fbpx
Wikipedia

Dichlorotris(triphenylphosphine)ruthenium(II)

Dichlorotris(triphenylphosphine)ruthenium(II) is a coordination complex of ruthenium. It is a chocolate brown solid that is soluble in organic solvents such as benzene. The compound is used as a precursor to other complexes including those used in homogeneous catalysis.

Dichlorotris(triphenylphosphine)­ruthenium(II)
Names
IUPAC name
Dichlorotris(triphenylphosphine)ruthenium(II)
Other names
Ruthenium tris(triphenylphosphine) dichloride; Tris(triphenylphosphine)dichlororuthenium; Tris(triphenylphosphine)ruthenium dichloride;Tris(triphenylphosphine)ruthenium(II) dichloride
Identifiers
  • 15529-49-4 Y
3D model (JSmol)
  • Interactive image
ChemSpider
  • 76650 Y
ECHA InfoCard 100.035.957
EC Number
  • 239-569-7
  • 11007548
  • DTXSID30935179
  • InChI=1S/3C18H15P.2ClH.Ru/c3*1-4-10-16(11-5-1)19(17-12-6-2-7-13-17)18-14-8-3-9-15-18;;;/h3*1-15H;2*1H;/q;;;;;+2/p-2 Y
    Key: WIWBLJMBLGWSIN-UHFFFAOYSA-L Y
  • InChI=1/3C18H15P.2ClH.Ru/c3*1-4-10-16(11-5-1)19(17-12-6-2-7-13-17)18-14-8-3-9-15-18;;;/h3*1-15H;2*1H;/q;;;;;+2/p-2
    Key: WIWBLJMBLGWSIN-NUQVWONBAX
  • [Ru+2].[Cl-].[Cl-].c3c(P(c1ccccc1)c2ccccc2)cccc3.c1ccccc1P(c2ccccc2)c3ccccc3.c1ccccc1P(c2ccccc2)c3ccccc3
Properties
C54H45Cl2P3Ru
Molar mass 958.83 g/mol
Appearance Black Crystals or Red-Brown
Density 1.43 g cm−3
Melting point 133 °C; 271 °F; 406 K
Structure
Monoclinic
C2h5-P21/c
a = 18.01 Å, b = 20.22 Å, c = 12.36 Å
α = 90°, β = 90.5°, γ = 90°
Octahedral
Hazards
GHS labelling:
Warning
H302, H312, H332
P261, P264, P270, P271, P280, P301+P312, P302+P352, P304+P312, P304+P340, P312, P322, P330, P363, P501
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
Y verify (what is YN ?)

Synthesis and basic properties edit

RuCl2(PPh3)3 is the product of the reaction of ruthenium trichloride trihydrate with a methanolic solution of triphenylphosphine.[1][2]

2 RuCl3(H2O)3 + 7 PPh3 → 2 RuCl2(PPh3)3 + 2 HCl + 5 H2O + OPPh3

The coordination sphere of RuCl2(PPh3)3 can be viewed as either five-coordinate or octahedral. One coordination site is occupied by one of the hydrogen atoms of a phenyl group.[3] This Ru---H agostic interaction is long (2.59 Å) and weak. The low symmetry of the compound is reflected by the differing lengths of the Ru-P bonds: 2.374, 2.412, and 2.230 Å.[4] The Ru-Cl bond lengths are both 2.387 Å.

Reactions edit

In the presence of excess of triphenylphosphine, RuCl2(PPh3)3 binds a fourth phosphine to give black RuCl2(PPh3)4. The triphenylphosphine ligands in both the tris(phosphine) and tetrakis(phosphine) complexes are readily substituted by other ligands. The tetrakis(phosphine) complex is a precursor to the Grubbs catalysts.[5]

Dichlorotris(triphenylphosphine)ruthenium(II) reacts with hydrogen in the presence of base to give the purple-colored monohydride HRuCl(PPh3)3.[6]

RuCl2(PPh3)3 + H2 + NEt3 → HRuCl(PPh3)3 + [HNEt3]Cl

Dichlorotris(triphenylphosphine)ruthenium(II) reacts with carbon monoxide to produce the all trans isomer of dichloro(dicarbonyl)bis(triphenylphosphine)ruthenium(II).

