fbpx
Wikipedia

Whispering-gallery wave

Whispering-gallery waves, or whispering-gallery modes, are a type of wave that can travel around a concave surface. Originally discovered for sound waves in the whispering gallery of St Paul's Cathedral, they can exist for light and for other waves, with important applications in nondestructive testing, lasing, cooling and sensing, as well as in astronomy.

Snapshot of an acoustic whispering-gallery mode calculated at a frequency of 69 Hz in an enclosed cylinder of air of the same diameter (33.7 m)[1] as the whispering gallery in St Paul's Cathedral. Red and blue represent higher and lower air pressures, respectively, and the distortions in the grid lines show the displacements. In the case of the waves travelling one way round the gallery, the air particles move in elliptical trajectories.[2]

Introduction edit

Whispering-gallery waves were first explained for the case of St Paul's Cathedral circa 1878[3] by Lord Rayleigh, who revised a previous misconception[4][5] that whispers could be heard across the dome but not at any intermediate position. He explained the phenomenon of travelling whispers with a series of specularly reflected sound rays making up chords of the circular gallery. Clinging to the walls the sound should decay in intensity only as the inverse of the distance — rather than the inverse square as in the case of a point source of sound radiating in all directions. This accounts for the whispers being audible all round the gallery.

Rayleigh developed wave theories for St Paul's in 1910[6] and 1914.[7] Fitting sound waves inside a cavity involves the physics of resonance based on wave interference; the sound can exist only at certain pitches as in the case of organ pipes. The sound forms patterns called modes, as shown in the diagram.[1]

Many other monuments have been shown[8] to exhibit whispering-gallery waves, such as the Gol Gumbaz in Bijapur and the Temple of Heaven in Beijing.

In the strict definition of whispering-gallery waves, they cannot exist when the guiding surface becomes straight.[9] Mathematically this corresponds to the limit of an infinite radius of curvature. Whispering-gallery waves are guided by the effect of the wall curvature.

Acoustic waves edit

Whispering-gallery waves for sound exist in a wide variety of systems. Examples include the vibrations of the whole Earth[10] or stars.[11]

Such acoustic whispering-gallery waves can be used in nondestructive testing in the form of waves that creep around holes filled with liquid,[12] for example. They have also been detected in solid cylinders[13] and spheres,[14] with applications in sensing, and visualized in motion on microscopic discs .[2][15]

Whispering gallery waves are more efficiently guided in spheres than in cylinders because the effects of acoustic diffraction (lateral wave spreading) are then completely compensated.[16]

Electromagnetic waves edit

 
Optical whispering-gallery modes in a glass sphere of diameter 300 μm experimentally imaged with a fluorescence technique. The tip of an angle-cut optical fiber, visible on the right, excites the modes in the red region of the optical spectrum.[17]

Whispering-gallery waves exist for light waves.[18][19][20] They have been produced in microscopic glass spheres or tori,[21][22] for example, with applications in lasing,[23] optomechanical cooling,[24] frequency comb generation[25] and optical sensing.[26] The light waves are almost perfectly guided round by total internal reflection, leading to Q factors in excess of 1010 being achieved.[27] This is far greater than the best values, about 104, that can be similarly obtained in acoustics.[28] Optical modes in a whispering gallery resonator are inherently lossy due to a mechanism similar to quantum tunneling. As a result, light inside a whispering gallery mode experiences a degree of radiation loss even in theoretically ideal conditions. Such a loss channel has been known from research on optical waveguide theory and is dubbed tunneling ray attenuation[29] in the field of fiber optics. The Q factor is proportional to the decay time of the waves, which in turn is inversely proportional to both the surface scattering rate and the wave absorption in the medium making up the gallery.  Whispering-gallery waves for light have been investigated in chaotic galleries,[30][31] whose cross-sections deviate from a circle. And such waves have been used in quantum information applications.[32]

Whispering-gallery waves have also been demonstrated for other electromagnetic waves such as radio waves,[33] microwaves,[34] terahertz radiation,[35] infrared radiation,[36] ultraviolet waves[37] and x-rays.[38] More recently, with the rapid development of microfluidic technologies, many integrated whispering gallery mode sensors, by combining the portability of lab‐on‐chip devices and the high sensitivity of whispering gallery mode resonators have emerged.[39][40] The capabilities of efficient sample handling and multiplexed analyte detection offered by these systems have led to many biological and chemical sensing applications, especially for the detection of single particle or biomolecule.[41][42]

Other systems edit

Whispering-gallery waves have been seen in the form of matter waves for neutrons,[43] and electrons,[44] and they have been proposed as an explanation for vibrations of a single nucleus.[45] Whispering gallery waves have also been observed in the vibrations of soap films as well as in the vibrations of thin plates [46] Analogies of whispering-gallery waves also exist for gravitational waves at the event horizon of black holes.[1] A hybrid of waves of light and electrons known as surface plasmons has been demonstrated in the form of whispering-gallery waves,[47] and likewise for exciton-polaritons in semiconductors.[48] Galleries simultaneously containing both acoustic and optical whispering-gallery waves have also been made,[49] exhibiting very strong mode coupling and coherent effects.[50] Hybrid solid-fluid-optical whispering-gallery structures have been observed as well.[51]

