fbpx
Wikipedia

Isotopes of titanium

Naturally occurring titanium (22Ti) is composed of five stable isotopes; 46Ti, 47Ti, 48Ti, 49Ti and 50Ti with 48Ti being the most abundant (73.8% natural abundance). Twenty-one radioisotopes have been characterized, with the most stable being 44Ti with a half-life of 60 years, 45Ti with a half-life of 184.8 minutes, 51Ti with a half-life of 5.76 minutes, and 52Ti with a half-life of 1.7 minutes. All of the remaining radioactive isotopes have half-lives that are less than 33 seconds, and the majority of these have half-lives that are less than half a second.[4]

Isotopes of titanium (22Ti)
Main isotopes[1] Decay
abun­dance half-life (t1/2) mode pro­duct
44Ti synth 59.1 y ε 44Sc
46Ti 8.25% stable
47Ti 7.44% stable
48Ti 73.7% stable
49Ti 5.41% stable
50Ti 5.18% stable
Standard atomic weight Ar°(Ti)

The isotopes of titanium range in atomic mass from 39.00 u (39Ti) to 64.00 u (64Ti). The primary decay mode for isotopes lighter than the stable isotopes (lighter than 46Ti) is β+ and the primary mode for the heavier ones (heavier than 50Ti) is β; their respective decay products are scandium isotopes and the primary products after are vanadium isotopes.[4]

List of isotopes edit

Nuclide
[n 1]
Z N Isotopic mass (Da)
[n 2][n 3]
Half-life
[n 4]
Decay
mode

[n 5]
Daughter
isotope

[n 6]
Spin and
parity
[n 7][n 4]
Natural abundance (mole fraction)
Excitation energy Normal proportion Range of variation
39Ti 22 17 39.00161(22)# 31(4) ms
[31(+6-4) ms]
β+, p (85%) 38Ca 3/2+#
β+ (15%) 39Sc
β+, 2p (<.1%) 37K
40Ti 22 18 39.99050(17) 53.3(15) ms β+ (56.99%) 40Sc 0+
β+, p (43.01%) 39Ca
41Ti 22 19 40.98315(11)# 80.4(9) ms β+, p (>99.9%) 40Ca 3/2+
β+ (<.1%) 41Sc
42Ti 22 20 41.973031(6) 199(6) ms β+ 42Sc 0+
43Ti 22 21 42.968522(7) 509(5) ms β+ 43Sc 7/2−
43m1Ti 313.0(10) keV 12.6(6) μs (3/2+)
43m2Ti 3066.4(10) keV 560(6) ns (19/2−)
44Ti 22 22 43.9596901(8) 60.0(11) y EC 44Sc 0+
45Ti 22 23 44.9581256(11) 184.8(5) min β+ 45Sc 7/2−
46Ti 22 24 45.9526316(9) Stable 0+ 0.0825(3)
47Ti 22 25 46.9517631(9) Stable 5/2− 0.0744(2)
48Ti 22 26 47.9479463(9) Stable 0+ 0.7372(3)
49Ti 22 27 48.9478700(9) Stable 7/2− 0.0541(2)
50Ti 22 28 49.9447912(9) Stable 0+ 0.0518(2)
51Ti 22 29 50.946615(1) 5.76(1) min β 51V 3/2−
52Ti 22 30 51.946897(8) 1.7(1) min β 52V 0+
53Ti 22 31 52.94973(11) 32.7(9) s β 53V (3/2)−
54Ti 22 32 53.95105(13) 1.5(4) s β 54V 0+
55Ti 22 33 54.95527(16) 490(90) ms β 55V 3/2−#
56Ti 22 34 55.95820(21) 164(24) ms β (>99.9%) 56V 0+
β, n (<.1%) 55V
57Ti 22 35 56.96399(49) 60(16) ms β (>99.9%) 57V 5/2−#
β, n (<.1%) 56V
58Ti 22 36 57.96697(75)# 54(7) ms β 58V 0+
59Ti 22 37 58.97293(75)# 30(3) ms β 59V (5/2−)#
60Ti 22 38 59.97676(86)# 22(2) ms β 60V 0+
61Ti 22 39 60.98320(97)# 10# ms
[>300 ns]
β 61V 1/2−#
β, n 60V
62Ti 22 40 61.98749(97)# 10# ms 0+
63Ti 22 41 62.99442(107)# 3# ms 1/2−#
64Ti[5] 22 42 63.998410(640)# 5# ms
[>620 ns]
0+
This table header & footer:
  1. ^ mTi – Excited nuclear isomer.
  2. ^ ( ) – Uncertainty (1σ) is given in concise form in parentheses after the corresponding last digits.
  3. ^ # – Atomic mass marked #: value and uncertainty derived not from purely experimental data, but at least partly from trends from the Mass Surface (TMS).
  4. ^ a b # – Values marked # are not purely derived from experimental data, but at least partly from trends of neighboring nuclides (TNN).
  5. ^ Modes of decay:
  6. ^ Bold symbol as daughter – Daughter product is stable.
  7. ^ ( ) spin value – Indicates spin with weak assignment arguments.

