fbpx
Wikipedia

X-ray telescope

An X-ray telescope (XRT) is a telescope that is designed to observe remote objects in the X-ray spectrum. X-rays are absorbed by the Earth's atmosphere, so instruments to detect X-rays must be taken to high altitude by balloons, sounding rockets, and satellites.

Chandra X-ray Observatory, launched by NASA in 1999, is still operational as of 2024

The basic elements of the telescope are the optics (focusing or collimating), that collects the radiation entering the telescope, and the detector, on which the radiation is collected and measured. A variety of different designs and technologies have been used for these elements.

Many X-ray telescopes on satellites are compounded of multiple small detector-telescope systems whose capabilities add up or complement each other, and additional fixed or removable elements[1][2] (filters, spectrometers) that add functionalities to the instrument.

History of X-ray telescopes edit

 
Uhuru X-ray satellite
 
Photo of supernova remnant Cassiopeia A, taken by the first imaging X-ray telescope, Einstein Observatory.

X-ray telescopes were first used for astronomy to observe the Sun, which was the only source in the sky bright enough in X-rays for those early telescopes to detect. Because the Sun is so bright in X-rays, early X-ray telescopes could use a small focusing element and the X-rays would be detected with photographic film. The first X-ray picture of the Sun from a rocket-borne telescope was taken by John V. Lindsay of the NASA Goddard Space Flight Center and collaborators in 1963. The first orbiting X-ray telescope flew on Skylab in the early 1970s and recorded more than 35,000 full-disk images of the Sun over a 9-month period.[3]

First specialised X-ray satellite, Uhuru, was launched by NASA in 1970. It detected 339 X-ray sources in its 2.5-year lifetime.[4]

The Einstein Observatory, launched in 1978, was the first imaging X-ray observatory. It obtained high-resolution X-ray images in the energy range from 0.1 to 4 keV of stars of all types, supernova remnants, galaxies, and clusters of galaxies. Another large project was ROSAT (active from 1990 to 1999), which was a heavy X-ray space observatory with focusing X-ray optics, and European EXOSAT.[4]

The Chandra X-Ray Observatory was launched by NASA in 1999 and is operated for more than 25 years in a high elliptical orbit, returning thousands 0.5 arc-second images and high-resolution spectra of all kinds of astronomical objects in the energy range from 0.5 to 8.0 keV. Chandra's resolution is about 50 times superior to that of ROSAT.[3]

Active X-ray observatory satellites edit

Satellites in use today include ESA's XMM-Newton observatory (low to mid energy X-rays 0.1-15 keV), NASA's Swift observatory, Chandra observatory and IXPE telescope. JAXA has launched the XRISM telescope, while ISRO has launched Aditya-L1 and XPoSat.

The GOES 14 spacecraft carries on board a Solar X-ray Imager to monitor the Sun's X-rays for the early detection of solar flares, coronal mass ejections, and other phenomena that impact the geospace environment.[5] It was launched into orbit on June 27, 2009, at 22:51 GMT from Space Launch Complex 37B at the Cape Canaveral Air Force Station.

The Chinese Hard X-ray Modulation Telescope was launched on June 15, 2017 to observe black holes, neutron stars, active galactic nuclei and other phenomena based on their X-ray and gamma-ray emissions.[6]

The Lobster-Eye X-ray Satellite was launched on 25 July 2020 by CNSA making it is the first in-orbit telescope to utilize the lobster-eye imaging technology of ultra-large field of view imaging to search for dark matter signals in the x-ray energy range.[7] Lobster Eye Imager for Astronomy was launched on 27 July 2022 as a technology demonstrator for Einstein Probe, launched on January 9, 2024, dedicated to time-domain high-energy astrophysics.[8] The Space Variable Objects Monitor observatory scheduled for launch in June 2024 will be directed at studying the explosions of massive stars and analysis of gamma-ray bursts.[9]

A soft X-ray solar imaging telescope is on board the GOES-13 weather satellite launched using a Delta IV from Cape Canaveral LC37B on May 24, 2006.[10] However, there have been no GOES 13 SXI images since December 2006.

The Russian-German Spektr-RG carries the eROSITA telescope array as well as the ART-XC telescope. It was launched by Roscosmos on 13 July 2019 from Baikonur and began collecting data in October 2019.