See also edit

References edit

  1. ^ a b c Wright, Oliver B. (2012). "Gallery of whispers". Physics World. 25 (2): 31–36. Bibcode:2012PhyW...25b..31W. doi:10.1088/2058-7058/25/02/36.
  2. ^ a b Oliver, Wright B.; Matsuda, Oliver. "Watching whispering-gallery waves". Laboratory of Applied Solid State Physics, Hokkaido University. Retrieved 2018-11-30.
  3. ^ [Lord Rayleigh, Theory of Sound, vol. II, 1st edition, (London, MacMillan), 1878.]
  4. ^ [J. Tyndall, The Science of Sound (New York, Philosophical Library), 1867, p. 20.]
  5. ^ [G. B. Airy, On Sound and Atmospheric Vibrations, with the Mathematical Elements of Music (London, MacMillan), 1871, p. 145.]
  6. ^ Rayleigh, Lord (1910). "CXII. The problem of the whispering gallery". The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science. 20 (120). Informa UK Limited: 1001–1004. doi:10.1080/14786441008636993. ISSN 1941-5982.
  7. ^ Rayleigh, Lord (1914). "IX. Further applications of Bessel's functions of high order to the Whispering Gallery and allied problems". The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science. 27 (157). Informa UK Limited: 100–109. doi:10.1080/14786440108635067. ISSN 1941-5982.
  8. ^ Raman, C. V. (1921–1922). "XV. On Whispering Galleries". Proceedings of the Indian Association for the Cultivation of Science. 7: 159.
  9. ^ [L. M. Brekhovskikh, Sov. Phys. Acoust. 13, 462, 1968]
  10. ^ [Quantitative Seismology, K. Aki and P. G. Richards (University Science Books), 2009, Ch. 8]
  11. ^ Reese, D. R.; MacGregor, K. B.; Jackson, S.; Skumanich, A.; Metcalfe, T. S. (1 March 2009). "Pulsation modes in rapidly rotating stellar models based on the self-consistent field method". Astronomy & Astrophysics. 506 (1). EDP Sciences: 189–201. arXiv:0903.4854. Bibcode:2009A&A...506..189R. doi:10.1051/0004-6361/200811510. ISSN 0004-6361.
  12. ^ Nagy, Peter B.; Blodgett, Mark; Golis, Matthew (1994). "Weep hole inspection by circumferential creeping waves". NDT & E International. 27 (3). Elsevier BV: 131–142. doi:10.1016/0963-8695(94)90604-1. ISSN 0963-8695.
  13. ^ Clorennec, D; Royer, D; Walaszek, H (2002). "Nondestructive evaluation of cylindrical parts using laser ultrasonics". Ultrasonics. 40 (1–8). Elsevier BV: 783–789. doi:10.1016/s0041-624x(02)00210-x. ISSN 0041-624X. PMID 12160045.
  14. ^ Ishikawa, Satoru; Nakaso, Noritaka; Takeda, Nobuo; Mihara, Tsuyoshi; Tsukahara, Yusuke; Yamanaka, Kazushi (2003). "Surface acoustic waves on a sphere with divergent, focusing, and collimating beam shapes excited by an interdigital transducer". Applied Physics Letters. 83 (22). AIP Publishing: 4649–4651. Bibcode:2003ApPhL..83.4649I. doi:10.1063/1.1631061. ISSN 0003-6951.
  15. ^ Tachizaki, Takehiro; Matsuda, Osamu; Maznev, Alex A.; Wright, Oliver B. (23 April 2010). "Acoustic whispering-gallery modes generated and dynamically imaged with ultrashort optical pulses". Physical Review B. 81 (16). American Physical Society (APS): 165434. Bibcode:2010PhRvB..81p5434T. doi:10.1103/physrevb.81.165434. hdl:2115/43062. ISSN 1098-0121.
  16. ^ Ishikawa, Satoru; Cho, Hideo; Yamanaka, Kazushi; Nakaso, Noritaka; Tsukahara, Yusuke (30 May 2001). "Surface Acoustic Waves on a Sphere –Analysis of Propagation Using Laser Ultrasonics–". Japanese Journal of Applied Physics. 40 (Part 1, No. 5B). Japan Society of Applied Physics: 3623–3627. Bibcode:2001JaJAP..40.3623I. doi:10.1143/jjap.40.3623. ISSN 0021-4922. S2CID 121857533.
  17. ^ "Delaying Trains of Short Light Pulses in WGM Resonators". Tech Briefs Media Group. 1 September 2018. Retrieved 2018-11-30.
  18. ^ Mie, Gustav (1908). "Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen". Annalen der Physik (in German). 330 (3). Wiley: 377–445. Bibcode:1908AnP...330..377M. doi:10.1002/andp.19083300302. ISSN 0003-3804.
  19. ^ Debye, P. (1909). "Der Lichtdruck auf Kugeln von beliebigem Material". Annalen der Physik (in German). 335 (11). Wiley: 57–136. Bibcode:1909AnP...335...57D. doi:10.1002/andp.19093351103. hdl:1908/3003. ISSN 0003-3804.
  20. ^ Oraevsky, Anatolii N (31 May 2002). "Whispering-gallery waves". Quantum Electronics. 32 (5). IOP Publishing: 377–400. doi:10.1070/qe2002v032n05abeh002205. ISSN 1063-7818. S2CID 250792191.
  21. ^ Vahala, K. J. (2003). "Optical microcavities". Nature. 424 (6950): 839–846. Bibcode:2003Natur.424..839V. doi:10.1038/nature01939. PMID 12917698. S2CID 4349700.