RuCl2(PPh3)3 + 2 CO → trans,trans,trans-RuCl2(CO)2(PPh3)2 + PPh3

This kinetic product isomerizes to the cis adduct during recrystallization. trans-RuCl2(dppe)2 forms upon treating RuCl2(PPh3)3 with dppe.

RuCl2(PPh3)3 + 2 dppe → RuCl2(dppe)2 + 3 PPh3

RuCl2(PPh3)3 catalyzes the decomposition of formic acid into carbon dioxide and hydrogen gas in the presence of an amine.[7] Since carbon dioxide can be trapped and hydrogenated on an industrial scale, formic acid represents a potential storage and transportation medium.

Use in organic synthesis edit

RuCl2(PPh3)3 facilitates oxidations, reductions, cross-couplings, cyclizations, and isomerization. It is used in the Kharasch addition of chlorocarbons to alkenes.[8]

 

Dichlorotris(triphenylphosphine)ruthenium(II) serves as a precatalyst for the hydrogenation of alkenes, nitro compounds, ketones, carboxylic acids, and imines. On the other hand, it catalyzes the oxidation of alkanes to tertiary alcohols, amides to t-butyldioxyamides, and tertiary amines to α-(t-butyldioxyamides) using tert-butyl hydroperoxide. Using other peroxides, oxygen, and acetone, the catalyst can oxidize alcohols to aldehydes or ketones. Using dichlorotris(triphenylphosphine)ruthenium(II) the N-alkylation of amines with alcohols is also possible (see "borrowing hydrogen").[8]

 

RuCl2(PPh3)3 efficiently catalyzes carbon-carbon bond formation from cross couplings of alcohols through C-H activation of sp3 carbon atoms in the presence of a Lewis acid.[9]

 