Optics edit

 
One of the mirrors of XRISM made of 203 foils

The most common methods used in X-ray optics are grazing incidence mirrors and collimated apertures. Only three geometries that use grazing incidence reflection of X-rays to produce X-ray images are known: Wolter system, Kirkpatrick-Baez system, and lobster-eye optics.[11]

Focusing mirrors edit

 
Focusing X-rays with glancing reflection

A simple parabolic mirror was originally proposed in 1960 by Riccardo Giacconi and Bruno Rossi, the founders of extrasolar X-ray astronomy. This type of mirror is often used as the primary reflector in an optical telescope. However, images of off-axis objects would be severely blurred. The German physicist Hans Wolter showed in 1952 that the reflection off a combination of two elements, a paraboloid followed by a hyperboloid, would work far better for X-ray astronomy applications. Wolter described three different imaging configurations, the Types I, II, and III. The design most commonly used by X-ray astronomers is the Type I since it has the simplest mechanical configuration. In addition, the Type I design offers the possibility of nesting several telescopes inside one another, thereby increasing the useful reflecting area. The Wolter Type II is useful only as a narrow-field imager or as the optic for a dispersive spectrometer. The Wolter Type III has never been employed for X-ray astronomy.[12]

With respect to collimated optics, focusing optics allow:

  • a high resolution imaging
  • a high telescope sensitivity: since radiation is focused on a small area, Signal-to-noise ratio is much higher for this kind of instruments.

The mirrors can be made of ceramic or metal foil[13] coated with a thin layer of a reflective material (typically gold or iridium). Mirrors based on this construction work on the basis of total reflection of light at grazing incidence.

This technology is limited in energy range by the inverse relation between critical angle for total reflection and radiation energy. The limit in the early 2000s with Chandra and XMM-Newton X-ray observatories was about 15 kilo-electronvolt (keV) light.[14] Using new multi-layered coated mirrors, the X-ray mirror for the NuSTAR telescope pushed this up to 79 keV light.[14] To reflect at this level, glass layers were multi-coated with tungsten (W)/silicon (Si) or platinum (Pt)/silicon carbide(SiC).[14]

Collimating optics edit

While earlier X-ray telescopes were using simple collimating techniques (e.g. rotating collimators, wire collimators),[15] the technology most used in the present day employs coded aperture masks. This technique uses a flat aperture patterned grille in front of the detector. This design gives results that are less sensitive than focusing optics; also the imaging quality and identification of source position is much poorer. Though this design offers a larger field of view and can be employed at higher energies, where grazing incidence optics become ineffective. Also the imaging is not direct, but the image is rather reconstructed by post-processing of the signal.

Detection and imaging of X-rays edit

 
X-rays start at ~0.008 nm and extend across the electromagnetic spectrum to ~8 nm, over which Earth's atmosphere is opaque.
 
Chandra's image of Saturn (left) and Hubble optical image of Saturn (right). Saturn's X-ray spectrum is similar to that of X-rays from the Sun. 14 April 2003

X-rays has a huge span in wavelength (~8 nm - 8 pm), frequency (~50 PHz - 50 EHz) and energy (~0.12 - 120 keV). In terms of temperature, 1 eV = 11,604 K. Thus X-rays (0.12 to 120 keV) correspond to 1.39 × 106 to 1.39 × 109 K. From 10 to 0.1 nanometers (nm) (about 0.12 to 12 keV) they are classified as soft X-rays, and from 0.1 nm to 0.01 nm (about 12 to 120 keV) as hard X-rays.

Closer to the visible range of the electromagnetic spectrum is the ultraviolet. The draft ISO standard on determining solar irradiances (ISO-DIS-21348)[16] describes the ultraviolet as ranging from ~10 nm to ~400 nm. That portion closest to X-rays is often referred to as the "extreme ultraviolet" (EUV or XUV). When an EUV photon is absorbed, photoelectrons and secondary electrons are generated by ionization, much like what happens when X-rays or electron beams are absorbed by matter.[17]

The distinction between X-rays and gamma rays has changed in recent decades. Originally, the electromagnetic radiation emitted by X-ray tubes had a longer wavelength than the radiation emitted by radioactive nuclei (gamma rays).[18] So older literature distinguished between X- and gamma radiation on the basis of wavelength, with radiation shorter than some arbitrary wavelength, such as 10−11 m, defined as gamma rays.[19] However, as shorter wavelength continuous spectrum "X-ray" sources such as linear accelerators and longer wavelength "gamma ray" emitters were discovered, the wavelength bands largely overlapped. The two types of radiation are now usually distinguished by their origin: X-rays are emitted by electrons outside the nucleus, while gamma rays are emitted by the nucleus.[18][20][21][22]

Although the more energetic X-rays, photons with an energy greater than 30 keV (4,800 aJ), can penetrate the Earth's atmosphere at least for distances of a few meters, the Earth's atmosphere is thick enough that virtually none are able to penetrate from outer space all the way to the Earth's surface. X-rays in the 0.5 to 5 keV (80 to 800 aJ) range, where most celestial sources give off the bulk of their energy, can be stopped by a few sheets of paper; 90% of the photons in a beam of 3 keV (480 aJ) X-rays are absorbed by traveling through just 10 cm of air.

Proportional counters edit

A proportional counter is a type of gaseous ionization detector that counts particles of ionizing radiation and measures their energy. It works on the same principle as the Geiger-Müller counter, but uses a lower operating voltage. All X-ray proportional counters consist of a windowed gas cell.[23] Often this cell is subdivided into a number of low- and high-electric field regions by some arrangement of electrodes.