  22. ^ Chiasera, A.; Dumeige, Y.; Féron, P.; Ferrari, M.; Jestin, Y.; Nunzi Conti, G.; Pelli, S.; Soria, S.; Righini, G.C. (23 April 2010). "Spherical whispering-gallery-mode microresonators". Laser & Photonics Reviews. 4 (3). Wiley: 457–482. Bibcode:2010LPRv....4..457C. doi:10.1002/lpor.200910016. ISSN 1863-8880. S2CID 119484780.
  23. ^ Rakovich, Y.P.; Donegan, J.F. (2 June 2009). "Photonic atoms and molecules". Laser & Photonics Reviews. 4 (2). Wiley: 179–191. doi:10.1002/lpor.200910001. ISSN 1863-8880. S2CID 121561846.
  24. ^ Kippenberg, T. J.; Vahala, K. J. (29 August 2008). "Cavity Optomechanics: Back-Action at the Mesoscale". Science. 321 (5893). American Association for the Advancement of Science (AAAS): 1172–1176. Bibcode:2008Sci...321.1172K. doi:10.1126/science.1156032. ISSN 0036-8075. PMID 18755966. S2CID 4620490.
  25. ^ Del’Haye, P.; Schliesser, A.; Arcizet, O.; Wilken, T.; Holzwarth, R.; Kippenberg, T. J. (2007). "Optical frequency comb generation from a monolithic microresonator". Nature. 450 (7173). Springer Science and Business Media LLC: 1214–1217. arXiv:0708.0611. Bibcode:2007Natur.450.1214D. doi:10.1038/nature06401. ISSN 0028-0836. PMID 18097405. S2CID 4426096.
  26. ^ Arnold, S.; Khoshsima, M.; Teraoka, I.; Holler, S.; Vollmer, F. (15 February 2003). "Shift of whispering-gallery modes in microspheres by protein adsorption". Optics Letters. 28 (4). The Optical Society: 272–4. Bibcode:2003OptL...28..272A. doi:10.1364/ol.28.000272. ISSN 0146-9592. PMID 12653369.
  27. ^ Grudinin, Ivan S.; Ilchenko, Vladimir S.; Maleki, Lute (8 December 2006). "Ultrahigh optical Q factors of crystalline resonators in the linear regime". Physical Review A. 74 (6). American Physical Society (APS): 063806. Bibcode:2006PhRvA..74f3806G. doi:10.1103/physreva.74.063806. ISSN 1050-2947.
  28. ^ Yamanaka, K.; Ishikawa, S.; Nakaso, N.; Takeda, N.; Sim, Dong Youn; et al. (2006). "Ultramultiple roundtrips of surface acoustic wave on sphere realizing innovation of gas sensors". IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control. 53 (4): 793–801. doi:10.1109/TUFFC.2006.1621507. PMID 16615584. S2CID 22051539.
  29. ^ Pask, Colin (1 December 1977). "Generalized parameters for tunneling ray attenuation in optical fibers". Journal of the Optical Society of America. 68 (1). The Optical Society: 110. doi:10.1364/josa.68.000110. ISSN 0030-3941.
  30. ^ Gmachl, C. (5 June 1998). "High-Power Directional Emission from Microlasers with Chaotic Resonators". Science. 280 (5369): 1556–1564. arXiv:cond-mat/9806183. Bibcode:1998Sci...280.1556G. doi:10.1126/science.280.5369.1556. ISSN 0036-8075. PMID 9616111. S2CID 502055.
  31. ^ Baryshnikov, Yuliy; Heider, Pascal; Parz, Wolfgang; Zharnitsky, Vadim (22 September 2004). "Whispering Gallery Modes Inside Asymmetric Resonant Cavities". Physical Review Letters. 93 (13). American Physical Society (APS): 133902. Bibcode:2004PhRvL..93m3902B. doi:10.1103/physrevlett.93.133902. ISSN 0031-9007. PMID 15524720.
  32. ^ Tanaka, Akira; Asai, Takeshi; Toubaru, Kiyota; Takashima, Hideaki; Fujiwara, Masazumi; Okamoto, Ryo; Takeuchi, Shigeki (24 January 2011). "Phase shift spectra of a fiber–microsphere system at the single photon level". Optics Express. 19 (3). The Optical Society: 2278–85. arXiv:1101.5198. Bibcode:2011OExpr..19.2278T. doi:10.1364/oe.19.002278. ISSN 1094-4087. PMID 21369045. S2CID 31604481.
  33. ^ Budden, K. G.; Martin, H. G. (6 February 1962). "The ionosphere as a whispering gallery". Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences. 265 (1323). The Royal Society: 554–569. Bibcode:1962RSPSA.265..554B. doi:10.1098/rspa.1962.0042. ISSN 2053-9169. S2CID 120311101.
  34. ^ Stanwix, P. L.; et al. (2005). "Test of Lorentz Invariance in Electrodynamics Using Rotating Cryogenic Sapphire Microwave Oscillators". Physical Review Letters. 95 (4): 040404. arXiv:hep-ph/0506074. Bibcode:2005PhRvL..95d0404S. doi:10.1103/PhysRevLett.95.040404. PMID 16090785. S2CID 14255475.
  35. ^ Mendis, R.; Mittleman, M. (2010). "Whispering-gallery-mode terahertz pulse propagation on a curved metallic plate". Applied Physics Letters. 97 (3): 031106. Bibcode:2010ApPhL..97c1106M. doi:10.1063/1.3466909.
  36. ^ Albert, F.; Braun, T.; Heindel, T.; Schneider, C.; Reitzenstein, S.; Höfling, S.; Worschech, L.; Forchel, A. (6 September 2010). "Whispering gallery mode lasing in electrically driven quantum dot micropillars". Applied Physics Letters. 97 (10). AIP Publishing: 101108. Bibcode:2010ApPhL..97j1108A. doi:10.1063/1.3488807. ISSN 0003-6951.
