fbpx
Wikipedia

Vascular endothelial growth factor C

Vascular endothelial growth factor C (VEGF-C) is a protein that is a member of the platelet-derived growth factor / vascular endothelial growth factor (PDGF/VEGF) family. It is encoded in humans by the VEGFC gene, which is located on chromosome 4q34.[5]

VEGFC
Available structures
PDBOrtholog search: PDBe RCSB
Identifiers
AliasesVEGFC, Flt4-L, LMPH1D, VRP, vascular endothelial growth factor C, LMPHM4
External IDsOMIM: 601528 MGI: 109124 HomoloGene: 3962 GeneCards: VEGFC
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_005429

NM_009506

RefSeq (protein)

NP_005420

NP_033532

Location (UCSC)Chr 4: 176.68 – 176.79 MbChr 8: 54.53 – 54.64 Mb
PubMed search[3][4]
Wikidata
View/Edit HumanView/Edit Mouse

Functions edit

The main function of VEGF-C is to promote the growth of lymphatic vessels (lymphangiogenesis). It acts on lymphatic endothelial cells (LECs) primarily via its receptor VEGFR-3 promoting survival, growth and migration. It was discovered in 1996 as a ligand for the orphan receptor VEGFR-3.[6] Soon thereafter, it was shown to be a specific growth factor for lymphatic vessels in a variety of models.[7][8] However, in addition to its effect on lymphatic vessels, it can also promote the growth of blood vessels and regulate their permeability. The effect on blood vessels can be mediated via its primary receptor VEGFR-3[9] or its secondary receptor VEGFR-2. Apart from vascular targets, VEGF-C is also important for neural development[10] and blood pressure regulation.[11]

Biosynthesis edit

VEGF-C is a dimeric, secreted protein, which undergoes a complex proteolytic maturation resulting in multiple processed forms. After translation, VEGF-C consists of three domains: the central VEGF homology domain (VHD), the N-terminal domain (propeptide) and a C-terminal domain (propeptide).[12] It is referred to as "uncleaved VEGF-C" and has a size of approximately 58 kDa. The first cleavage (which happens already before secretion) occurs between the VHD and the C-terminal domain and is mediated by proprotein convertases.[13] However, the resulting protein is still held together by disulfide bonds and remains inactive (although it can bind already VEGFR-3).[14] This form is referred to as "intermediate form" or pro-VEGF-C and it consists of two polypeptide chains of 29 and 31 kDa. In order to activate VEGF-C, a second cleavage has to occur between the N-terminal propeptide and the VHD. This cleavage can be performed either by ADAMTS3,[14] plasmin,[15] KLK3/PSA or cathepsin D.[16] With progressing maturation, the affinity of VEGF-C for both VEGFR-2 and VEGFR-3 increases and only the fully processed, mature forms of VEGF-C have a significant affinity for VEGFR-2.[12]

Relationship to VEGF-D edit

The closest structural and functional relative of VEGF-C is VEGF-D.[17] However, at least in mice, VEGF-C is absolutely essential for the development of the lymphatic system,[18] whereas VEGF-D appears to be unnecessary.[19] Whether this holds true for humans is unknown, because there are major differences between human and mouse VEGF-D.[20]

Disease relevance edit

In a minority of lymphedema patients, the condition is caused by mutations in the VEGFC gene[21] and VEGF-C is a potential treatment for lymphedema,[22][23] even though the underlying molecular cause appears more often in the VEGF-Receptor-3 instead of VEGF-C itself.[24] Because in Milroy's disease (Hereditary lymphedema type I), only one allele is mutated, not all VEGFR-3 molecules are non-functional and it is thought, that high amounts of VEGF-C can compensate for the mutated, nonfunctional receptors by increasing the signaling levels of the remaining functional receptors.[25] Therefore, VEGF-C is developed as a lymphedema drug under the name of Lymfactin.[26] Also indirectly VEGF-C can be responsible for hereditary lymphedema: The rare Hennekam syndrome can result from the inability of the mutated CCBE1 to assist the ADAMTS3 protease in activating VEGF-C.[14] While lack of VEGF-C results in lymphedema, VEGF-C production is implicated in tumor lymphangiogenesis and metastasis. Expression of VEGF-C by tumors induces peri-tumoral and intratumoral lymphangiogenesis what potently promotes metastatic dissemination of tumor cells.[27][28] VEGF-C primarily stimulates lymphangiogenesis by activating VEGFR-3, yet under certain conditions it can also act directly on blood vessels to promote tumor angiogenesis.[9][29]

Evolution edit

The PDGF family is so closely related to the VEGF family that the two are sometimes grouped together as the PDGF/VEGF family. In invertebrates, molecules from this families are not easily distinguished from each other and are collectively referred to as PVFs (PDGF/VEGF-like growth factors.[30] The comparison of human VEGFs with these PVFs allows conclusions on the structure of the ancestral molecules, which appear more closely related to today's lymphangiogenic VEGF-C than to the other members of the VEGF family and despite their large evolutionary distance are still able to interact with human VEGF receptors. The PVFs in Drosophila melanogaster have functions for the migration of hemocytes[31] and the PVFs in the jellyfish Podocoryne carnea for the development of the tentacles and the gastrovascular apparatus.[32] However, the function of the PVF-1 of the nematode Caenorhabditis elegans is unknown[30]

