fbpx
Wikipedia

Isotopes of vanadium

Naturally occurring vanadium (23V) is composed of one stable isotope 51V and one radioactive isotope 50V with a half-life of 2.71×1017 years. 24 artificial radioisotopes have been characterized (in the range of mass number between 40 and 65) with the most stable being 49V with a half-life of 330 days, and 48V with a half-life of 15.9735 days. All of the remaining radioactive isotopes have half-lives shorter than an hour, the majority of them below 10 seconds, the least stable being 42V with a half-life shorter than 55 nanoseconds, with all of the isotopes lighter than it, and none of the heavier, have unknown half-lives. In 4 isotopes, metastable excited states were found (including 2 metastable states for 60V), which adds up to 5 meta states.

Isotopes of vanadium (23V)
Main isotopes Decay
abun­dance half-life (t1/2) mode pro­duct
48V synth 16 d β+ 48Ti
49V synth 330 d ε 49Ti
50V 0.25% 2.71×1017 y β+ 50Ti
51V 99.8% stable
Standard atomic weight Ar°(V)

The primary decay mode before the most abundant stable isotope 51V is electron capture. The next most common mode is beta decay. The primary decay products before 51V are element 22 (titanium) isotopes and the primary products after are element 24 (chromium) isotopes.

List of isotopes edit

Nuclide
[n 1]
Z N Isotopic mass (Da)
[n 2][n 3]
Half-life
[n 4][n 5]
Decay
mode

[n 6]
Daughter
isotope

[n 7]
Spin and
parity
[n 8][n 5]
Natural abundance (mole fraction) Note
Excitation energy[n 5] Normal proportion Range of variation
40V 23 17 40.01109(54)# p 39Ti 2−#
41V 23 18 40.99978(22)# p 40Ti 7/2−#
42V 23 19 41.99123(21)# <55 ns p 41Ti 2−#
43V 23 20 42.98065(25)# 80# ms β+ 43Ti 7/2−#
44V 23 21 43.97411(13) 111(7) ms β+ (>99.9%) 44Ti (2+)
β+, α (<.1%) 40Ca
44mV 270(100)# keV 150(3) ms β+ 44Ti (6+)
45V 23 22 44.965776(18) 547(6) ms β+ 45Ti 7/2−
46V 23 23 45.9602005(11) 422.50(11) ms β+ 46Ti 0+
46mV 801.46(10) keV 1.02(7) ms IT 46V 3+
47V 23 24 46.9549089(9) 32.6(3) min β+ 47Ti 3/2−
48V 23 25 47.9522537(27) 15.9735(25) d β+ 48Ti 4+
49V 23 26 48.9485161(12) 329(3) d EC 49Ti 7/2−
50V[n 9] 23 27 49.9471585(11) 2.71(13)×1017 y β+ 50Ti 6+ 0.00250(4) 0.002487–0.002502
β (<3%[3]) 50Cr
51V 23 28 50.9439595(11) Stable 7/2− 0.99750(4) 0.997498–0.997513 See V-51 nuclear magnetic resonance
52V 23 29 51.9447755(11) 3.743(5) min β 52Cr 3+
53V 23 30 52.944338(3) 1.60(4) min β 53Cr 7/2−
54V 23 31 53.946440(16) 49.8(5) s β 54Cr 3+
54mV 108(3) keV 900(500) ns (5+)
55V 23 32 54.94723(11) 6.54(15) s β 55Cr (7/2−)#
56V 23 33 55.95053(22) 216(4) ms β (>99.9%) 56Cr (1+)
β, n 55Cr
57V 23 34 56.95256(25) 0.35(1) s β (>99.9%) 57Cr (3/2−)
β, n (<.1%) 56Cr
58V 23 35 57.95683(27) 191(8) ms β (>99.9%) 58Cr 3+#
β, n (<.1%) 57Cr
59V 23 36 58.96021(33) 75(7) ms β (>99.9%) 59Cr 7/2−#
β, n (<.1%) 58Cr
60V 23 37 59.96503(51) 122(18) ms β (>99.9%) 60Cr 3+#
β, n (<.1%) 59Cr
60m1V 0(150)# keV 40(15) ms 1+#
60m2V 101(1) keV >400 ns
61V 23 38 60.96848(43)# 47.0(12) ms β 61Cr 7/2−#
62V 23 39 61.97378(54)# 33.5(20) ms β 62Cr 3+#
63V 23 40 62.97755(64)# 17(3) ms β 63Cr (7/2−)#
64V 23 41 63.98347(75)# 10# ms [>300 ns]
65V 23 42 64.98792(86)# 10# ms 5/2−#
66V[4] 23 43 65.99324(54)# 10# ms
(>620 ns)
β?[n 10] 66Cr
β, n?[n 10] 65Cr
β, 2n?[n 10] 64Cr
67V[5] 23 44 66.99813(64)# 8# ms
(>620 ns)
β?[n 10] 67Cr 5/2−#
β, n?[n 10] 66Cr
β, 2n?[n 10] 65Cr
This table header & footer:
  1. ^ mV – Excited nuclear isomer.
  2. ^ ( ) – Uncertainty (1σ) is given in concise form in parentheses after the corresponding last digits.
  3. ^ # – Atomic mass marked #: value and uncertainty derived not from purely experimental data, but at least partly from trends from the Mass Surface (TMS).
  4. ^ Bold half-life – nearly stable, half-life longer than age of universe.
  5. ^ a b c # – Values marked # are not purely derived from experimental data, but at least partly from trends of neighboring nuclides (TNN).
  6. ^ Modes of decay:
  7. ^ Bold symbol as daughter – Daughter product is stable.
  8. ^ ( ) spin value – Indicates spin with weak assignment arguments.
  9. ^ Primordial radionuclide
  10. ^ a b c d e f Decay mode shown is energetically allowed, but has not been experimentally observed to occur in this nuclide.