  37. ^ Hyun, J. K.; Couillard, M.; Rajendran, P.; Liddell, C. M.; Muller, D. A. (15 December 2008). "Measuring far-ultraviolet whispering gallery modes with high energy electrons". Applied Physics Letters. 93 (24). AIP Publishing: 243106. Bibcode:2008ApPhL..93x3106H. doi:10.1063/1.3046731. ISSN 0003-6951.
  38. ^ Liu, Chien; Golovchenko, Jene A. (4 August 1997). "Surface Trapped X Rays: Whispering-Gallery Modes atλ=0.7Å". Physical Review Letters. 79 (5). American Physical Society (APS): 788–791. Bibcode:1997PhRvL..79..788L. doi:10.1103/physrevlett.79.788. ISSN 0031-9007. S2CID 121253766.
  39. ^ M.R. Foreman (2015). "Whispering gallery mode sensors". Advances in Optics and Photonics. 7 (2): 168–240. Bibcode:2015AdOP....7..168F. doi:10.1364/AOP.7.000168. PMC 4786191. PMID 26973759.
  40. ^ Y. Wang (2020). "Microfluidic whispering gallery mode optical sensors for biological applications". Laser & Photonics Reviews. 14 (12): 2000135–56. Bibcode:2020LPRv...1400135W. doi:10.1002/lpor.202000135. S2CID 228850737.
  41. ^ T. Reynolds (2017). "Fluorescent and lasing whispering gallery mode microresonators for sensing applications". Laser & Photonics Reviews. 11 (2): 1600265–76. Bibcode:2017LPRv...1100265R. doi:10.1002/lpor.201600265. hdl:2027.42/136528. S2CID 125481589.
  42. ^ A. Bozzola (2017). "Hybrid plasmonic–photonic whispering gallery mode resonators for sensing: a critical review". Analyst. 142 (6): 883–898. Bibcode:2017Ana...142..883B. doi:10.1039/C6AN02693A. PMID 28225100.
  43. ^ Nesvizhevsky, Valery V.; Voronin, Alexei Yu.; Cubitt, Robert; Protasov, Konstantin V. (13 December 2009). "Neutron whispering gallery". Nature Physics. 6 (2). Springer Science and Business Media LLC: 114–117. doi:10.1038/nphys1478. ISSN 1745-2473.
  44. ^ Reecht, Gaël; Bulou, Hervé; Scheurer, Fabrice; Speisser, Virginie; Carrière, Bernard; Mathevet, Fabrice; Schull, Guillaume (29 January 2013). "Oligothiophene Nanorings as Electron Resonators for Whispering Gallery Modes". Physical Review Letters. 110 (5). American Physical Society (APS): 056802. arXiv:1301.4860. Bibcode:2013PhRvL.110e6802R. doi:10.1103/physrevlett.110.056802. ISSN 0031-9007. PMID 23414040. S2CID 40257448.
  45. ^ Dragún, Olga; Überall, Herbert (1980). "Nuclear Rayleigh and whispering gallery waves excited in heavy ion collisions". Physics Letters B. 94 (1). Elsevier BV: 24–27. Bibcode:1980PhLB...94...24D. doi:10.1016/0370-2693(80)90816-3. ISSN 0370-2693.
  46. ^ Arcos, E.; Báez, G.; Cuatláyol, P. A.; Prian, M. L. H.; Méndez-Sánchez, R. A.; Hernández-Saldaña, H. (1998). "Vibrating soap films: An analog for quantum chaos on billiards". American Journal of Physics. 66 (7). American Association of Physics Teachers (AAPT): 601–607. arXiv:chao-dyn/9903002. Bibcode:1998AmJPh..66..601A. doi:10.1119/1.18913. ISSN 0002-9505. S2CID 52106857.
  47. ^ Min, Bumki; Ostby, Eric; Sorger, Volker; Ulin-Avila, Erick; Yang, Lan; Zhang, Xiang; Vahala, Kerry (2009). "High-Q surface-plasmon-polariton whispering-gallery microcavity". Nature. 457 (7228). Springer Science and Business Media LLC: 455–458. Bibcode:2009Natur.457..455M. doi:10.1038/nature07627. ISSN 0028-0836. PMID 19158793. S2CID 4411541.
  48. ^ Sun, Liaoxin; Chen, Zhanghai; Ren, Qijun; Yu, Ke; Bai, Lihui; Zhou, Weihang; Xiong, Hui; Zhu, Z. Q.; Shen, Xuechu (16 April 2008). "Direct Observation of Whispering Gallery Mode Polaritons and their Dispersion in a ZnO Tapered Microcavity". Physical Review Letters. 100 (15): 156403. arXiv:0710.5334. Bibcode:2008PhRvL.100o6403S. doi:10.1103/physrevlett.100.156403. ISSN 0031-9007. PMID 18518134. S2CID 28537857.
  49. ^ Tomes, Matthew; Carmon, Tal (19 March 2009). "Photonic Micro-Electromechanical Systems Vibrating atX-band (11-GHz) Rates". Physical Review Letters. 102 (11). American Physical Society (APS): 113601. Bibcode:2009PhRvL.102k3601T. doi:10.1103/physrevlett.102.113601. ISSN 0031-9007. PMID 19392199.
  50. ^ Kim, JunHwan; Kuzyk, Mark C.; Han, Kewen; Wang, Hailin; Bahl, Gaurav (26 January 2015). "Non-reciprocal Brillouin scattering induced transparency". Nature Physics. 11 (3). Springer Science and Business Media LLC: 275–280. arXiv:1408.1739. Bibcode:2015NatPh..11..275K. doi:10.1038/nphys3236. ISSN 1745-2473. S2CID 119173646.
  51. ^ Bahl, Gaurav; Kim, Kyu Hyun; Lee, Wonsuk; Liu, Jing; Fan, Xudong; Carmon, Tal (7 June 2013). "Brillouin cavity optomechanics with microfluidic devices". Nature Communications. 4 (1). Springer Science and Business Media LLC: 1994. arXiv:1302.1949. Bibcode:2013NatCo...4.1994B. doi:10.1038/ncomms2994. ISSN 2041-1723. PMID 23744103.

