polaroid type 612
13 25000/45°[46] 25600[49][50]        
  32000/46°[46]          
  40000/47°[46]          
14 50000/48°[46] 51200[49][50]        
  64000/49°[46]          
  80000/50°[46]          
15 100000/51°[41] 102400[49][50]   51[42]   Nikon D3s and Canon EOS-1D Mark IV (2009)
  125000/52°          
  160000/53°          
16 200000/54° 204800[51][52][53]       Canon EOS-1D X (2011), Nikon D4 (2012), Pentax 645Z (2014)
  250000/55°          
  320000/56°          
17 400000/57° 409600[54][55]       Nikon D4s, Sony α ILCE-7S (2014), Canon EOS 1D X Mark II (2016)
  500000/58°          
  640000/59°          
18 800000/60°          
  1000000/61°        
  1250000/62°          
19 1600000/63°          
  2000000/64°        
  2500000/65°          
20 3200000/66° 3280000        Nikon D5 (2016)
  4000000/67°[56] 4560000       Canon ME20F-SH[56] (2015)
21 104857600 Photonis INocturn[57] (2021)

Table notes:

  1. Speeds shown in bold under APEX, ISO and ASA are values actually assigned in speed standards from the respective agencies; other values are calculated extensions to assigned speeds using the same progressions as for the assigned speeds.
  2. APEX Sv values 1 to 10 correspond with logarithmic ASA grades 1° to 10° found in ASA PH2.5-1960.
  3. ASA arithmetic speeds from 4 to 5 are taken from ANSI PH2.21-1979 (Table 1, p. 8).
  4. ASA arithmetic speeds from 6 to 3200 are taken from ANSI PH2.5-1979 (Table 1, p. 5) and ANSI PH2.27-1979.
  5. ISO arithmetic speeds from 4 to 3200 are taken from ISO 5800:1987 (Table "ISO speed scales", p. 4).
  6. ISO arithmetic speeds from 6 to 10000 are taken from ISO 12232:1998 (Table 1, p. 9).
  7. ISO 12232:1998 does not specify speeds greater than 10000. However, the upper limit for Snoise 10000 was given as 12500, suggesting that ISO may have envisioned a progression of 12500, 25000, 50000, and 100000, similar to that from 1250 to 10000. This was consistent with ASA PH2.12-1961.[45] For digital cameras, Nikon, Canon, Sony, Pentax, and Fujifilm chose to express the greater speeds in an exact power-of-2 progression from the highest previously realized speed (6400) rather than rounding to an extension of the existing progression. Speed ratings greater than 10000 have finally been defined in ISO 12232:2019.[36]
  8. Most of the modern 35 mm film SLRs support an automatic film speed range from ISO 25/15° to 5000/38° with DX-coded films, or ISO 6/9° to 6400/39° manually (without utilizing exposure compensation). The film speed range with support for TTL flash is smaller, typically ISO 12/12° to 3200/36° or less.
  9. The Booster[47] accessory for the Canon Pellix QL (1965) and Canon FT QL (1966) supported film speeds from 25 to 12800 ASA.
  10. The film speed dial of the Canon A-1 (1978) supported a speed range from 6 to 12800 ASA (but already called ISO film speeds in the manual).[48] On this camera exposure compensation and extreme film speeds were mutually exclusive.
  11. The Leica R8 (1996) and R9 (2002) officially supported film speeds of 8000/40°, 10000/41° and 12800/42° (in the case of the R8) or 12500/42° (in the case of the R9), and utilizing its ±3 EV exposure compensation the range could be extended from ISO 0.8/0° to ISO 100000/51° in half exposure steps.[41][42]
  12. Digital camera manufacturers' arithmetic speeds from 12800 to 409600 are from specifications by Nikon (12800, 25600, 51200, 102400 in 2009,[49] 204800 in 2012,[52] 409600 in 2014[54]), Canon (12800, 25600, 51200, 102400 in 2009,[50] 204800 in 2011,[51] 4000000 in 2015[56]), Sony (12800 in 2009,[58] 25600 in 2010,[59] 409600 in 2014[55]), Pentax (12800, 25600, 51200 in 2010,[60] 102400, 204800 in 2014[53]) and Fujifilm (12800 in 2011[61]).

Historic ASA and DIN conversion

 
Historic film speed conversion table, 1952[62]
 
Classic camera Tessina with exposure guide, late 1950s

As discussed in the ASA and DIN sections, the definition of the ASA and DIN scales changed several times in the 1950s up into the early 1960s making it necessary to convert between the different scales. Since the ISO system combines the newer ASA and DIN definitions, this conversion is also necessary when comparing older ASA and DIN scales with the ISO scale.

The picture shows an ASA/DIN conversion in a 1952 photography book[62] in which 21/10° DIN was converted to ASA 80 instead of ASA 100.

Some classic camera's exposure guides show the old conversion as they were valid at the time of production, for example the exposure guide of the classic camera Tessina (since 1957), where 21/10° DIN is related to ASA 80, 18° DIN to ASA 40, etc. Users of classic cameras, who do not know the historic background, may be confused.

Determining film speed

 
ISO 6:1993 method of determining speed for black-and-white film.
 
Recording film 1000 ASA, Red Light District, Amsterdam, Graffiti 1996

Film speed is found from a plot of optical density vs. log of exposure for the film, known as the D–log H curve or Hurter–Driffield curve. There typically are five regions in the curve: the base + fog, the toe, the linear region, the shoulder, and the overexposed region. For black-and-white negative film, the "speed point" m is the point on the curve where density exceeds the base + fog density by 0.1 when the negative is developed so that a point n where the log of exposure is 1.3 units greater than the exposure at point m has a density 0.8 greater than the density at point m. The exposure Hm, in lux-s, is that for point m when the specified contrast condition is satisfied. The ISO arithmetic speed is determined from:

 

This value is then rounded to the nearest standard speed in Table 1 of ISO 6:1993.

Determining speed for color negative film is similar in concept but more complex because it involves separate curves for blue, green, and red. The film is processed according to the film manufacturer's recommendations rather than to a specified contrast. ISO speed for color reversal film is determined from the middle rather than the threshold of the curve; it again involves separate curves for blue, green, and red, and the film is processed according to the film manufacturer's recommendations.

Applying film speed

Film speed is used in the exposure equations to find the appropriate exposure parameters. Four variables are available to the photographer to obtain the desired effect: lighting, film speed, f-number (aperture size), and shutter speed (exposure time). The equation may be expressed as ratios, or, by taking the logarithm (base 2) of both sides, by addition, using the APEX system, in which every increment of 1 is a doubling of exposure; this increment is commonly known as a "stop". The effective f-number is proportional to the ratio between the lens focal length and aperture diameter, the diameter itself being proportional to the square root of the aperture area. Thus, a lens set to f/1.4 allows twice as much light to strike the focal plane as a lens set to f/2. Therefore, each f-number factor of the square root of two (approximately 1.4) is also a stop, so lenses are typically marked in that progression: f/1.4, 2, 2.8, 4, 5.6, 8, 11, 16, 22, 32, etc.

The ISO arithmetic speed has a useful property for photographers without the equipment for taking a metered light reading. Correct exposure will usually be achieved for a frontlighted scene in bright sun if the aperture of the lens is set to f/16 and the shutter speed is the reciprocal of the ISO film speed (e.g. 1/100 second for 100 ISO film). This known as the sunny 16 rule.

Exposure index

Exposure index, or EI, refers to speed rating assigned to a particular film and shooting situation in variance to the film's actual speed. It is used to compensate for equipment calibration inaccuracies or process variables, or to achieve certain effects. The exposure index may simply be called the speed setting, as compared to the speed rating.

For example, a photographer may rate an ISO 400 film at EI 800 and then use push processing to obtain printable negatives in low-light conditions. The film has been exposed at EI 800.

Another example occurs where a camera's shutter is miscalibrated and consistently overexposes or underexposes the film; similarly, a light meter may be inaccurate. One may adjust the EI setting accordingly in order to compensate for these defects and consistently produce correctly exposed negatives.

Reciprocity

Upon exposure, the amount of light energy that reaches the film determines the effect upon the emulsion. If the brightness of the light is multiplied by a factor and the exposure of the film decreased by the same factor by varying the camera's shutter speed and aperture, so that the energy received is the same, the film will be developed to the same density. This rule is called reciprocity. The systems for determining the sensitivity for an emulsion are possible because reciprocity holds over a wide range of customary conditions. In practice, reciprocity works reasonably well for normal photographic films for the range of exposures between 1/1000 second to 1/2 second. However, this relationship breaks down outside these limits, a phenomenon known as reciprocity failure.[63]

Film sensitivity and grain

 
Grainy high-speed B&W film negative

The size of silver halide grains in the emulsion affects film sensitivity, which is related to granularity because larger grains give film greater sensitivity to light. Fine-grain film, such as film designed for portraiture or copying original camera negatives, is relatively insensitive, or "slow", because it requires brighter light or a longer exposure than a "fast" film. Fast films, used for photographing in low light or capturing high-speed motion, produce comparatively grainy images.

Kodak has defined a "Print Grain Index" (PGI) to characterize film grain (color negative films only), based on perceptual just-noticeable difference of graininess in prints. They also define "granularity", a measurement of grain using an RMS measurement of density fluctuations in uniformly exposed film, measured with a microdensitometer with 48 micrometre aperture.[64] Granularity varies with exposure — underexposed film looks grainier than overexposed film.

Marketing anomalies

Some high-speed black-and-white films, such as Ilford Delta 3200, P3200 T-Max, and T-MAX P3200 are marketed with film speeds in excess of their true ISO speed as determined using the ISO testing method. According to the respective data sheets, the Ilford product is actually an ISO 1000 film,[65] while the Kodak film's speed is nominally 800 to 1000 ISO.[43][44] The manufacturers do not indicate that the 3200 number is an ISO rating on their packaging.[66] Kodak and Fuji also marketed E6 films designed for pushing (hence the "P" prefix), such as Ektachrome P800/1600 and Fujichrome P1600, both with a base speed of ISO 400. The DX codes on the film cartridges indicate the marketed film speed (i.e. 3200), not the ISO speed, in order to automate shooting and development.

Digital camera ISO speed and exposure index

 
A CCD image sensor, 2/3 inch size

In digital camera systems, an arbitrary relationship between exposure and sensor data values can be achieved by setting the signal gain of the sensor. The relationship between the sensor data values and the lightness of the finished image is also arbitrary, depending on the parameters chosen for the interpretation of the sensor data into an image color space such as sRGB.

For digital photo cameras ("digital still cameras"), an exposure index (EI) rating—commonly called ISO setting—is specified by the manufacturer such that the sRGB image files produced by the camera will have a lightness similar to what would be obtained with film of the same EI rating at the same exposure. The usual design is that the camera's parameters for interpreting the sensor data values into sRGB values are fixed, and a number of different EI choices are accommodated by varying the sensor's signal gain in the analog realm, prior to conversion to digital. Some camera designs provide at least some EI choices by adjusting the sensor's signal gain in the digital realm ("expanded ISO"). A few camera designs also provide EI adjustment through a choice of lightness parameters for the interpretation of sensor data values into sRGB; this variation allows different tradeoffs between the range of highlights that can be captured and the amount of noise introduced into the shadow areas of the photo.

Digital cameras have far surpassed film in terms of sensitivity to light, with ISO equivalent speeds of up to 4,560,000, a number that is unfathomable in the realm of conventional film photography. Faster processors, as well as advances in software noise reduction techniques allow this type of processing to be executed the moment the photo is captured, allowing photographers to store images that have a higher level of refinement and would have been prohibitively time-consuming to process with earlier generations of digital camera hardware.

The ISO (International Organization of Standards) 12232:2019 standard

The ISO standard ISO 12232:2006[67] gave digital still camera manufacturers a choice of five different techniques for determining the exposure index rating at each sensitivity setting provided by a particular camera model. Three of the techniques in ISO 12232:2006 were carried over from the 1998 version of the standard, while two new techniques allowing for measurement of JPEG output files were introduced from CIPA DC-004.[68] Depending on the technique selected, the exposure index rating could depend on the sensor sensitivity, the sensor noise, and the appearance of the resulting image. The standard specified the measurement of light sensitivity of the entire digital camera system and not of individual components such as digital sensors, although Kodak has reported[69] using a variation to characterize the sensitivity of two of their sensors in 2001.

The Recommended Exposure Index (REI) technique, new in the 2006 version of the standard, allows the manufacturer to specify a camera model's EI choices arbitrarily. The choices are based solely on the manufacturer's opinion of what EI values produce well-exposed sRGB images at the various sensor sensitivity settings. This is the only technique available under the standard for output formats that are not in the sRGB color space. This is also the only technique available under the standard when multi-zone metering (also called pattern metering) is used.

The Standard Output Sensitivity (SOS) technique, also new in the 2006 version of the standard, effectively specifies that the average level in the sRGB image must be 18% gray plus or minus 1/3 stop when the exposure is controlled by an automatic exposure control system calibrated per ISO 2721 and set to the EI with no exposure compensation. Because the output level is measured in the sRGB output from the camera, it is only applicable to sRGB images—typically JPEG—and not to output files in raw image format. It is not applicable when multi-zone metering is used.

The CIPA DC-004 standard requires that Japanese manufacturers of digital still cameras use either the REI or SOS techniques, and DC-008[70] updates the Exif specification to differentiate between these values. Consequently, the three EI techniques carried over from ISO 12232:1998 are not widely used in recent camera models (approximately 2007 and later). As those earlier techniques did not allow for measurement from images produced with lossy compression, they cannot be used at all on cameras that produce images only in JPEG format.

The saturation-based (SAT or Ssat) technique is closely related to the SOS technique, with the sRGB output level being measured at 100% white rather than 18% gray. The SOS value is effectively 0.704 times the saturation-based value.[71] Because the output level is measured in the sRGB output from the camera, it is only applicable to sRGB images—typically TIFF—and not to output files in raw image format.[citation needed] It is not applicable when multi-zone metering is used.