Titanium-44 edit

Titanium-44 (44Ti) is a radioactive isotope of titanium that undergoes electron capture to an excited state of scandium-44 with a half-life of 60 years, before the ground state of 44Sc and ultimately 44Ca are populated.[6] Because titanium-44 can only undergo electron capture, its half-life increases with ionization and it becomes stable in its fully ionized state (that is, having a charge of +22).[7]

Titanium-44 is produced in relative abundance in the alpha process in stellar nucleosynthesis and the early stages of supernova explosions.[8] It is produced when calcium-40 fuses with an alpha particle (helium-4 nucleus) in a star's high-temperature environment; the resulting 44Ti nucleus can then fuse with another alpha particle to form chromium-48. The age of supernovae may be determined through measurements of gamma-ray emissions from titanium-44 and its abundance.[7] It was observed in the Cassiopeia A supernova remnant and SN 1987A at a relatively high concentration, a consequence of delayed decay resulting from ionizing conditions.[6][7]

References edit

  1. ^ Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae.
  2. ^ "Standard Atomic Weights: Titanium". CIAAW. 1993.
  3. ^ Prohaska, Thomas; Irrgeher, Johanna; Benefield, Jacqueline; Böhlke, John K.; Chesson, Lesley A.; Coplen, Tyler B.; Ding, Tiping; Dunn, Philip J. H.; Gröning, Manfred; Holden, Norman E.; Meijer, Harro A. J. (2022-05-04). "Standard atomic weights of the elements 2021 (IUPAC Technical Report)". Pure and Applied Chemistry. doi:10.1515/pac-2019-0603. ISSN 1365-3075.
  4. ^ a b Barbalace, Kenneth L. (2006). "Periodic Table of Elements: Ti - Titanium". Retrieved 2006-12-26.
  5. ^ Tarasov, O. B. (20 May 2013). "Production cross sections from 82 Se fragmentation as indications of shell effects in neutron-rich isotopes close to the drip-line". Physical Review C. 87 (5): 054612. arXiv:1303.7164. Bibcode:2013PhRvC..87e4612T. doi:10.1103/PhysRevC.87.054612.
  6. ^ a b Motizuki, Y.; Kumagai, S. (2004). "Radioactivity of the key isotope 44Ti in SN 1987A". AIP Conference Proceedings. 704 (1): 369–374. arXiv:astro-ph/0312620. Bibcode:2004AIPC..704..369M. CiteSeerX 10.1.1.315.8412. doi:10.1063/1.1737130. S2CID 1700673.
  7. ^ a b c Mochizuki, Y.; Takahashi, K.; Janka, H.-Th.; Hillebrandt, W.; Diehl, R. (2008). "Titanium-44: Its effective decay rate in young supernova remnants, and its abundance in Cas A". Astronomy and Astrophysics. 346 (3): 831–842. arXiv:astro-ph/9904378.
  8. ^ Fryer, C.; Dimonte, G.; Ellinger, E.; Hungerford, A.; Kares, B.; Magkotsios, G.; Rockefeller, G.; Timmes, F.; Woodward, P.; Young, P. (2011). Nucleosynthesis in the Universe, Understanding 44Ti (PDF). ADTSC Science Highlights (Report). Los Alamos National Laboratory. pp. 42–43.
  • Isotope masses from:
    • Audi, Georges; Bersillon, Olivier; Blachot, Jean; Wapstra, Aaldert Hendrik (2003), "The NUBASE evaluation of nuclear and decay properties", Nuclear Physics A, 729: 3–128, Bibcode:2003NuPhA.729....3A, doi:10.1016/j.nuclphysa.2003.11.001
  • Isotopic compositions and standard atomic masses from:
    • de Laeter, John Robert; Böhlke, John Karl; De Bièvre, Paul; Hidaka, Hiroshi; Peiser, H. Steffen; Rosman, Kevin J. R.; Taylor, Philip D. P. (2003). "Atomic weights of the elements. Review 2000 (IUPAC Technical Report)". Pure and Applied Chemistry. 75 (6): 683–800. doi:10.1351/pac200375060683.
    • Wieser, Michael E. (2006). "Atomic weights of the elements 2005 (IUPAC Technical Report)". Pure and Applied Chemistry. 78 (11): 2051–2066. doi:10.1351/pac200678112051.
  • "News & Notices: Standard Atomic Weights Revised". International Union of Pure and Applied Chemistry. 19 October 2005.
  • Half-life, spin, and isomer data selected from the following sources.