References edit

  1. ^ Stephenson, T. A.; Wilkinson, G. "New Complexes of Ruthenium (II) and (III) with Triphenylphosphine, Triphenylarsine, Trichlorostannate, Pyridine, and other Ligands", J. Inorg. Nucl. Chem., 1966, 28, 945-956. doi:10.1016/0022-1902(66)80191-4
  2. ^ P. S. Hallman, T. A. Stephenson, G. Wilkinson "Tetrakis(Triphenylphosphine)Dichloro-Ruthenium(II) and Tris(Triphenylphosphine)-Dichlororuthenium(II)" Inorganic Syntheses, 1970 volume 12 doi:10.1002/9780470132432.ch40
  3. ^ Sabo-Etienne, S.; Gellier, M., "Ruthenium: Inorganic and Coordination Chemistry", Encyclopedia of Inorganic Chemistry, 2006, John Wiley & Sons Sabo-Etienne, Sylviane; Grellier, Mary (2006). "Ruthenium: Inorganic & Coordination Chemistry Based in part on the article Ruthenium: Inorganic & Coordination Chemistry by Bruno Chaudret & Sylviane Sabo-Etienne which appeared in the Encyclopedia of Inorganic Chemistry, First Edition". Encyclopedia of Inorganic Chemistry. doi:10.1002/0470862106.ia208. ISBN 0470860782.
  4. ^ La Placa, Sam J.; Ibers, James A. (1965). "A Five-Coordinated d6 Complex: Structure of Dichlorotris(triphenylphosphine)ruthenium (II)". Inorganic Chemistry. 4 (6): 778–783. doi:10.1021/ic50028a002.
  5. ^ Georgios C. Vougioukalakis, Robert H. Grubbs "Ruthenium-Based Heterocyclic Carbene-Coordinated Olefin Metathesis Catalysts" Chem. Rev., 2010, volume 110, pp 1746–1787 Vougioukalakis, Georgios C.; Grubbs, Robert H. (2010). "Ruthenium-Based Heterocyclic Carbene-Coordinated Olefin Metathesis Catalysts". Chemical Reviews. 110 (3): 1746–1787. doi:10.1021/cr9002424. PMID 20000700.
  6. ^ Schunn, R. A.; Wonchoba, E. R. (1972). "Chlorohydridotris(triphenylphosphine)ruthenium(II)". Inorganic Syntheses. Vol. 13. p. 131. doi:10.1002/9780470132449.ch26. ISBN 9780470132449.
  7. ^ Loges, B.; Boddien, A.; Junge, H.; Beller, M., "Controlled Generation of Hydrogen from Formic Acid Amine Adducs at Room Temperature and Application in H2/O2 Fuel Cells", Angew. Chem. Int. Ed., 2008, 47, 3962-3965 Loges, Björn; Boddien, Albert; Junge, Henrik; Beller, Matthias (2008). "Controlled Generation of Hydrogen from Formic Acid Amine Adducts at Room Temperature and Application in H2/O2Fuel Cells". Angewandte Chemie International Edition. 47 (21): 3962–3965. doi:10.1002/anie.200705972. PMID 18457345.
  8. ^ a b Plummer, J. S.; Shun-Ichi, M.; Changjia, Z. "Dichlorotris(triphenylphosphine)ruthenium(II)", e-EROS Encyclopedia of Reagents for Organic Synthesis, 2010, John Wiley doi:10.1002/047084289X.rd137.pub2
  9. ^ Shu-Yu, Z.; Yong-Qiang, T.; Chun-An, F.; Yi-Jun, J.; Lei, S.; Ke, C.; En, Z.; "Cross-Coupling Reactions between alcohols through sp3 C-H Activation Catalyzed by a Ruthenium/Lewis Acid System" Chem. Eur. J., 2008, 14, 10201-10205 Zhang, Shu-Yu; Tu, Yong-Qiang; Fan, Chun-An; Jiang, Yi-Jun; Shi, Lei; Cao, Ke; Zhang, En (2008). "Cross-Coupling Reaction between Alcohols through sp3CH Activation Catalyzed by a Ruthenium/Lewis Acid System". Chemistry - A European Journal. 14 (33): 10201–10205. doi:10.1002/chem.200801317. PMID 18844197.