References edit

  1. ^ a b c GRCh38: Ensembl release 89: ENSG00000150630 – Ensembl, May 2017
  2. ^ a b c GRCm38: Ensembl release 89: ENSMUSG00000031520 – Ensembl, May 2017
  3. ^ "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. ^ "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. ^ Paavonen K, Horelli-Kuitunen N, Chilov D, Kukk E, Pennanen S, Kallioniemi OP, et al. (March 1996). "Novel human vascular endothelial growth factor genes VEGF-B and VEGF-C localize to chromosomes 11q13 and 4q34, respectively". Circulation. 93 (6): 1079–1082. doi:10.1161/01.CIR.93.6.1079. PMID 8653826.
  6. ^ Joukov V, Pajusola K, Kaipainen A, Chilov D, Lahtinen I, Kukk E, et al. (January 1996). "A novel vascular endothelial growth factor, VEGF-C, is a ligand for the Flt4 (VEGFR-3) and KDR (VEGFR-2) receptor tyrosine kinases". The EMBO Journal. 15 (2): 290–298. doi:10.1002/j.1460-2075.1996.tb00359.x. PMC 449944. PMID 8617204.
  7. ^ Oh SJ, Jeltsch MM, Birkenhäger R, McCarthy JE, Weich HA, Christ B, et al. (August 1997). "VEGF and VEGF-C: specific induction of angiogenesis and lymphangiogenesis in the differentiated avian chorioallantoic membrane". Developmental Biology. 188 (1): 96–109. doi:10.1006/dbio.1997.8639. PMID 9245515.
  8. ^ Jeltsch M, Kaipainen A, Joukov V, Meng X, Lakso M, Rauvala H, et al. (May 1997). "Hyperplasia of lymphatic vessels in VEGF-C transgenic mice". Science. 276 (5317): 1423–1425. doi:10.1126/science.276.5317.1423. PMID 9162011. S2CID 21835142.
  9. ^ a b Tammela T, Zarkada G, Wallgard E, Murtomäki A, Suchting S, Wirzenius M, et al. (July 2008). "Blocking VEGFR-3 suppresses angiogenic sprouting and vascular network formation". Nature. 454 (7204): 656–660. Bibcode:2008Natur.454..656T. doi:10.1038/nature07083. PMID 18594512. S2CID 2251527.
  10. ^ Le Bras B, Barallobre MJ, Homman-Ludiye J, Ny A, Wyns S, Tammela T, et al. (March 2006). "VEGF-C is a trophic factor for neural progenitors in the vertebrate embryonic brain". Nature Neuroscience. 9 (3): 340–348. doi:10.1038/nn1646. PMID 16462734. S2CID 24197350.
  11. ^ Machnik A, Neuhofer W, Jantsch J, Dahlmann A, Tammela T, Machura K, et al. (May 2009). "Macrophages regulate salt-dependent volume and blood pressure by a vascular endothelial growth factor-C-dependent buffering mechanism". Nature Medicine. 15 (5): 545–552. doi:10.1038/nm.1960. PMID 19412173. S2CID 10526891.
  12. ^ a b Joukov V, Sorsa T, Kumar V, Jeltsch M, Claesson-Welsh L, Cao Y, et al. (July 1997). "Proteolytic processing regulates receptor specificity and activity of VEGF-C". The EMBO Journal. 16 (13): 3898–3911. doi:10.1093/emboj/16.13.3898. PMC 1170014. PMID 9233800.
  13. ^ Siegfried G, Basak A, Cromlish JA, Benjannet S, Marcinkiewicz J, Chrétien M, et al. (June 2003). "The secretory proprotein convertases furin, PC5, and PC7 activate VEGF-C to induce tumorigenesis". The Journal of Clinical Investigation. 111 (11): 1723–1732. doi:10.1172/JCI17220. PMC 156106. PMID 12782675.
  14. ^ a b c Jeltsch M, Jha SK, Tvorogov D, Anisimov A, Leppänen VM, Holopainen T, et al. (May 2014). "CCBE1 enhances lymphangiogenesis via A disintegrin and metalloprotease with thrombospondin motifs-3-mediated vascular endothelial growth factor-C activation". Circulation. 129 (19): 1962–1971. doi:10.1161/CIRCULATIONAHA.113.002779. PMID 24552833.
  15. ^ McColl BK, Baldwin ME, Roufail S, Freeman C, Moritz RL, Simpson RJ, et al. (September 2003). "Plasmin activates the lymphangiogenic growth factors VEGF-C and VEGF-D". The Journal of Experimental Medicine. 198 (6): 863–868. doi:10.1084/jem.20030361. PMC 2194198. PMID 12963694.
  16. ^ Jha SK, Rauniyar K, Chronowska E, Mattonet K, Maina EW, Koistinen H, et al. (May 2019). "KLK3/PSA and cathepsin D activate VEGF-C and VEGF-D". eLife. 8: 44478. doi:10.7554/eLife.44478. PMC 6588350. PMID 31099754.
  17. ^ Achen MG, Jeltsch M, Kukk E, Mäkinen T, Vitali A, Wilks AF, et al. (January 1998). "Vascular endothelial growth factor D (VEGF-D) is a ligand for the tyrosine kinases VEGF receptor 2 (Flk1) and VEGF receptor 3 (Flt4)". Proceedings of the National Academy of Sciences of the United States of America. 95 (2): 548–553. Bibcode:1998PNAS...95..548A. doi:10.1073/pnas.95.2.548. PMC 18457. PMID 9435229.