References edit

  1. ^ "Standard Atomic Weights: Vanadium". CIAAW. 1977.
  2. ^ Prohaska, Thomas; Irrgeher, Johanna; Benefield, Jacqueline; Böhlke, John K.; Chesson, Lesley A.; Coplen, Tyler B.; Ding, Tiping; Dunn, Philip J. H.; Gröning, Manfred; Holden, Norman E.; Meijer, Harro A. J. (2022-05-04). "Standard atomic weights of the elements 2021 (IUPAC Technical Report)". Pure and Applied Chemistry. doi:10.1515/pac-2019-0603. ISSN 1365-3075.
  3. ^ Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae.
  4. ^ Tarasov, O. B.; et al. (April 2009). "Evidence for a Change in the Nuclear Mass Surface with the Discovery of the Most Neutron-Rich Nuclei with 17 ≤ Z ≤ 25". Physical Review Letters. 102 (14): 142501. arXiv:0903.1975. Bibcode:2009PhRvL.102n2501T. doi:10.1103/PhysRevLett.102.142501. PMID 19392430. S2CID 42329617. Retrieved 3 January 2023.
  5. ^ Tarasov, O. B.; et al. (May 2013). "Production cross sections from 82 Se fragmentation as indications of shell effects in neutron-rich isotopes close to the drip-line". Physical Review C. 87 (5): 054612. arXiv:1303.7164. Bibcode:2013PhRvC..87e4612T. doi:10.1103/PhysRevC.87.054612.
  • Isotope masses from:
    • Audi, Georges; Bersillon, Olivier; Blachot, Jean; Wapstra, Aaldert Hendrik (2003), "The NUBASE evaluation of nuclear and decay properties", Nuclear Physics A, 729: 3–128, Bibcode:2003NuPhA.729....3A, doi:10.1016/j.nuclphysa.2003.11.001
  • Isotopic compositions and standard atomic masses from:
    • de Laeter, John Robert; Böhlke, John Karl; De Bièvre, Paul; Hidaka, Hiroshi; Peiser, H. Steffen; Rosman, Kevin J. R.; Taylor, Philip D. P. (2003). "Atomic weights of the elements. Review 2000 (IUPAC Technical Report)". Pure and Applied Chemistry. 75 (6): 683–800. doi:10.1351/pac200375060683.
    • Wieser, Michael E. (2006). "Atomic weights of the elements 2005 (IUPAC Technical Report)". Pure and Applied Chemistry. 78 (11): 2051–2066. doi:10.1351/pac200678112051.
  • "News & Notices: Standard Atomic Weights Revised". International Union of Pure and Applied Chemistry. 19 October 2005.
  • Half-life, spin, and isomer data selected from the following sources.
  • History of discovery: A. Shore, A. Fritsch, M. Heim, A. Schuh, M. Thoennessen. Discovery of the Vanadium Isotopes. arXiv:0907.1994 (2009).

