fbpx
Wikipedia

Terabit Ethernet

Terabit Ethernet or TbE is Ethernet with speeds above 100 Gigabit Ethernet. 400 Gigabit Ethernet (400G, 400GbE) and 200 Gigabit Ethernet (200G, 200GbE)[1] standards developed by the IEEE P802.3bs Task Force using broadly similar technology to 100 Gigabit Ethernet[2][3] were approved on December 6, 2017.[4][5] In 2016, several networking equipment suppliers were already offering proprietary solutions for 200G and 400G.[5]

The Ethernet Alliance's 2022 technology roadmap expects speeds of 800 Gbit/s and 1.6 Tbit/s to become an IEEE standard between about 2023 and 2025.[6][7] Doubling to 800 GbE is expected to occur after 112 Gbit/s SerDes become available. The Optical Internetworking Forum (OIF) has already announced five new projects at 112 Gbit/s which would also make 4th generation (single-lane) 100 GbE links possible.[8] The IEEE P802.3df Task Force started work in January 2022 to standardize 800 Gbit/s and 1.6 Tbit/s Ethernet. [9]

History

Facebook and Google, among other companies, have expressed a need for TbE.[10] While a speed of 400 Gbit/s is achievable with existing technology, 1 Tbit/s (1000 Gbit/s) would require different technology.[2][11] Accordingly, at the IEEE Industry Connections Higher Speed Ethernet Consensus group meeting in September 2012, 400 GbE was chosen as the next generation goal.[2] Additional 200GbE objectives were added in January 2016.

The University of California, Santa Barbara (UCSB) attracted help from Agilent Technologies, Google, Intel, Rockwell Collins, and Verizon Communications to help with research into next generation Ethernet.[12]

As of early 2016, chassis/modular based core router platforms from Cisco, Juniper and other major manufacturers support 400 Gbit/s full duplex data rates per slot. One, two and four port 100GbE and one port 400GbE line cards are presently available. As of early 2019, 200GbE line cards became available after 802.3cd standard ratification.[13][14]

200G Ethernet uses PAM4 signaling which allows 2 bits to be transmitted per clock cycle, but at a higher implementation cost.[15]

Standards development

The IEEE formed the "IEEE 802.3 Industry Connections Ethernet Bandwidth Assessment Ad Hoc", to investigate the business needs for short and long term bandwidth requirements.[16][17][18]

IEEE 802.3's "400 Gb/s Ethernet Study Group" started working on the 400 Gbit/s generation standard in March 2013.[19] Results from the study group were published and approved on March 27, 2014. Subsequently, the IEEE 802.3bs Task Force[20] started working to provide physical layer specifications for several link distances.[21]

The IEEE 802.3bs standard was approved on December 6, 2017[4] and is available online.[22]

The IEEE 802.3cd standard was approved on December 5, 2018.

The IEEE 802.3cn standard was approved on December 20, 2019.

The IEEE 802.3cm standard was approved on January 30, 2020.

The IEEE 802.3cu standard was approved on February 11, 2021.

The IEEE 802.3ck and 802.3db standards were approved on September 21, 2022.

IEEE project objectives

Like all speeds since 10 Gigabit Ethernet, the standards support only full-duplex operation. Other objectives include:[21]

  1. Support MAC data rates of 400 Gbit/s and 200 Gbit/s[1]
  2. Preserve the Ethernet frame format utilizing the Ethernet MAC
  3. Preserve minimum and maximum frame size of current Ethernet standard
  4. Support a bit error ratio (BER) of 10−13, which is an improvement over the 10−12 BER that was specified for 10GbE, 40GbE, and 100GbE.
  5. Support for OTN (transport of Ethernet across optical transport networks), and optional support for Energy-Efficient Ethernet (EEE).

802.3bs project

Define physical layer specifications supporting:[21]

  • 400 Gbit/s Ethernet
    • at least 100 m over multi-mode fiber (400GBASE-SR16) using sixteen parallel strands of fiber each at 25 Gbit/s[23][24]
    • at least 500 m over single-mode fiber (400GBASE-DR4) using four parallel strands of fiber each at 100 Gbit/s[25][26]
    • at least 2 km over single-mode fiber (400GBASE-FR8) using eight parallel wavelengths (CWDM) each at 50 Gbit/s[25][27][28]
    • at least 10 km over single-mode fiber (400GBASE-LR8) using eight parallel wavelengths (CWDM) each at 50 Gbit/s[25][28][29]
    • eight and sixteen lane chip-to-chip/chip-to-module electrical interfaces (400GAUI-8 and 400GAUI-16)
  • 200 Gbit/s Ethernet
    • at least 500 m over single-mode fiber (200GBASE-DR4) using four parallel strands of fiber each at 50 Gbit/s[30][31]
    • at least 2 km over single-mode fiber (200GBASE-FR4) using four parallel wavelengths (CWDM) each at 50 Gbit/s[1][31]
    • at least 10 km over single-mode fiber (200GBASE-LR4) using four parallel wavelengths (CWDM) each at 50 Gbit/s[1][31]
    • four and eight lane chip-to-chip/chip-to-module electrical interfaces (200GAUI-4 and 200GAUI-8)

802.3cd project

  • Define four-lane 200 Gbit/s PHYs for operation over:
    • copper twin-axial cables with lengths up to at least 3 m (200GBASE-CR4).
    • printed circuit board backplane with a total channel insertion loss of ≤ 30 dB at 13.28125 GHz (200GBASE-KR4).
  • Define 200 Gbit/s PHYs for operation over MMF with lengths up to at least 100 m (200GBASE-SR4).