The two noise-based techniques have rarely been used for consumer digital still cameras.[citation needed] These techniques specify the highest EI that can be used while still providing either an "excellent" picture or a "usable" picture depending on the technique chosen.[citation needed]

An update to this standard has been published as ISO 12232:2019, defining a wider range of ISO speeds.[36][37]

Measurements and calculations

ISO speed ratings of a digital camera are based on the properties of the sensor and the image processing done in the camera, and are expressed in terms of the luminous exposure H (in lux seconds) arriving at the sensor. For a typical camera lens with an effective focal length f that is much smaller than the distance between the camera and the photographed scene, H is given by

 

where L is the luminance of the scene (in candela per m²), t is the exposure time (in seconds), N is the aperture f-number, and

 

is a factor depending on the transmittance T of the lens, the vignetting factor v(θ), and the angle θ relative to the axis of the lens. A typical value is q = 0.65, based on θ = 10°, T = 0.9, and v = 0.98.[72]

Saturation-based speed

The saturation-based speed is defined as

 

where   is the maximum possible exposure that does not lead to a clipped or bloomed camera output. Typically, the lower limit of the saturation speed is determined by the sensor itself, but with the gain of the amplifier between the sensor and the analog-to-digital converter, the saturation speed can be increased. The factor 78 is chosen such that exposure settings based on a standard light meter and an 18-percent reflective surface will result in an image with a grey level of 18%/2 = 12.7% of saturation. The factor 2 indicates that there is half a stop of headroom to deal with specular reflections that would appear brighter than a 100% reflecting diffuse white surface.[67]

Noise-based speed

 
Digital noise at 3200 ISO vs. 100 ISO

The noise-based speed is defined as the exposure that will lead to a given signal-to-noise ratio on individual pixels. Two ratios are used, the 40:1 ("excellent image quality") and the 10:1 ("acceptable image quality") ratio. These ratios have been subjectively determined based on a resolution of 70 pixels per cm (178 DPI) when viewed at 25 cm (9.8 inch) distance. The noise is defined as the standard deviation of a weighted average of the luminance and color of individual pixels. The noise-based speed is mostly determined by the properties of the sensor and somewhat affected by the noise in the electronic gain and AD converter.[67]

Standard output sensitivity (SOS)

In addition to the above speed ratings, the standard also defines the standard output sensitivity (SOS), how the exposure is related to the digital pixel values in the output image. It is defined as

 

where   is the exposure that will lead to values of 118 in 8-bit pixels, which is 18 percent of the saturation value in images encoded as sRGB or with gamma = 2.2.[67]

Discussion

The standard specifies how speed ratings should be reported by the camera. If the noise-based speed (40:1) is higher than the saturation-based speed, the noise-based speed should be reported, rounded downwards to a standard value (e.g. 200, 250, 320, or 400). The rationale is that exposure according to the lower saturation-based speed would not result in a visibly better image. In addition, an exposure latitude can be specified, ranging from the saturation-based speed to the 10:1 noise-based speed. If the noise-based speed (40:1) is lower than the saturation-based speed, or undefined because of high noise, the saturation-based speed is specified, rounded upwards to a standard value, because using the noise-based speed would lead to overexposed images. The camera may also report the SOS-based speed (explicitly as being an SOS speed), rounded to the nearest standard speed rating.[67]

For example, a camera sensor may have the following properties:  ,  , and  . According to the standard, the camera should report its sensitivity as

ISO 100 (daylight)
ISO speed latitude 50–1600
ISO 100 (SOS, daylight).

The SOS rating could be user controlled. For a different camera with a noisier sensor, the properties might be  ,  , and  . In this case, the camera should report

ISO 200 (daylight),

as well as a user-adjustable SOS value. In all cases, the camera should indicate for the white balance setting for which the speed rating applies, such as daylight or tungsten (incandescent light).[67]

Despite these detailed standard definitions, cameras typically do not clearly indicate whether the user "ISO" setting refers to the noise-based speed, saturation-based speed, or the specified output sensitivity, or even some made-up number for marketing purposes. Because the 1998 version of ISO 12232 did not permit measurement of camera output that had lossy compression, it was not possible to correctly apply any of those measurements to cameras that did not produce sRGB files in an uncompressed format such as TIFF. Following the publication of CIPA DC-004 in 2006, Japanese manufacturers of digital still cameras are required to specify whether a sensitivity rating is REI or SOS.[citation needed]

A greater SOS setting for a given sensor comes with some loss of image quality, just like with analog film. However, this loss is visible as image noise rather than grain. APS- and 35 mm-sized digital image sensors, both CMOS and CCD based, do not produce significant noise until about ISO 1600.[73]