External links edit

  • Investigations of Whisper Gallery Mirrors for EUV and Soft X-Rays, T.Y. Hung and P.L. Hagelstein

whispering, gallery, wave, whispering, gallery, modes, type, wave, that, travel, around, concave, surface, originally, discovered, sound, waves, whispering, gallery, paul, cathedral, they, exist, light, other, waves, with, important, applications, nondestructi. Whispering gallery waves or whispering gallery modes are a type of wave that can travel around a concave surface Originally discovered for sound waves in the whispering gallery of St Paul s Cathedral they can exist for light and for other waves with important applications in nondestructive testing lasing cooling and sensing as well as in astronomy Snapshot of an acoustic whispering gallery mode calculated at a frequency of 69 Hz in an enclosed cylinder of air of the same diameter 33 7 m 1 as the whispering gallery in St Paul s Cathedral Red and blue represent higher and lower air pressures respectively and the distortions in the grid lines show the displacements In the case of the waves travelling one way round the gallery the air particles move in elliptical trajectories 2 Contents 1 Introduction 2 Acoustic waves 3 Electromagnetic waves 4 Other systems 5 See also 6 References 7 External linksIntroduction editWhispering gallery waves were first explained for the case of St Paul s Cathedral circa 1878 3 by Lord Rayleigh who revised a previous misconception 4 5 that whispers could be heard across the dome but not at any intermediate position He explained the phenomenon of travelling whispers with a series of specularly reflected sound rays making up chords of the circular gallery Clinging to the walls the sound should decay in intensity only as the inverse of the distance rather than the inverse square as in the case of a point source of sound radiating in all directions This accounts for the whispers being audible all round the gallery Rayleigh developed wave theories for St Paul s in 1910 6 and 1914 7 Fitting sound waves inside a cavity involves the physics of resonance based on wave interference the sound can exist only at certain pitches as in the case of organ pipes The sound forms patterns called modes as shown in the diagram 1 Many other monuments have been shown 8 to exhibit whispering gallery waves such as the Gol Gumbaz in Bijapur and the Temple of Heaven in Beijing In the strict definition of whispering gallery waves they cannot exist when the guiding surface becomes straight 9 Mathematically this corresponds to the limit of an infinite radius of curvature Whispering gallery waves are guided by the effect of the wall curvature Acoustic waves editWhispering gallery waves for sound exist in a wide variety of systems Examples include the vibrations of the whole Earth 10 or stars 11 Such acoustic whispering gallery waves can be used in nondestructive testing in the form of waves that creep around holes filled with liquid 12 for example They have also been detected in solid cylinders 13 and spheres 14 with applications in sensing and visualized in motion on microscopic discs 2 15 Whispering gallery waves are more efficiently guided in spheres than in cylinders because the effects of acoustic diffraction lateral wave spreading are then completely compensated 16 Electromagnetic waves edit nbsp Optical whispering gallery modes in a glass sphere of diameter 300 mm experimentally imaged with a fluorescence technique The tip of an angle cut optical fiber visible on the right excites the modes in the red region of the optical spectrum 17 Whispering gallery waves exist for light waves 18 19 20 They have been produced in microscopic glass spheres or tori 21 22 for example with applications in lasing 23 optomechanical cooling 24 frequency comb generation 25 and optical sensing 26 The light waves are almost perfectly guided round by total internal reflection leading to Q factors in excess of 1010 being achieved 27 This is far greater than the best values about 104 that can be similarly obtained in acoustics 28 Optical modes in a whispering gallery resonator are inherently lossy due to a mechanism similar to quantum tunneling As a result light inside a whispering gallery mode experiences a degree of radiation loss even in theoretically ideal conditions Such a loss channel has been known from research on optical waveguide theory and is dubbed tunneling ray attenuation 29 in the field of fiber optics The Q factor is proportional to the decay time of the waves which in turn is inversely proportional to both the surface scattering rate and the wave absorption in the medium making up the gallery Whispering gallery waves for light