802.3ck project

  • 200 Gbit/s Ethernet
    • Define a two-lane 200 Gbit/s Attachment Unit interface (AUI) for chip-to-module applications, compatible with PMDs based on 100 Gbit/s per lane optical signaling (200GAUI-2 C2M)
    • Define a two-lane 200 Gbit/s Attachment Unit Interface (AUI) for chip-to-chip applications (200GAUI-2 C2C)
    • Define a two-lane 200 Gbit/s PHY for operation over electrical backplanes an insertion loss ≤ 28 dB at 26.56 GHz (200GBASE-KR2)
    • Define a two-lane 200 Gbit/s PHY for operation over twin axial copper cables with lengths up to at least 2 m (200GBASE-CR2)
  • 400 Gbit/s Ethernet
    • Define a four-lane 400 Gbit/s Attachment Unit interface (AUI) for chip-to-module applications, compatible with PMDs based on 100 Gbit/s per lane optical signaling (400GAUI-4 C2M)
    • Define a four-lane 400 Gbit/s Attachment Unit Interface (AUI) for chip-to-chip applications (400GAUI-4 C2C)
    • Define a four-lane 400 Gbit/s PHY for operation over electrical backplanes an insertion loss ≤ 28 dB at 26.56 GHz (400GBASE-KR4)
    • Define a four-lane 400 Gbit/s PHY for operation over twin axial copper cables with lengths up to at least 2 m (400GBASE-CR4)

802.3cm project

  • 400 Gbit/s Ethernet
    • Define a physical layer specification supporting 400 Gbit/s operation over 8 pairs of MMF with lengths up to at least 100 m (400GBASE-SR8)
    • Define a physical layer specification supporting 400 Gbit/s operation over 4 pairs of MMF with lengths up to at least 100 m (400GBASE-SR4.2)

802.3cn project

  • 200 Gbit/s Ethernet
    • Provide a physical layer specification supporting 200 Gbit/s operation over four wavelengths capable of at least 40 km of SMF (200GBASE-ER4) [32]
  • 400 Gbit/s Ethernet
    • Provide a physical layer specification supporting 400 Gbit/s operation over eight wavelengths capable of at least 40 km of SMF (400GBASE-ER8)[32]

802.3cu project

  • Define a four-wavelength 400 Gbit/s PHY for operation over SMF with lengths up to at least 2 km (400GBASE-FR4)
  • Define a four-wavelength 400 Gbit/s PHY for operation over SMF with lengths up to at least 6 km (400GBASE-LR4-6) [33]

802.3cw project

  • Provide a physical layer specification supporting 400 Gbit/s operation on a single wavelength capable of at least 80 km over a DWDM system (400GBASE-ZR)[34] Dual polarization 16-state quadrature amplitude modulation (DP-16QAM) with coherent detection is proposed.[35]

802.3db project

  • 200 Gbit/s Ethernet
    • Define a physical layer specification that supports 200 Gbit/s operation over 2 pairs of MMF with lengths up to at least 50 m (200GBASE-VR2)
    • Define a physical layer specification that supports 200 Gbit/s operation over 2 pairs of MMF with lengths up to at least 100 m (200GBASE-SR2)
  • 400 Gbit/s Ethernet
    • Define a physical layer specification that supports 400 Gbit/s operation over 4 pairs of MMF with lengths up to at least 50 m (400GBASE-VR4)
    • Define a physical layer specification that supports 400 Gbit/s operation over 4 pairs of MMF with lengths up to at least 100 m (400GBASE-SR4)

'IEEE P802.3db 100 Gb/s, 200 Gb/s, and 400 Gb/s Short Reach Fiber Task Force'

802.3df project

IEEE P802.3df Objectives for 800Gbit/s and 1.6Tbit/s Ethernet and 200G and 400G PHYs using 200Gbit/s lanes

200G port types

Legend for fibre-based PHYs[36]
MMF FDDI
62.5/125 µm
(1987)
MMF OM1
62.5/125 µm
(1989)
MMF OM2
50/125 µm
(1998)
MMF OM3
50/125 µm
(2003)
MMF OM4
50/125 µm
(2008)
MMF OM5
50/125 µm
(2016)
SMF OS1
9/125 µm
(1998)
SMF OS2
9/125 µm
(2000)
160 MHz·km
@ 850 nm
200 MHz·km
@ 850 nm
500 MHz·km
@ 850 nm
1500 MHz·km
@ 850 nm
3500 MHz·km
@ 850 nm
3500 MHz·km
@ 850 nm &
1850 MHz·km
@ 950 nm
1 dB/km
@ 1300/
1550 nm
0.4 dB/km
@ 1300/
1550 nm
Name Standard Status Media Connector Transceiver
Module
Reach
in m
#
Media
(⇆)
#
Lambdas
(→)
#
Lanes
(→)
Notes
200 Gigabit Ethernet (200 GbE) (1st Generation: 25GbE-based) - (Data rate: 200 Gbit/s - Line code: 256b/257b × RS-FEC(544,514) × NRZ - Line rate: 8x 26.5625 GBd = 212.5 GBd - Full-Duplex) [37][38][39]
200GAUI-8 802.3bs-2017
(CL120B/C)
current Chip-to-chip/
Chip-to-module interface
0.25 16 N/A 8 PCBs
200 Gigabit Ethernet (200 GbE) (2nd Generation: 50GbE-based) - (Data rate: 200 Gbit/s - Line code: 256b/257b × RS-FEC(544,514) × PAM4 - Line rate: 4x 26.5625 GBd x2 = 212.5 GBd - Full-Duplex) [37][38][39]
200GAUI-4 802.3bs-2017
(CL120D/E)
current Chip-to-chip/
Chip-to-module interface
0.25 8 N/A 4 PCBs
200GBASE-KR4 802.3cd-2018
(CL137)
current Cu-Backplane 1 8 N/A 4 PCBs;
total insertion loss of ≤ 30 dB at 13.28125 GHz
200GBASE-CR4 802.3cd-2018
(CL136)
current twinaxial
copper
cable
QSFP-DD,
QSFP56,
microQSFP,
OSFP
N/A 3 8 N/A 4 Data centres (in-rack)
200GBASE-SR4 802.3cd-2018
(CL138)
current Fibre
850 nm
MPO/MTP
(MPO-12)
QSFP56 OM3: 70 8 1 4 uses four fibers in each direction
OM4: 100
200GBASE-DR4 802.3bs-2017
(CL121)
current Fibre
1304.5 – 1317.5 nm
MPO/MTP
(MPO-12)
QSFP56 OS2: 500 8 1 4 uses four fibers in each direction
200GBASE-FR4 802.3bs-2017
(CL122)
current Fibre
1271 – 1331 nm
LC QSFP56 OS2: 2k 2 4 4 WDM
200GBASE-LR4 802.3bs-2017
(CL122)
current Fibre
1295.56 – 1309.14 nm
LC QSFP56 OS2: 10k 2 4 4 WDM
200GBASE-ER4 802.3cn-2019
(CL122)
current Fibre
1295.56 – 1309.14 nm
LC QSFP56 OS2: 40k 2 4 4 WDM
200 Gigabit Ethernet (200 GbE) (3rd Generation: 100GbE-based) - (Data rate: 200 Gbit/s - Line code: 256b/257b × RS-FEC(544,514) × PAM4 - Line rate: 2x 53.1250 GBd x2 = 212.5 GBd - Full-Duplex) [37][38][39]
200GAUI-2 802.3ck
(CL120F/G)
development Chip-to-chip/
Chip-to-module interface
N/A 0.25 4 N/A 2 PCBs
200GBASE-KR2 802.3ck
(CL163)
development Cu backplane 1 4 N/A 2 PCBs;
total insertion loss of ≤ 28 dB at 26.56 GHz
200GBASE-CR2 802.3ck
(CL162)
development twinaxial copper cable QSFP-DD,
QSFP112,
SFP-DD112,
DSFP,
OSFP
N/A 2 4 N/A 2
200GBASE-VR2 802.3db
(CL167)
development Fiber
850 nm
MPO
(MPO-12)
? OM3: 30 4 1 2
OM4: 50
200GBASE-SR2 802.3db
(CL167)
development Fiber
850 nm
MPO
(MPO-12)
? OM3: 60 4 1 2
OM4: 100