isotopes, titanium, naturally, occurring, titanium, 22ti, composed, five, stable, isotopes, 46ti, 47ti, 48ti, 49ti, 50ti, with, 48ti, being, most, abundant, natural, abundance, twenty, radioisotopes, have, been, characterized, with, most, stable, being, 44ti, . Naturally occurring titanium 22Ti is composed of five stable isotopes 46Ti 47Ti 48Ti 49Ti and 50Ti with 48Ti being the most abundant 73 8 natural abundance Twenty one radioisotopes have been characterized with the most stable being 44Ti with a half life of 60 years 45Ti with a half life of 184 8 minutes 51Ti with a half life of 5 76 minutes and 52Ti with a half life of 1 7 minutes All of the remaining radioactive isotopes have half lives that are less than 33 seconds and the majority of these have half lives that are less than half a second 4 Isotopes of titanium 22Ti Main isotopes 1 Decayabun dance half life t1 2 mode pro duct44Ti synth 59 1 y e 44Sc46Ti 8 25 stable47Ti 7 44 stable48Ti 73 7 stable49Ti 5 41 stable50Ti 5 18 stableStandard atomic weight Ar Ti 47 867 0 001 2 47 867 0 001 abridged 3 viewtalkeditThe isotopes of titanium range in atomic mass from 39 00 u 39Ti to 64 00 u 64Ti The primary decay mode for isotopes lighter than the stable isotopes lighter than 46Ti is b and the primary mode for the heavier ones heavier than 50Ti is b their respective decay products are scandium isotopes and the primary products after are vanadium isotopes 4 List of isotopes editNuclide n 1 Z N Isotopic mass Da n 2 n 3 Half life n 4 Decaymode n 5 Daughterisotope n 6 Spin andparity n 7 n 4 Natural abundance mole fraction Excitation energy Normal proportion Range of variation39Ti 22 17 39 00161 22 31 4 ms 31 6 4 ms b p 85 38Ca 3 2 b 15 39Scb 2p lt 1 37K40Ti 22 18 39 99050 17 53 3 15 ms b 56 99 40Sc 0 b p 43 01 39Ca41Ti 22 19 40 98315 11 80 4 9 ms b p gt 99 9 40Ca 3 2 b lt 1 41Sc42Ti 22 20 41 973031 6 199 6 ms b 42Sc 0 43Ti 22 21 42 968522 7 509 5 ms b 43Sc 7 2 43m1Ti 313 0 10 keV 12 6 6 ms 3 2 43m2Ti 3066 4 10 keV 560 6 ns 19 2 44Ti 22 22 43 9596901 8 60 0 11 y EC 44Sc 0 45Ti 22 23 44 9581256 11 184 8 5 min b 45Sc 7 2 46Ti 22 24 45 9526316 9 Stable 0 0 0825 3 47Ti 22 25 46 9517631 9 Stable 5 2 0 0744 2 48Ti 22 26 47 9479463 9 Stable 0 0 7372 3 49Ti 22 27 48 9478700 9 Stable 7 2 0 0541 2 50Ti 22 28 49 9447912 9 Stable 0 0 0518 2 51Ti 22 29 50 946615 1 5 76 1 min b 51V 3 2 52Ti 22 30 51 946897 8 1 7 1 min b 52V 0 53Ti 22 31 52 94973 11 32 7 9 s b 53V 3 2 54Ti 22 32 53 95105 13 1 5 4 s b 54V 0 55Ti 22 33 54 95527 16 490 90 ms b 55V 3 2 56Ti 22 34 55 95820 21 164 24 ms b gt 99 9 56V 0 b n lt 1 55V57Ti 22 35 56 96399 49 60 16 ms b gt 99 9 57V 5 2 b n lt 1 56V58Ti 22 36 57 96697 75 54 7 ms b 58V 0 59Ti 22 37 58 97293 75 30 3 ms b 59V 5 2 60Ti 22 38 59 97676 86 22 2 ms b 60V 0 61Ti 22 39 60 98320 97 10 ms gt 300 ns b 61V 1 2 b n 60V62Ti 22 40 61 98749 97 10 ms 0 63Ti 22 41 62 99442 107 3 ms 1 2 64Ti 5 22 42 63 998410 640 5 ms gt 620 ns 0 This table header amp footer view mTi Excited nuclear isomer Uncertainty 1s is given in concise form in parentheses after the corresponding last digits Atomic mass marked value and uncertainty derived not from purely experimental data but at least partly from trends from the Mass Surface TMS a b Values marked are not purely derived from experimental data but at least partly from trends of neighboring nuclides TNN Modes of decay EC Electron capturen Neutron emissionp Proton emission Bold symbol as daughter Daughter product is stable spin value Indicates spin with weak assignment arguments Titanium 44 editTitanium 44 44Ti is a radioactive isotope of titanium that undergoes electron capture to an excited state of scandium 44 with a half life of 60 years before the ground state of 44Sc and ultimately 44Ca are populated 6 Because titanium 44 can only undergo electron capture its half life increases