fbpx
Wikipedia

Urban forest

An urban forest is a forest, or a collection of trees, that grow within a city, town or a suburb. In a wider sense, it may include any kind of woody plant vegetation growing in and around human settlements. As opposed to a forest park, whose ecosystems are also inherited from wilderness leftovers, urban forests often lack amenities like public bathrooms, paved paths, or sometimes clear borders which are distinct features of parks. Care and management of urban forests is called urban forestry. Urban forests can be privately and publicly owned. Some municipal forests may be located outside of the town or city to which they belong.

Urban forests play an important role in ecology of human habitats in many ways. Aside from the beautification of the urban environment, they offer many benefits like impacting climate and the economy while providing shelter to wildlife and recreational area for city dwellers.[1]

Urban forests around the world Edit

 
Tijuca Forest in Rio de Janeiro, Brazil

In many countries there is a growing understanding of the importance of the natural ecology in urban forests. There are numerous projects underway aimed at restoration and preservation of ecosystems, ranging from simple elimination of leaf-raking and elimination of invasive plants to full-blown reintroduction of original species and riparian ecosystems.[2][3]

Some sources claim that the largest man-made urban forest in the world is located in Johannesburg in South Africa.[4][5][6] Others have disputed this claim due to satellite pictures revealing how developed the city is with roads and buildings. Johannesburg, however, is still a very densely wooded city with reportedly 6.0 million trees planted throughout streets and private lots.[7]

 
Cherry Blossoms lining the Tidal Basin in Washington, D.C.

Rio de Janeiro is also home to two of the vastest urban forests in the world, one of which is considered by some sources to be the largest one.[8][9][10] Tijuca Forest is the most famous. It began as a restoration policy in 1844 to conserve the natural remnants of forest and replant in areas previously cleared for sugar and coffee.[11] Despite the worldwide recognition of Tijuca Forest, another forest in the same city encompasses roughly three times the size of its more prominent neighbor: Pedra Branca State Park occupies 12,500 hectares (30,888 acres) of city land, against Tijuca's 3,953 hectares (9,768 acres).[12][13] The larger metropolitan area encircles the forests which moderate the humid climate and provide sources of recreation for urban dwellers. Along with seven other smaller full protection conservation units in the city, they form an extensive natural area that contains the Transcarioca Trail, a 180-km footpath.[14]

Sanjay Gandhi National Park in Mumbai, Maharashtra, India is also an example of an urban forest. It covers roughly around 20% area of the city. The forest is filled with many animals freely roaming around. It also has an important cultural site of ancient history situated in it known as the Kanheri caves. Nebraska National Forest is the largest man-made forest in the United States located in the state of Nebraska. It lies in several counties within the state and is a popular destination for campers year-round.[15]

Several cities within the United States have also taken initiative investing in their urban forests to improve the well-being and economies of their communities.[16] Some notable cities among them are Austin, Atlanta, New York, Seattle, and Washington, D.C. New York, for example, has taken initiative to combat climate change by planting millions of trees around the city.[17] In Austin, private companies are funding tree-planting campaigns for environmental and energy-saving purposes.[18]

Environmental impact Edit

Urban forests play an important role in benefitting the environmental conditions of their respective cities. They moderate local climate, slowing wind and stormwater, and filter air and sunlight. They are critical in cooling the urban heat island effect, thus potentially reducing the number of unhealthful ozone days that plague major cities in peak summer months.[citation needed]

Air pollution reduction Edit

As cities struggle to comply with air quality standards, trees can help to clean the air. The most serious pollutants in the urban atmosphere are ozone, nitrogen oxides (NOx), sulfuric oxides (SOx) and particulate pollution. Ground-level ozone, or smog, is created by chemical reactions between NOx and volatile organic compounds (VOCs) in the presence of sunlight. High temperatures increase the rate of this reaction. Vehicle emissions (especially diesel), and emissions from industrial facilities are the major sources of NOx. Vehicle emissions, industrial emissions, gasoline vapors, chemical solvents, trees and other plants are the major sources of VOCs. Particulate pollution, or particulate matter (PM10 and PM25), is made up of microscopic solids or liquid droplets that can be inhaled and retained in lung tissue causing serious health problems. Most particulate pollution begins as smoke or diesel soot and can cause serious health risk to people with heart and lung diseases and irritation to healthy citizens. Trees are an important, cost-effective solution to reducing pollution and improving air quality.[citation needed]

Trees reduce temperatures and smog

With an extensive and healthy urban forest air quality can be drastically improved. Trees help to lower air temperatures and the urban heat island effect in urban areas. This reduction of temperature not only lowers energy use, it also improves air quality, as the formation of ozone is dependent on temperature. Trees reduce temperature not only by directly shading: when there is a large number of trees it create a difference in temperatures between the area when they are located and the neighbor area. This creates a difference in atmospheric pressure between the two areas, which creates wind. This phenomenon is called urban breeze cycle if the forest is near the city and park breeze cycle if the forest is in the city. That wind helps to lower temperature in the city.[19]

  • As temperatures climb, the formation of ozone increases.
  • Healthy urban forests decrease temperatures, and reduce the formation of ozone.
  • Large shade trees can reduce local ambient temperatures by 3 to 5 °C
  • Maximum mid-day temperature reductions due to trees range from 0.04 °C to 0.2 °C per 1% canopy cover increase.
  • In Sacramento County, California, it was estimated that doubling the canopy cover to five million trees would reduce summer temperatures by 3 degrees[vague]. This reduction in temperature would reduce peak ozone levels by as much as 7% and smoggy days by 50%.
Lower temperatures reduce emissions in parking lots[20]

Temperature reduction from shade trees in parking lots lowers the amount of evaporative emissions from parked cars. Unshaded parking lots can be viewed as miniature heat islands, where temperatures can be even higher than surrounding areas. Tree canopies will reduce air temperatures significantly. Although the bulk of hydrocarbon emissions come from tailpipe exhaust, 16% of hydrocarbon emissions are from evaporative emissions that occur when the fuel delivery systems of parked vehicles are heated. These evaporative emissions and the exhaust emissions of the first few minutes of engine operation are sensitive to local microclimate. If cars are shaded in parking lots, evaporative emissions from fuel and volatilized plastics will be greatly reduced.