  18. ^ Karkkainen MJ, Haiko P, Sainio K, Partanen J, Taipale J, Petrova TV, et al. (January 2004). "Vascular endothelial growth factor C is required for sprouting of the first lymphatic vessels from embryonic veins". Nature Immunology. 5 (1): 74–80. doi:10.1038/ni1013. PMID 14634646. S2CID 22078757.
  19. ^ Baldwin ME, Halford MM, Roufail S, Williams RA, Hibbs ML, Grail D, et al. (March 2005). "Vascular endothelial growth factor D is dispensable for development of the lymphatic system". Molecular and Cellular Biology. 25 (6): 2441–2449. doi:10.1128/MCB.25.6.2441-2449.2005. PMC 1061605. PMID 15743836.
  20. ^ Baldwin ME, Catimel B, Nice EC, Roufail S, Hall NE, Stenvers KL, et al. (June 2001). "The specificity of receptor binding by vascular endothelial growth factor-d is different in mouse and man". The Journal of Biological Chemistry. 276 (22): 19166–19171. doi:10.1074/jbc.M100097200. PMID 11279005. S2CID 41677159.
  21. ^ Balboa-Beltran E, Fernández-Seara MJ, Pérez-Muñuzuri A, Lago R, García-Magán C, Couce ML, et al. (July 2014). "A novel stop mutation in the vascular endothelial growth factor-C gene (VEGFC) results in Milroy-like disease". Journal of Medical Genetics. 51 (7): 475–478. doi:10.1136/jmedgenet-2013-102020. PMID 24744435. S2CID 6613861.
  22. ^ Enholm B, Karpanen T, Jeltsch M, Kubo H, Stenback F, Prevo R, et al. (March 2001). "Adenoviral expression of vascular endothelial growth factor-C induces lymphangiogenesis in the skin". Circulation Research. 88 (6): 623–629. doi:10.1161/01.RES.88.6.623. PMID 11282897. S2CID 28806663.
  23. ^ Honkonen KM, Visuri MT, Tervala TV, Halonen PJ, Koivisto M, Lähteenvuo MT, et al. (May 2013). "Lymph node transfer and perinodal lymphatic growth factor treatment for lymphedema". Annals of Surgery. 257 (5): 961–7. doi:10.1097/SLA.0b013e31826ed043. PMID 23013803. S2CID 2042145.
  24. ^ Brouillard P, Boon L, Vikkula M (March 2014). "Genetics of lymphatic anomalies". The Journal of Clinical Investigation. 124 (3): 898–904. doi:10.1172/JCI71614. PMC 3938256. PMID 24590274.
  25. ^ Karkkainen MJ, Saaristo A, Jussila L, Karila KA, Lawrence EC, Pajusola K, et al. (October 2001). "A model for gene therapy of human hereditary lymphedema". Proceedings of the National Academy of Sciences of the United States of America. 98 (22): 12677–12682. Bibcode:2001PNAS...9812677K. doi:10.1073/pnas.221449198. PMC 60113. PMID 11592985.
  26. ^ Herantis Pharma (2014-07-21). "Lymfactin® for lymphedema". {{cite web}}: Missing or empty |url= (help)
  27. ^ Skobe M, Hawighorst T, Jackson DG, Prevo R, Janes L, Velasco P, et al. (February 2001). "Induction of tumor lymphangiogenesis by VEGF-C promotes breast cancer metastasis". Nature Medicine. 7 (2): 192–198. doi:10.1038/84643. PMID 11175850. S2CID 26090359.
  28. ^ Mandriota SJ, Jussila L, Jeltsch M, Compagni A, Baetens D, Prevo R, et al. (February 2001). "Vascular endothelial growth factor-C-mediated lymphangiogenesis promotes tumour metastasis". The EMBO Journal. 20 (4): 672–682. doi:10.1093/emboj/20.4.672. PMC 145430. PMID 11179212.
  29. ^ Tvorogov D, Anisimov A, Zheng W, Leppänen VM, Tammela T, Laurinavicius S, et al. (December 2010). "Effective suppression of vascular network formation by combination of antibodies blocking VEGFR ligand binding and receptor dimerization". Cancer Cell. 18 (6): 630–640. doi:10.1016/j.ccr.2010.11.001. PMID 21130043.
  30. ^ a b Tarsitano M, De Falco S, Colonna V, McGhee JD, Persico MG (February 2006). "The C. elegans pvf-1 gene encodes a PDGF/VEGF-like factor able to bind mammalian VEGF receptors and to induce angiogenesis". FASEB Journal. 20 (2): 227–233. doi:10.1096/fj.05-4147com. PMID 16449794. S2CID 31963203.
  31. ^ Heino TI, Kärpänen T, Wahlström G, Pulkkinen M, Eriksson U, Alitalo K, Roos C (November 2001). "The Drosophila VEGF receptor homolog is expressed in hemocytes". Mechanisms of Development. 109 (1): 69–77. doi:10.1016/S0925-4773(01)00510-X. PMID 11677054. S2CID 14074572.
  32. ^ Seipel K, Eberhardt M, Müller P, Pescia E, Yanze N, Schmid V (October 2004). "Homologs of vascular endothelial growth factor and receptor, VEGF and VEGFR, in the jellyfish Podocoryne carnea". Developmental Dynamics. 231 (2): 303–312. doi:10.1002/dvdy.20139. PMID 15366007. S2CID 42930371.