400G port types

Legend for fibre-based PHYs[36]
MMF FDDI
62.5/125 µm
(1987)
MMF OM1
62.5/125 µm
(1989)
MMF OM2
50/125 µm
(1998)
MMF OM3
50/125 µm
(2003)
MMF OM4
50/125 µm
(2008)
MMF OM5
50/125 µm
(2016)
SMF OS1
9/125 µm
(1998)
SMF OS2
9/125 µm
(2000)
160 MHz·km
@ 850 nm
200 MHz·km
@ 850 nm
500 MHz·km
@ 850 nm
1500 MHz·km
@ 850 nm
3500 MHz·km
@ 850 nm
3500 MHz·km
@ 850 nm &
1850 MHz·km
@ 950 nm
1 dB/km
@ 1300/
1550 nm
0.4 dB/km
@ 1300/
1550 nm
Name Standard Status Media Connector Transceiver
Module
Reach
in m
#
Media
(⇆)
#
Lambdas
(→)
#
Lanes
(→)
Notes
400 Gigabit Ethernet (400 GbE) (1st Generation: 25GbE-based) - (Data rate: 400 Gbit/s - Line code: 256b/257b × RS-FEC(544,514) × NRZ - Line rate: 16x 26.5625 GBd = 425 GBd - Full-Duplex) [37]
400GAUI-16 802.3bs-2017
(CL120B/C)
current Chip-to-chip/
Chip-to-module interface
0.25 32 N/A 16 PCBs
400GBASE-SR16 802.3bs-2017
(CL123)
current Fibre
850 nm
MPO/MTP
(MPO-32)
CFP8 OM3: 70 32 1 16
OM4: 100
OM5: 100
400 Gigabit Ethernet (400 GbE) (2nd Generation: 50GbE-based) - (Data rate: 400 Gbit/s - Line code: 256b/257b × RS-FEC(544,514) × PAM4 - Line rate: 8x 26.5625 GBd x2 = 425.0 GBd - Full-Duplex) [37]
400GAUI-8 802.3bs-2017
(CL 120D/E)
current Chip-to-chip/
Chip-to-module interface
0.25 16 N/A 8 PCBs
400GBASE-KR8 proprietary
(ETC) (CL120)
current Cu-Backplane 1 8 N/A 8 WDM
400GBASE-SR8 802.3cm-2020
(CL138)
current Fiber
850 nm
MPO/MTP
(MPO-16)
QSFP-DD
OSFP
OM3: 70 16 1 8
OM4: 100
OM5: 100
400GBASE-SR4.2
(Bidirectional)
802.3cm-2020
(CL150)
current Fiber
850 nm
912 nm
MPO/MTP
(MPO-12)
QSFP-DD OM3: 70 8 2 8 Bidirectional WDM
OM4: 100
OM5: 150
400GBASE-FR8 802.3bs-2017
(CL122)
current Fibre
1273.54 – 1309.14 nm
LC QSFP-DD
OSFP
OS2: 2k 2 8 8 WDM
400GBASE-LR8 802.3bs-2017
(CL122)
current Fibre
1273.54 – 1309.14 nm
LC QSFP-DD
OSFP
OS2: 10k 2 8 8 WDM
400GBASE-ER8 802.3cn-2019
(CL122)
current Fibre
1273.54 – 1309.14 nm
LC QSFP-DD OS2: 40k 2 8 8 WDM
400 Gigabit Ethernet (400 GbE) (3rd Generation: 100GbE-based) - (Data rate: 400 Gbit/s - Line code: 256b/257b × RS-FEC(544,514) × PAM4 - Line rate: 4x 53.1250 GBd x2 = 425.0 GBd - Full-Duplex) [37]
400GAUI-4 802.3ck-2022
(CL120F/G)
development Chip-to-chip/
Chip-to-module interface
0.25 8 N/A 4 PCBs
400GBASE-KR4 802.3ck-2022
(CL163)
development Cu-Backplane 1 8 N/A 4 PCBs;
total insertion loss of ≤ 28 dB at 26.56 GHz
400GBASE-CR4 802.3ck-2022
(CL162)
development twinaxial
copper
cable
QSFP-DD,
QSFP112,
OSFP
N/A 2 8 N/A 4 Data centres (in-rack)
400GBASE-VR4 802.3db-2022
(CL167)
development Fibre
850 nm
MPO
(MPO-12)
? OM3: 30 8 1 4
OM4: 50
OM5: 50
400GBASE-SR4 802.3db-2022
(CL167)
development Fibre
850 nm
MPO
(MPO-12)
? OM3: 60 8 1 4
OM4: 100
OM5: 100
400GBASE-DR4 802.3bs-2017
(CL124)
current Fibre
1304.5 – 1317.5 nm
MPO/MTP
(MPO-12)
QSFP-DD
OSFP
OS2: 500 8 1 4
400GBASE-DR4-2 802.3df
(CL124)
development Fibre
1304.5 – 1317.5 nm
MPO/MTP
(MPO-12)
QSFP-DD
OSFP
OS2: 2k 8 1 4
400GBASE-XDR4
400GBASE-DR4+
proprietary
(non IEEE)
current Fibre
1304.5 – 1317.5 nm
MPO/MTP
(MPO-12)
QSFP-DD
OSFP
OSx: 2k 8 1 4
400GBASE-FR4 802.3cu-2021
(CL151)
current Fibre
1271−1331 nm
LC QSFP-DD
OSFP
OS2: 2k 2 4 4 Multi-Vendor Standard[40]
400GBASE-LR4-6 802.3cu-2021
(CL151)
current Fibre
1271−1331 nm
LC QSFP-DD OS2: 6k 2 4 4
400GBASE-LR4-10 proprietary
(MSA, Sept 2020)
current Fibre
1271−1331 nm
LC QSFP-DD OSx: 10k 2 4 4 Multi-Vendor Standard[41]
400GBASE-ZR 802.3cw
(CL155/156)
development Fibre LC QSFP-DD
OSFP
OSx: 80k 2 1 2 59.84375 Gigabaud (DP-16QAM)