have been investigated in chaotic galleries 30 31 whose cross sections deviate from a circle And such waves have been used in quantum information applications 32 Whispering gallery waves have also been demonstrated for other electromagnetic waves such as radio waves 33 microwaves 34 terahertz radiation 35 infrared radiation 36 ultraviolet waves 37 and x rays 38 More recently with the rapid development of microfluidic technologies many integrated whispering gallery mode sensors by combining the portability of lab on chip devices and the high sensitivity of whispering gallery mode resonators have emerged 39 40 The capabilities of efficient sample handling and multiplexed analyte detection offered by these systems have led to many biological and chemical sensing applications especially for the detection of single particle or biomolecule 41 42 Other systems editWhispering gallery waves have been seen in the form of matter waves for neutrons 43 and electrons 44 and they have been proposed as an explanation for vibrations of a single nucleus 45 Whispering gallery waves have also been observed in the vibrations of soap films as well as in the vibrations of thin plates 46 Analogies of whispering gallery waves also exist for gravitational waves at the event horizon of black holes 1 A hybrid of waves of light and electrons known as surface plasmons has been demonstrated in the form of whispering gallery waves 47 and likewise for exciton polaritons in semiconductors 48 Galleries simultaneously containing both acoustic and optical whispering gallery waves have also been made 49 exhibiting very strong mode coupling and coherent effects 50 Hybrid solid fluid optical whispering gallery structures have been observed as well 51 See also editWhispering gallery Optical ring resonator Resonator Architectural acousticsReferences edit a b c Wright Oliver B 2012 Gallery of whispers Physics World 25 2 31 36 Bibcode 2012PhyW 25b 31W doi 10 1088 2058 7058 25 02 36 a b Oliver Wright B Matsuda Oliver Watching whispering gallery waves Laboratory of Applied Solid State Physics Hokkaido University Retrieved 2018 11 30 Lord Rayleigh Theory of Sound vol II 1st edition London MacMillan 1878 J Tyndall The Science of Sound New York Philosophical Library 1867 p 20 G B Airy On Sound and Atmospheric Vibrations with the Mathematical Elements of Music London MacMillan 1871 p 145 Rayleigh Lord 1910 CXII The problem of the whispering gallery The London Edinburgh and Dublin Philosophical Magazine and Journal of Science 20 120 Informa UK Limited 1001 1004 doi 10 1080 14786441008636993 ISSN 1941 5982 Rayleigh Lord 1914 IX Further applications of Bessel s functions of high order to the Whispering Gallery and allied problems The London Edinburgh and Dublin Philosophical Magazine and Journal of Science 27 157 Informa UK Limited 100 109 doi 10 1080 14786440108635067 ISSN 1941 5982 Raman C V 1921 1922 XV On Whispering Galleries Proceedings of the Indian Association for the Cultivation of Science 7 159 L M Brekhovskikh Sov Phys Acoust 13 462 1968 Quantitative Seismology K Aki and P G Richards University Science Books 2009 Ch 8 Reese D R MacGregor K B Jackson S Skumanich A Metcalfe T S 1 March 2009 Pulsation modes in rapidly rotating stellar models based on the self consistent field method Astronomy amp Astrophysics 506 1 EDP Sciences 189 201 arXiv 0903 4854 Bibcode 2009A amp A 506 189R doi 10 1051 0004 6361 200811510 ISSN 0004 6361 Nagy Peter B Blodgett Mark Golis Matthew 1994 Weep hole inspection by circumferential creeping waves NDT amp E International 27 3 Elsevier BV 131 142 doi 10 1016 0963 8695 94 90604 1 ISSN 0963 8695 Clorennec D Royer D Walaszek H 2002 Nondestructive evaluation of cylindrical parts using laser ultrasonics Ultrasonics 40 1 8 Elsevier BV 783 789 doi 10 1016 s0041 624x 02 00210 x ISSN 0041 624X PMID 12160045 Ishikawa Satoru Nakaso Noritaka Takeda Nobuo Mihara Tsuyoshi Tsukahara Yusuke Yamanaka Kazushi 2003 Surface acoustic waves on a sphere with divergent focusing and collimating beam shapes excited by an interdigital transducer Applied Physics Letters 83 22 AIP Publishing 4649 4651 Bibcode 2003ApPhL 83 4649I doi 10 1063 1 1631061 ISSN 0003 6951 Tachizaki Takehiro Matsuda Osamu Maznev Alex A Wright Oliver B 23 April 2010 Acoustic whispering gallery modes generated and dynamically imaged with ultrashort optical pulses Physical Review B 81 16 American Physical Society APS 165434 Bibcode 2010PhRvB 81p5434T doi 10 1103 physrevb 81 165434 hdl 2115 43062 ISSN 1098 0121 Ishikawa Satoru Cho Hideo Yamanaka Kazushi Nakaso Noritaka Tsukahara Yusuke 30 May 2001 Surface Acoustic Waves on a Sphere Analysis of Propagation Using Laser Ultrasonics