Further reading edit

  • Rauniyar K, Jha SK, Jeltsch M (Feb 2018). "Biology of Vascular Endothelial Growth Factor C in the Morphogenesis of Lymphatic Vessels". Frontiers in Bioengineering and Biotechnology. 6: 7. doi:10.3389/fbioe.2018.00007. PMC 5816233. PMID 29484295.
  • Krebs R, Jeltsch M (June 2013). "The lymphangiogenic growth factors VEGF-C and VEGF-D. Part 1: Basic principles and embryonic development" (PDF). Lymphologie in Forschung und Praxis. 17 (1): 30–37.
  • Krebs R, Jeltsch M (Dec 2013). "Die lymphangiogenic growth factors VEGF-C and VEGF-D. Part 2: The role of VEGF-C and VEGF-D in diseases of the lymphatic system" (PDF). Lymphologie in Forschung und Praxis. 17 (2): 96–104.
  • Orpana A, Salven P (February 2002). "Angiogenic and lymphangiogenic molecules in hematological malignancies". Leukemia & Lymphoma. 43 (2): 219–224. doi:10.1080/10428190290005964. PMID 11999550. S2CID 21908151.
  • Orpana A, Salven P (February 2002). "Angiogenic and lymphangiogenic molecules in hematological malignancies". Leukemia & Lymphoma. 43 (2): 219–224. doi:10.1080/10428190290005964. PMID 11999550. S2CID 21908151.
  • Joukov V, Pajusola K, Kaipainen A, Chilov D, Lahtinen I, Kukk E, et al. (January 1996). "A novel vascular endothelial growth factor, VEGF-C, is a ligand for the Flt4 (VEGFR-3) and KDR (VEGFR-2) receptor tyrosine kinases". The EMBO Journal. 15 (2): 290–298. doi:10.1002/j.1460-2075.1996.tb00359.x. PMC 449944. PMID 8617204.
  • Joukov V, Pajusola K, Kaipainen A, Chilov D, Lahtinen I, Kukk E, et al. (April 1996). "A novel vascular endothelial growth factor, VEGF-C, is a ligand for the Flt4 (VEGFR-3) and KDR (VEGFR-2) receptor tyrosine kinases". The EMBO Journal. 15 (7): 1751. doi:10.1002/j.1460-2075.1996.tb00521.x. PMC 450088. PMID 8612600.
  • Paavonen K, Horelli-Kuitunen N, Chilov D, Kukk E, Pennanen S, Kallioniemi OP, et al. (March 1996). "Novel human vascular endothelial growth factor genes VEGF-B and VEGF-C localize to chromosomes 11q13 and 4q34, respectively". Circulation. 93 (6): 1079–1082. doi:10.1161/01.cir.93.6.1079. PMID 8653826.
  • Lee J, Gray A, Yuan J, Luoh SM, Avraham H, Wood WI (March 1996). "Vascular endothelial growth factor-related protein: a ligand and specific activator of the tyrosine kinase receptor Flt4". Proceedings of the National Academy of Sciences of the United States of America. 93 (5): 1988–1992. Bibcode:1996PNAS...93.1988L. doi:10.1073/pnas.93.5.1988. PMC 39896. PMID 8700872.
  • Joukov V, Sorsa T, Kumar V, Jeltsch M, Claesson-Welsh L, Cao Y, et al. (July 1997). "Proteolytic processing regulates receptor specificity and activity of VEGF-C". The EMBO Journal. 16 (13): 3898–3911. doi:10.1093/emboj/16.13.3898. PMC 1170014. PMID 9233800.
  • Fitz LJ, Morris JC, Towler P, Long A, Burgess P, Greco R, et al. (July 1997). "Characterization of murine Flt4 ligand/VEGF-C". Oncogene. 15 (5): 613–618. doi:10.1038/sj.onc.1201191. PMID 9247316. S2CID 6795440.
  • Dunk C, Ahmed A (April 2001). "Expression of VEGF-C and activation of its receptors VEGFR-2 and VEGFR-3 in trophoblast". Histology and Histopathology. 16 (2): 359–375. doi:10.14670/HH-16.359. PMID 11332691.
  • Dias S, Choy M, Alitalo K, Rafii S (March 2002). "Vascular endothelial growth factor (VEGF)-C signaling through FLT-4 (VEGFR-3) mediates leukemic cell proliferation, survival, and resistance to chemotherapy". Blood. 99 (6): 2179–2184. doi:10.1182/blood.V99.6.2179. PMID 11877295. S2CID 2838185.
  • Ueda M, Terai Y, Yamashita Y, Kumagai K, Ueki K, Yamaguchi H, et al. (March 2002). "Correlation between vascular endothelial growth factor-C expression and invasion phenotype in cervical carcinomas". International Journal of Cancer. 98 (3): 335–343. doi:10.1002/ijc.10193. PMID 11920583. S2CID 10276013.
  • Witte D, Thomas A, Ali N, Carlson N, Younes M (2002). "Expression of the vascular endothelial growth factor receptor-3 (VEGFR-3) and its ligand VEGF-C in human colorectal adenocarcinoma". Anticancer Research. 22 (3): 1463–1466. PMID 12168824.
  • Schoppmann SF, Birner P, Stöckl J, Kalt R, Ullrich R, Caucig C, et al. (September 2002). "Tumor-associated macrophages express lymphatic endothelial growth factors and are related to peritumoral lymphangiogenesis". The American Journal of Pathology. 161 (3): 947–956. doi:10.1016/S0002-9440(10)64255-1. PMC 1867252. PMID 12213723.
  • Shin HY, Smith ML, Toy KJ, Williams PM, Bizios R, Gerritsen ME (December 2002). "VEGF-C mediates cyclic pressure-induced endothelial cell proliferation". Physiological Genomics. 11 (3): 245–251. doi:10.1152/physiolgenomics.00068.2002. PMID 12388793. S2CID 14183060.
  • Yu DH, Wen YM, Sun JD, Wei SL, Xie HP, Pang FH (March 2002). "[Relationship among expression of vascular endothelial growth factor-C(VEGF-C), angiogenesis, lymphangiogenesis, and lymphatic metastasis in oral cancer]". AI Zheng = Aizheng = Chinese Journal of Cancer. 21 (3): 319–22. PMID 12452004.
  • Nakashima T, Kondoh S, Kitoh H, Ozawa H, Okita S, Harada T, et al. (January 2003). "Vascular endothelial growth factor-C expression in human gallbladder cancer and its relationship to lymph node metastasis". International Journal of Molecular Medicine. 11 (1): 33–39. doi:10.3892/ijmm.11.1.33. PMID 12469214.
  • Tsai PW, Shiah SG, Lin MT, Wu CW, Kuo ML (February 2003). "Up-regulation of vascular endothelial growth factor C in breast cancer cells by heregulin-beta 1. A critical role of p38/nuclear factor-kappa B signaling pathway". The Journal of Biological Chemistry. 278 (8): 5750–5759. doi:10.1074/jbc.M204863200. PMID 12471041. S2CID 40780576.
  • Masood R, Kundra A, Zhu S, Xia G, Scalia P, Smith DL, Gill PS (May 2003). "Malignant mesothelioma growth inhibition by agents that target the VEGF and VEGF-C autocrine loops". International Journal of Cancer. 104 (5): 603–610. doi:10.1002/ijc.10996. PMID 12594815. S2CID 23085374.
  • Ohno M, Nakamura T, Kunimoto Y, Nishimura K, Chung-Kang C, Kuroda Y (2004). "Lymphagenesis correlates with expression of vascular endothelial growth factor-C in colorectal cancer". Oncology Reports. 10 (4): 939–943. doi:10.3892/or.10.4.939. PMID 12792749.