  • Cars parked in parking lots with 50% canopy cover emit 8% less through evaporative emissions than cars parked in parking lots with only 8% canopy cover.
  • Due to the positive effects trees have on reducing temperatures and evaporative emissions in parking lots, cities like Davis, California, have established parking lot ordinances that mandate 50% canopy cover over paved areas.
  • "Cold Start" emissions

The volatile components of asphalt pavement evaporate more slowly in shaded parking lots and streets. The shade not only reduces emissions, but reduces shrinking and cracking so that maintenance intervals can be lengthened. Less maintenance means less hot asphalt (fumes) and less heavy equipment (exhaust). The same principle applies to asphalt-based roofing.

Active pollutant removal

Trees also reduce pollution by actively removing it from the atmosphere. Leaf stomata, the pores on the leaf surface, take in polluting gases which are then absorbed by water inside the leaf. Some species of trees are more susceptible to the uptake of pollution, which can negatively affect plant growth. Ideally, trees should be selected that take in higher quantities of polluting gases and are resistant to the negative effects they can cause.

A study across the Chicago region determined that trees removed approximately 17 tonnes of carbon monoxide (CO), 93 tonnes of sulfur dioxide (SO2), 98 tonnes of nitrogen dioxide (NO2), and 210 tonnes of ozone (O3) in 1991.

Carbon sequestration

Urban forest managers are sometimes interested in the amount of carbon removed from the air and stored in their forest as wood in relation to the amount of carbon dioxide released into the atmosphere while running tree maintenance equipment powered by fossil fuels.

Interception of particulate matter

In addition to the uptake of harmful gases, trees act as filters intercepting airborne particles and reducing the amount of harmful particulate matter. The particles are captured by the surface area of the tree and its foliage. These particles temporarily rest on the surface of the tree, as they can be washed off by rainwater, blown off by high winds, or fall to the ground with a dropped leaf. Although trees are only a temporary host to particulate matter, if they did not exist, the temporarily housed particulate matter would remain airborne and harmful to humans. Increased tree cover will increase the amount of particulate matter intercepted from the air.

  • Large evergreen trees with dense foliage collect the most particulate matter.
  • The Chicago study determined that trees removed approximately 234 tonnes of particulate matter less than 10 micrometres (PM10) in 1991.
  • Large healthy trees greater than 75 cm in trunk diameter remove approximately 70 times more air pollution annually (1.4 kg/yr) than small healthy trees less than 10 cm in diameter (0.02 kg/yr).

Rainwater runoff reduction Edit

 
Virginia opossum being sheltered by an old tree

Urban forests and trees help purify water sources by slowing down rain as it falls to the earth and help it soak into the soil, thereby naturally filtering out pollutants that can potentially enter water supply sources. They reduce storm water runoff and mitigate flood damage, protecting the surrounding rivers and lakes.[21] Trees also help alleviate the load on "grey" infrastructure (such as sewers and drains) via evapotranspiration. Trees are ideally suited as their canopies can intercept water (and provide dense vegetation), whilst their roots can pump substantial amounts of water back into the atmosphere as water vapor, all with a relatively small footprint.[22]

Urban wildlife Edit

Trees in urban forests provide food and shelter for wildlife in cities. Birds and small mammals use trees as nesting sites, and reptiles use the shade they provide to keep cool in the hot summer months.[23] Furthermore, trees provide shade necessary for shrubbery. Not only do urban forests protect land animals and plants, they also sustain fish and water animals that need shade and lower temperatures to survive.[21]

Economic impacts Edit

The economic benefits of trees and various other plants have been understood for a long time. Recently, more of these benefits are becoming quantified. Quantification of the economic benefits of trees helps justify public and private expenditures to maintain them. One of the most obvious examples of economic utility is the example of the deciduous tree planted on the south and west of a building (in the Northern Hemisphere), or north and east (in the Southern Hemisphere). The shade shelters and cools the building during the summer, but allows the sun to warm it in the winter after the leaves fall. The physical effects of trees—the shade (solar regulation), humidity control, wind control, erosion control, evaporative cooling, sound and visual screening, traffic control, pollution absorption and precipitation—all have economic benefits.[citation needed]

Energy and CO2 consumption Edit

Urban forests contribute to the reduction of energy usage and CO2 emissions primarily through the indirect effects of an efficient forestry implementation.[24][25] The shade provided by trees reduces the need for heating and cooling throughout the year.[26] As a result, energy conservation is achieved which leads to a reduction of CO2 emissions by power plants.[25] Computer models indicate that annual energy consumption can be reduced by 30 billion kWh using 100 million trees in U.S. urban areas. This energy consumption decrease equates to monetary savings of $2 billion. Additionally, the reduction of energy demand would reduce power plant CO2 emissions by 9 million tons per year.[24]

Water filtration Edit

The stormwater retention provided by urban forests can provide monetary savings even in arid regions where water is expensive or watering conservation is enforced.[24] One example of this can be seen in a study carried out over 40 years in Tucson, AZ, which analyzed the savings of stormwater management costs. Over this period, it was calculated that $600,000 in stormwater treatment costs were saved.[24] It was also observed that the net water consumption was reduced when comparing the water required for irrigation against power plant water consumption due to the effects of urban forests on energy usage.[24]

In another instance, New York City leaders in the late 1990s chose to pursue a natural landscape management instead of an expensive water treatment system to clean the Catskill/Delaware watershed. New Yorkers today enjoy some of the healthiest drinking water in the world.[21]

Tourism and local business expansion Edit

The USDA Guide[27] notes on page 17 that "Businesses flourish, people linger and shop longer, apartments and office space rent quicker, tenants stay longer, property values increase, new business and industry is attracted" by trees.