Japanese Journal of Applied Physics 40 Part 1 No 5B Japan Society of Applied Physics 3623 3627 Bibcode 2001JaJAP 40 3623I doi 10 1143 jjap 40 3623 ISSN 0021 4922 S2CID 121857533 Delaying Trains of Short Light Pulses in WGM Resonators Tech Briefs Media Group 1 September 2018 Retrieved 2018 11 30 Mie Gustav 1908 Beitrage zur Optik truber Medien speziell kolloidaler Metallosungen Annalen der Physik in German 330 3 Wiley 377 445 Bibcode 1908AnP 330 377M doi 10 1002 andp 19083300302 ISSN 0003 3804 Debye P 1909 Der Lichtdruck auf Kugeln von beliebigem Material Annalen der Physik in German 335 11 Wiley 57 136 Bibcode 1909AnP 335 57D doi 10 1002 andp 19093351103 hdl 1908 3003 ISSN 0003 3804 Oraevsky Anatolii N 31 May 2002 Whispering gallery waves Quantum Electronics 32 5 IOP Publishing 377 400 doi 10 1070 qe2002v032n05abeh002205 ISSN 1063 7818 S2CID 250792191 Vahala K J 2003 Optical microcavities Nature 424 6950 839 846 Bibcode 2003Natur 424 839V doi 10 1038 nature01939 PMID 12917698 S2CID 4349700 Chiasera A Dumeige Y Feron P Ferrari M Jestin Y Nunzi Conti G Pelli S Soria S Righini G C 23 April 2010 Spherical whispering gallery mode microresonators Laser amp Photonics Reviews 4 3 Wiley 457 482 Bibcode 2010LPRv 4 457C doi 10 1002 lpor 200910016 ISSN 1863 8880 S2CID 119484780 Rakovich Y P Donegan J F 2 June 2009 Photonic atoms and molecules Laser amp Photonics Reviews 4 2 Wiley 179 191 doi 10 1002 lpor 200910001 ISSN 1863 8880 S2CID 121561846 Kippenberg T J Vahala K J 29 August 2008 Cavity Optomechanics Back Action at the Mesoscale Science 321 5893 American Association for the Advancement of Science AAAS 1172 1176 Bibcode 2008Sci 321 1172K doi 10 1126 science 1156032 ISSN 0036 8075 PMID 18755966 S2CID 4620490 Del Haye P Schliesser A Arcizet O Wilken T Holzwarth R Kippenberg T J 2007 Optical frequency comb generation from a monolithic microresonator Nature 450 7173 Springer Science and Business Media LLC 1214 1217 arXiv 0708 0611 Bibcode 2007Natur 450 1214D doi 10 1038 nature06401 ISSN 0028 0836 PMID 18097405 S2CID 4426096 Arnold S Khoshsima M Teraoka I Holler S Vollmer F 15 February 2003 Shift of whispering gallery modes in microspheres by protein adsorption Optics Letters 28 4 The Optical Society 272 4 Bibcode 2003OptL 28 272A doi 10 1364 ol 28 000272 ISSN 0146 9592 PMID 12653369 Grudinin Ivan S Ilchenko Vladimir S Maleki Lute 8 December 2006 Ultrahigh optical Q factors of crystalline resonators in the linear regime Physical Review A 74 6 American Physical Society APS 063806 Bibcode 2006PhRvA 74f3806G doi 10 1103 physreva 74 063806 ISSN 1050 2947 Yamanaka K Ishikawa S Nakaso N Takeda N Sim Dong Youn et al 2006 Ultramultiple roundtrips of surface acoustic wave on sphere realizing innovation of gas sensors IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control 53 4 793 801 doi 10 1109 TUFFC 2006 1621507 PMID 16615584 S2CID 22051539 Pask Colin 1 December 1977 Generalized parameters for tunneling ray attenuation in optical fibers Journal of the Optical Society of America 68 1 The Optical Society 110 doi 10 1364 josa 68 000110 ISSN 0030 3941 Gmachl C 5 June 1998 High Power Directional Emission from Microlasers with Chaotic Resonators Science 280 5369 1556 1564 arXiv cond mat 9806183 Bibcode 1998Sci 280 1556G doi 10 1126 science 280 5369 1556 ISSN 0036 8075 PMID 9616111 S2CID 502055 Baryshnikov Yuliy Heider Pascal Parz Wolfgang Zharnitsky Vadim 22 September 2004 Whispering Gallery Modes Inside Asymmetric Resonant Cavities Physical Review Letters 93 13 American Physical Society APS 133902 Bibcode 2004PhRvL 93m3902B doi 10 1103 physrevlett 93 133902 ISSN 0031 9007 PMID 15524720 Tanaka Akira Asai Takeshi Toubaru Kiyota Takashima Hideaki Fujiwara Masazumi Okamoto Ryo Takeuchi Shigeki 24 January 2011 Phase shift spectra of a fiber microsphere system at the single photon level Optics Express 19 3 The Optical Society 2278 85 arXiv 1101 5198 Bibcode 2011OExpr 19 2278T doi 10 1364 oe 19 002278 ISSN 1094 4087 PMID 21369045 S2CID 31604481 Budden K G Martin H G 6 February 1962 The ionosphere as a whispering gallery Proceedings of the Royal Society of London Series A Mathematical and Physical Sciences 265 1323 The Royal Society 554 569 Bibcode 1962RSPSA 265 554B doi 10 1098 rspa 1962 0042 ISSN 2053 9169 S2CID 120311101 Stanwix P L et al 2005 Test of Lorentz Invariance in Electrodynamics Using Rotating Cryogenic Sapphire Microwave Oscillators Physical Review Letters 95 4 040404 arXiv hep ph 0506074 Bibcode 2005PhRvL 95d0404S doi 10 1103 PhysRevLett 95 040404 PMID 16090785 S2CID 14255475 Mendis R Mittleman M 2010 Whispering gallery mode terahertz pulse propagation on a curved metallic plate Applied Physics Letters 