External links edit

  • Overview of all the structural information available in the PDB for UniProt: P49767 (Vascular endothelial growth factor C) at the PDBe-KB.

vascular, endothelial, growth, factor, vegf, protein, that, member, platelet, derived, growth, factor, vascular, endothelial, growth, factor, pdgf, vegf, family, encoded, humans, vegfc, gene, which, located, chromosome, 4q34, vegfcavailable, structurespdbortho. Vascular endothelial growth factor C VEGF C is a protein that is a member of the platelet derived growth factor vascular endothelial growth factor PDGF VEGF family It is encoded in humans by the VEGFC gene which is located on chromosome 4q34 5 VEGFCAvailable structuresPDBOrtholog search PDBe RCSBList of PDB id codes2X1W 2X1X 4BSKIdentifiersAliasesVEGFC Flt4 L LMPH1D VRP vascular endothelial growth factor C LMPHM4External IDsOMIM 601528 MGI 109124 HomoloGene 3962 GeneCards VEGFCGene location Human Chr Chromosome 4 human 1 Band4q34 3Start176 683 538 bp 1 End176 792 922 bp 1 Gene location Mouse Chr Chromosome 8 mouse 2 Band8 8 B1 3Start54 530 641 bp 2 End54 640 131 bp 2 RNA expression patternBgeeHumanMouse ortholog Top expressed instromal cell of endometriumright lobe of thyroid glandleft lobe of thyroid glandright lungparietal pleuravisceral pleurapericardiumsubcutaneous adipose tissuelactiferous ductupper lobe of left lungTop expressed inexternal carotid arteryinternal carotid arterysemi lunar valveleft lung lobeabdominal wallendocardial cushionaortic valveconjunctival fornixascending aortadermisMore reference expression dataBioGPSMore reference expression dataGene ontologyMolecular functionchemoattractant activity protein binding growth factor activity vascular endothelial growth factor receptor 3 binding vascular endothelial growth factor receptor bindingCellular componentextracellular region membrane platelet alpha granule lumen extracellular spaceBiological processnegative regulation of cell population proliferation positive regulation of neuroblast proliferation positive regulation of protein secretion substrate dependent cell migration signal transduction positive regulation of protein autophosphorylation multicellular organism development morphogenesis of embryonic epithelium positive regulation of cell matrix adhesion positive regulation of mast cell chemotaxis positive regulation of blood vessel endothelial cell migration positive regulation of cell division induction of positive chemotaxis platelet degranulation positive regulation of peptidyl tyrosine phosphorylation negative regulation of blood pressure positive regulation of cell population proliferation positive regulation of lymphangiogenesis regulation of vascular endothelial growth factor receptor signaling pathway cell differentiation positive regulation of epithelial cell proliferation animal organ morphogenesis positive chemotaxis angiogenesis response to hypoxia positive regulation of endothelial cell proliferation positive regulation of angiogenesis cellular response to leukemia inhibitory factor vascular endothelial growth factor receptor signaling pathway regulation of signaling receptor activity positive regulation of protein phosphorylation sprouting angiogenesis vascular endothelial growth factor signaling pathwaySources Amigo QuickGOOrthologsSpeciesHumanMouseEntrez742422341EnsemblENSG00000150630ENSMUSG00000031520UniProtP49767P97953RefSeq mRNA NM 005429NM 009506RefSeq protein NP 005420NP 033532Location UCSC Chr 4 176 68 176 79 MbChr 8 54 53 54 64 MbPubMed search 3 4 WikidataView Edit HumanView Edit Mouse Contents 1 Functions 2 Biosynthesis 3 Relationship to VEGF D 4 Disease relevance 5 Evolution 6 References 7 Further reading 8 External linksFunctions editThe main function of VEGF C is to promote the growth of lymphatic vessels lymphangiogenesis It acts on lymphatic endothelial cells LECs primarily via its receptor VEGFR 3 promoting survival growth and migration It was discovered in 1996 as a ligand for the orphan receptor VEGFR 3 6 Soon thereafter it was shown to be a specific growth factor for lymphatic vessels in a variety of models 7 8 However in addition to its effect on lymphatic vessels it can also promote the growth of blood vessels and regulate their permeability The effect on blood vessels can be mediated via its primary receptor VEGFR 3 9 or its secondary receptor VEGFR 2 Apart from vascular targets VEGF C is also important for neural development 10 and blood pressure regulation 11 Biosynthesis editVEGF C is a dimeric secreted protein which undergoes a complex proteolytic maturation resulting in multiple processed forms After translation VEGF C consists of three domains the central VEGF homology domain VHD the N terminal domain propeptide and a C terminal domain propeptide 12 It is referred to as uncleaved VEGF C and has a size of approximately 58 kDa The first cleavage which happens already before secretion occurs between the VHD and the C terminal domain and is mediated by proprotein convertases 13 However the resulting protein is still held together by disulfide bonds and remains inactive although it can bind already VEGFR 3 14 This form is referred to as intermediate form or pro VEGF C and it consists of two polypeptide chains of 29 and 31 kDa In order to activate VEGF C a second cleavage has to occur between the N terminal propeptide and the VHD This cleavage can be performed either by ADAMTS3 14 plasmin 15 KLK3 PSA or cathepsin D 16 With progressing maturation the