See also

References

  1. ^ a b c d e f DIN 4512:1934-01. Photographische Sensitometrie, Bestimmung der optischen Dichte (in German). Deutscher Normenausschuß (DNA). 1934. In the introduction to the standard, Warnerke's system is described as the first practical system used to measure emulsion speeds, but as being unreliable. In regard to Scheiner's system, it states: "Auch hier erwies sich nach einiger Zeit, daß das Meßverfahren trotz der von Eder vorgenommenen Abänderungen den Anforderungen der Praxis nicht vollständig Rechnung zu tragen vermag, so daß jeder Hersteller […] nach seinem eigenen System die Empfindlichkeit in Scheinergraden ermitteln muß, häufig in sehr primitiver Weise durch […] Vergleich mit Erzeugnissen anderer Hersteller. Die so ermittelten Gebrauchs-Scheinergrade haben mit dem ursprünglich […] ausgearbeiteten Meßverfahren nach Scheiner sachlich nichts mehr zu tun. […] Als Folge hiervon ist allmählich eine Inflation in Empfindlichkeitsgraden eingetreten, für die das Scheiner'sche Verfahren nichts mehr als den Namen hergibt."
  2. ^ Progress medal. Royal Photographic Society., and web-page listing people, who have received this award since 1878: . Archived from the original on 2012-08-22. Retrieved 2013-04-19. Instituted in 1878, this medal is awarded in recognition of any invention, research, publication or other contribution which has resulted in an important advance in the scientific or technological development of photography or imaging in the widest sense. This award also carries with it an Honorary Fellowship of The Society. […] 1882 Leon Warnerke […] 1884 J. M. Eder […] 1898 Ferdinand Hurter and Vero C. Driffield […] 1910 Alfred Watkins […] 1912 H. Chapman Jones […] 1948 Loyd A. Jones […]
  3. ^ a b c d Jones, Bernhard Edward, ed. (1911). Cassell's cyclopaedia of photography. London, UK: Cassell. (Reprinted as Bunnell, Peter C.; Sobieszek, Robert A. (1974). introduction. Encyclopaedia of photography – With a New Picture Portfolio. By Jones, Bernhard Edward. New York, USA: Arno Press Inc. pp. 472–473. ISBN 0-405-04922-6.: 'Soon after the introduction of the gelatine dry plate, it was usual to express the speed of the emulsion as "x times", which meant that it was x times the speed of a wet collodion plate. This speed was no fixed quantity, and the expression consequently meant but little. Warnerke introduced a sensitometer, consisting of a series of numbered squares with increasing quantities of opaque pigment. The plate to be tested was placed in contact with this, and an exposure made to light emanating from a tablet of luminous paint, excited by burning magnesium ribbon. After development and fixation the last number visible was taken as the speed of the plate. The chief objections to this method were that practically no two numbered tablets agreed, that the pigment possessed selective spectral absorption, and that the luminosity of the tablet varied considerably with the lapse of time between its excitation and the exposure of the plate. […] Chapman Jones has introduced a modified Warnerke tablet containing a series of twenty-five graduated densities, a series of coloured squares, and a strip of neutral grey, all five being of approximately equal luminosity, and a series of four squares passing a definite portion of the spectrum; finally, there is a square of a line design, over which is superposed a half-tone negative. This "plate tester", […] is used with a standard candle as the source of light, and is useful for rough tests of both plates and printing papers.')
  4. ^ Hasluck, Paul Nooncree (1905). The Book of Photography: Practical, Theoretical and Applied. THE CHAPMAN JONES PLATE TESTER. A convenient means of testing the colour rendering and other properties of a sensitive plate, or for ascertaining the effect of various colour screens, is afforded by the plate tester devised by Mr. Chapman Jones in 1900. This consists of a number of graduated squares by which the sensitiveness and range of gradation of the plate examined may be determined; a series of squares of different colours and mixtures of colours of equal visual intensity, which will indicate the colour sensitiveness; and a strip of uncoloured space for comparison purposes. It is simply necessary to expose the plate being tested, in contact with the screen, to the light of a standard candle. A suitable frame and stand are supplied for the purpose; any other light may, however, be used if desired. The plate is then developed, when an examination of the negative will yield the desired information. The idea of the coloured squares is based on that of the Abney Colour Sensitometer, where three or four squares of coloured and one of uncoloured glass are brought to an equal visual intensity by backing where necessary with squares of exposed celluloid film developed to suitable density.
  5. ^ a b c Lindsay, Arthur (1961). Sowerby, MacRae (ed.). Dictionary of Photography: A Reference Book for Amateur and Professional Photographers (19th ed.). London, UK: Iliffe Books Ltd. pp. 582–589.
  6. ^ Konovalov, Leonid (2007). Characteristic curve (PDF). Moscow: Всероссийский государственный институт кинематографии (ВГИК). p. 24. Retrieved 2012-11-09.
  7. ^ a b Riat, Martin (Spring 2006). Graphische Techniken – Eine Einführung in die verschiedenen Techniken und ihre Geschichte (PDF) (E-Book) (in German) (3rd German ed.). Burriana., based on a Spanish book: Riat, Martin (September 1983). Tecniques Grafiques: Una Introduccio a Les Diferents Tecniques I a La Seva Historia (in Spanish) (1st ed.). Aubert. ISBN 84-86243-00-9.
  8. ^ a b c Sheppard, Samuel Edward (February 1932). Harris, Sylvan (ed.). "Resumé of the Proceedings of the Dresden International Photographic Congress". Journal of the Society of Motion Picture Engineers. Society of Motion Picture Engineers (SMPE). XVIII (2): 232–242. […] The 8th International Congress of Photography was held at Dresden, Germany, from [3 to 8] August […] 1931, inclusive. […] In regard to sensitometric standardization, several important developments occurred. First, the other national committees on sensitometric standardization accepted the light source and filter proposed by the American Committee at Paris, 1925, and accepted by the British in 1928. In the meantime, no definite agreement had been reached, nor indeed had very definite proposals been made on the subjects of sensitometers or exposure meters, development, density measurement, and methods of expressing sensitometric results, although much discussion and controversy on this subject had taken place. At the present Congress, a body of recommendations for sensitometric standards was put forward by the Deutschen Normenausschusses [für] Phototechnik, which endeavored to cover the latter questions and bring the subject of sensitometric standardization into the industrial field. It was stated by the German committee that this action had been forced on them by difficulties arising from indiscriminate and uncontrolled placing of speed numbers on photographic sensitive goods, a situation which was summarized at the Congress by the term "Scheiner-inflation". The gist of these recommendations was as follows: (a) Acceptance of the light source and daylight filter as proposed by the American commission. (b) As exposure meter, a density step-wedge combined with a drop shutter accurate to 1/20 second. (c) Brush development in a tray with a prescribed solution of metol-hydroquinone according to a so-called "optimal" development. (d) Expression of the sensitivity by that illumination at which a density of 0.1 in excess of fog is reached. (e) Density measurement shall be carried out in diffused light according to details to be discussed later. These proposals aroused a very lively discussion. The American and the British delegations criticized the proposals both as a whole and in detail. As a whole they considered that the time was not ripe for application of sensitometric standards to industrial usage. In matters of detail they criticized the proposed employment of a step-wedge, and the particular sensitivity number proposed. The latter approaches very roughly the idea of an exposure for minimum gradient, but even such a number is not adequate for certain photographic uses of certain materials. The upshot of the discussion was that the German proposals in somewhat modified form are to be submitted simply as proposals of the German committee for sensitometric standardization to the various national committees for definite expression of opinion within six months of the expiration of the Congress. Further, in case of general approval of these recommendations by the other national committees, that a small International Committee on Sensitometric Standardization shall, within a further period of six months, work out a body of sensitometric practices for commercial usage.
  9. ^ Biltz, Martin (October 1933). "Über DIN-Grade, das neue deutsche Maß der photographischen Empfindlichkeit". Naturwissenschaften (in German). Springer. 21 (41): 734–736. doi:10.1007/BF01504271. ISSN 0028-1042. S2CID 31974234. […] Im folgenden soll an Hand der seither gebräuchlichen sensitometrischen Systeme nach Scheiner […], nach Hurter und Driffield […] und nach Eder und Hecht [de] […] kurz gezeigt werden, wie man bisher verfahren ist. Im Anschlusse daran wird das neue vom Deutschen Normenausschusse für Phototechnik auf Empfehlung des Ausschusses für Sensitometrie der Deutschen Gesellschaft für photographische Forschung vorgeschlagene System […] betrachtet werden. […]
  10. ^ Heisenberg, Erwin [in German] (December 1930). "Mitteilungen aus verschiedenen Gebieten – Bericht über die Gründung und erste Tagung der Deutschen Gesellschaft für photographische Forschung (23. bis 25. Mai 1930)". Naturwissenschaften (in German). Springer. 18 (52): 1130–1131. doi:10.1007/BF01492990. ISSN 0028-1042. S2CID 42242680. […] Weitere 3 Vorträge von Prof. Dr. R. Luther [de], Dresden, Prof. Dr. Lehmann, Berlin, Prof. Dr. Pirani, Berlin, behandelten die Normung der sensitometrischen Methoden. Zu normen sind: die Lichtquelle, die Art der Belichtung (zeitliche oder Intensitätsabstufung), die Entwicklung, die Auswertung. Auf den Internationalen Kongressen in Paris 1925 und London 1928 sind diese Fragen schon eingehend behandelt und in einzelnen Punkten genaue Vorschläge gemacht worden. Die Farbtemperatur der Lichtquelle soll 2360° betragen. Vor dieselbe soll ein Tageslichtfilter, welches vom Bureau of Standards ausgearbeitet worden ist, geschaltet werden. Herr Luther hat an der Filterflüssigkeit durch eigene Versuche gewisse Verbesserungen erzielt. Schwierigkeiten bereitet die Konstanthaltung der Farbtemperatur bei Nitralampen. Herr Pirani schlug deshalb in seinem Vortrag die Verwendung von Glimmlampen vor, deren Farbe von der Stromstärke weitgehend unabhängig ist. In der Frage: Zeit- oder Intensitätsskala befürworten die Herren Luther und Lehmann die Intensitätsskala. Herr Lehmann behandelte einige Fragen, die mit der Herstellung der Intensitätsskala zusammenhängen. Ausführlicher wurde noch die Auswertung (zahlenmäßige Angabe der Empfindlichkeit und Gradation) besprochen, die eine der wichtigsten Fragen der Sensitometrie darstellt. In der Diskussion wurde betont, daß es zunächst nicht so sehr auf eine wissenschaftlich erschöpfende Auswertung ankomme als darauf, daß die Empfindlichkeit der Materialien in möglichst einfacher, aber eindeutiger und für den Praktiker ausreichender Weise charakterisiert wird. […]
  11. ^ a b Voss, Waltraud (2002-03-12). (PDF). Dresdner UniversitätsJournal (in German). 13 (5): 7. Archived from the original (PDF) on 2011-09-17. Retrieved 2011-08-06. Luther [de] war Mitglied des Komitees zur Veranstaltung internationaler Kongresse für wissenschaftliche und angewandte Photographie; die Kongresse 1909 und 1931 in Dresden hat er wesentlich mit vorbereitet. 1930 gehörte er zu den Mitbegründern der Deutschen Gesellschaft für Photographische Forschung. Er gründete und leitete den Ausschuss für Sensitometrie der Gesellschaft, aus dessen Tätigkeit u.a. das DIN-Verfahren zur Bestimmung der Empfindlichkeit photographischer Materialien hervorging. […]
  12. ^ a b Buckland, Michael Keeble (2008). "The Kinamo movie camera, Emanuel Goldberg and Joris Ivens" (PDF). Film History (Preprint ed.). 20 (1): 49–58. doi:10.2979/FIL.2008.20.1.49. S2CID 194951687. Ivens returned to Dresden in August 1931 to attend the VIII International Congress of Photography, organised by Goldberg; John Eggert [de], head of research at the Agfa plant in Wolfen, near Leipzig; and Robert Luther [de], the founding Director of the Institute for Scientific Photography at the Technical University in Dresden and Goldberg's dissertation advisor. The proceedings were heavily technical and dominated by discussion of the measurement of film speeds. The Congress was noteworthy because a film speed standard proposed by Goldberg and Luther was approved and, in Germany, became DIN 4512, […]
  13. ^ Eggert, John Emil Max [in German]; von Biehler, Arpad, eds. (1932). "Bericht über den VIII. Internationalen Kongreß für wissenschaftliche und angewandte Photographie Dresden 1931" (in German). Leipzig: Johann Ambrosius Barth Verlag. {{cite journal}}: Cite journal requires |journal= (help)
  14. ^ Benser, Walther (1957). Wir photographieren farbig (in German). Europäischer Buchklub. p. 10.
  15. ^ a b c ISO 6:1993: Photography – Black-and-white pictorial still camera negative film/process systems – Determination of ISO speed.
  16. ^ a b ISO 2240:2003: Photography – Colour reversal camera films – Determination of ISO speed.
  17. ^ a b ISO 5800:1987: Photography – Colour negative films for still photography – Determination of ISO speed.
  18. ^ Mulhern, Charles J. (1990-06-15). Letter to John D. de Vries (Copyscript on John D. de Vries' web-site). Archived from the original on 2013-01-03. In 1931, Edward Faraday Weston applied for a U.S patent on the first Weston Exposure meter, which was granted patent No. 2016469 on [8] October 1935, also an improved version was applied for and granted U.S patent No. 2042665 on [7th} July 1936. From 1932 to around 1967, over 36 varieties of Weston Photographic Exposure Meters were produced in large quantities and sold throughout the world, mostly by Photographic dealers or agents, which also included the Weston film speed ratings, as there were no ASA or DIN data available at that time. {{cite book}}: External link in |quote= (help)
  19. ^ Goodwin, William Nelson Jr. (August 1938). "Weston emulsion speed ratings: What they are and how they are determined". American Photographer. (4 pages)
  20. ^ Roseborough, Everett (1996). "The Contributions of Edward W. Weston and his company". Photographic Canadiana. 22 (3).
  21. ^ Tipper, Martin. "Weston — The company and the man". www.westonmeter.org.uk, a web-page on Weston exposure meters. […] the Weston method of measuring film speeds. While it had some shortcomings it had the advantage of being based on a method which gave practical speeds for actual use and it was independent of any film manufacturer. Previous speed systems such as the H&D and early Scheiner speeds were both threshold speeds and capable of considerable manipulation by manufacturers. Weston's method measured the speed well up on the curve making it more nearly what one would get in actual practice. (This means that he was a bit less optimistic about film sensitivity than the manufacturers of the day who were notorious for pretending their films were more sensitive than they really were.) A certain Mr. W. N. Goodwin of Weston is usually credited with this system.
  22. ^ Hefley, Harold M. (1951). "A method of calculating exposures for photomicrographs" (PDF). Arkansas Academy of Science Journal. Fayetteville, USA: University of Arkansas (4). (NB. Research paper on an exposure system for micro-photography based on a variation of Weston film speed ratings.)
  23. ^ Weston film ratings — Weston system of emulsion ratings (Booklet, 16 pages). Newark, USA: Weston. 1946. You cannot necessarily depend on Weston speed values from any other source unless they are marked "OFFICIAL WESTON SPEEDS BY AGREEMENT WITH THE WESTON ELECTRICAL INSTRUMENT CORPORATION"
  24. ^ a b c Weston ratings (Booklet, 20 pages). Enfield, UK: Sangamo Weston. 1956. WESTON RATINGS—Correct exposure depends on two variables: (1) the available light and (2) its effect on the film in use. WESTON have always considered these two to be of equal importance and therefore introduced their own system of film ratings. Subsequently this system was found to be so successful that it was widely accepted in photographic circles and formed the basis for internationally agreed standards.
  25. ^ GW-68. Manual. USA: General Electric. GES-2810. (The manual states that ASA was working on standardized values, but none had been established at this time.)
  26. ^ a b c General Electric Film Values (Leaflet, 12 pages). USA: General Electric. 1947. General Electric publication code GED-744. This General Electric Film Value Booklet contains the […] exposure-index numbers for […] photographic films in accordance with the new system for rating photographic films that has been devised by the American Standards Association. This system has been under development for several years and is the result of co-operative effort on the part of all the film manufacturers, meter manufacturers, the Optical Society of America, and the Bureau of Standards. It was used by all of the military services during the war. The new ASA exposure-index numbers provide the photographer with the most accurate film-rating information that has yet been devised. The G-E exposure meter uses the ASA exposure-index numbers, not only in the interest of standardization, but also because this system represents a real advancement in the field of measurement. The exposure-index number have been so arranged that all earlier model G-E meters can be used with this series of numbers. For some films the values are exactly the same; and where differences exist, the new ASA exposure-index value will cause but a slight increase in exposure. However […] a comparison of the new ASA exposure-index numbers and the G-E film values is shown […] A complete comparison of all systems of emulsion speed values can be found in the G-E Photo Data Book. […] All G-E meters manufactured after January, 1946, utilize the ASA exposure indexes. Although the new ASA values can be used with all previous model G-E meters, interchangeable calculator-hoods with ASA exposure indexes are available for Types DW-48, DW-49, and DW-58 meters.
  27. ^ General Electric Photo Data Book. General Electric. GET-I717.
  28. ^ General Electric (1946). "Attention exposure meter owners" (Advertisement). Attention! Exposure meter owners! Modernizing Hood $3.50 […] Modernize your G-E meter (Type DW-48 or early DW-58) with a new G-E Hood. Makes it easy to use the new film-exposure ratings developed by the American Standards Association … now the only basis for data published by leading film makers. See your photo dealer and snap on a new G-E hood! General Electric Company, Schenectady 5, N.Y. {{cite journal}}: Cite journal requires |journal= (help)
  29. ^ a b Gorokhovskiy, Yu. N. (1970). Fotograficheskaya metrologiya. Uspekhi Nauchnoy Fotografii (Advances in Scientific Photography) (in Russian). 15: 183–195. (English translation: Photographic Metrology (PDF) (NASA Technical Translation II F-13,921, National Aeronautics and Space Administration, Washington, D.C. 20546). November 1972.)
  30. ^ . Archived from the original on 2011-10-11. Retrieved 2011-08-07. (GOST 2817-45 was replaced by GOST 2817-50, which in turn was replaced by GOST 10691.6–88, which defines black-and-white films, whereas GOST 10691.5–88 defines black-and-white films for aerial photography.)
  31. ^ Stroebel, Leslie D.; Zakia, Richard D. (1993). The Focal Encyclopedia of Photography (3rd ed.). Focal Press. p. 304. ISBN 978-0-240-51417-8.
  32. ^ завод [Zavod], Красногорский [Krasnogorskiy]. "Questions and answers: Film speeds" (in Russian). Retrieved 2011-08-06.
  33. ^ . Archived from the original on 2012-01-12. Retrieved 2011-08-09.
  34. ^ . Archived from the original on 2012-01-12. Retrieved 2011-08-09.
  35. ^ . Archived from the original on 2012-01-12. Retrieved 2011-08-09.
  36. ^ a b c d "ISO 12232:2019 — Photography — Digital still cameras — Determination of exposure index, ISO speed ratings, standard output sensitivity, and recommended exposure index". International Organization for Standardization (ISO). February 2019.
  37. ^ a b Gasiorowski-Denis, Elizabeth (2019-03-07). "A better picture: International Standard gives photography a new exposure". International Organization for Standardization (ISO). Archived from the original on 2019-06-09. Retrieved 2019-06-09.{{cite web}}: CS1 maint: bot: original URL status unknown (link)
  38. ^ a b Jacobson, Ralph E.; Ray, Sidney F.; Attridge, Geoffrey G.; Axford, Norman R. (2000). The manual of photography (9th ed.). Focal Press. pp. 305–307. ISBN 978-0-240-51574-8.
  39. ^ Graves, Carson (1996). The zone system for 35mm photographers. Focal Press. p. 124. ISBN 978-0-240-80203-9.
  40. ^ (paid download). Geneva: International Organization for Standardization (ISO). Archived from the original on 2008-08-07.
  41. ^ a b c d e f "Leica R9 Bedienungsanleitung / Instructions" (PDF) (in German and English). Solms, Germany: Leica Camera AG. 2002. p. 197. Leica publication 930 53 VII/03/GX/L. Retrieved 2011-07-30. Film speed range: Manual setting from ISO 6/9° to ISO 12500/42° (with additional exposure compensation of up to ±3 EV, overall films from ISO 0.8/0° to ISO 100000/51° can be exposed), DX scanning from ISO 25/15° to ISO 5000/38°.
  42. ^ a b c d e f Leica Instructions – Leica R8. Solms, Germany: Leica Camera AG. 1996. pp. 16, 65. The DX-setting for automatic speed scanning appears after the position "12800" […] Film speed range: Manual setting from ISO 6/9° to ISO 12,800/42° (With additional override of −3 EV to +3 EV, films from 0 DIN to 51 DIN can be exposed as well.) DX scanning from ISO 25/15° to ISO 5000/38°.
  43. ^ a b "KODAK PROFESSIONAL T-MAX Films" (PDF). wwwuk.kodak.com. Kodak. Retrieved 2018-10-07.
  44. ^ a b "KODAK PROFESSIONAL T-MAX P3200 Black & White Negative Film" (PDF). imaging.kodakalaris.com. Kodak Alaris. Retrieved 2018-10-07.
  45. ^ a b c "Table 2". ASA PH2.12-1961. p. 9. (NB. Showed (but did not specify) a speed of 12500 as the next full step greater than 6400.)
  46. ^ a b c d e f g h i j "Boosting Sensitivity". Phantom/Ametek. Notes/Alerts. Wayne, NJ, USA: Vision Research. April 2016. Retrieved 2019-06-09.
  47. ^ a b "Additional Information on: Canon FT QL Camera". Canon. Acceptable film speed has been increased to a range of between ASA 25 and an incredible ASA 12,800 by the use of the CANON BOOSTER. The light-measuring range of the newly developed CANON FT QL has been extended from a low of EV −3.5, f/1.2 15 seconds to EV 18 with ASA 100 film. This is the first time a TTL camera has been capable of such astonishing performance.
  48. ^ a b Canon A-1 Instructions. Canon. 1978. pp. 28, 29, 46, 70, 98.
  49. ^ a b c d e . Nikon USA Web page. Archived from the original on 2012-04-06. Retrieved 2010-01-11.
  50. ^ a b c d e . Canon USA Web page. Archived from the original on 2017-01-06. Retrieved 2010-01-11.
  51. ^ a b . Canon USA Web page. Archived from the original on 2014-05-08. Retrieved 2011-10-01.
  52. ^ a b "Nikon D4". Nikon. Retrieved 2012-01-06.
  53. ^ a b "Ricoh Pentax 645Z specifications".
  54. ^ a b "Nikon D4s specifications".
  55. ^ a b "Sony α ILCE-7S specifications".
  56. ^ a b c "Unsichtbares wird sichtbar! Canon präsentiert die ME20F-SH für Full-HD Farbvideos bei extrem wenig Licht". Press release (in German). Canon Deutschland. 2015-07-30. Retrieved 2015-07-30.
  57. ^ "iNocturn: combining the best of image intensifier tube and low light camera". Photonis. Retrieved 2022-03-25.
  58. ^ "DSLR-A500/DSLR-A550". Sony Europe Web page. 2009-08-27. Retrieved 2011-07-30. Dramatically reduced picture noise now allows super-sensitive shooting at up to ISO 12800, allowing attractive results when shooting handheld in challenging situations like candlelit interiors.
  59. ^ . Sony Europe Web page. 2010-08-27. Archived from the original on 2010-08-30. Retrieved 2011-07-30. Multi-frame Noise Reduction 'stacks' a high-speed burst of six frames, creating a single low-noise exposure that boosts effective sensitivity as high as ISO 25600.
  60. ^ . Pentax USA Web page. 2010. Archived from the original on 2010-12-06. Retrieved 2011-07-29. ISO Sensitivity: ISO 100-12800 (1, 1/2, 1/3 steps), expandable to ISO 80–51200
  61. ^ "Fuji FinePix X100". Fujifilm Canada Web page. February 2011. Retrieved 2011-07-30. Extended output sensitivity equivalent ISO 100 or 12800
  62. ^ a b 戴淮清 《摄影入门》 (in Simplified Chinese). Singapore. 1952.
  63. ^ Lambrecht, Ralph W.; Woodhouse, Chris (2003). Way Beyond Monochrome. Newpro UK Ltd. p. 113. ISBN 978-0-86343-354-2.
  64. ^ "Kodak Tech Pub E-58: Print Grain Index". Eastman Kodak, Professional Division. July 2000.
  65. ^ "Delta 3200 Professional – technical information". ilfordphoto.com. Harman Technology. May 2010. Retrieved 2018-05-03.
  66. ^ "Fact Sheet, Delta 3200 Professional" (PDF). Knutsford, U.K.: Ilford Photo.
  67. ^ a b c d e f . Geneva: International Organization for Standardization (ISO). Archived from the original on 2008-08-07.
  68. ^ (PDF). Tokyo: Camera & Imaging Products Association (CIPA). Archived from the original (PDF) on 2012-04-17. Retrieved 2008-06-15.
  69. ^ "Kodak Image Sensors – ISO Measurement" (PDF). Rochester, NY, USA: Eastman Kodak.
  70. ^ "Exchangeable image file format for digital still cameras: Exif Version 2.3" (PDF). CIPA. Retrieved 2014-12-05.
  71. ^ Kerr, Douglas A. (2007-08-30). "New Measures of the Sensitivity of a Digital Camera" (PDF).
  72. ^ ISO 12232:1998. Photography — Electronic still-picture cameras — Determination of ISO speed. p. 12.
  73. ^ "D200 Users manual" (PDF). Nikon. Retrieved 2015-09-20.