with ionization and it becomes stable in its fully ionized state that is having a charge of 22 7 Titanium 44 is produced in relative abundance in the alpha process in stellar nucleosynthesis and the early stages of supernova explosions 8 It is produced when calcium 40 fuses with an alpha particle helium 4 nucleus in a star s high temperature environment the resulting 44Ti nucleus can then fuse with another alpha particle to form chromium 48 The age of supernovae may be determined through measurements of gamma ray emissions from titanium 44 and its abundance 7 It was observed in the Cassiopeia A supernova remnant and SN 1987A at a relatively high concentration a consequence of delayed decay resulting from ionizing conditions 6 7 References edit Kondev F G Wang M Huang W J Naimi S Audi G 2021 The NUBASE2020 evaluation of nuclear properties PDF Chinese Physics C 45 3 030001 doi 10 1088 1674 1137 abddae Standard Atomic Weights Titanium CIAAW 1993 Prohaska Thomas Irrgeher Johanna Benefield Jacqueline Bohlke John K Chesson Lesley A Coplen Tyler B Ding Tiping Dunn Philip J H Groning Manfred Holden Norman E Meijer Harro A J 2022 05 04 Standard atomic weights of the elements 2021 IUPAC Technical Report Pure and Applied Chemistry doi 10 1515 pac 2019 0603 ISSN 1365 3075 a b Barbalace Kenneth L 2006 Periodic Table of Elements Ti Titanium Retrieved 2006 12 26 Tarasov O B 20 May 2013 Production cross sections from 82 Se fragmentation as indications of shell effects in neutron rich isotopes close to the drip line Physical Review C 87 5 054612 arXiv 1303 7164 Bibcode 2013PhRvC 87e4612T doi 10 1103 PhysRevC 87 054612 a b Motizuki Y Kumagai S 2004 Radioactivity of the key isotope 44Ti in SN 1987A AIP Conference Proceedings 704 1 369 374 arXiv astro ph 0312620 Bibcode 2004AIPC 704 369M CiteSeerX 10 1 1 315 8412 doi 10 1063 1 1737130 S2CID 1700673 a b c Mochizuki Y Takahashi K Janka H Th Hillebrandt W Diehl R 2008 Titanium 44 Its effective decay rate in young supernova remnants and its abundance in Cas A Astronomy and Astrophysics 346 3 831 842 arXiv astro ph 9904378 Fryer C Dimonte G Ellinger E Hungerford A Kares B Magkotsios G Rockefeller G Timmes F Woodward P Young P 2011 Nucleosynthesis in the Universe Understanding 44Ti PDF ADTSC Science Highlights Report Los Alamos National Laboratory pp 42 43 Isotope masses from Audi Georges Bersillon Olivier Blachot Jean Wapstra Aaldert Hendrik 2003 The NUBASE evaluation of nuclear and decay properties Nuclear Physics A 729 3 128 Bibcode 2003NuPhA 729 3A doi 10 1016 j nuclphysa 2003 11 001 Isotopic compositions and standard atomic masses from de Laeter John Robert Bohlke John Karl De Bievre Paul Hidaka Hiroshi Peiser H Steffen Rosman Kevin J R Taylor Philip D P 2003 Atomic weights of the elements Review 2000 IUPAC Technical Report Pure and Applied Chemistry 75 6 683 800 doi 10 1351 pac200375060683 Wieser Michael E 2006 Atomic weights of the elements 2005 IUPAC Technical Report Pure and Applied Chemistry 78 11 2051 2066 doi 10 1351 pac200678112051 News amp Notices Standard Atomic Weights Revised International Union of Pure and Applied Chemistry 19 October 2005 Half life spin and isomer data selected from the following sources Audi Georges Bersillon Olivier Blachot Jean Wapstra Aaldert Hendrik 2003 The NUBASE evaluation of nuclear and decay properties Nuclear Physics A 729 3 128 Bibcode 2003NuPhA 729 3A doi 10 1016 j nuclphysa 2003 11 001 National Nuclear Data Center NuDat 2 x database Brookhaven National Laboratory Holden Norman E 2004 11 Table of the Isotopes In Lide David R ed CRC Handbook of Chemistry and Physics 85th ed Boca Raton Florida CRC Press ISBN 978 0 8493 0485 9 Retrieved from https en wikipedia org w index php title Isotopes of titanium amp oldid 1190024191 Titanium 50, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.