Increases in property values Edit

Urban forests have been linked to an increase in property value surrounding residents. An empirical study from Finland showed a 4.9% increase in property valuation when located just one kilometer closer to a forest.[28] Another source claims this increase can range as high as 20%.[29] The reduction of air, light, and noise pollution provided by forests is cause for the notable pricing differentials.[citation needed]

Sociological impacts Edit

 
The Backbone Trail in the Santa Monica Mountains, California

Community health impact Edit

Urban forests offer many benefits to their surrounding communities. Removing pollutants and greenhouse gases from the air is one key reason why cities are adopting the practice. Removing pollutants from the air, urban forests can lower risks of asthma and lung cancer.[30][31] Communities that rely on well-water may also see a positive change in water purity due to filtration.[32][33] The amenities provided by the city of each urban forest varies. Some amenities include trails and pathways for walking or running, picnic tables, and bathrooms. These healthy spaces provide for the community a place to gather and live a more active lifestyle.

Mental health impact Edit

Living near urban forests have shown positive impacts on mental health. As an experimental mental health intervention in the city of Philadelphia, trash was removed from vacant lots, some of them being selectively "greened" by plantings trees, grass, and installing small fences. Residents near the "greened" lots who had incomes below the poverty line reported a 68% decrease in feelings of depression, while residents with incomes above the poverty line reported a decrease of 41%.[34] The Biophilia hypothesis argues that people are instinctively drawn to nature, while Attention Restoration Theory goes on to demonstrate tangible improvements in medical, academic and other outcomes, from access to nature. Proper planning and community involvement are important for the positive results to be realized.[35][36]