Further reading

  • ISO 6:1974, ISO 6:1993 (1993-02). Photography — Black-and-white pictorial still camera negative film/process systems — Determination of ISO speed. Geneva: International Organization for Standardization.
  • ISO 2240:1982 (1982-07), ISO 2240:1994 (1994-09), ISO 2240:2003 (2003–10). Photography — Colour reversal camera films — Determination of ISO speed. Geneva: International Organization for Standardization.
  • ISO 2720:1974. General Purpose Photographic Exposure Meters (Photoelectric Type) — Guide to Product Specification. Geneva: International Organization for Standardization.
  • ISO 5800:1979, ISO 5800:1987 (1987-11), ISO 5800:1987/Cor 1:2001 (2001-06). Photography — Colour negative films for still photography — Determination of ISO speed. Geneva: International Organization for Standardization.
  • ISO 12232:1998 (1998-08), ISO 12232:2006 (2006-04-15), ISO 12232:2006 (2006-10-01), ISO 12232:2019 (2019-02-01). Photography — Digital still cameras — Determination of exposure index, ISO speed ratings, standard output sensitivity, and recommended exposure index. Geneva: International Organization for Standardization.
  • ASA Z38.2.1-1943, ASA Z38.2.1-1946, ASA Z38.2.1-1947 (1947-07-15). American Standard Method for Determining Photographic Speed and Speed Number. New York: American Standards Association. Superseded by ASA PH2.5-1954.
  • ASA PH2.5-1954, ASA PH2.5-1960. American Standard Method for Determining Speed of photographic Negative Materials (Monochrome, Continuous Tone). New York: United States of America Standards Institute (USASI). Superseded by ANSI PH2.5-1972.
  • ANSI PH2.5-1972, ANSI PH2.5-1979 (1979-01-01), ANSI PH2.5-1979(R1986). Speed of photographic negative materials (monochrome, continuous tone, method for determining). New York: American National Standards Institute. Superseded by NAPM IT2.5-1986.
  • NAPM IT2.5-1986, ANSI/ISO 6-1993 ANSI/NAPM IT2.5-1993 (1993-01-01). Photography — Black-and-White Pictorial Still Camera Negative Film/Process Systems — Determination of ISO Speed (same as ANSI/ISO 6-1993). National Association of Photographic Manufacturers. This represents the US adoption of ISO 6.
  • ASA PH2.12-1957, ASA PH2.12-1961. American Standard, General-Purpose Photographic Exposure Meters (photoelectric type). New York: American Standards Association. Superseded by ANSI PH3.49-1971.
  • ANSI PH2.21-1983 (1983-09-23), ANSI PH2.21-1983(R1989). Photography (Sensitometry) Color reversal camera films – Determination of ISO speed. New York: American Standards Association. Superseded by ANSI/ISO 2240-1994 ANSI/NAPM IT2.21-1994.
  • ANSI/ISO 2240-1994 ANSI/NAPM IT2.21-1994. Photography – Colour reversal camera films – determination of ISO speed. New York: American National Standards Institute. This represents the US adoption of ISO 2240.
  • ASA PH2.27-1965 (1965-07-06), ASA PH2.27-1971, ASA PH2.27-1976, ANSI PH2.27-1979, ANSI PH2.27-1981, ANSI PH2.27-1988 (1988-08-04). Photography – Colour negative films for still photography – Determination of ISO speed (withdrawn). New York: American Standards Association. Superseded by ANSI IT2.27-1988.
  • ANSI IT2.27-1988 (1994-08/09?). Photography Color negative films for still photography – Determination of ISO speed. New York: American National Standards Institute. Withdrawn. This represented the US adoption of ISO 5800.
  • ANSI PH3.49-1971, ANSI PH3.49-1971(R1987). American National Standard for general-purpose photographic exposure meters (photoelectric type). New York: American National Standards Institute. After several revisions, this standard was withdrawn in favor of ANSI/ISO 2720:1974.
  • ANSI/ISO 2720:1974, ANSI/ISO 2720:1974(R1994) ANSI/NAPM IT3.302-1994. General Purpose Photographic Exposure Meters (Photoelectric Type) — Guide to Product Specification. New York: American National Standards Institute. This represents the US adoption of ISO 2720.
  • BSI BS 1380:1947, BSI BS 1380:1963. Speed and exposure index. British Standards Institution. Superseded by BSI BS 1380-1:1973 (1973-12), BSI BS 1380-2:1984 (1984-09), BSI BS 1380-3:1980 (1980-04) and others.
  • BSI BS 1380-1:1973 2011-10-09 at the Wayback Machine (1973-12-31). Speed of sensitized photographic materials: Negative monochrome material for still and cine photography. British Standards Institution. Replaced by BSI BS ISO 6:1993, superseded by BSI BS ISO 2240:1994.
  • BSI BS 1380-2:1984 ISO 2240:1982 2011-10-09 at the Wayback Machine (1984-09-28). Speed of sensitized photographic materials. Method for determining the speed of colour reversal film for still and amateur cine photography. British Standards Institution. Superseded by BSI BS ISO 2240:1994.
  • BSI BS 1380-3:1980 ISO 5800:1979 2011-10-09 at the Wayback Machine (1980-04-30). Speed of sensitized photographic materials. Colour negative film for still photography. British Standards Institution. Superseded by BSI BS ISO 5800:1987.
  • BSI BS ISO 6:1993 2011-10-09 at the Wayback Machine (1995-03-15). Photography. Black-and-white pictorial still camera negative film/process systems. Determination of ISO speed. British Standards Institution. This represents the British adoption of ISO 6:1993.
  • BSI BS ISO 2240:1994 2011-10-09 at the Wayback Machine (1993-03-15), BSI BS ISO 2240:2003 2011-10-09 at the Wayback Machine (2004-02-11). Photography. Colour reversal camera films. Determination of ISO speed. British Standards Institution. This represents the British adoption of ISO 2240:2003.
  • BSI BS ISO 5800:1987 2011-10-09 at the Wayback Machine (1995-03-15). Photography. Colour negative films for still photography. Determination of ISO speed. British Standards Institution. This represents the British adoption of ISO 5800:1987.
  • DIN 4512:1934-01, DIN 4512:1957-11 (Blatt 1), DIN 4512:1961-10 (Blatt 1). Photographische Sensitometrie, Bestimmung der optischen Dichte. Berlin: Deutscher Normenausschuß (DNA). Superseded by DIN 4512-1:1971-04, DIN 4512-4:1977-06, DIN 4512-5:1977-10 and others.
  • DIN 4512-1:1971-04, DIN 4512-1:1993-05. Photographic sensitometry; systems of black and white negative films and their process for pictorial photography; determination of speed. Berlin: Deutsches Institut für Normung (before 1975: Deutscher Normenausschuß (DNA)). Superseded by DIN ISO 6:1996-02.
  • DIN 4512-4:1977-06, DIN 4512-4:1985-08. Photographic sensitometry; determination of the speed of colour reversal films. Berlin: Deutsches Institut für Normung. Superseded by DIN ISO 2240:1998-06.
  • DIN 4512-5:1977-10, DIN 4512-5:1990-11. Photographic sensitometry; determination of the speed of colour negative films. Berlin: Deutsches Institut für Normung. Superseded by DIN ISO 5800:1998-06.
  • DIN ISO 6:1996-02. Photography – Black-and-white pictorial still camera negative film/process systems – Determination of ISO speed (ISO 6:1993). Berlin: Deutsches Institut für Normung. This represents the German adoption of ISO 6:1993.
  • DIN ISO 2240:1998-06, DIN ISO 2240:2005-10. Photography – Colour reversal camera films – Determination of ISO speed (ISO 2240:2003). Berlin: Deutsches Institut für Normung. This represents the German adoption of ISO 2240:2003.
  • DIN ISO 5800:1998-06, DIN ISO 5800:2003-11. Photography – Colour negative films for still photography – Determination of ISO speed (ISO 5800:1987 + Corr. 1:2001). Berlin: Deutsches Institut für Normung. This represents the German adoption of ISO 5800:2001.
  • Leslie B. Stroebel, John Compton, Ira Current, Richard B. Zakia. Basic Photographic Materials and Processes, second edition. Boston: Focal Press, 2000. ISBN 0-240-80405-8.

External links

  • What is the meaning of ISO for digital cameras? Digital Photography FAQ
  • Signal-dependent noise modeling, estimation, and removal for digital imaging sensors