Proportional counters were used on EXOSAT,[24] on the US portion of the Apollo–Soyuz mission (July 1975), and on French TOURNESOL instrument.[25]

X-ray monitor edit

Monitoring generally means to be aware of the state of a system. A device that displays or sends a signal for displaying X-ray output from an X-ray generating source so as to be aware of the state of the source is referred to as an X-ray monitor in space applications. On Apollo 15 in orbit above the Moon, for example, an X-ray monitor was used to follow the possible variation in solar X-ray intensity and spectral shape while mapping the lunar surface with respect to its chemical composition due to the production of secondary X-rays.[26]

The X-ray monitor of Solwind, designated NRL-608 or XMON, was a collaboration between the Naval Research Laboratory and Los Alamos National Laboratory. The monitor consisted of 2 collimated argon proportional counters.

Scintillation detector edit

 
Scintillation crystal surrounded by various scintillation detector assemblies

A scintillator is a material which exhibits the property of luminescence[27] when excited by ionizing radiation. Luminescent materials, when struck by an incoming particle, such as an X-ray photon, absorb its energy and scintillate, i.e. reemit the absorbed energy in the form of a small flash of light, typically in the visible range.

The scintillation X-ray detector were used on Vela 5A and its twin Vela 5B;[28] the X-ray telescope onboard OSO 4 consisted of a single thin NaI(Tl) scintillation crystal plus phototube assembly enclosed in a CsI(Tl) anti-coincidence shield. OSO 5 carried a CsI crystal scintillator. The central crystal was 0.635 cm thick, had a sensitive area of 70 cm2, and was viewed from behind by a pair of photomultiplier tubes.

The PHEBUS had two independent detectors, each detector consisted of a bismuth germinate (BGO) crystal 78 mm in diameter by 120 mm thick.[25] The KONUS-B instrument consisted of seven detectors distributed around the spacecraft that responded to photons of 10 keV to 8 MeV energy. They consisted of NaI(Tl) scintillator crystals 200 mm in diameter by 50 mm thick behind a Be entrance window. Kvant-1 carried the HEXE, or High Energy X-ray Experiment, which employed a phoswich of sodium iodide and caesium iodide.

Modulation collimator edit

In electronics, modulation is the process of varying one waveform in relation to another waveform. With a 'modulation collimator' the amplitude (intensity) of the incoming X-rays is reduced by the presence of two or more 'diffraction gratings' of parallel wires that block or greatly reduce that portion of the signal incident upon the wires.

An X-ray collimator is a device that filters a stream of X-rays so that only those traveling parallel to a specified direction are allowed through.

Minoru Oda, President of Tokyo University of Information Sciences, invented the modulation collimator, first used to identify the counterpart of Sco X-1 in 1966, which led to the most accurate positions for X-ray sources available, prior to the launch of X-ray imaging telescopes.[29]

SAS 3 carried modulation collimators (2-11 keV) and Slat and Tube collimators (1 up to 60keV).[30]

On board the Granat Observatory were four WATCH instruments that could localize bright sources in the 6 to 180 keV range to within 0.5° using a Rotation Modulation Collimator. Taken together, the instruments' three fields of view covered approximately 75% of the sky.[25]

The Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI), Explorer 81, images solar flares from soft X-rays to gamma rays (~3 keV to ~20 MeV). Its imaging capability is based on a Fourier-transform technique using a set of 9 Rotational Modulation Collimators.

X-ray spectrometer edit

OSO 8 had on board a Graphite Crystal X-ray Spectrometer, with energy range of 2-8 keV, FOV 3°.

The Granat ART-S X-ray spectrometer covered the energy range 3 to 100 keV, FOV 2° × 2°. The instrument consisted of four detectors based on spectroscopic MWPCs, making an effective area of 2,400 cm2 at 10 keV and 800 cm2 at 100 keV. The time resolution was 200 microseconds.[25]

The X-ray spectrometer aboard ISEE-3 was designed to study both solar flares and cosmic gamma-ray bursts over the energy range 5-228 keV. The experiment consisted of 2 cylindrical X-ray detectors: a Xenon filled proportional counter covering 5-14 keV, and a NaI(Tl) scintillator covering 12-1250 keV.

CCDs edit

Most existing X-ray telescopes use CCD detectors, similar to those in visible-light cameras. In visible-light, a single photon can produce a single electron of charge in a pixel, and an image is built up by accumulating many such charges from many photons during the exposure time. When an X-ray photon hits a CCD, it produces enough charge (hundreds to thousands of electrons, proportional to its energy) that the individual X-rays have their energies measured on read-out.

Microcalorimeters edit

Microcalorimeters can only detect X-rays one photon at a time (but can measure the energy of each).