affinity of VEGF C for both VEGFR 2 and VEGFR 3 increases and only the fully processed mature forms of VEGF C have a significant affinity for VEGFR 2 12 Relationship to VEGF D editThe closest structural and functional relative of VEGF C is VEGF D 17 However at least in mice VEGF C is absolutely essential for the development of the lymphatic system 18 whereas VEGF D appears to be unnecessary 19 Whether this holds true for humans is unknown because there are major differences between human and mouse VEGF D 20 Disease relevance editIn a minority of lymphedema patients the condition is caused by mutations in the VEGFC gene 21 and VEGF C is a potential treatment for lymphedema 22 23 even though the underlying molecular cause appears more often in the VEGF Receptor 3 instead of VEGF C itself 24 Because in Milroy s disease Hereditary lymphedema type I only one allele is mutated not all VEGFR 3 molecules are non functional and it is thought that high amounts of VEGF C can compensate for the mutated nonfunctional receptors by increasing the signaling levels of the remaining functional receptors 25 Therefore VEGF C is developed as a lymphedema drug under the name of Lymfactin 26 Also indirectly VEGF C can be responsible for hereditary lymphedema The rare Hennekam syndrome can result from the inability of the mutated CCBE1 to assist the ADAMTS3 protease in activating VEGF C 14 While lack of VEGF C results in lymphedema VEGF C production is implicated in tumor lymphangiogenesis and metastasis Expression of VEGF C by tumors induces peri tumoral and intratumoral lymphangiogenesis what potently promotes metastatic dissemination of tumor cells 27 28 VEGF C primarily stimulates lymphangiogenesis by activating VEGFR 3 yet under certain conditions it can also act directly on blood vessels to promote tumor angiogenesis 9 29 Evolution editThe PDGF family is so closely related to the VEGF family that the two are sometimes grouped together as the PDGF VEGF family In invertebrates molecules from this families are not easily distinguished from each other and are collectively referred to as PVFs PDGF VEGF like growth factors 30 The comparison of human VEGFs with these PVFs allows conclusions on the structure of the ancestral molecules which appear more closely related to today s lymphangiogenic VEGF C than to the other members of the VEGF family and despite their large evolutionary distance are still able to interact with human VEGF receptors The PVFs in Drosophila melanogaster have functions for the migration of hemocytes 31 and the PVFs in the jellyfish Podocoryne carnea for the development of the tentacles and the gastrovascular apparatus 32 However the function of the PVF 1 of the nematode Caenorhabditis elegans is unknown 30 References edit a b c GRCh38 Ensembl release 89 ENSG00000150630 Ensembl May 2017 a b c GRCm38 Ensembl release 89 ENSMUSG00000031520 Ensembl May 2017 Human PubMed Reference National Center for Biotechnology Information U S National Library of Medicine Mouse PubMed Reference National Center for Biotechnology Information U S National Library of Medicine Paavonen K Horelli Kuitunen N Chilov D Kukk E Pennanen S Kallioniemi OP et al March 1996 Novel human vascular endothelial growth factor genes VEGF B and VEGF C localize to chromosomes 11q13 and 4q34 respectively Circulation 93 6 1079 1082 doi 10 1161 01 CIR 93 6 1079 PMID 8653826 Joukov V Pajusola K Kaipainen A Chilov D Lahtinen I Kukk E et al January 1996 A novel vascular endothelial growth factor VEGF C is a ligand for the Flt4 VEGFR 3 and KDR VEGFR 2 receptor tyrosine kinases The EMBO Journal 15 2 290 298 doi 10 1002 j 1460 2075 1996 tb00359 x PMC 449944 PMID 8617204 Oh SJ Jeltsch MM Birkenhager R McCarthy JE Weich HA Christ B et al August 1997 VEGF and VEGF C specific induction of angiogenesis and lymphangiogenesis in the differentiated avian chorioallantoic membrane Developmental Biology 188 1 96 109 doi 10 1006 dbio 1997 8639 PMID 9245515 Jeltsch M Kaipainen A Joukov V Meng X Lakso M Rauvala H et al May 1997 Hyperplasia of lymphatic vessels in VEGF C transgenic mice Science 276 5317 1423 1425 doi 10 1126 science 276 5317 1423 PMID 9162011 S2CID 21835142 a b Tammela T Zarkada G Wallgard E Murtomaki A Suchting S Wirzenius M et al July 2008 Blocking VEGFR 3 suppresses angiogenic sprouting and vascular network formation Nature 454 7204 656 660 Bibcode 2008Natur 454 656T doi 10 1038 nature07083 PMID 18594512 S2CID 2251527 Le Bras B Barallobre MJ Homman Ludiye J Ny A Wyns S Tammela T et al March 2006 VEGF C is a trophic factor for neural progenitors in the vertebrate embryonic brain Nature Neuroscience 9 3 340 348 doi 10 1038 nn1646 PMID 16462734 S2CID 24197350 Machnik A Neuhofer W Jantsch J Dahlmann A Tammela T Machura K et al May 2009 Macrophages regulate salt dependent volume and blood pressure by a vascular endothelial growth factor C dependent buffering mechanism Nature Medicine 15 5 545 552 doi 10 1038 nm 1960 PMID 19412173 S2CID 10526891 a b Joukov V Sorsa T Kumar V Jeltsch M Claesson Welsh L Cao Y et al July 1997 Proteolytic processing regulates receptor specificity and activity of VEGF C The EMBO Journal 16 13 3898 3911 doi 10 1093 emboj 16 13 3898 PMC 1170014 PMID 9233800 Siegfried G Basak A Cromlish JA Benjannet S Marcinkiewicz J Chretien M et al June 2003 The secretory proprotein convertases furin PC5 and PC7 activate VEGF C to induce tumorigenesis The Journal of Clinical Investigation 111 11 1723 1732 doi 10 1172 JCI17220 