film, speed, confused, with, frame, rate, slow, film, redirects, here, genre, films, slow, cinema, measure, photographic, film, sensitivity, light, determined, sensitometry, measured, various, numerical, scales, most, recent, being, system, closely, related, s. Not to be confused with frame rate Slow film redirects here For the genre of films see slow cinema Film speed is the measure of a photographic film s sensitivity to light determined by sensitometry and measured on various numerical scales the most recent being the ISO system A closely related ISO system is used to describe the relationship between exposure and output image lightness in digital cameras Relatively insensitive film with a correspondingly lower speed index requires more exposure to light to produce the same image density as a more sensitive film and is thus commonly termed a slow film Highly sensitive films are correspondingly termed fast films In both digital and film photography the reduction of exposure corresponding to use of higher sensitivities generally leads to reduced image quality via coarser film grain or higher image noise of other types In short the higher the sensitivity the grainier the image will be Ultimately sensitivity is limited by the quantum efficiency of the film or sensor This film container denotes its speed as ISO 100 21 including both arithmetic 100 ASA and logarithmic 21 DIN components The second is often dropped making e g ISO 100 effectively equivalent to the older ASA speed As is common the 100 in the film name alludes to its ISO rating Contents 1 Film speed measurement systems 1 1 Historical systems 1 1 1 Warnerke 1 1 2 Hurter amp Driffield 1 1 3 Scheiner 1 1 4 DIN 1 1 5 BSI 1 1 6 Weston 1 1 7 General Electric 1 1 8 ASA 1 1 9 GOST 1 2 Current system ISO 1 3 Conversion between current scales 1 4 Historic ASA and DIN conversion 1 5 Determining film speed 1 6 Applying film speed 1 7 Exposure index 2 Reciprocity 3 Film sensitivity and grain 3 1 Marketing anomalies 4 Digital camera ISO speed and exposure index 4 1 The ISO International Organization of Standards 12232 2019 standard 4 2 Measurements and calculations 4 2 1 Saturation based speed 4 2 2 Noise based speed 4 2 3 Standard output sensitivity SOS 4 2 4 Discussion 5 See also 6 References 7 Further reading 8 External linksFilm speed measurement systems EditHistorical systems Edit Warnerke Edit The first known practical sensitometer which allowed measurements of the speed of photographic materials was invented by the Polish engineer Leon Warnerke 1 pseudonym of Wladyslaw Malachowski 1837 1900 in 1880 among the achievements for which he was awarded the Progress Medal of the Photographic Society of Great Britain in 1882 2 3 It was commercialized since 1881 The Warnerke Standard Sensitometer consisted of a frame holding an opaque screen with an array of typically 25 numbered gradually pigmented squares brought into contact with the photographic plate during a timed test exposure under a phosphorescent tablet excited before by the light of a burning magnesium ribbon 3 The speed of the emulsion was then expressed in degrees Warnerke sometimes seen as Warn or W corresponding with the last number visible on the exposed plate after development and fixation Each number represented an increase of 1 3 in speed typical plate speeds were between 10 and 25 Warnerke at the time His system saw some success but proved to be unreliable 1 due to its spectral sensitivity to light the fading intensity of the light emitted by the phosphorescent tablet after its excitation as well as high built tolerances 3 The concept however was later built upon in 1900 by Henry Chapman Jones 1855 1932 in the development of his plate tester and modified speed system 3 4 Hurter amp Driffield Edit Another early practical system for measuring the sensitivity of an emulsion was that of Hurter and Driffield H amp D originally described in 1890 by the Swiss born Ferdinand Hurter 1844 1898 and British Vero Charles Driffield 1848 1915 In their system speed numbers were inversely proportional to the exposure required For example an emulsion rated at 250 H amp D would require ten times the exposure of an emulsion rated at 2500 H amp D 5 The methods to determine the sensitivity were later modified in 1925 in regard to the light source used and in 1928 regarding light source developer and proportional factor this later variant was sometimes called H amp D 10 The H amp D system was officially 6 accepted as a standard in the former Soviet Union from 1928 until September 1951 when it was superseded by GOST 2817 50 Scheiner Edit The Scheinergrade Sch system was devised by the German astronomer Julius Scheiner 1858 1913 in 1894 originally as a method of comparing the speeds of plates used for astronomical photography Scheiner s system rated the speed of a plate by the least exposure to produce a visible darkening upon development Speed was expressed in degrees Scheiner originally ranging from 1 Sch to 20 Sch where an increment of 19 Sch corresponded to a hundredfold increase in sensitivity which meant that an increment of 3 Sch came close to a doubling of sensitivity 5 7 100 19 3 2 06914 2 displaystyle sqrt 19 100 3 2 06914 approx 2 The system was later extended to cover larger ranges and some of its practical shortcomings were addressed by the Austrian scientist Josef Maria Eder 1855 1944 1 and Flemish born botanist Walter Hecht de 1896 1960 who in 1919 1920 jointly developed their Eder Hecht neutral wedge sensitometer measuring emulsion speeds in Eder Hecht grades Still it remained difficult for manufacturers to reliably determine film speeds often only by comparing with competing products 1 so that an increasing number of modified semi Scheiner based systems started to spread which no longer followed Scheiner s original procedures and thereby defeated the idea of comparability 1 8 Scheiner s system was eventually abandoned in Germany when the standardized DIN system was introduced in 1934 In various forms it continued to be in widespread use in other countries for some time DIN Edit The DIN system officially DIN standard 4512 by the Deutsches Institut fur Normung then known as the Deutscher Normenausschuss DNA was published in January 1934 It grew out of drafts for a standardized method of sensitometry put forward by the Deutscher Normenausschuss fur Phototechnik 8 as proposed by the committee for sensitometry of the Deutsche Gesellschaft fur photographische Forschung 9 since 1930 10 11 and presented by Robert Luther de 11 12 1868 1945 and Emanuel Goldberg 12 1881 1970 at the influential VIII International Congress of Photography German Internationaler Kongress fur wissenschaftliche und angewandte Photographie held in Dresden from 3 to 8 August 1931 8 13 The DIN system was inspired by Scheiner s system 1 but the sensitivities were represented as the base 10 logarithm of the sensitivity multiplied by 10 similar to decibels Thus an increase of 20 and not 19 as in Scheiner s system represented a hundredfold increase in sensitivity and a difference of 3 was much closer to the base 10 logarithm of 2 0 30103 7 log 10 2 0 30103 3 10 displaystyle log 10 2 0 30103 approx 3 10 A box of Agfacolor Neu with the instruction expose as 15 10 DIN in German As in the Scheiner system speeds were expressed in degrees Originally the sensitivity was written as a fraction with tenths for example 18 10 DIN 14 where the resultant value 1 8 represented the relative base 10 logarithm of the speed Tenths were later abandoned with DIN 4512 1957 11 and the example above would be written as 18 DIN 5 The degree symbol was finally dropped with DIN 4512 1961 10 This revision also saw significant changes in the definition of film speeds in order to accommodate then recent changes in the American ASA PH2 5 1960 standard so that film speeds of black and white negative film effectively would become doubled that is a film previously marked as 18 DIN would now be labeled as 21 DIN without emulsion changes Originally only meant for black and white negative film the system was later extended and regrouped into nine parts including DIN 4512 1 1971 04 for black and white negative film DIN 4512 4 1977 06 for color reversal film and DIN 4512 5 1977 10 for color negative film On an international level the German DIN 4512 system has been effectively superseded in the 1980s by ISO 6 1974 15 ISO 2240 1982 16 and ISO 5800 1979 17 where the same sensitivity is written in linear and logarithmic form as ISO 100 21 now again with degree symbol These ISO standards were subsequently adopted by DIN as well Finally the latest DIN 4512 revisions were replaced by corresponding ISO standards DIN 4512 1 1993 05 by DIN ISO 6 1996 02 in September 2000 DIN 4512 4 1985 08 by DIN ISO 2240 1998 06 and DIN 4512 5 1990 11 by DIN ISO 5800 1998 06 both in July 2002 BSI Edit This section needs expansion with details on the different BS and BSI standard variants their development over time their applications and their relation to other standards such as DIN ASA etc You can help by adding to it August 2013 The film speed scale recommended by the British Standards Institution BSI was almost identical to the DIN system except that the BS number was 10 degrees greater than the DIN number citation needed Weston Edit Weston Model 650 light meter from about 1935 Early Weston Master light meter 1935 1945 Before the advent of the ASA system the system of Weston film speed ratings was introduced by Edward Faraday Weston 1878 1971 and his father Dr Edward Weston 1850 1936 a British born electrical engineer industrialist and founder of the US based Weston Electrical Instrument Corporation 18 with the Weston model 617 one of the earliest photo electric exposure meters in August 1932 The meter and film rating system were invented by William Nelson Goodwin Jr 19 20 who worked for them 21 and later received a Howard N Potts Medal for his contributions to engineering The company tested and frequently published speed ratings for most films of the time Weston film speed ratings could since be found on most Weston exposure meters and were sometimes referred to by film manufacturers and third parties 22 in their exposure guidelines Since manufacturers were sometimes creative about film speeds the company went as far as to warn users about unauthorized uses of their film ratings in their Weston film ratings booklets 23 The Weston Cadet model 852 introduced in 1949 Direct Reading model 853 introduced 1954 and Master III models 737 and S141 3 introduced in 1956 were the first in their line of exposure meters to switch and utilize the meanwhile established ASA scale instead Other models used the original Weston scale up until ca 1955 The company continued to publish Weston film ratings after 1955 24 but while their recommended values often differed slightly from the ASA film speeds found on film boxes these newer Weston values were based on the ASA system and had to be converted for use with older Weston meters by subtracting 1 3 exposure stop as per Weston s recommendation 24 Vice versa old Weston film speed ratings could be converted into new Westons and the ASA scale by adding the same amount that is a film rating of 100 Weston up to 1955 corresponded with 125 ASA as per ASA PH2 5 1954 and before This conversion was not necessary on Weston meters manufactured and Weston film ratings published since 1956 due to their inherent use of the ASA system however the changes of the ASA PH2 5 1960 revision may be taken into account when comparing with newer ASA or ISO values General Electric Edit Prior to the establishment of the ASA scale 25 and similar to Weston film speed ratings another manufacturer of photo electric exposure meters General Electric developed its own rating system of so called General Electric film values often abbreviated as G E or GE around 1937 Film speed values for use with their meters were published in regularly updated General Electric Film Values 26 leaflets and in the General Electric Photo Data Book 27 General Electric switched to use the ASA scale in 1946 Meters manufactured since February 1946 are equipped with the ASA scale labeled Exposure Index already For some of the older meters with scales in Film Speed or Film Value e g models DW 48 DW 49 as well as early DW 58 and GW 68 variants replaceable hoods with ASA scales were available from the manufacturer 26 28 The company continued to publish recommended film values after that date however they were then aligned to the ASA scale ASA Edit Based on earlier research work by Loyd Ancile Jones 1884 1954 of Kodak and inspired by the systems of Weston film speed ratings 24 and General Electric film values 26 the American Standards Association now named ANSI defined a new method to determine and specify film speeds of black and white negative films in 1943 ASA Z38 2 1 1943 was revised in 1946 and 1947 before the standard grew into ASA PH2 5 1954 Originally ASA values were frequently referred to as American standard speed numbers or ASA exposure index numbers See also Exposure Index EI The ASA scale is a linear scale that is a film denoted as having a film speed of 200 ASA is twice as fast as a film with 100 ASA The ASA standard underwent a major revision in 1960 with ASA PH2 5 1960 when the method to determine film speed was refined and previously applied safety factors against under exposure were abandoned effectively doubling the nominal speed of many black and white negative films For example an Ilford HP3 that had been rated at 200 ASA before 1960 was labeled 400 ASA afterwards without any change to the emulsion Similar changes were applied to the DIN system with DIN 4512 1961 10 and the BS system with BS 1380 1963 in the following years In addition to the established arithmetic speed scale ASA PH2 5 1960 also introduced logarithmic ASA grades 100 ASA 5 ASA where a difference of 1 ASA represented a full exposure stop and therefore the doubling of a film speed For some while ASA grades were also printed on film boxes and they saw life in the form of the APEX speed value Sv without degree symbol as well ASA PH2 5 1960 was revised as ANSI PH2 5 1979 without the logarithmic speeds and later replaced by NAPM IT2 5 1986 of the National Association of Photographic Manufacturers which represented the US adoption of the international standard ISO 6 The latest issue of ANSI NAPM IT2 5 was published in 1993 The standard for color negative film was introduced as ASA PH2 27 1965 and saw a string of revisions in 1971 1976 1979 and 1981 before it finally became ANSI IT2 27 1988 prior to its withdrawal Color reversal film speeds were defined in ANSI PH2 21 1983 which was revised in 1989 before it became ANSI NAPM IT2 21 in 1994 the US adoption of the ISO 2240 standard On an international level the ASA system was superseded by the ISO film speed system between 1982 and 1987 however the arithmetic ASA speed scale continued to live on as the linear speed value of the ISO system GOST Edit A box of Svema film with a sensitivity of 65 GOST GOST Cyrillic GOST was an arithmetic film speed scale defined in GOST 2817 45 and GOST 2817 50 29 30 It was used in the former Soviet Union since October 1951 citation needed replacing Hurter amp Driffield H amp D Cyrillic HiD numbers 29 which had been used since 1928 citation needed GOST 2817 50 was similar to the ASA standard having been based on a speed point at a density 0 2 above base plus fog as opposed to the ASA s 0 1 31 GOST markings are only found on pre 1987 photographic equipment film cameras lightmeters etc of Soviet Union manufacture 32 On 1 January 1987 the GOST scale was realigned to the ISO scale with GOST 10691 84 33 This evolved into multiple parts including GOST 10691 6 88 34 and GOST 10691 5 88 35 which both became functional on 1 January 1991 Current system ISO Edit The ASA and DIN film speed standards have been combined into the ISO standards since 1974 The current International Standard for measuring the speed of colour negative film is ISO 5800 2001 17 first published in 1979 revised in November 1987 from the International Organization for Standardization ISO Related standards ISO 6 1993 15 first published in 1974 and ISO 2240 2003 16 first published in July 1982 revised in September 1994 and corrected in October 2003 define scales for speeds of black and white negative film and colour reversal film respectively The determination of ISO speeds with digital still cameras is described in ISO 12232 2019 first published in August 1998 revised in April 2006 corrected in October 2006 and again revised in February 2019 36 37 The ISO system defines both an arithmetic and a logarithmic scale 38 The arithmetic ISO scale corresponds to the arithmetic ASA system where a doubling of film sensitivity is represented by a doubling of the numerical film speed value In the logarithmic ISO scale which corresponds to the DIN scale adding 3 to the numerical value constitutes a doubling of sensitivity For example a film rated ISO 200 24 is twice as sensitive as one rated ISO 100 21 38 Commonly the logarithmic speed is omitted for example ISO 100 denotes ISO 100 21 39 while logarithmic ISO speeds are written as ISO 21 as per the standard Conversion between current scales Edit A Yashica FR with both ASA and DIN markings Conversion from arithmetic speed S to logarithmic speed S is given by 15 S 10 log S 1 displaystyle S circ 10 log S 1 and rounding to the nearest integer the log is base 10 Conversion from logarithmic speed to arithmetic speed is given by 40 S 10 S 1 10 displaystyle S 10 left S circ 1 right 10 and rounding to the nearest standard arithmetic speed in Table 1 below Table 1 Comparison of various film speed scales APEX Sv 1960 ISO 1974 arith log Camera mfrs 2009 ASA 1960 1987 arith DIN 1961 2002 log GOST 1951 1986 arith Example of film stockwith this nominal speed 2 0 8 0 41 0 8 0 42 1 1 1 1 1 Svema Micrat orto Astrum Micrat orto 1 2 2 1 2 2 1 1 1 6 3 1 6 3 1 4 2 4 2 4 2 2 5 5 2 5 5 2 0 3 6 3 6 2 8 Svema MZ 3 Astrum MZ 3 4 7 4 7 4 5 8 5 8 4 original three strip Technicolor1 6 9 6 9 5 5 original Kodachrome 8 10 8 10 8 Polaroid PolaBlue 10 11 10 11 8 Kodachrome 8 mm film2 12 12 12 12 11 Gevacolor 8 mm reversal film later Agfa Dia Direct 16 13 16 13 16 Agfacolor 8 mm reversal film 20 14 20 14 16 Adox CMS 203 25 15 25 15 22 old Agfacolor Kodachrome II and later Kodachrome 25 Efke 25 32 16 32 16 32 Kodak Panatomic X 40 17 40 17 32 Kodachrome 40 movie 4 50 18 50 18 45 Fuji RVP Velvia Ilford Pan F Plus Kodak Vision2 50D 5201 movie AGFA CT18 Efke 50 Polaroid type 55 64 19 64 19 65 Kodachrome 64 Ektachrome X Polaroid type 64T 80 20 80 20 65 Ilford Commercial Ortho Polaroid type 6695 