dichlorotris, triphenylphosphine, ruthenium, coordination, complex, ruthenium, chocolate, brown, solid, that, soluble, organic, solvents, such, benzene, compound, used, precursor, other, complexes, including, those, used, homogeneous, catalysis, dichlorotris, . Dichlorotris triphenylphosphine ruthenium II is a coordination complex of ruthenium It is a chocolate brown solid that is soluble in organic solvents such as benzene The compound is used as a precursor to other complexes including those used in homogeneous catalysis Dichlorotris triphenylphosphine ruthenium II Names IUPAC name Dichlorotris triphenylphosphine ruthenium II Other names Ruthenium tris triphenylphosphine dichloride Tris triphenylphosphine dichlororuthenium Tris triphenylphosphine ruthenium dichloride Tris triphenylphosphine ruthenium II dichloride Identifiers CAS Number 15529 49 4 Y 3D model JSmol Interactive image ChemSpider 76650 Y ECHA InfoCard 100 035 957 EC Number 239 569 7 PubChem CID 11007548 CompTox Dashboard EPA DTXSID30935179 InChI InChI 1S 3C18H15P 2ClH Ru c3 1 4 10 16 11 5 1 19 17 12 6 2 7 13 17 18 14 8 3 9 15 18 h3 1 15H 2 1H q 2 p 2 YKey WIWBLJMBLGWSIN UHFFFAOYSA L YInChI 1 3C18H15P 2ClH Ru c3 1 4 10 16 11 5 1 19 17 12 6 2 7 13 17 18 14 8 3 9 15 18 h3 1 15H 2 1H q 2 p 2Key WIWBLJMBLGWSIN NUQVWONBAX SMILES Ru 2 Cl Cl c3c P c1ccccc1 c2ccccc2 cccc3 c1ccccc1P c2ccccc2 c3ccccc3 c1ccccc1P c2ccccc2 c3ccccc3 Properties Chemical formula C54H45Cl2P3Ru Molar mass 958 83 g mol Appearance Black Crystals or Red Brown Density 1 43 g cm 3 Melting point 133 C 271 F 406 K Structure Crystal structure Monoclinic Space group C2h5 P21 c Lattice constant a 18 01 A b 20 22 A c 12 36 Aa 90 b 90 5 g 90 Coordination geometry Octahedral Hazards GHS labelling Pictograms Signal word Warning Hazard statements H302 H312 H332 Precautionary statements P261 P264 P270 P271 P280 P301 P312 P302 P352 P304 P312 P304 P340 P312 P322 P330 P363 P501 Except where otherwise noted data are given for materials in their standard state at 25 C 77 F 100 kPa Y verify what is Y N Infobox references Contents 1 Synthesis and basic properties 2 Reactions 3 Use in organic synthesis 4 ReferencesSynthesis and basic properties editRuCl2 PPh3 3 is the product of the reaction of ruthenium trichloride trihydrate with a methanolic solution of triphenylphosphine 1 2 2 RuCl3 H2O 3 7 PPh3 2 RuCl2 PPh3 3 2 HCl 5 H2O OPPh3 The coordination sphere of RuCl2 PPh3 3 can be viewed as either five coordinate or octahedral One coordination site is occupied by one of the hydrogen atoms of a phenyl group 3 This Ru H agostic interaction is long 2 59 A and weak The low symmetry of the compound is reflected by the differing lengths of the Ru P bonds 2 374 2 412 and 2 230 A 4 The Ru Cl bond lengths are both 2 387 A Reactions editIn the presence of excess of triphenylphosphine RuCl2 PPh3 3 binds a fourth phosphine to give black RuCl2 PPh3 4 The triphenylphosphine ligands in both the tris phosphine and tetrakis phosphine complexes are readily substituted by other ligands The tetrakis phosphine complex is a precursor to the Grubbs catalysts 5 Dichlorotris triphenylphosphine ruthenium II reacts with hydrogen in the presence of base to give the purple colored monohydride HRuCl PPh3 3 6 RuCl2 PPh3 3 H2 NEt3 HRuCl PPh3 3 HNEt3 Cl Dichlorotris triphenylphosphine ruthenium II reacts with carbon monoxide to produce the all trans isomer of dichloro dicarbonyl bis triphenylphosphine ruthenium II RuCl2 PPh3 3 2 CO trans trans trans RuCl2 CO 2 PPh3 2 PPh3 This kinetic product isomerizes to the cis adduct during recrystallization trans RuCl2 dppe 2 forms upon treating RuCl2 PPh3 3 with dppe RuCl2 PPh3 3 2 dppe RuCl2 dppe 2 3 PPh3 RuCl2 PPh3 3 catalyzes the decomposition of formic acid into carbon dioxide and hydrogen gas in the presence of an amine 7 Since carbon dioxide can be trapped and hydrogenated on an industrial scale formic acid represents a potential