See also

References

  1. ^ a b c d "IEEE 802.3 NGOATH SG Adopted Changes to 802.3bs Project Objectives" (PDF).
  2. ^ a b c "Network boffins say Terabit Ethernet is TOO FAST: Sticking to 400Gb for now". The Register.
  3. ^ On-board optics: beyond pluggables
  4. ^ a b "[STDS-802-3-400G] IEEE P802.3bs Approved!". IEEE 802.3bs Task Force. Retrieved 2017-12-14.
  5. ^ a b "High-Speed Transmission Update: 200G/400G". 2016-07-18.
  6. ^ "Ethernet Roadmap 2022". Ethernet Alliance. 2022. Retrieved 2022-08-20.
  7. ^ Jain, P. C. (2016). "Recent trends in next generation terabit Ethernet and gigabit wireless local area network". 2016 International Conference on Signal Processing and Communication (ICSC). IEEE. pp. 106–110. doi:10.1109/ICSPCom.2016.7980557. ISBN 978-1-5090-2684-5. S2CID 25506683.
  8. ^ "OIF Launches CEI-112G Project for 100G Serial Electrical Links". Businesswire. 30 Aug 2016.
  9. ^ "802.3df Public Area".
  10. ^ Feldman, Michael (February 3, 2010). "Facebook Dreams of Terabit Ethernet". HPCwire. Tabor Communications, Inc.
  11. ^ Matsumoto, Craig (March 5, 2010). "Dare We Aim for Terabit Ethernet?". Light Reading. UBM TechWeb.
  12. ^ Craig Matsumoto (October 26, 2010). "The Terabit Ethernet Chase Begins". Light Reading. Retrieved December 15, 2011.
  13. ^ "Cisco 4 x 100 Gbit/s interface".
  14. ^ "Alcatel-Lucent boosts operator capacity to deliver big data and video over existing networks with launch of 400G IP router interface".
  15. ^ Smith, Ryan. "Micron Spills on GDDR6X: PAM4 Signaling For Higher Rates, Coming to NVIDIA's RTX 3090". www.anandtech.com.
  16. ^ Stephen Lawson (May 9, 2011). "IEEE Seeks Data on Ethernet Bandwidth Needs". PC World. Retrieved May 23, 2013.
  17. ^ "IEEE Industry Connections Ethernet Bandwidth Assessment" (PDF). IEEE 802.3 Ethernet Working Group. July 19, 2012. Retrieved 2015-03-01.
  18. ^ Max Burkhalter Brafton (May 12, 2011). "Terabit Ethernet could be on its way". Perle. Retrieved December 15, 2011.
  19. ^ "400 Gb/s Ethernet Study Group". Group web site. IEEE 802.3. Retrieved May 23, 2013.
  20. ^ IEEE 802.3bs Task Force
  21. ^ a b c "Objectives" (PDF). IEEE 802.3bs Task Force. Mar 2014. Retrieved 2015-03-01.
  22. ^ "P802.3bs - IEEE Standard for Ethernet Amendment: Media Access Control Parameters, Physical Layers and Management Parameters for 200 Gb/s and 400 Gb/s Operation". IEEE 802.3bs Task Force. Retrieved 2017-12-14.
  23. ^ 100 m MMF draft proposal
  24. ^ "400GBase-SR16 draft specifications" (PDF).
  25. ^ a b c IEEE 802.3 Ethernet Working Group Liaison letter to ITU-T Questions 6/15 and 11/15
  26. ^ 400G-PSM4: A Proposal for the 500 m Objective using 100 Gbit/s per Lane Signaling
  27. ^ 400Gb/s 8x50G PAM4 WDM 2km SMF PMD Baseline Specifications
  28. ^ a b Baseline Proposal for 8 x 50G NRZ for 400GbE 2 km and 10 km PMD
  29. ^ "400 GbE technical draft specifications" (PDF).
  30. ^ IEEE 802.3 NGOATH SG Adopted Changes to 802.3bs Project Objectives Updated by IEEE 802.3 NGOATH Study Group, Mar 16, 2016, IEEE 802 Mar 2016 Plenary, Macau, China.
  31. ^ a b c IEEE 802.3bs 200/400 Gb/s Ethernet (Standards Informant)
  32. ^ a b http://www.ieee802.org/3/cn/proj_doc/3cn_Objectives_181113.pdf[bare URL PDF]
  33. ^ https://www.ieee802.org/3/cu/Objectives_Approved_Sept_2019.pdf[bare URL PDF]
  34. ^ http://www.ieee802.org/3/cw/proj_doc/3cw_Objectives_190911.pdf[bare URL PDF]
  35. ^ https://www.ieee802.org/3/ct/public/tf_interim/20_0227/dambrosia_3cw_01_200227.pdf[bare URL PDF]
  36. ^ a b Charles E. Spurgeon (2014). Ethernet: The Definitive Guide (2nd ed.). O'Reilly Media. ISBN 978-1-4493-6184-6.
  37. ^ a b c d e f "Exploring The IEEE 802 Ethernet Ecosystem" (PDF). IEEE. 2017-06-04. Retrieved 2018-08-29.
  38. ^ a b c "Multi-Port Implementations of 50/100/200GbE" (PDF). Brocade. 2016-05-22. Retrieved 2018-08-29.
  39. ^ a b c "100Gb/s Electrical Signaling" (PDF). IEEE 802.3 NEA Ad hoc. Retrieved 2021-12-08.
  40. ^ Nowell, Mark. "400G-FR4 Technical Specification". 100glambda.com. 100G Lambda MSA Group. Retrieved 26 May 2021.
  41. ^ Nowell, Mark. "400G-LR4-10 Technical Specification". 100glambda.com. 100G Lambda MSA Group. Retrieved 26 May 2021.