100 21 100 21 90 Kodacolor Gold Kodak T MAX 100 TMX Kodak Ektar Fujichrome Provia 100F Efke 100 Fomapan Arista 100 125 22 125 22 130 Ilford FP4 Kodak Plus X Pan Svema Color 125 160 23 160 23 130 Fujicolor Pro 160C S Kodak High Speed Ektachrome Kodak Portra 160NC and 160VC6 200 24 200 24 180 Kodak Gold 200 Fujicolor Superia 200 Agfa Scala 200x Fomapan Arista 200 Wittner Chrome 200D Agfa Aviphot Chrome 200 PE1 250 25 250 25 250 Tasma Foto 250 320 26 320 26 250 Kodak Tri X Pan Professional TXP 7 400 27 400 27 350 Kodak T Max 400 TMY Kodak Tri X 400 Kodak Portra 400 Ilford HP5 Fujifilm Superia X tra 400 Fujichrome Provia 400X Fomapan Arista 400 500 28 500 28 500 Kodak Vision3 500T 5219 movie 640 29 640 29 500 Polaroid 6008 800 30 800 30 700 Fuji Pro 800Z Fuji Instax 1000 31 1000 31 1000 Ilford Delta 3200 Kodak P3200 TMAX 43 Kodak Professional T Max P3200 44 see Marketing anomalies below 1250 32 1250 32 1000 Kodak Royal X Panchromatic9 1600 33 1600 33 1400 1440 Fujicolor 1600 Fuji Natura 1600 and Superia 1600 2000 34 2000 34 2000 2500 35 2500 35 2000 10 3200 36 3200 36 2800 2880 Konica 3200 Polaroid type 667 Fujifilm FP 3000B Kodak Tmax 3200 B amp W 4000 37 37 4000 5000 38 38 4000 11 6400 39 6400 45 39 5600 8000 40 41 42 10000 41 41 42 46 12 12500 42 41 46 12800 42 47 48 49 50 12500 45 ISO speeds greater than 10000 have not been defined officially before ISO 12232 2019 36 16000 43 46 20000 44 46 Polaroid type 61213 25000 45 46 25600 49 50 32000 46 46 40000 47 46 14 50000 48 46 51200 49 50 64000 49 46 80000 50 46 15 100000 51 41 102400 49 50 51 42 Nikon D3s and Canon EOS 1D Mark IV 2009 125000 52 160000 53 16 200000 54 204800 51 52 53 Canon EOS 1D X 2011 Nikon D4 2012 Pentax 645Z 2014 250000 55 320000 56 17 400000 57 409600 54 55 Nikon D4s Sony a ILCE 7S 2014 Canon EOS 1D X Mark II 2016 500000 58 640000 59 18 800000 60 1000000 61 1250000 62 19 1600000 63 2000000 64 2500000 65 20 3200000 66 3280000 Nikon D5 2016 4000000 67 56 4560000 Canon ME20F SH 56 2015 21 104857600 Photonis INocturn 57 2021 Table notes Speeds shown in bold under APEX ISO and ASA are values actually assigned in speed standards from the respective agencies other values are calculated extensions to assigned speeds using the same progressions as for the assigned speeds APEX Sv values 1 to 10 correspond with logarithmic ASA grades 1 to 10 found in ASA PH2 5 1960 ASA arithmetic speeds from 4 to 5 are taken from ANSI PH2 21 1979 Table 1 p 8 ASA arithmetic speeds from 6 to 3200 are taken from ANSI PH2 5 1979 Table 1 p 5 and ANSI PH2 27 1979 ISO arithmetic speeds from 4 to 3200 are taken from ISO 5800 1987 Table ISO speed scales p 4 ISO arithmetic speeds from 6 to 10000 are taken from ISO 12232 1998 Table 1 p 9 ISO 12232 1998 does not specify speeds greater than 10000 However the upper limit for Snoise 10000 was given as 12500 suggesting that ISO may have envisioned a progression of 12500 25000 50000 and 100000 similar to that from 1250 to 10000 This was consistent with ASA PH2 12 1961 45 For digital cameras Nikon Canon Sony Pentax and Fujifilm chose to express the greater speeds in an exact power of 2 progression from the highest previously realized speed 6400 rather than rounding to an extension of the existing progression Speed ratings greater than 10000 have finally been defined in ISO 12232 2019 36 Most of the modern 35 mm film SLRs support an automatic film speed range from ISO 25 15 to 5000 38 with DX coded films or ISO 6 9 to 6400 39 manually without utilizing exposure compensation The film speed range with support for TTL flash is smaller typically ISO 12 12 to 3200 36 or less The Booster 47 accessory for the Canon Pellix QL 1965 and Canon FT QL 1966 supported film speeds from 25 to 12800 ASA The film speed dial of the Canon A 1 1978 supported a speed range from 6 to 12800 ASA but already called ISO film speeds in the manual 48 On this camera exposure compensation and extreme film speeds were mutually exclusive The Leica R8 1996 and R9 2002 officially supported film speeds of 8000 40 10000 41 and 12800 42 in the case of the R8 or 12500 42 in the case of the R9 and utilizing its 3 EV exposure compensation the range could be extended from ISO 0 8 0 to ISO 100000 51 in half exposure steps 41 42 Digital camera manufacturers arithmetic speeds from 12800 to 409600 are from specifications by Nikon 12800 25600 51200 102400 in 2009 49 204800 in 2012 52 409600 in 2014 54 Canon 12800 25600 51200 102400 in 2009 50 204800 in 2011 51 4000000 in 2015 56 Sony 12800 in 2009 58 25600 in 2010 59 409600 in 2014 55 Pentax 12800 25600 51200 in 2010 60 102400 204800 in 2014 53 and Fujifilm 12800 in 2011 61 Historic ASA and DIN conversion Edit Historic film speed conversion table 1952 62 Classic camera Tessina with exposure guide late 1950s As discussed in the ASA and DIN sections the definition of the ASA and DIN scales changed several times in the 1950s up into the early 1960s making it necessary to convert between the different scales Since the ISO system combines the newer ASA and DIN definitions this conversion is also necessary when comparing older ASA and DIN scales with the ISO scale The picture shows an ASA DIN conversion in a 1952 photography book 62 in which 21 10 DIN was converted to ASA 80 instead of ASA 100 Some classic camera s exposure guides show the old conversion as they were valid at the time of production for example the exposure guide of the classic camera Tessina since 1957 where 21 10 DIN is related to ASA 80 18 DIN to ASA 40 etc Users of classic cameras who do not know the historic background may be confused Determining film speed Edit ISO 6 1993 method of determining speed for black and white film Recording film 1000 ASA Red Light District Amsterdam Graffiti 1996 Film speed is found from a plot of optical density vs log of exposure for the film known as the D log H curve or Hurter Driffield curve There typically are five regions in the curve the base fog the toe the linear region the shoulder and the overexposed region For black and white negative film the speed point m is the point on the curve where density exceeds the base fog density by 0 1 when the negative is developed so that a point n where the log of exposure is 1 3 units greater than the exposure at point m has a density 0 8 greater than the density at point m The exposure Hm in lux s is that for point m when the specified contrast condition is satisfied The ISO arithmetic speed is determined from S 0 8 lx s H m displaystyle S frac 0 8 text lx s H mathrm m This value is then rounded to the nearest standard speed in Table 1 of ISO 6 1993 Determining speed for color negative film is similar in concept but more complex because it involves separate curves for blue green and red The film is processed according to the film manufacturer s recommendations rather than to a specified contrast ISO speed for color reversal film is determined from the middle rather than the threshold of the curve it again involves separate curves for blue green and red and the film is processed according to the film manufacturer s recommendations Applying film speed Edit Film speed is used in the exposure equations to find the appropriate exposure parameters Four variables are available to the photographer to obtain the desired effect lighting film speed f number aperture size and shutter speed exposure time The equation may be expressed as ratios or by taking the logarithm base 2 of both sides by addition using the APEX system in which every increment of 1 is a doubling of exposure this increment is commonly known as a stop The effective f number is proportional to the ratio between the lens focal length and aperture diameter the diameter itself being proportional to the square root of the aperture area Thus a lens set to f 1 4 allows twice as much light to strike the focal plane as a lens set to f 2 Therefore each f number factor of the square root of two approximately 1 4 is also a stop so lenses are typically marked in that progression f 1 4 2 2 8 4 5 6 8 11 16 22 32 etc The ISO arithmetic speed has a useful property for photographers without the equipment for taking a metered light reading Correct exposure will usually be achieved for a frontlighted scene in bright sun if the aperture of the lens is set to f 16 and the shutter speed is the reciprocal of the ISO film speed e g 1 100 second for 100 ISO film This known as the sunny 16 rule Exposure index Edit Exposure index or EI refers to speed rating assigned to a particular film and shooting situation in variance to the film s actual speed It is used to compensate for equipment calibration inaccuracies or process variables or to achieve certain effects The exposure index may simply be called the speed setting as compared to the speed rating For example a photographer may rate an ISO 400 film at EI 800 and then use push processing to obtain printable negatives in low light conditions The film has been exposed at EI 800 Another example occurs where a camera s shutter is miscalibrated and consistently overexposes or underexposes the film similarly a light meter may be inaccurate One may adjust the EI setting accordingly in order to compensate for these defects and consistently produce correctly exposed negatives Reciprocity EditUpon exposure the amount of light energy that reaches the film determines the effect upon the emulsion If the brightness of the light is multiplied by a factor and the exposure of the film decreased by the same factor by varying the camera s shutter speed and aperture so that the energy received is the same the film will be developed to the same density This rule is called reciprocity The systems for determining the sensitivity for an emulsion are possible because reciprocity holds over a wide range of customary conditions In practice reciprocity works reasonably well for normal photographic films for the range of exposures between 1 1000 second to 1 2 second However this relationship breaks down outside these limits a phenomenon known as reciprocity failure 63 Film sensitivity and grain EditMain article Film grain Grainy high speed B amp W film negative The size of silver halide grains in the emulsion affects film sensitivity which is related to granularity because larger grains give film greater sensitivity to light Fine grain film such as film designed for portraiture or copying original camera negatives is relatively insensitive or slow because it requires brighter light or a longer exposure than a fast film Fast films used for photographing in low light or capturing high speed motion produce comparatively grainy images Kodak has defined a Print Grain Index PGI to characterize film grain color negative films only based on perceptual just noticeable difference of graininess in prints They also define granularity a measurement of grain using an RMS measurement of density fluctuations in uniformly exposed film measured with a microdensitometer with 48 micrometre aperture 64 Granularity varies with exposure underexposed film looks grainier than overexposed film Marketing anomalies Edit Some high speed black and white films such as Ilford Delta 3200 P3200 T Max and T MAX P3200 are marketed with film speeds in excess of their true ISO speed as determined using the ISO testing method According to the respective data sheets the Ilford product is actually an ISO 1000 film 65 while the Kodak film s speed is nominally 800 to 1000 ISO 43 44 The manufacturers do not indicate that the 3200 number is an ISO rating on their packaging 66 Kodak and Fuji also marketed E6 films designed for pushing hence the P prefix such as Ektachrome P800 1600 and Fujichrome P1600 both with a base speed of ISO 400 The DX codes on the film cartridges indicate the marketed film speed i e 3200 not the ISO speed in order to automate shooting and development Digital camera ISO speed and exposure index EditThis section does not cite any sources Please help improve this section by adding citations to reliable sources Unsourced material may be challenged and removed October 2016 Learn how and when to remove this template message A CCD image sensor 2 3 inch size In digital camera systems an arbitrary relationship between exposure and sensor data values can be achieved by setting the signal gain of the sensor The relationship between the sensor data values and the lightness of the finished image is also arbitrary depending on the parameters chosen for the interpretation of the sensor data into an image color space such as sRGB For digital photo cameras digital still cameras an exposure index EI rating commonly called ISO setting is specified by the manufacturer such that the sRGB image files produced by the camera will have a lightness similar to what would be obtained with film of the same EI rating at the same exposure The usual design is that the camera s parameters for interpreting the sensor data values into sRGB values are fixed and a number of different EI choices are accommodated by varying the sensor s signal gain in the analog realm prior to conversion to digital Some camera designs provide at least some EI choices by adjusting the sensor s signal gain in the digital realm expanded ISO A few camera designs also provide EI adjustment through a choice of lightness parameters for the interpretation of sensor data values into sRGB this variation allows different tradeoffs between the range of highlights that can be captured and the amount of noise introduced into the shadow areas of the photo Digital cameras have far surpassed film in terms of sensitivity to light with ISO equivalent speeds of up to 4 560 000 a number that is unfathomable in the realm of conventional film photography Faster processors as well as advances in software noise reduction techniques allow this type of processing to be executed the moment the photo is captured allowing photographers to store images that have a higher level of refinement and would have been prohibitively time consuming to process with earlier generations of digital camera hardware The ISO International Organization of Standards 12232 2019 standard Edit The ISO standard ISO 12232 2006 67 gave digital still camera manufacturers a choice of five different techniques for determining the exposure index rating at each sensitivity setting provided by a particular camera model Three of the techniques in ISO 12232 2006 were carried over from the 1998 version of the standard while two new techniques allowing for measurement of JPEG output files were introduced from CIPA DC 004 68 Depending on the technique selected the exposure index rating could depend on the sensor sensitivity the sensor noise and the appearance of the resulting image The standard specified the measurement of light sensitivity of the entire digital camera system and not of individual components such as digital sensors although Kodak has reported 69 using a variation to characterize the sensitivity of two of their sensors in 2001 The Recommended Exposure Index REI technique new in the 2006 version of the standard allows the manufacturer to specify a camera model s EI choices arbitrarily The choices are based solely on the manufacturer s opinion of what EI values produce well exposed sRGB images at the various sensor sensitivity settings This is the only technique available under the standard for output formats that are not in the sRGB color space This is also the only technique available under the standard when multi zone metering also called pattern metering is used The Standard Output Sensitivity SOS technique also new in the 2006 version of the standard effectively specifies that the average level in the sRGB image must be 18 gray plus or minus 1 3 stop when the exposure is controlled by an automatic exposure control system calibrated per ISO 2721 and set to the EI with no exposure compensation Because the output level is measured in the sRGB output from the camera it is only applicable to sRGB images typically JPEG and not to output files in raw image format It is not applicable when multi zone metering is used The CIPA DC 004 standard requires that Japanese manufacturers of digital still cameras use either the REI or SOS techniques and DC 008 70 updates the Exif specification to differentiate between these values Consequently the three EI techniques carried over from ISO 12232 1998 are not widely used in recent camera models approximately 2007 and later As those earlier techniques did not allow for measurement from images produced with lossy compression they cannot be used at all on cameras that produce images only in JPEG format The saturation based SAT or Ssat technique is closely related to the SOS technique with the sRGB output level being measured at 100 white rather than 18 gray The SOS value is effectively 0 704 times the saturation based value 71 Because the output level is measured in the sRGB output from the camera it is only applicable to sRGB images typically TIFF and not to output files in raw image format citation needed It is not applicable when multi zone metering is used The two noise based techniques have rarely been used for consumer digital still cameras citation needed These techniques specify the highest EI that can be used while still providing either an excellent picture or a usable picture depending on the technique chosen citation needed An update to this standard has been published as ISO 12232 2019 defining a wider range of ISO speeds 36 37 Measurements and calculations Edit ISO speed ratings of a digital camera are based on the properties of the sensor and the image processing done in the camera and are expressed in terms of the luminous exposure H in lux seconds arriving at the sensor For a typical camera lens with an effective focal length f that is much smaller than the distance between the camera and the photographed scene H is given by H q L t N 2 displaystyle H frac qLt N 2 where L is the luminance of the scene in candela per m t is the exposure time in seconds N is the aperture f number and q p 4 T v 8 cos 4 8 displaystyle q frac pi 4 T v theta cos 4 theta is a factor depending on the transmittance T of the lens the vignetting factor v 8 and the angle 8 relative to the axis of the lens A typical value is q 0 65 based on 8 10 T 0 9 and v 0 98 72 Saturation based speed Edit The saturation based speed is defined as S s a t 78 lx s H s a t displaystyle S mathrm sat frac 78 text lx s H mathrm sat where H s a t displaystyle H mathrm sat is the maximum possible exposure that does not lead to a clipped or bloomed camera output Typically the lower limit of the saturation speed is determined by the sensor itself but with the gain of the amplifier between the sensor and the analog to digital converter the