See also Edit

References Edit

Notes Edit

  1. ^ Jiri Lev (2017). "The power of streetscape and how to protect it". Newcastle Herald. Newcastle NSW Australia. from the original on 2017-09-03. Retrieved 2017-09-03.
  2. ^ Nowak, David J.; Randler, Paula B.; Greenfield, Eric J.; Comas, Sara J.; Carr, Mary A.; Alig, Ralph J. (2010). "Sustaining America's urban trees and forests: a Forests on the Edge report". Gen. Tech. Rep. NRS-62. Newtown Square, PA: U.S. Department of Agriculture, Forest Service, Northern Research Station. 27 P. 62. doi:10.2737/NRS-GTR-62.
  3. ^ Elmqvist, T; Setälä, H; Handel, SN; van der Ploeg, S; Aronson, J; Blignaut, JN; Gómez-Baggethun, E; Nowak, DJ; Kronenberg, J; de Groot, R (2015-06-01). "Benefits of restoring ecosystem services in urban areas". Current Opinion in Environmental Sustainability. Open Issue. 14: 101–108. doi:10.1016/j.cosust.2015.05.001. ISSN 1877-3435.
  4. ^ "Green tourism in Gauteng – Gauteng Tourism Authority: Visit The Province Built On Gold". from the original on 2013-05-16. Retrieved 2013-05-19.
  5. ^ . Archived from the original on 2015-04-30. Retrieved 2013-05-19.
  6. ^ "Johannesburg expands its urban forest". CNN. from the original on 2013-12-19. Retrieved 2013-05-19.
  7. ^ "Is Johannesburg the world's largest man-made forest? The claim is a myth". Africa Check. from the original on 2018-02-27. Retrieved 2018-03-07.
  8. ^ "Conservation units". Trilha Transcarioca official website (in English and Portuguese). from the original on 2020-04-12.
  9. ^ Matos, D. M. Silva; Santos, C. Junius F.; Chevalier, D. de R. (2002-09-01). "Fire and restoration of the largest urban forest of the world in Rio de Janeiro City, Brazil". Urban Ecosystems. 6 (3): 151–161. doi:10.1023/A:1026164427792. ISSN 1083-8155. S2CID 37065854.
  10. ^ "Contested understandings of the world's largest urban forest | Abstract Gallery | AAG Annual Meeting 2018". aag.secure-abstracts.com. from the original on 2018-03-08. Retrieved 2018-03-07.
  11. ^ Drummond, José (1996). "The Garden in the Machine: An Environmental History of Brazil's Tijuca Forest". Environmental History. 1 (1): 83–104. doi:10.2307/3985065. ISSN 1084-5453. JSTOR 3985065. S2CID 147161459.
  12. ^ Ribeiro, Fernando (2016). "Participative mapping of cultural ecosystem services in Pedra Branca State Park, Brazil". Perspectives in Ecology and Conservation. 14 (2): 120–127. doi:10.1016/j.ncon.2016.09.004. ISSN 2530-0644.
  13. ^ "Conservation units". Trilha Transcarioca official website (in English and Portuguese). from the original on 2020-04-12.
  14. ^ "About the Transcarioca Trail". Trilha Transcarioca official website (in English and Portuguese). from the original on 2020-04-12.
  15. ^ Lefevers, Delana (2019-07-28). "The Largest Man-Made Forest In The U.S. Is In Nebraska And It's A Unique Place To Visit". OnlyInYourState. Retrieved 2019-11-08.
  16. ^ "The Best Urban Forests". American Forests. 2013-02-05. Retrieved 2019-11-08.
  17. ^ Sutton, Michelle (2018-04-16). "NYC's 25-Year Plan for its Urban Forests". New York State Urban Forestry Council. Retrieved 2019-11-08.
  18. ^ Dolan, Maria. "The Movement for Urban Tree Expansion Is Growing". Pacific Standard. Retrieved 2019-11-08.
  19. ^ "Climate Change Management". American Planning Association. from the original on 2017-12-22. Retrieved 21 December 2017.
  20. ^ Klaus I. Scott, James R. Simpson, and E. Gregory McPherson. "Effects of Tree Cover on Parking Lot Microclimate and Vehicle Emissions" 2013-09-03 at the Wayback Machine USDA Forest Service Pacific Southwest Research Station Western Center for Urban Forest Research and Education
  21. ^ a b c Rosenow, John. "Trees play key role in purifying our water". The Atlanta Journal-Constitution. Retrieved 2019-11-04.
  22. ^ Berland, Adam; Shiflett, Sheri A.; Shuster, William D.; Garmestani, Ahjond S.; Goddard, Haynes C.; Herrmann, Dustin L.; Hopton, Matthew E. (June 2017). "The role of trees in urban stormwater management". Landscape and Urban Planning. 162: 167–177. doi:10.1016/j.landurbplan.2017.02.017. PMC 6134866. PMID 30220756.
  23. ^ "Losing Urban Trees—and the Wildlife that Depends on Them". Good Nature Travel. 2018-12-11. Retrieved 2019-11-08.
  24. ^ a b c d e Dwyer, John; Mcpherson, E.; Schroeder, Herbert; Rowntree, Rowan (1992-01-01). "Assessing the benefits and costs of the urban forest". J. Arbor. 18.
  25. ^ a b Tyrväinen, Liisa; Pauleit, Stephan; Seeland, Klaus; de Vries, Sjerp (2005), Konijnendijk, Cecil; Nilsson, Kjell; Randrup, Thomas; Schipperijn, Jasper (eds.), "Benefits and Uses of Urban Forests and Trees", Urban Forests and Trees: A Reference Book, Springer Berlin Heidelberg, pp. 81–114, doi:10.1007/3-540-27684-x_5, ISBN 9783540276845
  26. ^ McPherson, Greg; Simpson, James R.; Peper, Paula J.; Maco, Scott E.; Xiao, Qingfu (2005-12-01). "Municipal Forest Benefits and Costs in Five US Cities". Journal of Forestry. 103 (8): 411–416. doi:10.1093/jof/103.8.411 (inactive 1 August 2023). ISSN 0022-1201.{{cite journal}}: CS1 maint: DOI inactive as of August 2023 (link)
  27. ^ Craig W. Johnson; Fred A. Baker; Wayne S. Johnson (1990). "Urban & Community Forestry, a Guide for the Interior Western United States" (PDF). USDA Forest Service, Intermountain Region, Ogden, Utah.
  28. ^ Tyrväinen, Liisa; Miettinen, Antti (2000-03-01). "Property Prices and Urban Forest Amenities". Journal of Environmental Economics and Management. 39 (2): 205–223. doi:10.1006/jeem.1999.1097. ISSN 0095-0696.
  29. ^ "Local Economics :: Green Cities: Good Health". depts.washington.edu. Retrieved 2019-11-09.
  30. ^ Konijnendijk, Cecil; Nilsson, Kjell; Randrup, Thomas; Schipperijn, Jasper, eds. (2005). Urban Forests and Trees. doi:10.1007/3-540-27684-x. ISBN 978-3-540-25126-2.
  31. ^ Brack, C. L. (2002-03-01). "Pollution mitigation and carbon sequestration by an urban forest". Environmental Pollution. 116: S195–S200. doi:10.1016/S0269-7491(01)00251-2. ISSN 0269-7491. PMID 11833907.
  32. ^ Rosenow, John. "Trees play key role in purifying our water". The Atlanta Journal-Constitution. Retrieved 2019-11-08.
  33. ^ "The Important Relationship between Forests and Water". American Forests. 2016-04-26. Retrieved 2019-11-08.
  34. ^ South, Eugenia C.; Hohl, Bernadette C.; Kondo, Michelle C.; MacDonald, John M.; Branas, Charles C. (2018-07-06). "Effect of Greening Vacant Land on Mental Health of Community-Dwelling Adults: A Cluster Randomized Trial". JAMA Network Open. 1 (3): e180298. doi:10.1001/jamanetworkopen.2018.0298. PMC 6324526. PMID 30646029.
  35. ^ Address by Professor Lord Winston on benefits of trees in urban areas in (2011) Professor Lord Winston captures carbon in Marylebone, retrieved 2022-09-18
  36. ^ Pataki, Diane E.; Alberti, Marina; Cadenasso, Mary L.; Felson, Alexander J.; McDonnell, Mark J.; Pincetl, Stephanie; Pouyat, Richard V.; Setälä, Heikki; Whitlow, Thomas H. (2021). "The Benefits and Limits of Urban Tree Planting for Environmental and Human Health". Frontiers in Ecology and Evolution. 9. doi:10.3389/fevo.2021.603757. ISSN 2296-701X.

Bibliography Edit

  • Nowak, D. (2000). Tree Species Selection, Design, and Management to Improve Air Quality Construction Technology. Annual meeting proceedings of the American Society of Landscape Architects (available online, pdf file).
  • Nowak, D. The Effects of Urban Trees on Air Quality USDA Forest Service (available online, pdf file).
  • Nowak, D. (1995). Trees Pollute? A "Tree Explains It All". Proceedings of the 7th National Urban Forest Conference (available online, pdf file).
  • Nowak, D. (1993). Plant Chemical Emissions. Miniature Roseworld 10 (1) (available online, pdf file).
  • Nowak, D. & Wheeler, J. Program Assistant, ICLEI. February 2006.
  • McPherson, E. G. & Simpson, J. R. (2000). Reducing Air Pollution Through Urban Forestry. Proceedings of the 48th meeting of California Pest Council (available online, pdf file).
  • McPherson, E. G., Simpson, J. R. & Scott, K. (2002). Actualizing Microclimate and Air Quality Benefits with Parking Lot Shade Ordinances. Wetter und Leben 4: 98 (available online, pdf file).