Further reading

  • Chris Jablonski. "Researchers to develop 1 Terabit Ethernet by 2015". ZD Net. Retrieved October 9, 2011.
  • Iljitsch van Beijnum (August 2011). "Speed matters: how Ethernet went from 3 Mbps to 100 Gbps... and beyond". Ars Technica. Retrieved October 9, 2011.
  • Rick Merritt (May 9, 2011). "IEEE Looks beyond 100G Ethernet". The Cutting Edge. Retrieved October 9, 2011.
  • Stephen Lawson (February 2, 2010). "Facebook Sees Need for Terabit Ethernet". PC World. Retrieved December 15, 2011.
  • IEEE Reports
    • "100 gigabit Ethernet and beyond". IEEE Optical Communications: Design, Technologies, and Applications. March 2010. doi:10.1109/MCOM.2010.5434372. ISSN 0163-6804.
    • Elby, Stuart (July 2011). "The drive towards Terabit Ethernet". 2011 IEEE Photonics Society Summer Topical Meeting Series. pp. 104–105. doi:10.1109/PHOSST.2011.6000067. ISBN 978-1-4244-5730-4. S2CID 9077455.
    • Detwiler, Thomas; Stark, Andrew; Basch, Bert; Ralph, Stephen E. (July 2011). "DQPSK for Terabit Ethernet in the 1310 nm band". 2011 IEEE Photonics Society Summer Topical Meeting Series. pp. 143–144. doi:10.1109/PHOSST.2011.6000087. ISBN 978-1-4244-5730-4. S2CID 44199212.

External links

  • West, John (April 3, 2009). "Terabit Ethernet on the way". insideHPC.
  • Mellor, Chris (February 15, 2009). "Terabit Ethernet possibilities". The Register.
  • Wang, Brian (April 24, 2008). "Terabit Ethernet around 2015".
  • Duffy, Jim (April 20, 2009). . Network World. Archived from the original on May 14, 2010.
  • Fleishman, Glenn (February 13, 2009). "Terabit Ethernet becomes a photonic possibility". Ars Technica. Condé Nast.