saturation speed can be increased The factor 78 is chosen such that exposure settings based on a standard light meter and an 18 percent reflective surface will result in an image with a grey level of 18 2 12 7 of saturation The factor 2 indicates that there is half a stop of headroom to deal with specular reflections that would appear brighter than a 100 reflecting diffuse white surface 67 Noise based speed Edit Main article Signal to noise ratio imaging Digital noise at 3200 ISO vs 100 ISO The noise based speed is defined as the exposure that will lead to a given signal to noise ratio on individual pixels Two ratios are used the 40 1 excellent image quality and the 10 1 acceptable image quality ratio These ratios have been subjectively determined based on a resolution of 70 pixels per cm 178 DPI when viewed at 25 cm 9 8 inch distance The noise is defined as the standard deviation of a weighted average of the luminance and color of individual pixels The noise based speed is mostly determined by the properties of the sensor and somewhat affected by the noise in the electronic gain and AD converter 67 Standard output sensitivity SOS Edit In addition to the above speed ratings the standard also defines the standard output sensitivity SOS how the exposure is related to the digital pixel values in the output image It is defined as S s o s 10 lx s H s o s displaystyle S mathrm sos frac 10 text lx s H mathrm sos where H s o s displaystyle H mathrm sos is the exposure that will lead to values of 118 in 8 bit pixels which is 18 percent of the saturation value in images encoded as sRGB or with gamma 2 2 67 Discussion Edit The standard specifies how speed ratings should be reported by the camera If the noise based speed 40 1 is higher than the saturation based speed the noise based speed should be reported rounded downwards to a standard value e g 200 250 320 or 400 The rationale is that exposure according to the lower saturation based speed would not result in a visibly better image In addition an exposure latitude can be specified ranging from the saturation based speed to the 10 1 noise based speed If the noise based speed 40 1 is lower than the saturation based speed or undefined because of high noise the saturation based speed is specified rounded upwards to a standard value because using the noise based speed would lead to overexposed images The camera may also report the SOS based speed explicitly as being an SOS speed rounded to the nearest standard speed rating 67 For example a camera sensor may have the following properties S 40 1 107 displaystyle S 40 1 107 S 10 1 1688 displaystyle S 10 1 1688 and S s a t 49 displaystyle S mathrm sat 49 According to the standard the camera should report its sensitivity as ISO 100 daylight ISO speed latitude 50 1600 ISO 100 SOS daylight The SOS rating could be user controlled For a different camera with a noisier sensor the properties might be S 40 1 40 displaystyle S 40 1 40 S 10 1 800 displaystyle S 10 1 800 and S s a t 200 displaystyle S mathrm sat 200 In this case the camera should report ISO 200 daylight as well as a user adjustable SOS value In all cases the camera should indicate for the white balance setting for which the speed rating applies such as daylight or tungsten incandescent light 67 Despite these detailed standard definitions cameras typically do not clearly indicate whether the user ISO setting refers to the noise based speed saturation based speed or the specified output sensitivity or even some made up number for marketing purposes Because the 1998 version of ISO 12232 did not permit measurement of camera output that had lossy compression it was not possible to correctly apply any of those measurements to cameras that did not produce sRGB files in an uncompressed format such as TIFF Following the publication of CIPA DC 004 in 2006 Japanese manufacturers of digital still cameras are required to specify whether a sensitivity rating is REI or SOS citation needed A greater SOS setting for a given sensor comes with some loss of image quality just like with analog film However this loss is visible as image noise rather than grain APS and 35 mm sized digital image sensors both CMOS and CCD based do not produce significant noise until about ISO 1600 73 See also EditFrame rate Lens speed Preferred numberReferences Edit a b c d e f DIN 4512 1934 01 Photographische Sensitometrie Bestimmung der optischen Dichte in German Deutscher Normenausschuss DNA 1934 In the introduction to the standard Warnerke s system is described as the first practical system used to measure emulsion speeds but as being unreliable In regard to Scheiner s system it states Auch hier erwies sich nach einiger Zeit dass das Messverfahren trotz der von Eder vorgenommenen Abanderungen den Anforderungen der Praxis nicht vollstandig Rechnung zu tragen vermag so dass jeder Hersteller nach seinem eigenen System die Empfindlichkeit in Scheinergraden ermitteln muss haufig in sehr primitiver Weise durch Vergleich mit Erzeugnissen anderer Hersteller Die so ermittelten Gebrauchs Scheinergrade haben mit dem ursprunglich ausgearbeiteten Messverfahren nach Scheiner sachlich nichts mehr zu tun Als Folge hiervon ist allmahlich eine Inflation in Empfindlichkeitsgraden eingetreten fur die das Scheiner sche Verfahren nichts mehr als den Namen hergibt Progress medal Royal Photographic Society and web page listing people who have received this award since 1878 Progress medal Archived from the original on 2012 08 22 Retrieved 2013 04 19 Instituted in 1878 this medal is awarded in recognition of any invention research publication or other contribution which has resulted in an important advance in the scientific or technological development of photography or imaging in the widest sense This award also carries with it an Honorary Fellowship of The Society 1882 Leon Warnerke 1884 J M Eder 1898 Ferdinand Hurter and Vero C Driffield 1910 Alfred Watkins 1912 H Chapman Jones 1948 Loyd A Jones a b c d Jones Bernhard Edward ed 1911 Cassell s cyclopaedia of photography London UK Cassell Reprinted as Bunnell Peter C Sobieszek Robert A 1974 introduction Encyclopaedia of photography With a New Picture Portfolio By Jones Bernhard Edward New York USA Arno Press Inc pp 472 473 ISBN 0 405 04922 6 Soon after the introduction of the gelatine dry plate it was usual to express the speed of the emulsion as x times which meant that it was x times the speed of a wet collodion plate This speed was no fixed quantity and the expression consequently meant but little Warnerke introduced a sensitometer consisting of a series of numbered squares with increasing quantities of opaque pigment The plate to be tested was placed in contact with this and an exposure made to light emanating from a tablet of luminous paint excited by burning magnesium ribbon After development and fixation the last number visible was taken as the speed of the plate The chief objections to this method were that practically no two numbered tablets agreed that the pigment possessed selective spectral absorption and that the luminosity of the tablet varied considerably with the lapse of time between its excitation and the exposure of the plate Chapman Jones has introduced a modified Warnerke tablet containing a series of twenty five graduated densities a series of coloured squares and a strip of neutral grey all five being of approximately equal luminosity and a series of four squares passing a definite portion of the spectrum finally there is a square of a line design over which is superposed a half tone negative This plate tester is used with a standard candle as the source of light and is useful for rough tests of both plates and printing papers Hasluck Paul Nooncree 1905 The Book of Photography Practical Theoretical and Applied THE CHAPMAN JONES PLATE TESTER A convenient means of testing the colour rendering and other properties of a sensitive plate or for ascertaining the effect of various colour screens is afforded by the plate tester devised by Mr Chapman Jones in 1900 This consists of a number of graduated squares by which the sensitiveness and range of gradation of the plate examined may be determined a series of squares of different colours and mixtures of colours of equal visual intensity which will indicate the colour sensitiveness and a strip of uncoloured space for comparison purposes It is simply necessary to expose the plate being tested in contact with the screen to the light of a standard candle A suitable frame and stand are supplied for the purpose any other light may however be used if desired The plate is then developed when an examination of the negative will yield the desired information The idea of the coloured squares is based on that of the Abney Colour Sensitometer where three or four squares of coloured and one of uncoloured glass are brought to an equal visual intensity by backing where necessary with squares of exposed celluloid film developed to suitable density a b c Lindsay Arthur 1961 Sowerby MacRae ed Dictionary of Photography A Reference Book for Amateur and Professional Photographers 19th ed London UK Iliffe Books Ltd pp 582 589 Konovalov Leonid 2007 Characteristic curve PDF Moscow Vserossijskij gosudarstvennyj institut kinematografii VGIK p 24 Retrieved 2012 11 09 a b Riat Martin Spring 2006 Graphische Techniken Eine Einfuhrung in die verschiedenen Techniken und ihre Geschichte PDF E Book in German 3rd German ed Burriana based on a Spanish book Riat Martin September 1983 Tecniques Grafiques Una Introduccio a Les Diferents Tecniques I a La Seva Historia in Spanish 1st ed Aubert ISBN 84 86243 00 9 a b c Sheppard Samuel Edward February 1932 Harris Sylvan ed Resume of the Proceedings of the Dresden International Photographic Congress Journal of the Society of Motion Picture Engineers Society of Motion Picture Engineers SMPE XVIII 2 232 242 The 8th International Congress of Photography was held at Dresden Germany from 3 to 8 August 1931 inclusive In regard to sensitometric standardization several important developments occurred First the other national committees on sensitometric standardization accepted the light source and filter proposed by the American Committee at Paris 1925 and accepted by the British in 1928 In the meantime no definite agreement had been reached nor indeed had very definite proposals been made on the subjects of sensitometers or exposure meters development density measurement and methods of expressing sensitometric results although much discussion and controversy on this subject had taken place At the present Congress a body of recommendations for sensitometric standards was put forward by the Deutschen Normenausschusses fur Phototechnik which endeavored to cover the latter questions and bring the subject of sensitometric standardization into the industrial field It was stated by the German committee that this action had been forced on them by difficulties arising from indiscriminate and uncontrolled placing of speed numbers on photographic sensitive goods a situation which was summarized at the Congress by the term Scheiner inflation The gist of these recommendations was as follows a Acceptance of the light source and daylight filter as proposed by the American commission b As exposure meter a density step wedge combined with a drop shutter accurate to 1 20 second c Brush development in a tray with a prescribed solution of metol hydroquinone according to a so called optimal development d Expression of the sensitivity by that illumination at which a density of 0 1 in excess of fog is reached e Density measurement shall be carried out in diffused light according to details to be discussed later These proposals aroused a very lively discussion The American and the British delegations criticized the proposals both as a whole and in detail As a whole they considered that the time was not ripe for application of sensitometric standards to industrial usage In matters of detail they criticized the proposed employment of a step wedge and the particular sensitivity number proposed The latter approaches very roughly the idea of an exposure for minimum gradient but even such a number is not adequate for certain photographic uses of certain materials The upshot of the discussion was that the German proposals in somewhat modified form are to be submitted simply as proposals of the German committee for sensitometric standardization to the various national committees for definite expression of opinion within six months of the expiration of the Congress Further in case of general approval of these recommendations by the other national committees that a small International Committee on Sensitometric Standardization shall within a further period of six months work out a body of sensitometric practices for commercial usage Biltz Martin October 1933 Uber DIN Grade das neue deutsche Mass der photographischen Empfindlichkeit Naturwissenschaften in German Springer 21 41 734 736 doi 10 1007 BF01504271 ISSN 0028 1042 S2CID 31974234 Im folgenden soll an Hand der seither gebrauchlichen sensitometrischen Systeme nach Scheiner nach Hurter und Driffield und nach Eder und Hecht de kurz gezeigt werden wie man bisher verfahren ist Im Anschlusse daran wird das neue vom Deutschen Normenausschusse fur Phototechnik auf Empfehlung des Ausschusses fur Sensitometrie der Deutschen Gesellschaft fur photographische Forschung vorgeschlagene System betrachtet werden Heisenberg Erwin in German December 1930 Mitteilungen aus verschiedenen Gebieten Bericht uber die Grundung und erste Tagung der Deutschen Gesellschaft fur photographische Forschung 23 bis 25 Mai 1930 Naturwissenschaften in German Springer 18 52 1130 1131 doi 10 1007 BF01492990 ISSN 0028 1042 S2CID 42242680 Weitere 3 Vortrage von Prof Dr R Luther de Dresden Prof Dr Lehmann Berlin Prof Dr Pirani Berlin behandelten die Normung der sensitometrischen Methoden Zu normen sind die Lichtquelle die Art der Belichtung zeitliche oder Intensitatsabstufung die Entwicklung die Auswertung Auf den Internationalen Kongressen in Paris 1925 und London 1928 sind diese Fragen schon eingehend behandelt und in einzelnen Punkten genaue Vorschlage gemacht worden Die Farbtemperatur der Lichtquelle soll 2360 betragen Vor dieselbe soll ein Tageslichtfilter welches vom Bureau of Standards ausgearbeitet worden ist geschaltet werden Herr Luther hat an der Filterflussigkeit durch eigene Versuche gewisse Verbesserungen erzielt Schwierigkeiten bereitet die Konstanthaltung der Farbtemperatur bei Nitralampen Herr Pirani schlug deshalb in seinem Vortrag die Verwendung von Glimmlampen vor deren Farbe von der Stromstarke weitgehend unabhangig ist In der Frage Zeit oder Intensitatsskala befurworten die Herren Luther und Lehmann die Intensitatsskala Herr Lehmann behandelte einige Fragen die mit der Herstellung der Intensitatsskala zusammenhangen Ausfuhrlicher wurde noch die Auswertung zahlenmassige Angabe der Empfindlichkeit und Gradation besprochen die eine der wichtigsten Fragen der Sensitometrie darstellt In der Diskussion wurde betont dass es zunachst nicht so sehr auf eine wissenschaftlich erschopfende Auswertung ankomme als darauf dass die Empfindlichkeit der Materialien in moglichst einfacher aber eindeutiger und fur den Praktiker ausreichender Weise charakterisiert wird a b Voss Waltraud 2002 03 12 Robert Luther der erste Ordinarius fur Wissenschaftliche Photographie in Deutschland Zur Geschichte der Naturwissenschaften an der TU Dresden 12 PDF Dresdner UniversitatsJournal in German 13 5 7 Archived from the original PDF on 2011 09 17 Retrieved 2011 08 06 Luther de war Mitglied des Komitees zur Veranstaltung internationaler Kongresse fur wissenschaftliche und angewandte Photographie die Kongresse 1909 und 1931 in Dresden hat er wesentlich mit vorbereitet 1930 gehorte er zu den Mitbegrundern der Deutschen Gesellschaft fur Photographische Forschung Er grundete und leitete den Ausschuss fur Sensitometrie der Gesellschaft aus dessen Tatigkeit u a das DIN Verfahren zur Bestimmung der Empfindlichkeit photographischer Materialien hervorging a b Buckland Michael Keeble 2008 The Kinamo movie camera Emanuel Goldberg and Joris Ivens PDF Film History Preprint ed 20 1 49 58 doi 10 2979 FIL 2008 20 1 49 S2CID 194951687 Ivens returned to Dresden in August 1931 to attend the VIII International Congress of Photography organised by Goldberg John Eggert de head of research at the Agfa plant in Wolfen near Leipzig and Robert Luther de the founding Director of the Institute for Scientific Photography at the Technical University in Dresden and Goldberg s dissertation advisor The proceedings were heavily technical and dominated by discussion of the measurement of film speeds The Congress was noteworthy because a film speed standard proposed by Goldberg and Luther was approved and in Germany became DIN 4512 Eggert John Emil Max in German von Biehler Arpad eds 1932 Bericht uber den VIII Internationalen Kongress fur wissenschaftliche und angewandte Photographie Dresden 1931 in German Leipzig Johann Ambrosius Barth Verlag a href Template Cite journal html title Template Cite journal cite journal a Cite journal requires journal help Benser Walther 1957 Wir photographieren farbig in German Europaischer Buchklub p 10 a b c ISO 6 1993 Photography Black and white pictorial still camera negative film process systems Determination of ISO speed a b ISO 2240 2003 Photography Colour reversal camera films Determination of ISO speed a b ISO 5800 1987 Photography Colour negative films for still photography Determination of ISO speed Mulhern Charles J 1990 06 15 Letter to John D de Vries Copyscript on John D de Vries web site Archived from the original on 2013 01 03 In 1931 Edward Faraday Weston applied for a U S patent on the first Weston Exposure meter which was granted patent No 2016469 on 8 October 1935 also an improved version was applied for and granted U S patent No 2042665 on 7th July 1936 From 1932 to around 1967 over 36 varieties of Weston Photographic Exposure Meters were produced in large quantities and sold throughout the world mostly by Photographic dealers or agents which also included the Weston film speed ratings as there were no ASA or DIN data available at that time a href Template Cite book html title Template Cite book cite book a External link in code class cs1 code quote code help Goodwin William Nelson Jr August 1938 Weston emulsion speed ratings What they are and how they are determined American Photographer 4 pages Roseborough Everett 1996 The Contributions of Edward W Weston and his company Photographic Canadiana 22 3 Tipper Martin Weston The company and the man www westonmeter org uk a web page on Weston exposure meters