External links Edit

  • Urban Forestry South
  • Center for Urban Forest Research
  • Urban Forest Ecosystems Institute 2006-02-20 at the Wayback Machine
  • Urban Forestry 2009-07-26 at the Wayback Machine
  • USDA Forest Service Northeastern Area

urban, forest, this, article, about, forests, cities, general, trees, cities, this, article, lead, section, short, adequately, summarize, points, please, consider, expanding, lead, provide, accessible, overview, important, aspects, article, december, 2020, urb. This article is about forests in cities For general use of trees in cities see Urban forestry This article s lead section may be too short to adequately summarize the key points Please consider expanding the lead to provide an accessible overview of all important aspects of the article December 2020 An urban forest is a forest or a collection of trees that grow within a city town or a suburb In a wider sense it may include any kind of woody plant vegetation growing in and around human settlements As opposed to a forest park whose ecosystems are also inherited from wilderness leftovers urban forests often lack amenities like public bathrooms paved paths or sometimes clear borders which are distinct features of parks Care and management of urban forests is called urban forestry Urban forests can be privately and publicly owned Some municipal forests may be located outside of the town or city to which they belong Urban forests play an important role in ecology of human habitats in many ways Aside from the beautification of the urban environment they offer many benefits like impacting climate and the economy while providing shelter to wildlife and recreational area for city dwellers 1 Contents 1 Urban forests around the world 2 Environmental impact 2 1 Air pollution reduction 2 2 Rainwater runoff reduction 2 3 Urban wildlife 3 Economic impacts 3 1 Energy and CO2 consumption 3 2 Water filtration 3 3 Tourism and local business expansion 3 4 Increases in property values 4 Sociological impacts 4 1 Community health impact 4 2 Mental health impact 5 See also 6 References 6 1 Notes 6 2 Bibliography 7 External linksUrban forests around the world Edit Tijuca Forest in Rio de Janeiro BrazilIn many countries there is a growing understanding of the importance of the natural ecology in urban forests There are numerous projects underway aimed at restoration and preservation of ecosystems ranging from simple elimination of leaf raking and elimination of invasive plants to full blown reintroduction of original species and riparian ecosystems 2 3 Some sources claim that the largest man made urban forest in the world is located in Johannesburg in South Africa 4 5 6 Others have disputed this claim due to satellite pictures revealing how developed the city is with roads and buildings Johannesburg however is still a very densely wooded city with reportedly 6 0 million trees planted throughout streets and private lots 7 Cherry Blossoms lining the Tidal Basin in Washington D C Rio de Janeiro is also home to two of the vastest urban forests in the world one of which is considered by some sources to be the largest one 8 9 10 Tijuca Forest is the most famous It began as a restoration policy in 1844 to conserve the natural remnants of forest and replant in areas previously cleared for sugar and coffee 11 Despite the worldwide recognition of Tijuca Forest another forest in the same city encompasses roughly three times the size of its more prominent neighbor Pedra Branca State Park occupies 12 500 hectares 30 888 acres of city land against Tijuca s 3 953 hectares 9 768 acres 12 13 The larger metropolitan area encircles the forests which moderate the humid climate and provide sources of recreation for urban dwellers Along with seven other smaller full protection conservation units in the city they form an extensive natural area that contains the Transcarioca Trail a 180 km footpath 14 Sanjay Gandhi National Park in Mumbai Maharashtra India is also an example of an urban forest It covers roughly around 20 area of the city The forest is filled with many animals freely roaming around It also has an important cultural site of ancient history situated in it known as the Kanheri caves Nebraska National Forest is the largest man made forest in the United States located in the state of Nebraska It lies in several counties within the state and is a popular destination for campers year round 15 Several cities within the United States have also taken initiative investing in their urban forests to improve the well being and economies of their communities 16 Some notable cities among them are Austin Atlanta New York Seattle and Washington D C New York for example has taken initiative to combat climate change by planting millions of trees around the city 17 In Austin private companies are funding tree planting campaigns for environmental and energy saving purposes 18 Environmental impact EditUrban forests play an important role in benefitting the environmental conditions of their respective cities They moderate local climate slowing wind and stormwater and filter air and sunlight They are critical in cooling the urban heat island effect thus potentially reducing the number of unhealthful ozone days that plague major cities in peak summer months citation needed Air pollution reduction Edit As cities struggle to comply with air quality standards trees can help to clean the air The most serious pollutants in the urban atmosphere are ozone nitrogen oxides NOx sulfuric oxides SOx and particulate pollution Ground level ozone or smog is created by chemical reactions between NOx and volatile organic compounds VOCs in the presence of sunlight High temperatures increase the rate of this reaction Vehicle emissions especially diesel and emissions from industrial facilities are the major sources of NOx Vehicle emissions industrial emissions gasoline vapors chemical solvents trees and other plants are the major sources of VOCs Particulate pollution or particulate matter PM10 and PM25 is made up of microscopic solids or liquid droplets that can be inhaled and retained in lung tissue causing serious health problems Most particulate pollution begins as smoke or diesel soot and can cause serious health risk to people with heart and lung diseases and irritation to healthy citizens Trees are an