terabit, ethernet, ethernet, with, speeds, above, gigabit, ethernet, gigabit, ethernet, 400g, 400gbe, gigabit, ethernet, 200g, 200gbe, standards, developed, ieee, p802, task, force, using, broadly, similar, technology, gigabit, ethernet, were, approved, decemb. Terabit Ethernet or TbE is Ethernet with speeds above 100 Gigabit Ethernet 400 Gigabit Ethernet 400G 400GbE and 200 Gigabit Ethernet 200G 200GbE 1 standards developed by the IEEE P802 3bs Task Force using broadly similar technology to 100 Gigabit Ethernet 2 3 were approved on December 6 2017 4 5 In 2016 several networking equipment suppliers were already offering proprietary solutions for 200G and 400G 5 The Ethernet Alliance s 2022 technology roadmap expects speeds of 800 Gbit s and 1 6 Tbit s to become an IEEE standard between about 2023 and 2025 6 7 Doubling to 800 GbE is expected to occur after 112 Gbit s SerDes become available The Optical Internetworking Forum OIF has already announced five new projects at 112 Gbit s which would also make 4th generation single lane 100 GbE links possible 8 The IEEE P802 3df Task Force started work in January 2022 to standardize 800 Gbit s and 1 6 Tbit s Ethernet 9 Contents 1 History 2 Standards development 2 1 IEEE project objectives 2 1 1 802 3bs project 2 1 2 802 3cd project 2 1 3 802 3ck project 2 1 4 802 3cm project 2 1 5 802 3cn project 2 1 6 802 3cu project 2 1 7 802 3cw project 2 1 8 802 3db project 2 1 9 802 3df project 2 2 200G port types 2 3 400G port types 3 See also 4 References 5 Further reading 6 External linksHistory EditFacebook and Google among other companies have expressed a need for TbE 10 While a speed of 400 Gbit s is achievable with existing technology 1 Tbit s 1000 Gbit s would require different technology 2 11 Accordingly at the IEEE Industry Connections Higher Speed Ethernet Consensus group meeting in September 2012 400 GbE was chosen as the next generation goal 2 Additional 200GbE objectives were added in January 2016 The University of California Santa Barbara UCSB attracted help from Agilent Technologies Google Intel Rockwell Collins and Verizon Communications to help with research into next generation Ethernet 12 As of early 2016 chassis modular based core router platforms from Cisco Juniper and other major manufacturers support 400 Gbit s full duplex data rates per slot One two and four port 100GbE and one port 400GbE line cards are presently available As of early 2019 200GbE line cards became available after 802 3cd standard ratification 13 14 200G Ethernet uses PAM4 signaling which allows 2 bits to be transmitted per clock cycle but at a higher implementation cost 15 Standards development EditThe IEEE formed the IEEE 802 3 Industry Connections Ethernet Bandwidth Assessment Ad Hoc to investigate the business needs for short and long term bandwidth requirements 16 17 18 IEEE 802 3 s 400 Gb s Ethernet Study Group started working on the 400 Gbit s generation standard in March 2013 19 Results from the study group were published and approved on March 27 2014 Subsequently the IEEE 802 3bs Task Force 20 started working to provide physical layer specifications for several link distances 21 The IEEE 802 3bs standard was approved on December 6 2017 4 and is available online 22 The IEEE 802 3cd standard was approved on December 5 2018 The IEEE 802 3cn standard was approved on December 20 2019 The IEEE 802 3cm standard was approved on January 30 2020 The IEEE 802 3cu standard was approved on February 11 2021 The IEEE 802 3ck and 802 3db standards were approved on September 21 2022 IEEE project objectives Edit Like all speeds since 10 Gigabit Ethernet the standards support only full duplex operation Other objectives include 21 Support MAC data rates of 400 Gbit s and 200 Gbit s 1 Preserve the Ethernet frame format utilizing the Ethernet MAC Preserve minimum and maximum frame size of current Ethernet standard Support a bit error ratio BER of 10 13 which is an improvement over the 10 12 BER that was specified for 10GbE 40GbE and 100GbE Support for OTN transport of Ethernet across optical transport networks and optional support for Energy Efficient Ethernet EEE 802 3bs project Edit Define physical layer specifications supporting 21 400 Gbit s Ethernet at least 100 m over multi mode fiber 400GBASE SR16 using sixteen parallel strands of fiber each at 25 Gbit s 23 24 at least 500 m over single mode fiber 400GBASE DR4 using four parallel strands of fiber each at 100 Gbit s 25 26 at least 2 km over single mode fiber 400GBASE FR8 using eight parallel wavelengths CWDM each at 50 Gbit s 25 27 28 at least 10 km over single mode fiber 400GBASE LR8 using eight parallel wavelengths CWDM each at 50 Gbit s 25 28 29 eight and sixteen lane chip to chip chip to module electrical interfaces 400GAUI 8 and 400GAUI 16 200 Gbit s Ethernet at least 500 m over single mode fiber 200GBASE DR4 using four parallel strands of fiber each at 50 Gbit s 30 31 at least 2 km over single mode fiber 200GBASE FR4 using four parallel wavelengths CWDM each at 50 Gbit s 1 31 at least 10 km over single mode fiber 200GBASE LR4 using four parallel wavelengths CWDM each at 50 Gbit s 1 31 four and eight lane chip to chip chip to module electrical interfaces 200GAUI 4 and 200GAUI 8 802 3cd project Edit Define four lane 200 Gbit s PHYs for operation over copper twin axial cables with lengths up to at least 3 m 200GBASE CR4 printed circuit board backplane with a total channel insertion loss of 30 dB at 13 28125 GHz 200GBASE KR4 Define 200 Gbit s PHYs for operation over MMF with lengths up to at least 100 m 200GBASE SR4 802 3ck project Edit 200 Gbit s Ethernet Define a two lane 200 Gbit s Attachment Unit interface AUI for chip to module applications compatible with PMDs based on 100 Gbit s per lane optical signaling 200GAUI 2 C2M Define a two lane 200 Gbit s Attachment Unit Interface AUI for chip to chip applications 200GAUI 2 C2C Define a two lane 200 Gbit s PHY for operation over electrical backplanes an insertion loss 28 dB at 26 56 GHz 200GBASE KR2 Define a two lane 200 Gbit s PHY for operation over twin axial copper cables with lengths up to at least 2 m 200GBASE CR2 400 Gbit s Ethernet Define a four lane 400 Gbit s Attachment Unit interface AUI for chip to module applications compatible with PMDs based on 100 Gbit s per lane optical signaling 400GAUI 4 C2M Define a four lane 400 Gbit s Attachment Unit Interface AUI for chip to chip applications 400GAUI 4 C2C Define a four lane 400 Gbit s PHY for operation over electrical backplanes an insertion loss 28 dB at 26 56 GHz 400GBASE KR4 