isotopes, vanadium, naturally, occurring, vanadium, composed, stable, isotope, radioactive, isotope, with, half, life, 1017, years, artificial, radioisotopes, have, been, characterized, range, mass, number, between, with, most, stable, being, with, half, life,. Naturally occurring vanadium 23V is composed of one stable isotope 51V and one radioactive isotope 50V with a half life of 2 71 1017 years 24 artificial radioisotopes have been characterized in the range of mass number between 40 and 65 with the most stable being 49V with a half life of 330 days and 48V with a half life of 15 9735 days All of the remaining radioactive isotopes have half lives shorter than an hour the majority of them below 10 seconds the least stable being 42V with a half life shorter than 55 nanoseconds with all of the isotopes lighter than it and none of the heavier have unknown half lives In 4 isotopes metastable excited states were found including 2 metastable states for 60V which adds up to 5 meta states Isotopes of vanadium 23V Main isotopes Decay abun dance half life t1 2 mode pro duct 48V synth 16 d b 48Ti 49V synth 330 d e 49Ti 50V 0 25 2 71 1017 y b 50Ti 51V 99 8 stableStandard atomic weight Ar V 50 9415 0 0001 1 50 942 0 001 abridged 2 viewtalkedit The primary decay mode before the most abundant stable isotope 51V is electron capture The next most common mode is beta decay The primary decay products before 51V are element 22 titanium isotopes and the primary products after are element 24 chromium isotopes List of isotopes editNuclide n 1 Z N Isotopic mass Da n 2 n 3 Half life n 4 n 5 Decaymode n 6 Daughterisotope n 7 Spin andparity n 8 n 5 Natural abundance mole fraction Note Excitation energy n 5 Normal proportion Range of variation 40V 23 17 40 01109 54 p 39Ti 2 41V 23 18 40 99978 22 p 40Ti 7 2 42V 23 19 41 99123 21 lt 55 ns p 41Ti 2 43V 23 20 42 98065 25 80 ms b 43Ti 7 2 44V 23 21 43 97411 13 111 7 ms b gt 99 9 44Ti 2 b a lt 1 40Ca 44mV 270 100 keV 150 3 ms b 44Ti 6 45V 23 22 44 965776 18 547 6 ms b 45Ti 7 2 46V 23 23 45 9602005 11 422 50 11 ms b 46Ti 0 46mV 801 46 10 keV 1 02 7 ms IT 46V 3 47V 23 24 46 9549089 9 32 6 3 min b 47Ti 3 2 48V 23 25 47 9522537 27 15 9735 25 d b 48Ti 4 49V 23 26 48 9485161 12 329 3 d EC 49Ti 7 2 50V n 9 23 27 49 9471585 11 2 71 13 1017 y b 50Ti 6 0 00250 4 0 002487 0 002502 b lt 3 3 50Cr 51V 23 28 50 9439595 11 Stable 7 2 0 99750 4 0 997498 0 997513 See V 51 nuclear magnetic resonance 52V 23 29 51 9447755 11 3 743 5 min b 52Cr 3 53V 23 30 52 944338 3 1 60 4 min b 53Cr 7 2 54V 23 31 53 946440 16 49 8 5 s b 54Cr 3 54mV 108 3 keV 900 500 ns 5 55V 23 32 54 94723 11 6 54 15 s b 55Cr 7 2 56V 23 33 55 95053 22 216 4 ms b gt 99 9 56Cr 1 b n 55Cr 57V 23 34 56 95256 25 0 35 1 s b gt 99 9 57Cr 3 2 b n lt 1 56Cr 58V 23 35 57 95683 27 191 8 ms b gt 99 9 58Cr 3 b n lt 1 57Cr 59V 23 36 58 96021 33 75 7 ms b gt 99 9 59Cr 7 2 b n lt 1 58Cr 60V 23 37 59 96503 51 122 18 ms b gt 99 9 60Cr 3 b n lt 1 59Cr 60m1V 0 150 keV 40 15 ms 1 60m2V 101 1 keV gt 400 ns 61V 23 38 60 96848 43 47 0 12 ms b 61Cr 7 2 62V 23 39 61 97378 54 33 5 20 ms b 62Cr 3 63V 23 40 62 97755 64 17 3 ms b 63Cr 7 2 64V 23 41 63 98347 75 10 ms gt 300 ns 65V 23 42 64 98792 86 10 ms 5 2 66V 4 23 43 65 99324 54 10 ms gt 620 ns b n 10 66Cr b n n 10 65Cr b 2n n 10 64Cr 67V 5 23 44 66 99813 64 8 ms gt 620 ns b n 10 67Cr 5 2 b n n 10 66Cr b 2n n 10 65Cr This table header amp footer view mV Excited nuclear isomer Uncertainty 1s is given in concise