important cost effective solution to reducing pollution and improving air quality citation needed Trees reduce temperatures and smogWith an extensive and healthy urban forest air quality can be drastically improved Trees help to lower air temperatures and the urban heat island effect in urban areas This reduction of temperature not only lowers energy use it also improves air quality as the formation of ozone is dependent on temperature Trees reduce temperature not only by directly shading when there is a large number of trees it create a difference in temperatures between the area when they are located and the neighbor area This creates a difference in atmospheric pressure between the two areas which creates wind This phenomenon is called urban breeze cycle if the forest is near the city and park breeze cycle if the forest is in the city That wind helps to lower temperature in the city 19 As temperatures climb the formation of ozone increases Healthy urban forests decrease temperatures and reduce the formation of ozone Large shade trees can reduce local ambient temperatures by 3 to 5 C Maximum mid day temperature reductions due to trees range from 0 04 C to 0 2 C per 1 canopy cover increase In Sacramento County California it was estimated that doubling the canopy cover to five million trees would reduce summer temperatures by 3 degrees vague This reduction in temperature would reduce peak ozone levels by as much as 7 and smoggy days by 50 Lower temperatures reduce emissions in parking lots 20 Temperature reduction from shade trees in parking lots lowers the amount of evaporative emissions from parked cars Unshaded parking lots can be viewed as miniature heat islands where temperatures can be even higher than surrounding areas Tree canopies will reduce air temperatures significantly Although the bulk of hydrocarbon emissions come from tailpipe exhaust 16 of hydrocarbon emissions are from evaporative emissions that occur when the fuel delivery systems of parked vehicles are heated These evaporative emissions and the exhaust emissions of the first few minutes of engine operation are sensitive to local microclimate If cars are shaded in parking lots evaporative emissions from fuel and volatilized plastics will be greatly reduced Cars parked in parking lots with 50 canopy cover emit 8 less through evaporative emissions than cars parked in parking lots with only 8 canopy cover Due to the positive effects trees have on reducing temperatures and evaporative emissions in parking lots cities like Davis California have established parking lot ordinances that mandate 50 canopy cover over paved areas Cold Start emissionsThe volatile components of asphalt pavement evaporate more slowly in shaded parking lots and streets The shade not only reduces emissions but reduces shrinking and cracking so that maintenance intervals can be lengthened Less maintenance means less hot asphalt fumes and less heavy equipment exhaust The same principle applies to asphalt based roofing Active pollutant removalTrees also reduce pollution by actively removing it from the atmosphere Leaf stomata the pores on the leaf surface take in polluting gases which are then absorbed by water inside the leaf Some species of trees are more susceptible to the uptake of pollution which can negatively affect plant growth Ideally trees should be selected that take in higher quantities of polluting gases and are resistant to the negative effects they can cause A study across the Chicago region determined that trees removed approximately 17 tonnes of carbon monoxide CO 93 tonnes of sulfur dioxide SO2 98 tonnes of nitrogen dioxide NO2 and 210 tonnes of ozone O3 in 1991 Carbon sequestrationUrban forest managers are sometimes interested in the amount of carbon removed from the air and stored in their forest as wood in relation to the amount of carbon dioxide released into the atmosphere while running tree maintenance equipment powered by fossil fuels Interception of particulate matterIn addition to the uptake of harmful gases trees act as filters intercepting airborne particles and reducing the amount of harmful particulate matter The particles are captured by the surface area of the tree and its foliage These particles temporarily rest on the surface of the tree as they can be washed off by rainwater blown off by high winds or fall to the ground with a dropped leaf Although trees are only a temporary host to particulate matter if they did not exist the temporarily housed particulate matter would remain airborne and harmful to humans Increased tree cover will increase the amount of particulate matter intercepted from the air Large evergreen trees with dense foliage collect the most particulate matter The Chicago study determined that trees removed approximately 234 tonnes of particulate matter less than 10 micrometres PM10 in 1991 Large healthy trees greater than 75 cm in trunk diameter remove approximately 70 times more air pollution annually 1 4 kg yr than small healthy trees less than 10 cm in diameter 0 02 kg yr Rainwater runoff reduction Edit Virginia opossum being sheltered by an old treeUrban forests and trees help purify water sources by slowing down rain as it falls to the earth and help it soak into the soil thereby naturally filtering out pollutants that can potentially enter water supply sources They reduce storm water runoff and mitigate flood damage protecting the surrounding rivers and lakes 21 Trees also help alleviate the load on grey infrastructure such as sewers and drains via evapotranspiration Trees are ideally suited as their canopies can intercept water and provide dense vegetation whilst their roots can pump substantial amounts of water back into the atmosphere as water vapor all with a relatively small footprint 22 Urban wildlife Edit Trees in urban forests provide food and shelter for wildlife in cities Birds and small mammals use trees as nesting sites and reptiles use the shade they provide to keep cool in the hot summer months 23 Furthermore trees provide shade necessary for shrubbery Not only do urban forests protect land animals and plants they also sustain fish and water animals that need shade and lower temperatures to survive 21 Economic impacts EditThe economic benefits of trees and various other plants have been understood for a long time Recently more of