Transition edge sensors edit

Transition-edge sensors are the next step in microcalorimetry. In essence they are super-conducting metals kept as close as possible to their transition temperature. This is the temperature at which these metals become super-conductors and their resistance drops to zero. These transition temperatures are usually just a few degrees above absolute zero (usually less than 10 K).

See also edit

References edit

  1. ^ "Chandra :: About Chandra :: Science Instruments". chandra.si.edu. Retrieved 2016-02-19.
  2. ^ "Instruments". sci.esa.int. Retrieved 2016-02-19.
  3. ^ a b "A Brief History of X-ray Telescopes". imagine.gsfc.nasa.gov. Retrieved 7 January 2024.   This article incorporates text from this source, which is in the public domain.
  4. ^ a b "X-Ray Observatories - an overview | ScienceDirect Topics". Retrieved 7 January 2024. {{cite journal}}: Cite journal requires |journal= (help)
  5. ^ "GOES Solar X-ray Imager".
  6. ^ Rui C. Barbosa (14 June 2017). "China launches X-ray telescope via Long March 4B". NASASpaceFlight.com. Retrieved 23 August 2020.
  7. ^ "Launch of the world's first soft X-ray satellite with 'Lobster-Eye' imaging technology". copernical.com. 26 July 2020. Retrieved 23 August 2020.
  8. ^ "Einstein Probe lifts off on a mission to monitor the X-ray sky". www.esa.int.
  9. ^ "Svom". Retrieved 14 January 2024.
  10. ^ Wade M. . Archived from the original on September 2, 2003.
  11. ^ Richard Willingale (July 2021). "Lobster Eye Optics". In Sternberg, Amiel; Burrows, David N (eds.). The WSPC Handbook of Astronomical Instrumentation: Volume 4: X-Ray Astronomical Instrumentation. Vol. 4. World Scientific Publishing Co. Pte. Ltd. pp. 33–47, 85–106. Bibcode:2021hai4.book.....B. doi:10.1142/9446-vol4. ISBN 978-981-4644-38-9. Retrieved 1 January 2024.
  12. ^ "X-ray Telescopes - More Information". imagine.gsfc.nasa.gov. Retrieved 7 January 2024.   This article incorporates text from this source, which is in the public domain.
  13. ^ "Sciences and Exploration Directorate". science.gsfc.nasa.gov.
  14. ^ a b c . Archived from the original on November 1, 2010.
  15. ^ Seward, Frederick D.; Charles, Philip A. (2010). Exploring the X-ray Universe – Cambridge Books Online – Cambridge University Press. doi:10.1017/cbo9780511781513. ISBN 9780511781513.
  16. ^ Tobiska, W; Nusinov, A (2006). . 36th Cospar Scientific Assembly. 36: 2621. Bibcode:2006cosp...36.2621T. Archived from the original on 2018-10-01. Retrieved 2024-01-07.
  17. ^ Henke BL; et al. (1977). "0.1–10-keV X-ray induced electron emissions from solids—Models and secondary electron measurements". Journal of Applied Physics. 48 (5): 1852. Bibcode:1977JAP....48.1852H. doi:10.1063/1.323938.
  18. ^ a b Dendy PP; Heaton B (1999). Physics for Diagnostic Radiology. CRC Press. p. 12. ISBN 978-0-7503-0591-4.
  19. ^ Charles Hodgman, ed. (1961). CRC Handbook of Chemistry and Physics (44th ed.). Chemical Rubber Co. p. 2850.
  20. ^ Feynman R; Leighton R; Sands M (1963). The Feynman Lectures on Physics. Vol. 1. Addison-Wesley. pp. 2–5. ISBN 978-0-201-02116-5.
  21. ^ L'Annunziata M; Baradei M (2003). Handbook of Radioactivity Analysis. Academic Press. p. 58. ISBN 978-0-12-436603-9.
  22. ^ Grupen C; Cowan G; Eidelman SD; Stroh T (2005). Astroparticle Physics. Springer. p. 109. ISBN 978-3-540-25312-9.
  23. ^ "Science". imagine.gsfc.nasa.gov.
  24. ^ Hoff HA (1983). "Exosat - the new extrasolar X-ray observatory". J. Br. Interplanet. Soc. 36: 363. Bibcode:1983JBIS...36..363H.
  25. ^ a b c d "Granat". NASA. Retrieved 2007-12-05.
  26. ^ Adler I; Gerard J; Trombka J; Schmadebeck R; Lowman P; Bodgett H (1972). "The Apollo 15 x-ray fluorescence experiment". Proc Lunar Sci Conf. 2: 2157. Bibcode:1972LPSC....3.2157A.
  27. ^ Leo WR (1994). Techniques for Nuclear and particle Physics Experiments (2nd ed.). Springer.
  28. ^ Conner JP; Evans WD; Belian RD (1969). "The Recent Appearance of a New X-Ray Source in the Southern Sky". Astrophys J. 157: L157. Bibcode:1969ApJ...157L.157C. doi:10.1086/180409.
  29. ^ Cominsky L; Inoue H; Clark G. . Archived from the original on 2009-06-05. Retrieved 2024-01-07.
  30. ^ . Archived from the original on 2001-04-17.