storage and transportation medium Use in organic synthesis editRuCl2 PPh3 3 facilitates oxidations reductions cross couplings cyclizations and isomerization It is used in the Kharasch addition of chlorocarbons to alkenes 8 nbsp Dichlorotris triphenylphosphine ruthenium II serves as a precatalyst for the hydrogenation of alkenes nitro compounds ketones carboxylic acids and imines On the other hand it catalyzes the oxidation of alkanes to tertiary alcohols amides to t butyldioxyamides and tertiary amines to a t butyldioxyamides using tert butyl hydroperoxide Using other peroxides oxygen and acetone the catalyst can oxidize alcohols to aldehydes or ketones Using dichlorotris triphenylphosphine ruthenium II the N alkylation of amines with alcohols is also possible see borrowing hydrogen 8 nbsp RuCl2 PPh3 3 efficiently catalyzes carbon carbon bond formation from cross couplings of alcohols through C H activation of sp3 carbon atoms in the presence of a Lewis acid 9 nbsp References edit Stephenson T A Wilkinson G New Complexes of Ruthenium II and III with Triphenylphosphine Triphenylarsine Trichlorostannate Pyridine and other Ligands J Inorg Nucl Chem 1966 28 945 956 doi 10 1016 0022 1902 66 80191 4 P S Hallman T A Stephenson G Wilkinson Tetrakis Triphenylphosphine Dichloro Ruthenium II and Tris Triphenylphosphine Dichlororuthenium II Inorganic Syntheses 1970 volume 12 doi 10 1002 9780470132432 ch40 Sabo Etienne S Gellier M Ruthenium Inorganic and Coordination Chemistry Encyclopedia of Inorganic Chemistry 2006 John Wiley amp Sons Sabo Etienne Sylviane Grellier Mary 2006 Ruthenium Inorganic amp Coordination Chemistry Based in part on the article Ruthenium Inorganic amp Coordination Chemistry by Bruno Chaudret amp Sylviane Sabo Etienne which appeared in the Encyclopedia of Inorganic Chemistry First Edition Encyclopedia of Inorganic Chemistry doi 10 1002 0470862106 ia208 ISBN 0470860782 La Placa Sam J Ibers James A 1965 A Five Coordinated d6 Complex Structure of Dichlorotris triphenylphosphine ruthenium II Inorganic Chemistry 4 6 778 783 doi 10 1021 ic50028a002 Georgios C Vougioukalakis Robert H Grubbs Ruthenium Based Heterocyclic Carbene Coordinated Olefin Metathesis Catalysts Chem Rev 2010 volume 110 pp 1746 1787 Vougioukalakis Georgios C Grubbs Robert H 2010 Ruthenium Based Heterocyclic Carbene Coordinated Olefin Metathesis Catalysts Chemical Reviews 110 3 1746 1787 doi 10 1021 cr9002424 PMID 20000700 Schunn R A Wonchoba E R 1972 Chlorohydridotris triphenylphosphine ruthenium II Inorganic Syntheses Vol 13 p 131 doi 10 1002 9780470132449 ch26 ISBN 9780470132449 Loges B Boddien A Junge H Beller M Controlled Generation of Hydrogen from Formic Acid Amine Adducs at Room Temperature and Application in H2 O2 Fuel Cells Angew Chem Int Ed 2008 47 3962 3965 Loges BjA rn Boddien Albert Junge Henrik Beller Matthias 2008 Controlled Generation of Hydrogen from Formic Acid Amine Adducts at Room Temperature and Application in H2 O2Fuel Cells Angewandte Chemie International Edition 47 21 3962 3965 doi 10 1002 anie 200705972 PMID 18457345 a b Plummer J S Shun Ichi M Changjia Z Dichlorotris triphenylphosphine ruthenium II e EROS Encyclopedia of Reagents for Organic Synthesis 2010 John Wiley doi 10 1002 047084289X rd137 pub2 Shu Yu Z Yong Qiang T Chun An F Yi Jun J Lei S Ke C En Z Cross Coupling Reactions between alcohols through sp3 C H Activation Catalyzed by a Ruthenium Lewis Acid System Chem Eur J 2008 14 10201 10205 Zhang Shu Yu Tu Yong Qiang Fan Chun An Jiang Yi Jun Shi Lei Cao Ke Zhang En 2008 Cross Coupling Reaction between Alcohols through sp3C H Activation Catalyzed by a Ruthenium Lewis Acid System Chemistry A European Journal 14 33 10201 10205 doi 10 1002 chem 200801317 PMID 18844197 Retrieved from https en wikipedia org w index php title Dichlorotris triphenylphosphine ruthenium II amp oldid 1176596946, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.