form in parentheses after the corresponding last digits Atomic mass marked value and uncertainty derived not from purely experimental data but at least partly from trends from the Mass Surface TMS Bold half life nearly stable half life longer than age of universe a b c Values marked are not purely derived from experimental data but at least partly from trends of neighboring nuclides TNN Modes of decay EC Electron capture IT Isomeric transition p Proton emission Bold symbol as daughter Daughter product is stable spin value Indicates spin with weak assignment arguments Primordial radionuclide a b c d e f Decay mode shown is energetically allowed but has not been experimentally observed to occur in this nuclide References edit Standard Atomic Weights Vanadium CIAAW 1977 Prohaska Thomas Irrgeher Johanna Benefield Jacqueline Bohlke John K Chesson Lesley A Coplen Tyler B Ding Tiping Dunn Philip J H Groning Manfred Holden Norman E Meijer Harro A J 2022 05 04 Standard atomic weights of the elements 2021 IUPAC Technical Report Pure and Applied Chemistry doi 10 1515 pac 2019 0603 ISSN 1365 3075 Kondev F G Wang M Huang W J Naimi S Audi G 2021 The NUBASE2020 evaluation of nuclear properties PDF Chinese Physics C 45 3 030001 doi 10 1088 1674 1137 abddae Tarasov O B et al April 2009 Evidence for a Change in the Nuclear Mass Surface with the Discovery of the Most Neutron Rich Nuclei with 17 Z 25 Physical Review Letters 102 14 142501 arXiv 0903 1975 Bibcode 2009PhRvL 102n2501T doi 10 1103 PhysRevLett 102 142501 PMID 19392430 S2CID 42329617 Retrieved 3 January 2023 Tarasov O B et al May 2013 Production cross sections from 82 Se fragmentation as indications of shell effects in neutron rich isotopes close to the drip line Physical Review C 87 5 054612 arXiv 1303 7164 Bibcode 2013PhRvC 87e4612T doi 10 1103 PhysRevC 87 054612 Isotope masses from Audi Georges Bersillon Olivier Blachot Jean Wapstra Aaldert Hendrik 2003 The NUBASE evaluation of nuclear and decay properties Nuclear Physics A 729 3 128 Bibcode 2003NuPhA 729 3A doi 10 1016 j nuclphysa 2003 11 001 Isotopic compositions and standard atomic masses from de Laeter John Robert Bohlke John Karl De Bievre Paul Hidaka Hiroshi Peiser H Steffen Rosman Kevin J R Taylor Philip D P 2003 Atomic weights of the elements Review 2000 IUPAC Technical Report Pure and Applied Chemistry 75 6 683 800 doi 10 1351 pac200375060683 Wieser Michael E 2006 Atomic weights of the elements 2005 IUPAC Technical Report Pure and Applied Chemistry 78 11 2051 2066 doi 10 1351 pac200678112051 News amp Notices Standard Atomic Weights Revised International Union of Pure and Applied Chemistry 19 October 2005 Half life spin and isomer data selected from the following sources Audi Georges Bersillon Olivier Blachot Jean Wapstra Aaldert Hendrik 2003 The NUBASE evaluation of nuclear and decay properties Nuclear Physics A 729 3 128 Bibcode 2003NuPhA 729 3A doi 10 1016 j nuclphysa 2003 11 001 National Nuclear Data Center NuDat 2 x database Brookhaven National Laboratory Holden Norman E 2004 11 Table of the Isotopes In Lide David R ed CRC Handbook of Chemistry and Physics 85th ed Boca Raton Florida CRC Press ISBN 978 0 8493 0485 9 History of discovery A Shore A Fritsch M Heim A Schuh M Thoennessen Discovery of the Vanadium Isotopes arXiv 0907 1994 2009 Retrieved from https en wikipedia org w index php title Isotopes of vanadium amp oldid 1221065591 Vanadium 48, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.