telescope, this, article, needs, additional, citations, verification, please, help, improve, this, article, adding, citations, reliable, sources, unsourced, material, challenged, removed, find, sources, news, newspapers, books, scholar, jstor, november, 2023, . This article needs additional citations for verification Please help improve this article by adding citations to reliable sources Unsourced material may be challenged and removed Find sources X ray telescope news newspapers books scholar JSTOR November 2023 Learn how and when to remove this template message An X ray telescope XRT is a telescope that is designed to observe remote objects in the X ray spectrum X rays are absorbed by the Earth s atmosphere so instruments to detect X rays must be taken to high altitude by balloons sounding rockets and satellites Chandra X ray Observatory launched by NASA in 1999 is still operational as of 2024 The basic elements of the telescope are the optics focusing or collimating that collects the radiation entering the telescope and the detector on which the radiation is collected and measured A variety of different designs and technologies have been used for these elements Many X ray telescopes on satellites are compounded of multiple small detector telescope systems whose capabilities add up or complement each other and additional fixed or removable elements 1 2 filters spectrometers that add functionalities to the instrument Contents 1 History of X ray telescopes 2 Active X ray observatory satellites 3 Optics 3 1 Focusing mirrors 3 2 Collimating optics 4 Detection and imaging of X rays 4 1 Proportional counters 4 2 X ray monitor 4 3 Scintillation detector 4 4 Modulation collimator 4 5 X ray spectrometer 4 6 CCDs 4 7 Microcalorimeters 4 8 Transition edge sensors 5 See also 6 ReferencesHistory of X ray telescopes edit nbsp Uhuru X ray satellite nbsp Photo of supernova remnant Cassiopeia A taken by the first imaging X ray telescope Einstein Observatory See also X ray astronomy History of X ray astronomy and List of space telescopes X ray X ray telescopes were first used for astronomy to observe the Sun which was the only source in the sky bright enough in X rays for those early telescopes to detect Because the Sun is so bright in X rays early X ray telescopes could use a small focusing element and the X rays would be detected with photographic film The first X ray picture of the Sun from a rocket borne telescope was taken by John V Lindsay of the NASA Goddard Space Flight Center and collaborators in 1963 The first orbiting X ray telescope flew on Skylab in the early 1970s and recorded more than 35 000 full disk images of the Sun over a 9 month period 3 First specialised X ray satellite Uhuru was launched by NASA in 1970 It detected 339 X ray sources in its 2 5 year lifetime 4 The Einstein Observatory launched in 1978 was the first imaging X ray observatory It obtained high resolution X ray images in the energy range from 0 1 to 4 keV of stars of all types supernova remnants galaxies and clusters of galaxies Another large project was ROSAT active from 1990 to 1999 which was a heavy X ray space observatory with focusing X ray optics and European EXOSAT 4 The Chandra X Ray Observatory was launched by NASA in 1999 and is operated for more than 25 years in a high elliptical orbit returning thousands 0 5 arc second images and high resolution spectra of all kinds of astronomical objects in the energy range from 0 5 to 8 0 keV Chandra s resolution is about 50 times superior to that of ROSAT 3 Active X ray observatory satellites editSatellites in use today include ESA s XMM Newton observatory low to mid energy X rays 0 1 15 keV NASA s Swift observatory Chandra observatory and IXPE telescope JAXA has launched the XRISM telescope while ISRO has launched Aditya L1 and XPoSat The GOES 14 spacecraft carries on board a Solar X ray Imager to monitor the Sun s X rays for the early detection of solar flares coronal mass ejections and other phenomena that impact the geospace environment 5 It was launched into orbit on June 27 2009 at 22 51 GMT from Space Launch Complex 37B at the Cape Canaveral Air Force Station The Chinese Hard X ray Modulation Telescope was launched on June 15 2017 to observe black holes neutron stars active galactic nuclei and other phenomena based on their X ray and gamma ray emissions 6 The Lobster Eye X ray Satellite was launched on 25 July 2020 by CNSA making it is the first in orbit telescope to utilize the lobster eye imaging technology of ultra large field of view imaging to search for dark matter signals in the x ray energy range 7 Lobster Eye Imager for Astronomy was launched on 27 July 2022 as a technology demonstrator for Einstein Probe launched on January 9 2024 dedicated to time domain high energy astrophysics 8 The Space Variable Objects Monitor observatory scheduled for launch in June 2024 will be directed at studying the explosions of massive stars and analysis of gamma ray bursts 9 A soft X ray solar imaging telescope is on board the GOES 13 weather satellite launched using a Delta IV from Cape Canaveral LC37B on May 24 2006 10 