97 3 031106 Bibcode 2010ApPhL 97c1106M doi 10 1063 1 3466909 Albert F Braun T Heindel T Schneider C Reitzenstein S Hofling S Worschech L Forchel A 6 September 2010 Whispering gallery mode lasing in electrically driven quantum dot micropillars Applied Physics Letters 97 10 AIP Publishing 101108 Bibcode 2010ApPhL 97j1108A doi 10 1063 1 3488807 ISSN 0003 6951 Hyun J K Couillard M Rajendran P Liddell C M Muller D A 15 December 2008 Measuring far ultraviolet whispering gallery modes with high energy electrons Applied Physics Letters 93 24 AIP Publishing 243106 Bibcode 2008ApPhL 93x3106H doi 10 1063 1 3046731 ISSN 0003 6951 Liu Chien Golovchenko Jene A 4 August 1997 Surface Trapped X Rays Whispering Gallery Modes atl 0 7A Physical Review Letters 79 5 American Physical Society APS 788 791 Bibcode 1997PhRvL 79 788L doi 10 1103 physrevlett 79 788 ISSN 0031 9007 S2CID 121253766 M R Foreman 2015 Whispering gallery mode sensors Advances in Optics and Photonics 7 2 168 240 Bibcode 2015AdOP 7 168F doi 10 1364 AOP 7 000168 PMC 4786191 PMID 26973759 Y Wang 2020 Microfluidic whispering gallery mode optical sensors for biological applications Laser amp Photonics Reviews 14 12 2000135 56 Bibcode 2020LPRv 1400135W doi 10 1002 lpor 202000135 S2CID 228850737 T Reynolds 2017 Fluorescent and lasing whispering gallery mode microresonators for sensing applications Laser amp Photonics Reviews 11 2 1600265 76 Bibcode 2017LPRv 1100265R doi 10 1002 lpor 201600265 hdl 2027 42 136528 S2CID 125481589 A Bozzola 2017 Hybrid plasmonic photonic whispering gallery mode resonators for sensing a critical review Analyst 142 6 883 898 Bibcode 2017Ana 142 883B doi 10 1039 C6AN02693A PMID 28225100 Nesvizhevsky Valery V Voronin Alexei Yu Cubitt Robert Protasov Konstantin V 13 December 2009 Neutron whispering gallery Nature Physics 6 2 Springer Science and Business Media LLC 114 117 doi 10 1038 nphys1478 ISSN 1745 2473 Reecht Gael Bulou Herve Scheurer Fabrice Speisser Virginie Carriere Bernard Mathevet Fabrice Schull Guillaume 29 January 2013 Oligothiophene Nanorings as Electron Resonators for Whispering Gallery Modes Physical Review Letters 110 5 American Physical Society APS 056802 arXiv 1301 4860 Bibcode 2013PhRvL 110e6802R doi 10 1103 physrevlett 110 056802 ISSN 0031 9007 PMID 23414040 S2CID 40257448 Dragun Olga Uberall Herbert 1980 Nuclear Rayleigh and whispering gallery waves excited in heavy ion collisions Physics Letters B 94 1 Elsevier BV 24 27 Bibcode 1980PhLB 94 24D doi 10 1016 0370 2693 80 90816 3 ISSN 0370 2693 Arcos E Baez G Cuatlayol P A Prian M L H Mendez Sanchez R A Hernandez Saldana H 1998 Vibrating soap films An analog for quantum chaos on billiards American Journal of Physics 66 7 American Association of Physics Teachers AAPT 601 607 arXiv chao dyn 9903002 Bibcode 1998AmJPh 66 601A doi 10 1119 1 18913 ISSN 0002 9505 S2CID 52106857 Min Bumki Ostby Eric Sorger Volker Ulin Avila Erick Yang Lan Zhang Xiang Vahala Kerry 2009 High Q surface plasmon polariton whispering gallery microcavity Nature 457 7228 Springer Science and Business Media LLC 455 458 Bibcode 2009Natur 457 455M doi 10 1038 nature07627 ISSN 0028 0836 PMID 19158793 S2CID 4411541 Sun Liaoxin Chen Zhanghai Ren Qijun Yu Ke Bai Lihui Zhou Weihang Xiong Hui Zhu Z Q Shen Xuechu 16 April 2008 Direct Observation of Whispering Gallery Mode Polaritons and their Dispersion in a ZnO Tapered Microcavity Physical Review Letters 100 15 156403 arXiv 0710 5334 Bibcode 2008PhRvL 100o6403S doi 10 1103 physrevlett 100 156403 ISSN 0031 9007 PMID 18518134 S2CID 28537857 Tomes Matthew Carmon Tal 19 March 2009 Photonic Micro Electromechanical Systems Vibrating atX band 11 GHz Rates Physical Review Letters 102 11 American Physical Society APS 113601 Bibcode 2009PhRvL 102k3601T doi 10 1103 physrevlett 102 113601 ISSN 0031 9007 PMID 19392199 Kim JunHwan Kuzyk Mark C Han Kewen Wang Hailin Bahl Gaurav 26 January 2015 Non reciprocal Brillouin scattering induced transparency Nature Physics 11 3 Springer Science and Business Media LLC 275 280 arXiv 1408 1739 Bibcode 2015NatPh 11 275K doi 10 1038 nphys3236 ISSN 1745 2473 S2CID 119173646 Bahl Gaurav Kim Kyu Hyun Lee Wonsuk Liu Jing Fan Xudong Carmon Tal 7 June 2013 Brillouin cavity optomechanics with microfluidic devices Nature Communications 4 1 Springer Science and Business Media LLC 1994 arXiv 1302 1949 Bibcode 2013NatCo 4 1994B doi 10 1038 ncomms2994 ISSN 2041 1723 PMID 23744103 External links editInvestigations of Whisper Gallery Mirrors for EUV and Soft X Rays T Y Hung and P L Hagelstein Retrieved from https en wikipedia org w index php title Whispering gallery wave amp oldid 1168079889, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.