these benefits are becoming quantified Quantification of the economic benefits of trees helps justify public and private expenditures to maintain them One of the most obvious examples of economic utility is the example of the deciduous tree planted on the south and west of a building in the Northern Hemisphere or north and east in the Southern Hemisphere The shade shelters and cools the building during the summer but allows the sun to warm it in the winter after the leaves fall The physical effects of trees the shade solar regulation humidity control wind control erosion control evaporative cooling sound and visual screening traffic control pollution absorption and precipitation all have economic benefits citation needed Energy and CO2 consumption Edit Urban forests contribute to the reduction of energy usage and CO2 emissions primarily through the indirect effects of an efficient forestry implementation 24 25 The shade provided by trees reduces the need for heating and cooling throughout the year 26 As a result energy conservation is achieved which leads to a reduction of CO2 emissions by power plants 25 Computer models indicate that annual energy consumption can be reduced by 30 billion kWh using 100 million trees in U S urban areas This energy consumption decrease equates to monetary savings of 2 billion Additionally the reduction of energy demand would reduce power plant CO2 emissions by 9 million tons per year 24 Water filtration Edit The stormwater retention provided by urban forests can provide monetary savings even in arid regions where water is expensive or watering conservation is enforced 24 One example of this can be seen in a study carried out over 40 years in Tucson AZ which analyzed the savings of stormwater management costs Over this period it was calculated that 600 000 in stormwater treatment costs were saved 24 It was also observed that the net water consumption was reduced when comparing the water required for irrigation against power plant water consumption due to the effects of urban forests on energy usage 24 In another instance New York City leaders in the late 1990s chose to pursue a natural landscape management instead of an expensive water treatment system to clean the Catskill Delaware watershed New Yorkers today enjoy some of the healthiest drinking water in the world 21 Tourism and local business expansion Edit The USDA Guide 27 notes on page 17 that Businesses flourish people linger and shop longer apartments and office space rent quicker tenants stay longer property values increase new business and industry is attracted by trees Increases in property values Edit Urban forests have been linked to an increase in property value surrounding residents An empirical study from Finland showed a 4 9 increase in property valuation when located just one kilometer closer to a forest 28 Another source claims this increase can range as high as 20 29 The reduction of air light and noise pollution provided by forests is cause for the notable pricing differentials citation needed Sociological impacts Edit The Backbone Trail in the Santa Monica Mountains CaliforniaCommunity health impact Edit Urban forests offer many benefits to their surrounding communities Removing pollutants and greenhouse gases from the air is one key reason why cities are adopting the practice Removing pollutants from the air urban forests can lower risks of asthma and lung cancer 30 31 Communities that rely on well water may also see a positive change in water purity due to filtration 32 33 The amenities provided by the city of each urban forest varies Some amenities include trails and pathways for walking or running picnic tables and bathrooms These healthy spaces provide for the community a place to gather and live a more active lifestyle Mental health impact Edit Living near urban forests have shown positive impacts on mental health As an experimental mental health intervention in the city of Philadelphia trash was removed from vacant lots some of them being selectively greened by plantings trees grass and installing small fences Residents near the greened lots who had incomes below the poverty line reported a 68 decrease in feelings of depression while residents with incomes above the poverty line reported a decrease of 41 34 The Biophilia hypothesis argues that people are instinctively drawn to nature while Attention Restoration Theory goes on to demonstrate tangible improvements in medical academic and other outcomes from access to nature Proper planning and community involvement are important for the positive results to be realized 35 36 See also Edit Ecology portal Environment portal Trees portalGreen belt found around various urban clusters Million Tree Initiative in multiple urban areas in the world Tree Cities of the World Urban forestry Urban green space Urban reforestationReferences EditNotes Edit Jiri Lev 2017 The power of streetscape and how to protect it Newcastle Herald Newcastle NSW Australia Archived from the original on 2017 09 03 Retrieved 2017 09 03 Nowak David J Randler Paula B Greenfield Eric J Comas Sara J Carr Mary A Alig Ralph J 2010 Sustaining America s urban trees and forests a Forests on the Edge report Gen Tech Rep NRS 62 Newtown Square PA U S Department of Agriculture Forest Service Northern Research Station 27 P 62 doi 10 2737 NRS GTR 62 Elmqvist T Setala H Handel SN van der Ploeg S Aronson J Blignaut JN Gomez Baggethun E Nowak DJ Kronenberg J de Groot R 2015 06 01 Benefits of restoring ecosystem services in urban areas Current Opinion in Environmental Sustainability Open Issue 14 101 108 doi 10 1016 j cosust 2015 05 001 ISSN 1877 3435 Green tourism in Gauteng Gauteng Tourism Authority Visit The Province Built On Gold Archived from the original on 2013 05 16 Retrieved 2013 05 19 city of Johannesburg Joburg s urban forest to grow Archived from the original on 2015 04 30 Retrieved 2013 05 19 Johannesburg expands its urban forest CNN Archived from the original on 2013 12 19 Retrieved 2013 05 19 Is Johannesburg the world s largest man made forest The claim is a myth Africa Check Archived from the original on 2018 02 27 Retrieved 2018 03 07 Conservation units Trilha Transcarioca official website in English and Portuguese Archived from the original on 2020 04 12 Matos D M Silva Santos C Junius F Chevalier D de R 2002 