However there have been no GOES 13 SXI images since December 2006 The Russian German Spektr RG carries the eROSITA telescope array as well as the ART XC telescope It was launched by Roscosmos on 13 July 2019 from Baikonur and began collecting data in October 2019 Optics editMain article X ray optics nbsp One of the mirrors of XRISM made of 203 foils The most common methods used in X ray optics are grazing incidence mirrors and collimated apertures Only three geometries that use grazing incidence reflection of X rays to produce X ray images are known Wolter system Kirkpatrick Baez system and lobster eye optics 11 Focusing mirrors edit nbsp Focusing X rays with glancing reflection A simple parabolic mirror was originally proposed in 1960 by Riccardo Giacconi and Bruno Rossi the founders of extrasolar X ray astronomy This type of mirror is often used as the primary reflector in an optical telescope However images of off axis objects would be severely blurred The German physicist Hans Wolter showed in 1952 that the reflection off a combination of two elements a paraboloid followed by a hyperboloid would work far better for X ray astronomy applications Wolter described three different imaging configurations the Types I II and III The design most commonly used by X ray astronomers is the Type I since it has the simplest mechanical configuration In addition the Type I design offers the possibility of nesting several telescopes inside one another thereby increasing the useful reflecting area The Wolter Type II is useful only as a narrow field imager or as the optic for a dispersive spectrometer The Wolter Type III has never been employed for X ray astronomy 12 With respect to collimated optics focusing optics allow a high resolution imaging a high telescope sensitivity since radiation is focused on a small area Signal to noise ratio is much higher for this kind of instruments The mirrors can be made of ceramic or metal foil 13 coated with a thin layer of a reflective material typically gold or iridium Mirrors based on this construction work on the basis of total reflection of light at grazing incidence This technology is limited in energy range by the inverse relation between critical angle for total reflection and radiation energy The limit in the early 2000s with Chandra and XMM Newton X ray observatories was about 15 kilo electronvolt keV light 14 Using new multi layered coated mirrors the X ray mirror for the NuSTAR telescope pushed this up to 79 keV light 14 To reflect at this level glass layers were multi coated with tungsten W silicon Si or platinum Pt silicon carbide SiC 14 Collimating optics edit Main article coded aperture While earlier X ray telescopes were using simple collimating techniques e g rotating collimators wire collimators 15 the technology most used in the present day employs coded aperture masks This technique uses a flat aperture patterned grille in front of the detector This design gives results that are less sensitive than focusing optics also the imaging quality and identification of source position is much poorer Though this design offers a larger field of view and can be employed at higher energies where grazing incidence optics become ineffective Also the imaging is not direct but the image is rather reconstructed by post processing of the signal Detection and imaging of X rays edit nbsp X rays start at 0 008 nm and extend across the electromagnetic spectrum to 8 nm over which Earth s atmosphere is opaque nbsp Chandra s image of Saturn left and Hubble optical image of Saturn right Saturn s X ray spectrum is similar to that of X rays from the Sun 14 April 2003 X rays has a huge span in wavelength 8 nm 8 pm frequency 50 PHz 50 EHz and energy 0 12 120 keV In terms of temperature 1 eV 11 604 K Thus X rays 0 12 to 120 keV correspond to 1 39 106 to 1 39 109 K From 10 to 0 1 nanometers nm about 0 12 to 12 keV they are classified as soft X rays and from 0 1 nm to 0 01 nm about 12 to 120 keV as hard X rays Closer to the visible range of the electromagnetic spectrum is the ultraviolet The draft ISO standard on determining solar irradiances ISO DIS 21348 16 describes the ultraviolet as ranging from 10 nm to 400 nm That portion closest to X rays is often referred to as the extreme ultraviolet EUV or XUV When an EUV photon is absorbed photoelectrons and secondary electrons are generated by ionization much like what happens when X rays or electron beams are absorbed by matter 17 The distinction between X rays and gamma rays has changed in recent decades Originally the electromagnetic radiation emitted by X ray tubes had a longer wavelength than the radiation emitted by radioactive nuclei gamma rays 18 So older literature distinguished between X and gamma radiation on the basis of wavelength with radiation shorter than some arbitrary wavelength such as 10 11 m defined as gamma rays 19 However as shorter wavelength continuous spectrum X ray sources such as linear accelerators and longer wavelength gamma ray emitters were discovered the wavelength bands largely overlapped The two types of radiation are now usually distinguished by