Define a four lane 400 Gbit s PHY for operation over twin axial copper cables with lengths up to at least 2 m 400GBASE CR4 802 3cm project Edit 400 Gbit s Ethernet Define a physical layer specification supporting 400 Gbit s operation over 8 pairs of MMF with lengths up to at least 100 m 400GBASE SR8 Define a physical layer specification supporting 400 Gbit s operation over 4 pairs of MMF with lengths up to at least 100 m 400GBASE SR4 2 802 3cn project Edit 200 Gbit s Ethernet Provide a physical layer specification supporting 200 Gbit s operation over four wavelengths capable of at least 40 km of SMF 200GBASE ER4 32 400 Gbit s Ethernet Provide a physical layer specification supporting 400 Gbit s operation over eight wavelengths capable of at least 40 km of SMF 400GBASE ER8 32 802 3cu project Edit Define a four wavelength 400 Gbit s PHY for operation over SMF with lengths up to at least 2 km 400GBASE FR4 Define a four wavelength 400 Gbit s PHY for operation over SMF with lengths up to at least 6 km 400GBASE LR4 6 33 802 3cw project Edit Provide a physical layer specification supporting 400 Gbit s operation on a single wavelength capable of at least 80 km over a DWDM system 400GBASE ZR 34 Dual polarization 16 state quadrature amplitude modulation DP 16QAM with coherent detection is proposed 35 802 3db project Edit 200 Gbit s Ethernet Define a physical layer specification that supports 200 Gbit s operation over 2 pairs of MMF with lengths up to at least 50 m 200GBASE VR2 Define a physical layer specification that supports 200 Gbit s operation over 2 pairs of MMF with lengths up to at least 100 m 200GBASE SR2 400 Gbit s Ethernet Define a physical layer specification that supports 400 Gbit s operation over 4 pairs of MMF with lengths up to at least 50 m 400GBASE VR4 Define a physical layer specification that supports 400 Gbit s operation over 4 pairs of MMF with lengths up to at least 100 m 400GBASE SR4 IEEE P802 3db 100 Gb s 200 Gb s and 400 Gb s Short Reach Fiber Task Force 802 3df project Edit IEEE P802 3df Objectives for 800Gbit s and 1 6Tbit s Ethernet and 200G and 400G PHYs using 200Gbit s lanes 200G port types Edit Legend for fibre based PHYs 36 MMF FDDI62 5 125 µm 1987 MMF OM162 5 125 µm 1989 MMF OM250 125 µm 1998 MMF OM350 125 µm 2003 MMF OM450 125 µm 2008 MMF OM550 125 µm 2016 SMF OS19 125 µm 1998 SMF OS29 125 µm 2000 160 MHz km 850 nm 200 MHz km 850 nm 500 MHz km 850 nm 1500 MHz km 850 nm 3500 MHz km 850 nm 3500 MHz km 850 nm amp 1850 MHz km 950 nm 1 dB km 1300 1550 nm 0 4 dB km 1300 1550 nmName Standard Status Media Connector TransceiverModule Reachin m Media Lambdas Lanes Notes200 Gigabit Ethernet 200 GbE 1st Generation 25GbE based Data rate 200 Gbit s Line code 256b 257b RS FEC 544 514 NRZ Line rate 8x 26 5625 GBd 212 5 GBd Full Duplex 37 38 39 200GAUI 8 802 3bs 2017 CL120B C current Chip to chip Chip to module interface 0 25 16 N A 8 PCBs200 Gigabit Ethernet 200 GbE 2nd Generation 50GbE based Data rate 200 Gbit s Line code 256b 257b RS FEC 544 514 PAM4 Line rate 4x 26 5625 GBd x2 212 5 GBd Full Duplex 37 38 39 200GAUI 4 802 3bs 2017 CL120D E current Chip to chip Chip to module interface 0 25 8 N A 4 PCBs200GBASE KR4 802 3cd 2018 CL137 current Cu Backplane 1 8 N A 4 PCBs total insertion loss of 30 dB at 13 28125 GHz200GBASE CR4 802 3cd 2018 CL136 current twinaxialcoppercable QSFP DD QSFP56 microQSFP OSFP N A 3 8 N A 4 Data centres in rack 200GBASE SR4 802 3cd 2018 CL138 current Fibre850 nm MPO MTP MPO 12 QSFP56 OM3 70 8 1 4 uses four fibers in each directionOM4 100200GBASE DR4 802 3bs 2017 CL121 current Fibre1304 5 1317 5 nm MPO MTP MPO 12 QSFP56 OS2 500 8 1 4 uses four fibers in each direction200GBASE FR4 802 3bs 2017 CL122 current Fibre1271 1331 nm LC QSFP56 OS2 2k 2 4 4 WDM200GBASE LR4 802 3bs 2017 CL122 current Fibre1295 56 1309 14 nm LC QSFP56 OS2 10k 2 4 4 WDM200GBASE ER4 802 3cn 2019 CL122 current Fibre1295 56 1309 14 nm LC QSFP56 OS2 40k 2 4 4 WDM200 Gigabit Ethernet 200 GbE 3rd Generation 100GbE based Data rate 200 Gbit s Line code 256b 257b RS FEC 544 514 PAM4 Line rate 2x 53 1250 GBd x2 212 5 GBd Full Duplex 37 38 39 200GAUI 2 802 3ck CL120F G development Chip to chip Chip to module interface N A 0 25 4 N A 2 PCBs200GBASE KR2 802 3ck CL163 development Cu backplane 1 4 N A 2 PCBs total insertion loss of 28 dB at 26 56 GHz200GBASE CR2 802 3ck CL162 development twinaxial copper cable QSFP DD QSFP112 SFP DD112 DSFP OSFP N A 2 4 N A 2200GBASE VR2 802 3db CL167 development Fiber850 nm MPO MPO 12 OM3 30 4 1 2OM4 50200GBASE SR2 802 3db CL167 development Fiber850 nm MPO MPO 12 OM3 60 4 1 2OM4 100400G port types Edit Legend for fibre based PHYs 36 MMF FDDI62 5 125 µm 1987 MMF OM162 5 125 µm 1989 MMF OM250 125 µm 1998 MMF OM350 125 µm 2003 MMF OM450 125 µm 2008 MMF OM550 125 µm 2016 SMF OS19 125 µm 1998 SMF OS29 125 µm 2000 160 MHz km 850 nm 200 MHz km 850 nm 500 MHz km 850 nm 1500 MHz km 850 nm 3500 MHz km 850 nm 3500 MHz km 850 nm amp 1850 MHz km 950 nm 1 dB km 1300 1550 nm 0 4 dB km 1300 1550 nmName Standard Status Media Connector TransceiverModule Reachin m Media Lambdas Lanes Notes400 Gigabit Ethernet 400 GbE 1st Generation 25GbE based Data rate 400 Gbit s Line code 256b 257b RS FEC 544 514 NRZ Line rate 16x 26 5625 GBd 425 GBd Full Duplex 37 400GAUI 16 802 3bs 2017 CL120B C current Chip to chip Chip to module interface 0 25 32 N A 16 PCBs400GBASE SR16 802 3bs 2017 CL123 current Fibre850 nm MPO MTP MPO 32 CFP8 OM3 70 32 1 16OM4 100OM5 100400 Gigabit Ethernet 400 GbE 2nd Generation 50GbE based Data rate 400 Gbit s Line code 256b 257b RS FEC 544 514 PAM4 Line rate 8x 26 5625 GBd x2 425 0 GBd Full Duplex 37 400GAUI 8 802 3bs 2017 CL 120D E current Chip to chip Chip to module interface 0 25 16 N A 8 PCBs400GBASE KR8 proprietary ETC CL120 current Cu Backplane 1 8 N A 8 WDM400GBASE SR8 802 3cm 2020 CL138 current Fiber850 nm MPO MTP MPO 16 QSFP DDOSFP OM3 70 16 1 8OM4 100OM5 100400GBASE SR4 2 Bidirectional 802 3cm 2020 CL150 current Fiber850 nm 912 nm MPO MTP MPO 12 QSFP DD OM3 70 8 2 8 Bidirectional WDMOM4 100OM5 150400GBASE FR8 802 3bs 2017 CL122 current Fibre1273 54 1309 14 nm LC QSFP DDOSFP OS2 2k 2 8 8 WDM400GBASE LR8 802 3bs 2017 CL122 current Fibre1273 54 1309 14 nm LC QSFP DDOSFP OS2 10k 2 8 8 WDM400GBASE ER8 802 3cn 2019 CL122 current Fibre1273 54 1309 14 nm LC QSFP DD OS2 40k 2 8 8 WDM400 Gigabit Ethernet 400 GbE 3rd Generation 100GbE based Data rate 400 Gbit s Line code 256b 257b RS FEC 544 514 PAM4 Line rate 4x 53 1250 GBd x2 425 0 GBd Full Duplex 37 400GAUI 4 802 3ck 2022 CL120F G development Chip to chip Chip to module interface 0 