the Weston method of measuring film speeds While it had some shortcomings it had the advantage of being based on a method which gave practical speeds for actual use and it was independent of any film manufacturer Previous speed systems such as the H amp D and early Scheiner speeds were both threshold speeds and capable of considerable manipulation by manufacturers Weston s method measured the speed well up on the curve making it more nearly what one would get in actual practice This means that he was a bit less optimistic about film sensitivity than the manufacturers of the day who were notorious for pretending their films were more sensitive than they really were A certain Mr W N Goodwin of Weston is usually credited with this system Hefley Harold M 1951 A method of calculating exposures for photomicrographs PDF Arkansas Academy of Science Journal Fayetteville USA University of Arkansas 4 NB Research paper on an exposure system for micro photography based on a variation of Weston film speed ratings Weston film ratings Weston system of emulsion ratings Booklet 16 pages Newark USA Weston 1946 You cannot necessarily depend on Weston speed values from any other source unless they are marked OFFICIAL WESTON SPEEDS BY AGREEMENT WITH THE WESTON ELECTRICAL INSTRUMENT CORPORATION a b c Weston ratings Booklet 20 pages Enfield UK Sangamo Weston 1956 WESTON RATINGS Correct exposure depends on two variables 1 the available light and 2 its effect on the film in use WESTON have always considered these two to be of equal importance and therefore introduced their own system of film ratings Subsequently this system was found to be so successful that it was widely accepted in photographic circles and formed the basis for internationally agreed standards GW 68 Manual USA General Electric GES 2810 The manual states that ASA was working on standardized values but none had been established at this time a b c General Electric Film Values Leaflet 12 pages USA General Electric 1947 General Electric publication code GED 744 This General Electric Film Value Booklet contains the exposure index numbers for photographic films in accordance with the new system for rating photographic films that has been devised by the American Standards Association This system has been under development for several years and is the result of co operative effort on the part of all the film manufacturers meter manufacturers the Optical Society of America and the Bureau of Standards It was used by all of the military services during the war The new ASA exposure index numbers provide the photographer with the most accurate film rating information that has yet been devised The G E exposure meter uses the ASA exposure index numbers not only in the interest of standardization but also because this system represents a real advancement in the field of measurement The exposure index number have been so arranged that all earlier model G E meters can be used with this series of numbers For some films the values are exactly the same and where differences exist the new ASA exposure index value will cause but a slight increase in exposure However a comparison of the new ASA exposure index numbers and the G E film values is shown A complete comparison of all systems of emulsion speed values can be found in the G E Photo Data Book All G E meters manufactured after January 1946 utilize the ASA exposure indexes Although the new ASA values can be used with all previous model G E meters interchangeable calculator hoods with ASA exposure indexes are available for Types DW 48 DW 49 and DW 58 meters General Electric Photo Data Book General Electric GET I717 General Electric 1946 Attention exposure meter owners Advertisement Attention Exposure meter owners Modernizing Hood 3 50 Modernize your G E meter Type DW 48 or early DW 58 with a new G E Hood Makes it easy to use the new film exposure ratings developed by the American Standards Association now the only basis for data published by leading film makers See your photo dealer and snap on a new G E hood General Electric Company Schenectady 5 N Y a href Template Cite journal html title Template Cite journal cite journal a Cite journal requires journal help a b Gorokhovskiy Yu N 1970 Fotograficheskaya metrologiya Uspekhi Nauchnoy Fotografii Advances in Scientific Photography in Russian 15 183 195 English translation Photographic Metrology PDF NASA Technical Translation II F 13 921 National Aeronautics and Space Administration Washington D C 20546 November 1972 GOST 2817 50 Transparent sublayer photographic materials Method of general sensitometric test Archived from the original on 2011 10 11 Retrieved 2011 08 07 GOST 2817 45 was replaced by GOST 2817 50 which in turn was replaced by GOST 10691 6 88 which defines black and white films whereas GOST 10691 5 88 defines black and white films for aerial photography Stroebel Leslie D Zakia Richard D 1993 The Focal Encyclopedia of Photography 3rd ed Focal Press p 304 ISBN 978 0 240 51417 8 zavod Zavod Krasnogorskij Krasnogorskiy Questions and answers Film speeds in Russian Retrieved 2011 08 06 GOST 10691 0 84 Black and white photographic materials with transparent sublaver Method of general sensitometric test Archived from the original on 2012 01 12 Retrieved 2011 08 09 GOST 10691 6 88 Black and white phototechnical films films for scientific researches and industry Method for determination of speed numbers Archived from the original on 2012 01 12 Retrieved 2011 08 09 GOST 10691 5 88 Black and white aerophotographic films Method for determination of speed numbers Archived from the original on 2012 01 12 Retrieved 2011 08 09 a b c d ISO 12232 2019 Photography Digital still cameras Determination of exposure index ISO speed ratings standard output sensitivity and recommended exposure index International Organization for Standardization ISO February 2019 a b Gasiorowski Denis Elizabeth 2019 03 07 A better picture International Standard gives photography a new exposure International Organization for Standardization ISO Archived from the original on 2019 06 09 Retrieved 2019 06 09 a href Template Cite web html title Template Cite web cite web a CS1 maint bot original URL status unknown link a b Jacobson Ralph E Ray Sidney F Attridge Geoffrey G Axford Norman R 2000 The manual of photography 9th ed Focal Press pp 305 307 ISBN 978 0 240 51574 8 Graves Carson 1996 The zone system for 35mm photographers Focal Press p 124 ISBN 978 0 240 80203 9 ISO 2721 1982 Photography Cameras Automatic controls of exposure paid download Geneva International Organization for Standardization ISO Archived from the original on 2008 08 07 a b c d e f Leica R9 Bedienungsanleitung Instructions PDF in German and English Solms Germany Leica Camera AG 2002 p 197 Leica publication 930 53 VII 03 GX L Retrieved 2011 07 30 Film speed range Manual setting from ISO 6 9 to ISO 12500 42 with additional exposure compensation of up to 3 EV overall films from ISO 0 8 0 to ISO 100000 51 can be exposed DX scanning from ISO 25 15 to ISO 5000 38 a b c d e f Leica Instructions Leica R8 Solms Germany Leica Camera AG 1996 pp 16 65 The DX setting for automatic speed scanning appears after the position 12800 Film speed range Manual setting from ISO 6 9 to ISO 12 800 42 With additional override of 3 EV to 3 EV films from 0 DIN to 51 DIN can be exposed as well DX scanning from ISO 25 15 to ISO 5000 38 a b KODAK PROFESSIONAL T MAX Films PDF wwwuk kodak com Kodak Retrieved 2018 10 07 a b KODAK PROFESSIONAL T MAX P3200 Black amp White Negative Film PDF imaging kodakalaris com Kodak Alaris Retrieved 2018 10 07 a b c Table 2 ASA PH2 12 1961 p 9 NB Showed but did not specify a speed of 12500 as the next full step greater than 6400 a b c d e f g h i j Boosting Sensitivity Phantom Ametek Notes Alerts Wayne NJ USA Vision Research April 2016 Retrieved 2019 06 09 a b Additional Information on Canon FT QL Camera Canon Acceptable film speed has been increased to a range of between ASA 25 and an incredible ASA 12 800 by the use of the CANON BOOSTER The light measuring range of the newly developed CANON FT QL has been extended from a low of EV 3 5 f 1 2 15 seconds to EV 18 with ASA 100 film This is the first time a TTL camera has been capable of such astonishing performance a b Canon A 1 Instructions Canon 1978 pp 28 29 46 70 98 a b c d e Nikon D3s Nikon USA Web page Archived from the original on 2012 04 06 Retrieved 2010 01 11 a b c d e Canon EOS 1D Mark IV Canon USA Web page Archived from the original on 2017 01 06 Retrieved 2010 01 11 a b Canon EOS 1D X Canon USA Web page Archived from the original on 2014 05 08 Retrieved 2011 10 01 a b Nikon D4 Nikon Retrieved 2012 01 06 a b Ricoh Pentax 645Z specifications a b Nikon D4s specifications a b Sony a ILCE 7S specifications a b c Unsichtbares wird sichtbar Canon prasentiert die ME20F SH fur Full HD Farbvideos bei extrem wenig Licht Press release in German Canon Deutschland 2015 07 30 Retrieved 2015 07 30 iNocturn combining the best of image intensifier tube and low light camera Photonis Retrieved 2022 03 25 DSLR A500 DSLR A550 Sony Europe Web page 2009 08 27 Retrieved 2011 07 30 Dramatically reduced picture noise now allows super sensitive shooting at up to ISO 12800 allowing attractive results when shooting handheld in challenging situations like candlelit interiors DSLR A560 DSLR A580 Sony Europe Web page 2010 08 27 Archived from the original on 2010 08 30 Retrieved 2011 07 30 Multi frame Noise Reduction stacks a high speed burst of six frames creating a single low noise exposure that boosts effective sensitivity as high as ISO 25600 Pentax K 5 Pentax USA Web page 2010 Archived from the original on 2010 12 06 Retrieved 2011 07 29 ISO Sensitivity ISO 100 12800 1 1 2 1 3 steps expandable to ISO 80 51200 Fuji FinePix X100 Fujifilm Canada Web page February 2011 Retrieved 2011 07 30 Extended output sensitivity equivalent ISO 100 or 12800 a b 戴淮清 摄影入门 in Simplified Chinese Singapore 1952 Lambrecht Ralph W Woodhouse Chris 2003 Way Beyond Monochrome Newpro UK Ltd p 113 ISBN 978 0 86343 354 2 Kodak Tech Pub E 58 Print Grain Index Eastman Kodak Professional Division July 2000 Delta 3200 Professional technical information ilfordphoto com Harman Technology May 2010 Retrieved 2018 05 03 Fact Sheet Delta 3200 Professional PDF Knutsford U K Ilford Photo a b c d e f ISO 12232 2006 Photography Digital still cameras Determination of exposure index ISO speed ratings standard output sensitivity and recommended exposure index Geneva International Organization for Standardization ISO Archived from the original on 2008 08 07 CIPA DC 004 Sensitivity of digital cameras PDF Tokyo Camera amp Imaging Products Association CIPA Archived from the original PDF on 2012 04 17 Retrieved 2008 06 15 Kodak Image Sensors ISO Measurement PDF Rochester NY USA Eastman Kodak Exchangeable image file format for digital still cameras Exif Version 2 3 PDF CIPA Retrieved 2014 12 05 Kerr Douglas A 2007 08 30 New Measures of the Sensitivity of a Digital Camera PDF ISO 12232 1998 Photography Electronic still picture cameras Determination of ISO speed p 12 D200 Users manual PDF Nikon Retrieved 2015 09 20 Further reading EditISO 6 1974 ISO 6 1993 1993 02 Photography Black and white pictorial still camera negative film process systems Determination of ISO speed Geneva International Organization for Standardization ISO 2240 1982 1982 07 ISO 2240 1994 1994 09 ISO 2240 2003 2003 10 Photography Colour reversal camera films Determination of ISO speed Geneva International Organization for Standardization ISO 2720 1974 General Purpose Photographic Exposure Meters Photoelectric Type Guide to Product Specification Geneva International Organization for Standardization ISO 5800 1979 ISO 5800 1987 1987 11 ISO 5800 1987 Cor 1 2001 2001 06 Photography Colour negative films for still photography Determination of ISO speed Geneva International Organization for Standardization ISO 12232 1998 1998 08 ISO 12232 2006 2006 04 15 ISO 12232 2006 2006 10 01 ISO 12232 2019 2019 02 01 Photography Digital still cameras Determination of exposure index ISO speed ratings standard output sensitivity and recommended exposure index Geneva International Organization for Standardization ASA Z38 2 1 1943 ASA Z38 2 1 1946 ASA Z38 2 1 1947 1947 07 15 American Standard Method for Determining Photographic Speed and Speed Number New York American Standards Association Superseded by ASA PH2 5 1954 ASA PH2 5 1954 ASA PH2 5 1960 American Standard Method for Determining Speed of photographic Negative Materials Monochrome Continuous Tone New York United States of America Standards Institute USASI Superseded by ANSI PH2 5 1972 ANSI PH2 5 1972 ANSI PH2 5 1979 1979 01 01 ANSI PH2 5 1979 R1986 Speed of photographic negative materials monochrome continuous tone method for determining New York American National Standards Institute Superseded by NAPM IT2 5 1986 NAPM IT2 5 1986 ANSI ISO 6 1993 ANSI NAPM IT2 5 1993 1993 01 01 Photography Black and White Pictorial Still Camera Negative Film Process Systems Determination of ISO Speed same as ANSI ISO 6 1993 National Association of Photographic Manufacturers This represents the US adoption of ISO 6 ASA PH2 12 1957 ASA PH2 12 1961 American Standard General Purpose Photographic Exposure Meters photoelectric type New York American Standards Association Superseded by ANSI PH3 49 1971 ANSI PH2 21 1983 1983 09 23 ANSI PH2 21 1983 R1989 Photography Sensitometry Color reversal camera films Determination of ISO speed New York American Standards Association Superseded by ANSI ISO 2240 1994 ANSI NAPM IT2 21 1994 ANSI ISO 2240 1994 ANSI NAPM IT2 21 1994 Photography Colour reversal camera films determination of ISO speed New York American National Standards Institute This represents the US adoption of ISO 2240 ASA PH2 27 1965 1965 07 06 ASA PH2 27 1971 ASA PH2 27 1976 ANSI PH2 27 1979 ANSI PH2 27 1981 ANSI PH2 27 1988 1988 08 04 Photography Colour negative films for still photography Determination of ISO speed withdrawn New York American Standards Association Superseded by ANSI IT2 27 1988 ANSI IT2 27 1988 1994 08 09 Photography Color negative films for still photography Determination of ISO speed New York American National Standards Institute Withdrawn This represented the US adoption of ISO 5800 ANSI PH3 49 1971 ANSI PH3 49 1971 R1987 American National Standard for general purpose photographic exposure meters photoelectric type New York American National Standards Institute After several revisions this standard was withdrawn in favor of ANSI ISO 2720 1974 ANSI ISO 2720 1974 ANSI ISO 2720 1974 R1994 ANSI NAPM IT3 302 1994 General Purpose Photographic Exposure Meters Photoelectric Type Guide to Product Specification New York American National Standards Institute This represents the US adoption of ISO 2720 BSI BS 1380 1947 BSI BS 1380 1963 Speed and exposure index British Standards Institution Superseded by BSI BS 1380 1 1973 1973 12 BSI BS 1380 2 1984 1984 09 BSI BS 1380 3 1980 1980 04 and others BSI BS 1380 1 1973 Archived 2011 10 09 at the Wayback Machine 1973 12 31 Speed of sensitized photographic materials Negative monochrome material for still and cine photography British Standards Institution Replaced by BSI BS ISO 6 1993 superseded by BSI BS ISO 2240 1994 BSI BS 1380 2 1984 ISO 2240 1982 Archived 2011 10 09 at the Wayback Machine 1984 09 28 Speed of sensitized photographic materials Method for determining the speed of colour reversal film for still and amateur cine photography British Standards Institution Superseded by BSI BS ISO 2240 1994 BSI BS 1380 3 1980 ISO 5800 1979 Archived 2011 10 09 at the Wayback Machine 1980 04 30 Speed of sensitized photographic materials Colour negative film for still photography British Standards Institution Superseded by BSI BS ISO 5800 1987 BSI BS ISO 6 1993 Archived 2011 10 09 at the Wayback Machine 1995 03 15 Photography Black and white pictorial still camera negative film process systems Determination of ISO speed British Standards Institution This represents the British adoption of ISO 6 1993 BSI BS ISO 2240 1994 Archived 2011 10 09 at the Wayback Machine 1993 03 15 BSI BS ISO 2240 2003 Archived 2011 10 09 at the Wayback Machine 2004 02 11 Photography Colour reversal camera films Determination of ISO speed British Standards Institution This represents the British adoption of ISO 2240 2003 BSI BS ISO 5800 1987 Archived 2011 10 09 at the Wayback Machine 1995 03 15 Photography Colour negative films for still photography Determination of ISO speed British Standards Institution This represents the British adoption of ISO 5800 1987 DIN 4512 1934 01 DIN 4512 1957 11 Blatt 1 DIN 4512 1961 10 Blatt 1 Photographische Sensitometrie Bestimmung der optischen Dichte Berlin Deutscher Normenausschuss DNA Superseded by DIN 4512 1 1971 04 DIN 4512 4 1977 06 DIN 4512 5 1977 10 and others DIN 4512 1 1971 04 DIN 4512 1 1993 05 Photographic sensitometry systems of black and white negative films and their process for pictorial photography determination of speed Berlin Deutsches Institut fur Normung before 1975 Deutscher Normenausschuss DNA Superseded by DIN ISO 6 1996 02 DIN 4512 4 1977 06 DIN 4512 4 1985 08 Photographic sensitometry determination of the speed of colour reversal films Berlin Deutsches Institut fur Normung Superseded by DIN ISO 2240 1998 06 DIN 4512 5 1977 10 DIN 4512 5 1990 11 Photographic sensitometry determination of the speed of colour negative films Berlin Deutsches Institut fur Normung Superseded by DIN ISO 5800 1998 06 DIN ISO 6 1996 02 Photography Black and white pictorial still camera negative film process systems Determination of ISO speed ISO 6 1993 Berlin Deutsches Institut fur Normung This represents the German adoption of ISO 6 1993 DIN ISO 2240 1998 06 DIN ISO 2240 2005 10 Photography Colour reversal camera films Determination of ISO speed ISO 2240 2003 Berlin Deutsches Institut fur Normung This represents the German adoption of ISO 2240 2003 DIN ISO 5800 1998 06 DIN ISO 5800 2003 11 Photography Colour negative films for still photography Determination of ISO speed ISO 5800 1987 Corr 1 2001 Berlin Deutsches Institut fur Normung This represents the German adoption of ISO 5800 2001 Leslie B Stroebel John Compton Ira Current Richard B Zakia Basic Photographic Materials and Processes second edition Boston Focal Press 2000 ISBN 0 240 80405 8 External links Edit Wikimedia Commons has media related to Film speed What is the meaning of ISO for digital cameras Digital Photography FAQ Signal dependent noise modeling estimation and removal for digital imaging sensors Retrieved from https en wikipedia org w index php title Film speed amp oldid 1146129290 ASA, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.