their origin X rays are emitted by electrons outside the nucleus while gamma rays are emitted by the nucleus 18 20 21 22 Although the more energetic X rays photons with an energy greater than 30 keV 4 800 aJ can penetrate the Earth s atmosphere at least for distances of a few meters the Earth s atmosphere is thick enough that virtually none are able to penetrate from outer space all the way to the Earth s surface X rays in the 0 5 to 5 keV 80 to 800 aJ range where most celestial sources give off the bulk of their energy can be stopped by a few sheets of paper 90 of the photons in a beam of 3 keV 480 aJ X rays are absorbed by traveling through just 10 cm of air Proportional counters edit Main article Proportional counter A proportional counter is a type of gaseous ionization detector that counts particles of ionizing radiation and measures their energy It works on the same principle as the Geiger Muller counter but uses a lower operating voltage All X ray proportional counters consist of a windowed gas cell 23 Often this cell is subdivided into a number of low and high electric field regions by some arrangement of electrodes Proportional counters were used on EXOSAT 24 on the US portion of the Apollo Soyuz mission July 1975 and on French TOURNESOL instrument 25 X ray monitor edit Monitoring generally means to be aware of the state of a system A device that displays or sends a signal for displaying X ray output from an X ray generating source so as to be aware of the state of the source is referred to as an X ray monitor in space applications On Apollo 15 in orbit above the Moon for example an X ray monitor was used to follow the possible variation in solar X ray intensity and spectral shape while mapping the lunar surface with respect to its chemical composition due to the production of secondary X rays 26 The X ray monitor of Solwind designated NRL 608 or XMON was a collaboration between the Naval Research Laboratory and Los Alamos National Laboratory The monitor consisted of 2 collimated argon proportional counters Scintillation detector edit Main article Scintillator nbsp Scintillation crystal surrounded by various scintillation detector assemblies A scintillator is a material which exhibits the property of luminescence 27 when excited by ionizing radiation Luminescent materials when struck by an incoming particle such as an X ray photon absorb its energy and scintillate i e reemit the absorbed energy in the form of a small flash of light typically in the visible range The scintillation X ray detector were used on Vela 5A and its twin Vela 5B 28 the X ray telescope onboard OSO 4 consisted of a single thin NaI Tl scintillation crystal plus phototube assembly enclosed in a CsI Tl anti coincidence shield OSO 5 carried a CsI crystal scintillator The central crystal was 0 635 cm thick had a sensitive area of 70 cm2 and was viewed from behind by a pair of photomultiplier tubes The PHEBUS had two independent detectors each detector consisted of a bismuth germinate BGO crystal 78 mm in diameter by 120 mm thick 25 The KONUS B instrument consisted of seven detectors distributed around the spacecraft that responded to photons of 10 keV to 8 MeV energy They consisted of NaI Tl scintillator crystals 200 mm in diameter by 50 mm thick behind a Be entrance window Kvant 1 carried the HEXE or High Energy X ray Experiment which employed a phoswich of sodium iodide and caesium iodide Modulation collimator edit In electronics modulation is the process of varying one waveform in relation to another waveform With a modulation collimator the amplitude intensity of the incoming X rays is reduced by the presence of two or more diffraction gratings of parallel wires that block or greatly reduce that portion of the signal incident upon the wires An X ray collimator is a device that filters a stream of X rays so that only those traveling parallel to a specified direction are allowed through Minoru Oda President of Tokyo University of Information Sciences invented the modulation collimator first used to identify the counterpart of Sco X 1 in 1966 which led to the most accurate positions for X ray sources available prior to the launch of X ray imaging telescopes 29 SAS 3 carried modulation collimators 2 11 keV and Slat and Tube collimators 1 up to 60keV 30 On board the Granat Observatory were four WATCH instruments that could localize bright sources in the 6 to 180 keV range to within 0 5 using a Rotation Modulation Collimator Taken together the instruments three fields of view covered approximately 75 of the sky 25 The Reuven Ramaty High Energy Solar Spectroscopic Imager RHESSI Explorer 81 images solar flares from soft X rays to gamma rays 3 keV to 20 MeV Its imaging capability is based on a Fourier transform technique using a set of 9 Rotational Modulation Collimators X ray spectrometer edit OSO 8 had on board a Graphite Crystal X ray Spectrometer with energy range of 2 8 keV FOV 3 The Granat ART S X ray spectrometer covered the energy range 3 to 100 keV FOV 2 2 The instrument consisted of four detectors based on spectroscopic MWPCs making an effective area of 2 400 