PMC 156106 PMID 12782675 a b c Jeltsch M Jha SK Tvorogov D Anisimov A Leppanen VM Holopainen T et al May 2014 CCBE1 enhances lymphangiogenesis via A disintegrin and metalloprotease with thrombospondin motifs 3 mediated vascular endothelial growth factor C activation Circulation 129 19 1962 1971 doi 10 1161 CIRCULATIONAHA 113 002779 PMID 24552833 McColl BK Baldwin ME Roufail S Freeman C Moritz RL Simpson RJ et al September 2003 Plasmin activates the lymphangiogenic growth factors VEGF C and VEGF D The Journal of Experimental Medicine 198 6 863 868 doi 10 1084 jem 20030361 PMC 2194198 PMID 12963694 Jha SK Rauniyar K Chronowska E Mattonet K Maina EW Koistinen H et al May 2019 KLK3 PSA and cathepsin D activate VEGF C and VEGF D eLife 8 44478 doi 10 7554 eLife 44478 PMC 6588350 PMID 31099754 Achen MG Jeltsch M Kukk E Makinen T Vitali A Wilks AF et al January 1998 Vascular endothelial growth factor D VEGF D is a ligand for the tyrosine kinases VEGF receptor 2 Flk1 and VEGF receptor 3 Flt4 Proceedings of the National Academy of Sciences of the United States of America 95 2 548 553 Bibcode 1998PNAS 95 548A doi 10 1073 pnas 95 2 548 PMC 18457 PMID 9435229 Karkkainen MJ Haiko P Sainio K Partanen J Taipale J Petrova TV et al January 2004 Vascular endothelial growth factor C is required for sprouting of the first lymphatic vessels from embryonic veins Nature Immunology 5 1 74 80 doi 10 1038 ni1013 PMID 14634646 S2CID 22078757 Baldwin ME Halford MM Roufail S Williams RA Hibbs ML Grail D et al March 2005 Vascular endothelial growth factor D is dispensable for development of the lymphatic system Molecular and Cellular Biology 25 6 2441 2449 doi 10 1128 MCB 25 6 2441 2449 2005 PMC 1061605 PMID 15743836 Baldwin ME Catimel B Nice EC Roufail S Hall NE Stenvers KL et al June 2001 The specificity of receptor binding by vascular endothelial growth factor d is different in mouse and man The Journal of Biological Chemistry 276 22 19166 19171 doi 10 1074 jbc M100097200 PMID 11279005 S2CID 41677159 Balboa Beltran E Fernandez Seara MJ Perez Munuzuri A Lago R Garcia Magan C Couce ML et al July 2014 A novel stop mutation in the vascular endothelial growth factor C gene VEGFC results in Milroy like disease Journal of Medical Genetics 51 7 475 478 doi 10 1136 jmedgenet 2013 102020 PMID 24744435 S2CID 6613861 Enholm B Karpanen T Jeltsch M Kubo H Stenback F Prevo R et al March 2001 Adenoviral expression of vascular endothelial growth factor C induces lymphangiogenesis in the skin Circulation Research 88 6 623 629 doi 10 1161 01 RES 88 6 623 PMID 11282897 S2CID 28806663 Honkonen KM Visuri MT Tervala TV Halonen PJ Koivisto M Lahteenvuo MT et al May 2013 Lymph node transfer and perinodal lymphatic growth factor treatment for lymphedema Annals of Surgery 257 5 961 7 doi 10 1097 SLA 0b013e31826ed043 PMID 23013803 S2CID 2042145 Brouillard P Boon L Vikkula M March 2014 Genetics of lymphatic anomalies The Journal of Clinical Investigation 124 3 898 904 doi 10 1172 JCI71614 PMC 3938256 PMID 24590274 Karkkainen MJ Saaristo A Jussila L Karila KA Lawrence EC Pajusola K et al October 2001 A model for gene therapy of human hereditary lymphedema Proceedings of the National Academy of Sciences of the United States of America 98 22 12677 12682 Bibcode 2001PNAS 9812677K doi 10 1073 pnas 221449198 PMC 60113 PMID 11592985 Herantis Pharma 2014 07 21 Lymfactin for lymphedema a href Template Cite web html title Template Cite web cite web a Missing or empty url help Skobe M Hawighorst T Jackson DG Prevo R Janes L Velasco P et al February 2001 Induction of tumor lymphangiogenesis by VEGF C promotes breast cancer metastasis Nature Medicine 7 2 192 198 doi 10 1038 84643 PMID 11175850 S2CID 26090359 Mandriota SJ Jussila L Jeltsch M Compagni A Baetens D Prevo R et al February 2001 Vascular endothelial growth factor C mediated lymphangiogenesis promotes tumour metastasis The EMBO Journal 20 4 672 682 doi 10 1093 emboj 20 4 672 PMC 145430 PMID 11179212 Tvorogov D Anisimov A Zheng W Leppanen VM Tammela T Laurinavicius S et al December 2010 Effective suppression of vascular network formation by combination of antibodies blocking VEGFR ligand binding and receptor dimerization Cancer Cell 18 6 630 640 doi 10 1016 j ccr 2010 11 001 PMID 21130043 a b Tarsitano M De Falco S Colonna V McGhee JD Persico MG February 2006 The C elegans pvf 1 gene encodes a PDGF VEGF like factor able to bind mammalian VEGF receptors and to induce angiogenesis FASEB Journal 20 2 227 233 doi 10 1096 fj 05 4147com PMID 16449794 S2CID 31963203 Heino TI Karpanen T Wahlstrom G Pulkkinen M Eriksson U Alitalo K Roos C November 2001 The Drosophila VEGF receptor homolog is expressed in hemocytes Mechanisms of Development 109 1 69 77 doi 10 1016 S0925 4773 01 00510 X PMID 11677054 S2CID 14074572 Seipel K Eberhardt M Muller P Pescia E Yanze N Schmid V October 2004 Homologs of vascular endothelial growth factor and receptor VEGF and VEGFR in the jellyfish Podocoryne carnea Developmental Dynamics 231 2 303 312 doi 10 1002 dvdy 20139 PMID 15366007 S2CID 42930371 Further reading editRauniyar K Jha SK Jeltsch M Feb 2018 Biology of Vascular Endothelial Growth Factor C in the Morphogenesis of Lymphatic Vessels Frontiers in Bioengineering and Biotechnology 6 7 doi 10 3389 fbioe 2018 00007 PMC 5816233 PMID 29484295 Krebs R Jeltsch M June 2013 The lymphangiogenic growth factors VEGF C and VEGF D Part 1 Basic principles and embryonic development PDF Lymphologie in Forschung und Praxis 17 