09 01 Fire and restoration of the largest urban forest of the world in Rio de Janeiro City Brazil Urban Ecosystems 6 3 151 161 doi 10 1023 A 1026164427792 ISSN 1083 8155 S2CID 37065854 Contested understandings of the world s largest urban forest Abstract Gallery AAG Annual Meeting 2018 aag secure abstracts com Archived from the original on 2018 03 08 Retrieved 2018 03 07 Drummond Jose 1996 The Garden in the Machine An Environmental History of Brazil s Tijuca Forest Environmental History 1 1 83 104 doi 10 2307 3985065 ISSN 1084 5453 JSTOR 3985065 S2CID 147161459 Ribeiro Fernando 2016 Participative mapping of cultural ecosystem services in Pedra Branca State Park Brazil Perspectives in Ecology and Conservation 14 2 120 127 doi 10 1016 j ncon 2016 09 004 ISSN 2530 0644 Conservation units Trilha Transcarioca official website in English and Portuguese Archived from the original on 2020 04 12 About the Transcarioca Trail Trilha Transcarioca official website in English and Portuguese Archived from the original on 2020 04 12 Lefevers Delana 2019 07 28 The Largest Man Made Forest In The U S Is In Nebraska And It s A Unique Place To Visit OnlyInYourState Retrieved 2019 11 08 The Best Urban Forests American Forests 2013 02 05 Retrieved 2019 11 08 Sutton Michelle 2018 04 16 NYC s 25 Year Plan for its Urban Forests New York State Urban Forestry Council Retrieved 2019 11 08 Dolan Maria The Movement for Urban Tree Expansion Is Growing Pacific Standard Retrieved 2019 11 08 Climate Change Management American Planning Association Archived from the original on 2017 12 22 Retrieved 21 December 2017 Klaus I Scott James R Simpson and E Gregory McPherson Effects of Tree Cover on Parking Lot Microclimate and Vehicle Emissions Archived 2013 09 03 at the Wayback Machine USDA Forest Service Pacific Southwest Research Station Western Center for Urban Forest Research and Education a b c Rosenow John Trees play key role in purifying our water The Atlanta Journal Constitution Retrieved 2019 11 04 Berland Adam Shiflett Sheri A Shuster William D Garmestani Ahjond S Goddard Haynes C Herrmann Dustin L Hopton Matthew E June 2017 The role of trees in urban stormwater management Landscape and Urban Planning 162 167 177 doi 10 1016 j landurbplan 2017 02 017 PMC 6134866 PMID 30220756 Losing Urban Trees and the Wildlife that Depends on Them Good Nature Travel 2018 12 11 Retrieved 2019 11 08 a b c d e Dwyer John Mcpherson E Schroeder Herbert Rowntree Rowan 1992 01 01 Assessing the benefits and costs of the urban forest J Arbor 18 a b Tyrvainen Liisa Pauleit Stephan Seeland Klaus de Vries Sjerp 2005 Konijnendijk Cecil Nilsson Kjell Randrup Thomas Schipperijn Jasper eds Benefits and Uses of Urban Forests and Trees Urban Forests and Trees A Reference Book Springer Berlin Heidelberg pp 81 114 doi 10 1007 3 540 27684 x 5 ISBN 9783540276845 McPherson Greg Simpson James R Peper Paula J Maco Scott E Xiao Qingfu 2005 12 01 Municipal Forest Benefits and Costs in Five US Cities Journal of Forestry 103 8 411 416 doi 10 1093 jof 103 8 411 inactive 1 August 2023 ISSN 0022 1201 a href Template Cite journal html title Template Cite journal cite journal a CS1 maint DOI inactive as of August 2023 link Craig W Johnson Fred A Baker Wayne S Johnson 1990 Urban amp Community Forestry a Guide for the Interior Western United States PDF USDA Forest Service Intermountain Region Ogden Utah Tyrvainen Liisa Miettinen Antti 2000 03 01 Property Prices and Urban Forest Amenities Journal of Environmental Economics and Management 39 2 205 223 doi 10 1006 jeem 1999 1097 ISSN 0095 0696 Local Economics Green Cities Good Health depts washington edu Retrieved 2019 11 09 Konijnendijk Cecil Nilsson Kjell Randrup Thomas Schipperijn Jasper eds 2005 Urban Forests and Trees doi 10 1007 3 540 27684 x ISBN 978 3 540 25126 2 Brack C L 2002 03 01 Pollution mitigation and carbon sequestration by an urban forest Environmental Pollution 116 S195 S200 doi 10 1016 S0269 7491 01 00251 2 ISSN 0269 7491 PMID 11833907 Rosenow John Trees play key role in purifying our water The Atlanta Journal Constitution Retrieved 2019 11 08 The Important Relationship between Forests and Water American Forests 2016 04 26 Retrieved 2019 11 08 South Eugenia C Hohl Bernadette C Kondo Michelle C MacDonald John M Branas Charles C 2018 07 06 Effect of Greening Vacant Land on Mental Health of Community Dwelling Adults A Cluster Randomized Trial JAMA Network Open 1 3 e180298 doi 10 1001 jamanetworkopen 2018 0298 PMC 6324526 PMID 30646029 Address by Professor Lord Winston on benefits of trees in urban areas in 2011 Professor Lord Winston captures carbon in Marylebone retrieved 2022 09 18 Pataki Diane E Alberti Marina Cadenasso Mary L Felson Alexander J McDonnell Mark J Pincetl Stephanie Pouyat Richard V Setala Heikki Whitlow Thomas H 2021 The Benefits and Limits of Urban Tree Planting for Environmental and Human Health Frontiers in Ecology and Evolution 9 doi 10 3389 fevo 2021 603757 ISSN 2296 701X Bibliography Edit Nowak D 2000 Tree Species Selection Design and Management to Improve Air Quality Construction Technology Annual meeting proceedings of the American Society of Landscape Architects available online pdf file Nowak D The Effects of Urban Trees on Air Quality USDA Forest Service available online pdf file Nowak D 1995 Trees Pollute A Tree Explains It All Proceedings of the 7th National Urban Forest Conference available online pdf file Nowak D 1993 Plant Chemical Emissions Miniature Roseworld 10 1 available online pdf file Nowak D amp Wheeler J Program Assistant ICLEI February 2006 McPherson E G amp Simpson J R 2000 Reducing Air Pollution Through Urban Forestry Proceedings of the 48th meeting of California Pest Council available online pdf file McPherson E G Simpson J R amp Scott K 2002 Actualizing Microclimate and Air Quality Benefits with Parking Lot Shade Ordinances Wetter und Leben 4 98 available online pdf file External links Edit Wikimedia Commons has media related to Urban forest Urban Forestry South Center for Urban Forest Research Urban Forest Ecosystems Institute Archived 2006 02 20 at the Wayback Machine Urban Forestry Archived 2009 07 26 at the Wayback Machine USDA Forest Service Northeastern Area Retrieved from https en wikipedia org w index php title Urban forest amp oldid 1168173032, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.