cm2 at 10 keV and 800 cm2 at 100 keV The time resolution was 200 microseconds 25 The X ray spectrometer aboard ISEE 3 was designed to study both solar flares and cosmic gamma ray bursts over the energy range 5 228 keV The experiment consisted of 2 cylindrical X ray detectors a Xenon filled proportional counter covering 5 14 keV and a NaI Tl scintillator covering 12 1250 keV CCDs edit Most existing X ray telescopes use CCD detectors similar to those in visible light cameras In visible light a single photon can produce a single electron of charge in a pixel and an image is built up by accumulating many such charges from many photons during the exposure time When an X ray photon hits a CCD it produces enough charge hundreds to thousands of electrons proportional to its energy that the individual X rays have their energies measured on read out Microcalorimeters edit Microcalorimeters can only detect X rays one photon at a time but can measure the energy of each Transition edge sensors edit Transition edge sensors are the next step in microcalorimetry In essence they are super conducting metals kept as close as possible to their transition temperature This is the temperature at which these metals become super conductors and their resistance drops to zero These transition temperatures are usually just a few degrees above absolute zero usually less than 10 K See also editList of telescope typesReferences edit Chandra About Chandra Science Instruments chandra si edu Retrieved 2016 02 19 Instruments sci esa int Retrieved 2016 02 19 a b A Brief History of X ray Telescopes imagine gsfc nasa gov Retrieved 7 January 2024 nbsp This article incorporates text from this source which is in the public domain a b X Ray Observatories an overview ScienceDirect Topics Retrieved 7 January 2024 a href Template Cite journal html title Template Cite journal cite journal a Cite journal requires journal help GOES Solar X ray Imager Rui C Barbosa 14 June 2017 China launches X ray telescope via Long March 4B NASASpaceFlight com Retrieved 23 August 2020 Launch of the world s first soft X ray satellite with Lobster Eye imaging technology copernical com 26 July 2020 Retrieved 23 August 2020 Einstein Probe lifts off on a mission to monitor the X ray sky www esa int Svom Retrieved 14 January 2024 Wade M Chronology Quarter 2 2006 Archived from the original on September 2 2003 Richard Willingale July 2021 Lobster Eye Optics In Sternberg Amiel Burrows David N eds The WSPC Handbook of Astronomical Instrumentation Volume 4 X Ray Astronomical Instrumentation Vol 4 World Scientific Publishing Co Pte Ltd pp 33 47 85 106 Bibcode 2021hai4 book B doi 10 1142 9446 vol4 ISBN 978 981 4644 38 9 Retrieved 1 January 2024 X ray Telescopes More Information imagine gsfc nasa gov Retrieved 7 January 2024 nbsp This article incorporates text from this source which is in the public domain Sciences and Exploration Directorate science gsfc nasa gov a b c NuStar Instrumentation Optics Archived from the original on November 1 2010 Seward Frederick D Charles Philip A 2010 Exploring the X ray Universe Cambridge Books Online Cambridge University Press doi 10 1017 cbo9780511781513 ISBN 9780511781513 Tobiska W Nusinov A 2006 ISO 21348 Process for Determining Solar Irradiances 36th Cospar Scientific Assembly 36 2621 Bibcode 2006cosp 36 2621T Archived from the original on 2018 10 01 Retrieved 2024 01 07 Henke BL et al 1977 0 1 10 keV X ray induced electron emissions from solids Models and secondary electron measurements Journal of Applied Physics 48 5 1852 Bibcode 1977JAP 48 1852H doi 10 1063 1 323938 a b Dendy PP Heaton B 1999 Physics for Diagnostic Radiology CRC Press p 12 ISBN 978 0 7503 0591 4 Charles Hodgman ed 1961 CRC Handbook of Chemistry and Physics 44th ed Chemical Rubber Co p 2850 Feynman R Leighton R Sands M 1963 The Feynman Lectures on Physics Vol 1 Addison Wesley pp 2 5 ISBN 978 0 201 02116 5 L Annunziata M Baradei M 2003 Handbook of Radioactivity Analysis Academic Press p 58 ISBN 978 0 12 436603 9 Grupen C Cowan G Eidelman SD Stroh T 2005 Astroparticle Physics Springer p 109 ISBN 978 3 540 25312 9 Science imagine gsfc nasa gov Hoff HA 1983 Exosat the new extrasolar X ray observatory J Br Interplanet Soc 36 363 Bibcode 1983JBIS 36 363H a b c d Granat NASA Retrieved 2007 12 05 Adler I Gerard J Trombka J Schmadebeck R Lowman P Bodgett H 1972 The Apollo 15 x ray fluorescence experiment Proc Lunar Sci Conf 2 2157 Bibcode 1972LPSC 3 2157A Leo WR 1994 Techniques for Nuclear and particle Physics Experiments 2nd ed Springer Conner JP Evans WD Belian RD 1969 The Recent Appearance of a New X Ray Source in the Southern Sky Astrophys J 157 L157 Bibcode 1969ApJ 157L 157C doi 10 1086 180409 Cominsky L Inoue H Clark G Minoru Oda 1923 2001 Archived from the original on 2009 06 05 Retrieved 2024 01 07 The Third Small Astronomy Satellite SAS 3 Archived from the original on 2001 04 17 Portals nbsp Astronomy nbsp Stars nbsp Spaceflight nbsp Outer space nbsp Solar System Retrieved from https en wikipedia org w index php title X ray telescope amp oldid 1220026042, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.