25 8 N A 4 PCBs400GBASE KR4 802 3ck 2022 CL163 development Cu Backplane 1 8 N A 4 PCBs total insertion loss of 28 dB at 26 56 GHz400GBASE CR4 802 3ck 2022 CL162 development twinaxialcoppercable QSFP DD QSFP112 OSFP N A 2 8 N A 4 Data centres in rack 400GBASE VR4 802 3db 2022 CL167 development Fibre850 nm MPO MPO 12 OM3 30 8 1 4OM4 50OM5 50400GBASE SR4 802 3db 2022 CL167 development Fibre850 nm MPO MPO 12 OM3 60 8 1 4OM4 100OM5 100400GBASE DR4 802 3bs 2017 CL124 current Fibre1304 5 1317 5 nm MPO MTP MPO 12 QSFP DDOSFP OS2 500 8 1 4400GBASE DR4 2 802 3df CL124 development Fibre1304 5 1317 5 nm MPO MTP MPO 12 QSFP DDOSFP OS2 2k 8 1 4400GBASE XDR4400GBASE DR4 proprietary non IEEE current Fibre1304 5 1317 5 nm MPO MTP MPO 12 QSFP DDOSFP OSx 2k 8 1 4400GBASE FR4 802 3cu 2021 CL151 current Fibre1271 1331 nm LC QSFP DDOSFP OS2 2k 2 4 4 Multi Vendor Standard 40 400GBASE LR4 6 802 3cu 2021 CL151 current Fibre1271 1331 nm LC QSFP DD OS2 6k 2 4 4400GBASE LR4 10 proprietary MSA Sept 2020 current Fibre1271 1331 nm LC QSFP DD OSx 10k 2 4 4 Multi Vendor Standard 41 400GBASE ZR 802 3cw CL155 156 development Fibre LC QSFP DDOSFP OSx 80k 2 1 2 59 84375 Gigabaud DP 16QAM See also EditEthernet Alliance Interconnect bottleneck Optical fiber cable Optical communication Parallel optical interfaceReferences Edit a b c d IEEE 802 3 NGOATH SG Adopted Changes to 802 3bs Project Objectives PDF a b c Network boffins say Terabit Ethernet is TOO FAST Sticking to 400Gb for now The Register On board optics beyond pluggables a b STDS 802 3 400G IEEE P802 3bs Approved IEEE 802 3bs Task Force Retrieved 2017 12 14 a b High Speed Transmission Update 200G 400G 2016 07 18 Ethernet Roadmap 2022 Ethernet Alliance 2022 Retrieved 2022 08 20 Jain P C 2016 Recent trends in next generation terabit Ethernet and gigabit wireless local area network 2016 International Conference on Signal Processing and Communication ICSC IEEE pp 106 110 doi 10 1109 ICSPCom 2016 7980557 ISBN 978 1 5090 2684 5 S2CID 25506683 OIF Launches CEI 112G Project for 100G Serial Electrical Links Businesswire 30 Aug 2016 802 3df Public Area Feldman Michael February 3 2010 Facebook Dreams of Terabit Ethernet HPCwire Tabor Communications Inc Matsumoto Craig March 5 2010 Dare We Aim for Terabit Ethernet Light Reading UBM TechWeb Craig Matsumoto October 26 2010 The Terabit Ethernet Chase Begins Light Reading Retrieved December 15 2011 Cisco 4 x 100 Gbit s interface Alcatel Lucent boosts operator capacity to deliver big data and video over existing networks with launch of 400G IP router interface Smith Ryan Micron Spills on GDDR6X PAM4 Signaling For Higher Rates Coming to NVIDIA s RTX 3090 www anandtech com Stephen Lawson May 9 2011 IEEE Seeks Data on Ethernet Bandwidth Needs PC World Retrieved May 23 2013 IEEE Industry Connections Ethernet Bandwidth Assessment PDF IEEE 802 3 Ethernet Working Group July 19 2012 Retrieved 2015 03 01 Max Burkhalter Brafton May 12 2011 Terabit Ethernet could be on its way Perle Retrieved December 15 2011 400 Gb s Ethernet Study Group Group web site IEEE 802 3 Retrieved May 23 2013 IEEE 802 3bs Task Force a b c Objectives PDF IEEE 802 3bs Task Force Mar 2014 Retrieved 2015 03 01 P802 3bs IEEE Standard for Ethernet Amendment Media Access Control Parameters Physical Layers and Management Parameters for 200 Gb s and 400 Gb s Operation IEEE 802 3bs Task Force Retrieved 2017 12 14 100 m MMF draft proposal 400GBase SR16 draft specifications PDF a b c IEEE 802 3 Ethernet Working Group Liaison letter to ITU T Questions 6 15 and 11 15 400G PSM4 A Proposal for the 500 m Objective using 100 Gbit s per Lane Signaling 400Gb s 8x50G PAM4 WDM 2km SMF PMD Baseline Specifications a b Baseline Proposal for 8 x 50G NRZ for 400GbE 2 km and 10 km PMD 400 GbE technical draft specifications PDF IEEE 802 3 NGOATH SG Adopted Changes to 802 3bs Project Objectives Updated by IEEE 802 3 NGOATH Study Group Mar 16 2016 IEEE 802 Mar 2016 Plenary Macau China a b c IEEE 802 3bs 200 400 Gb s Ethernet Standards Informant a b http www ieee802 org 3 cn proj doc 3cn Objectives 181113 pdf bare URL PDF https www ieee802 org 3 cu Objectives Approved Sept 2019 pdf bare URL PDF http www ieee802 org 3 cw proj doc 3cw Objectives 190911 pdf bare URL PDF https www ieee802 org 3 ct public tf interim 20 0227 dambrosia 3cw 01 200227 pdf bare URL PDF a b Charles E Spurgeon 2014 Ethernet The Definitive Guide 2nd ed O Reilly Media ISBN 978 1 4493 6184 6 a b c d e f Exploring The IEEE 802 Ethernet Ecosystem PDF IEEE 2017 06 04 Retrieved 2018 08 29 a b c Multi Port Implementations of 50 100 200GbE PDF Brocade 2016 05 22 Retrieved 2018 08 29 a b c 100Gb s Electrical Signaling PDF IEEE 802 3 NEA Ad hoc Retrieved 2021 12 08 Nowell Mark 400G FR4 Technical Specification 100glambda com 100G Lambda MSA Group Retrieved 26 May 2021 Nowell Mark 400G LR4 10 Technical Specification 100glambda com 100G Lambda MSA Group Retrieved 26 May 2021 Further reading EditChris Jablonski Researchers to develop 1 Terabit Ethernet by 2015 ZD Net Retrieved October 9 2011 Iljitsch van Beijnum August 2011 Speed matters how Ethernet went from 3 Mbps to 100 Gbps and beyond Ars Technica Retrieved October 9 2011 Rick Merritt May 9 2011 IEEE Looks beyond 100G Ethernet The Cutting Edge Retrieved October 9 2011 Stephen Lawson February 2 2010 Facebook Sees Need for Terabit Ethernet PC World Retrieved December 15 2011 IEEE Reports 100 gigabit Ethernet and beyond IEEE Optical Communications Design Technologies and Applications March 2010 doi 10 1109 MCOM 2010 5434372 ISSN 0163 6804 Elby Stuart July 2011 The drive towards Terabit Ethernet 2011 IEEE Photonics Society Summer Topical Meeting Series pp 104 105 doi 10 1109 PHOSST 2011 6000067 ISBN 978 1 4244 5730 4 S2CID 9077455 Detwiler Thomas Stark Andrew Basch Bert Ralph Stephen E July 2011 DQPSK for Terabit Ethernet in the 1310 nm band 2011 IEEE Photonics Society Summer Topical Meeting Series pp 143 144 doi 10 1109 PHOSST 2011 6000087 ISBN 978 1 4244 5730 4 S2CID 44199212 External links EditWest John April 3 2009 Terabit Ethernet on the way insideHPC Mellor Chris February 15 2009 Terabit Ethernet possibilities The Register Wang Brian April 24 2008 Terabit Ethernet around 2015 Duffy Jim April 20 2009 100 Gigabit Ethernet Bridge to Terabit Ethernet Network World Archived from the original on May 14 2010 Fleishman Glenn February 13 2009 Terabit Ethernet becomes a photonic possibility Ars Technica Conde Nast Retrieved from https en wikipedia org w index php title Terabit Ethernet amp oldid 1126162153, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.