1 30 37 Krebs R Jeltsch M Dec 2013 Die lymphangiogenic growth factors VEGF C and VEGF D Part 2 The role of VEGF C and VEGF D in diseases of the lymphatic system PDF Lymphologie in Forschung und Praxis 17 2 96 104 Orpana A Salven P February 2002 Angiogenic and lymphangiogenic molecules in hematological malignancies Leukemia amp Lymphoma 43 2 219 224 doi 10 1080 10428190290005964 PMID 11999550 S2CID 21908151 Orpana A Salven P February 2002 Angiogenic and lymphangiogenic molecules in hematological malignancies Leukemia amp Lymphoma 43 2 219 224 doi 10 1080 10428190290005964 PMID 11999550 S2CID 21908151 Joukov V Pajusola K Kaipainen A Chilov D Lahtinen I Kukk E et al January 1996 A novel vascular endothelial growth factor VEGF C is a ligand for the Flt4 VEGFR 3 and KDR VEGFR 2 receptor tyrosine kinases The EMBO Journal 15 2 290 298 doi 10 1002 j 1460 2075 1996 tb00359 x PMC 449944 PMID 8617204 Joukov V Pajusola K Kaipainen A Chilov D Lahtinen I Kukk E et al April 1996 A novel vascular endothelial growth factor VEGF C is a ligand for the Flt4 VEGFR 3 and KDR VEGFR 2 receptor tyrosine kinases The EMBO Journal 15 7 1751 doi 10 1002 j 1460 2075 1996 tb00521 x PMC 450088 PMID 8612600 Paavonen K Horelli Kuitunen N Chilov D Kukk E Pennanen S Kallioniemi OP et al March 1996 Novel human vascular endothelial growth factor genes VEGF B and VEGF C localize to chromosomes 11q13 and 4q34 respectively Circulation 93 6 1079 1082 doi 10 1161 01 cir 93 6 1079 PMID 8653826 Lee J Gray A Yuan J Luoh SM Avraham H Wood WI March 1996 Vascular endothelial growth factor related protein a ligand and specific activator of the tyrosine kinase receptor Flt4 Proceedings of the National Academy of Sciences of the United States of America 93 5 1988 1992 Bibcode 1996PNAS 93 1988L doi 10 1073 pnas 93 5 1988 PMC 39896 PMID 8700872 Joukov V Sorsa T Kumar V Jeltsch M Claesson Welsh L Cao Y et al July 1997 Proteolytic processing regulates receptor specificity and activity of VEGF C The EMBO Journal 16 13 3898 3911 doi 10 1093 emboj 16 13 3898 PMC 1170014 PMID 9233800 Fitz LJ Morris JC Towler P Long A Burgess P Greco R et al July 1997 Characterization of murine Flt4 ligand VEGF C Oncogene 15 5 613 618 doi 10 1038 sj onc 1201191 PMID 9247316 S2CID 6795440 Dunk C Ahmed A April 2001 Expression of VEGF C and activation of its receptors VEGFR 2 and VEGFR 3 in trophoblast Histology and Histopathology 16 2 359 375 doi 10 14670 HH 16 359 PMID 11332691 Dias S Choy M Alitalo K Rafii S March 2002 Vascular endothelial growth factor VEGF C signaling through FLT 4 VEGFR 3 mediates leukemic cell proliferation survival and resistance to chemotherapy Blood 99 6 2179 2184 doi 10 1182 blood V99 6 2179 PMID 11877295 S2CID 2838185 Ueda M Terai Y Yamashita Y Kumagai K Ueki K Yamaguchi H et al March 2002 Correlation between vascular endothelial growth factor C expression and invasion phenotype in cervical carcinomas International Journal of Cancer 98 3 335 343 doi 10 1002 ijc 10193 PMID 11920583 S2CID 10276013 Witte D Thomas A Ali N Carlson N Younes M 2002 Expression of the vascular endothelial growth factor receptor 3 VEGFR 3 and its ligand VEGF C in human colorectal adenocarcinoma Anticancer Research 22 3 1463 1466 PMID 12168824 Schoppmann SF Birner P Stockl J Kalt R Ullrich R Caucig C et al September 2002 Tumor associated macrophages express lymphatic endothelial growth factors and are related to peritumoral lymphangiogenesis The American Journal of Pathology 161 3 947 956 doi 10 1016 S0002 9440 10 64255 1 PMC 1867252 PMID 12213723 Shin HY Smith ML Toy KJ Williams PM Bizios R Gerritsen ME December 2002 VEGF C mediates cyclic pressure induced endothelial cell proliferation Physiological Genomics 11 3 245 251 doi 10 1152 physiolgenomics 00068 2002 PMID 12388793 S2CID 14183060 Yu DH Wen YM Sun JD Wei SL Xie HP Pang FH March 2002 Relationship among expression of vascular endothelial growth factor C VEGF C angiogenesis lymphangiogenesis and lymphatic metastasis in oral cancer AI Zheng Aizheng Chinese Journal of Cancer 21 3 319 22 PMID 12452004 Nakashima T Kondoh S Kitoh H Ozawa H Okita S Harada T et al January 2003 Vascular endothelial growth factor C expression in human gallbladder cancer and its relationship to lymph node metastasis International Journal of Molecular Medicine 11 1 33 39 doi 10 3892 ijmm 11 1 33 PMID 12469214 Tsai PW Shiah SG Lin MT Wu CW Kuo ML February 2003 Up regulation of vascular endothelial growth factor C in breast cancer cells by heregulin beta 1 A critical role of p38 nuclear factor kappa B signaling pathway The Journal of Biological Chemistry 278 8 5750 5759 doi 10 1074 jbc M204863200 PMID 12471041 S2CID 40780576 Masood R Kundra A Zhu S Xia G Scalia P Smith DL Gill PS May 2003 Malignant mesothelioma growth inhibition by agents that target the VEGF and VEGF C autocrine loops International Journal of Cancer 104 5 603 610 doi 10 1002 ijc 10996 PMID 12594815 S2CID 23085374 Ohno M Nakamura T Kunimoto Y Nishimura K Chung Kang C Kuroda Y 2004 Lymphagenesis correlates with expression of vascular endothelial growth factor C in colorectal cancer Oncology Reports 10 4 939 943 doi 10 3892 or 10 4 939 PMID 12792749 External links editOverview of all the structural information available in the PDB for UniProt P49767 Vascular endothelial growth factor C at the PDBe KB Retrieved from https en wikipedia org w index php title Vascular endothelial growth factor C amp oldid 1215922598, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.