fbpx
Wikipedia

Transformation semigroup

In algebra, a transformation semigroup (or composition semigroup) is a collection of transformations (functions from a set to itself) that is closed under function composition. If it includes the identity function, it is a monoid, called a transformation (or composition) monoid. This is the semigroup analogue of a permutation group.

A transformation semigroup of a set has a tautological semigroup action on that set. Such actions are characterized by being faithful, i.e., if two elements of the semigroup have the same action, then they are equal.

An analogue of Cayley's theorem shows that any semigroup can be realized as a transformation semigroup of some set.

In automata theory, some authors use the term transformation semigroup to refer to a semigroup acting faithfully on a set of "states" different from the semigroup's base set.[1] There is a correspondence between the two notions.

Transformation semigroups and monoids edit

A transformation semigroup is a pair (X,S), where X is a set and S is a semigroup of transformations of X. Here a transformation of X is just a function from a subset of X to X, not necessarily invertible, and therefore S is simply a set of transformations of X which is closed under composition of functions. The set of all partial functions on a given base set, X, forms a regular semigroup called the semigroup of all partial transformations (or the partial transformation semigroup on X), typically denoted by  .[2]

If S includes the identity transformation of X, then it is called a transformation monoid. Obviously any transformation semigroup S determines a transformation monoid M by taking the union of S with the identity transformation. A transformation monoid whose elements are invertible is a permutation group.

The set of all transformations of X is a transformation monoid called the full transformation monoid (or semigroup) of X. It is also called the symmetric semigroup of X and is denoted by TX. Thus a transformation semigroup (or monoid) is just a subsemigroup (or submonoid) of the full transformation monoid of X.

If (X,S) is a transformation semigroup then X can be made into a semigroup action of S by evaluation:

 

This is a monoid action if S is a transformation monoid.

The characteristic feature of transformation semigroups, as actions, is that they are faithful, i.e., if

 

then s = t. Conversely if a semigroup S acts on a set X by T(s,x) = sx then we can define, for sS, a transformation Ts of X by

 

The map sending s to Ts is injective if and only if (XT) is faithful, in which case the image of this map is a transformation semigroup isomorphic to S.

Cayley representation edit

In group theory, Cayley's theorem asserts that any group G is isomorphic to a subgroup of the symmetric group of G (regarded as a set), so that G is a permutation group. This theorem generalizes straightforwardly to monoids: any monoid M is a transformation monoid of its underlying set, via the action given by left (or right) multiplication. This action is faithful because if ax = bx for all x in M, then by taking x equal to the identity element, we have a = b.

For a semigroup S without a (left or right) identity element, we take X to be the underlying set of the monoid corresponding to S to realise S as a transformation semigroup of X. In particular any finite semigroup can be represented as a subsemigroup of transformations of a set X with |X| ≤ |S| + 1, and if S is a monoid, we have the sharper bound |X| ≤ |S|, as in the case of finite groups.[3]: 21 

In computer science edit

In computer science, Cayley representations can be applied to improve the asymptotic efficiency of semigroups by reassociating multiple composed multiplications. The action given by left multiplication results in right-associated multiplication, and vice versa for the action given by right multiplication. Despite having the same results for any semigroup, the asymptotic efficiency will differ. Two examples of useful transformation monoids given by an action of left multiplication are the functional variation of the difference list data structure, and the monadic Codensity transformation (a Cayley representation of a monad, which is a monoid in a particular monoidal functor category).[4]

Transformation monoid of an automaton edit

Let M be a deterministic automaton with state space S and alphabet A. The words in the free monoid A induce transformations of S giving rise to a monoid morphism from A to the full transformation monoid TS. The image of this morphism is the transformation semigroup of M.[3]: 78 

For a regular language, the syntactic monoid is isomorphic to the transformation monoid of the minimal automaton of the language.[3]: 81 

See also edit

References edit

  1. ^ Dominique Perrin; Jean Eric Pin (2004). Infinite Words: Automata, Semigroups, Logic and Games. Academic Press. p. 448. ISBN 978-0-12-532111-2.
  2. ^ Alfred Hoblitzelle Clifford; G. B. Preston (1967). The Algebraic Theory of Semigroups. Volume II. American Mathematical Soc. p. 254. ISBN 978-0-8218-0272-4.
  3. ^ a b c Anderson, James A. (2006). Automata Theory with Modern Applications. With contributions by Tom Head. Cambridge: Cambridge University Press. doi:10.1017/CBO9780511607202. ISBN 978-0-521-61324-8. Zbl 1127.68049.
  4. ^ Rivas, Exequiel; Jaskelioff, Mauro (2017). "Notions of Computation as Monoids". Journal of Functional Programming. 27 (e21). arXiv:1406.4823. doi:10.1017/S0956796817000132.

transformation, semigroup, algebra, transformation, semigroup, composition, semigroup, collection, transformations, functions, from, itself, that, closed, under, function, composition, includes, identity, function, monoid, called, transformation, composition, . In algebra a transformation semigroup or composition semigroup is a collection of transformations functions from a set to itself that is closed under function composition If it includes the identity function it is a monoid called a transformation or composition monoid This is the semigroup analogue of a permutation group A transformation semigroup of a set has a tautological semigroup action on that set Such actions are characterized by being faithful i e if two elements of the semigroup have the same action then they are equal An analogue of Cayley s theorem shows that any semigroup can be realized as a transformation semigroup of some set In automata theory some authors use the term transformation semigroup to refer to a semigroup acting faithfully on a set of states different from the semigroup s base set 1 There is a correspondence between the two notions Contents 1 Transformation semigroups and monoids 2 Cayley representation 2 1 In computer science 3 Transformation monoid of an automaton 4 See also 5 ReferencesTransformation semigroups and monoids editA transformation semigroup is a pair X S where X is a set and S is a semigroup of transformations of X Here a transformation of X is just a function from a subset of X to X not necessarily invertible and therefore S is simply a set of transformations of X which is closed under composition of functions The set of all partial functions on a given base set X forms a regular semigroup called the semigroup of all partial transformations or the partial transformation semigroup on X typically denoted by PTX displaystyle mathcal PT X nbsp 2 If S includes the identity transformation of X then it is called a transformation monoid Obviously any transformation semigroup S determines a transformation monoid M by taking the union of S with the identity transformation A transformation monoid whose elements are invertible is a permutation group The set of all transformations of X is a transformation monoid called the full transformation monoid or semigroup of X It is also called the symmetric semigroup of X and is denoted by TX Thus a transformation semigroup or monoid is just a subsemigroup or submonoid of the full transformation monoid of X If X S is a transformation semigroup then X can be made into a semigroup action of S by evaluation s x s x for s S x X displaystyle s cdot x s x text for s in S x in X nbsp This is a monoid action if S is a transformation monoid The characteristic feature of transformation semigroups as actions is that they are faithful i e if s x t x for all x X displaystyle s cdot x t cdot x text for all x in X nbsp then s t Conversely if a semigroup S acts on a set X by T s x s x then we can define for s S a transformation Ts of X by Ts x T s x displaystyle T s x T s x nbsp The map sending s to Ts is injective if and only if X T is faithful in which case the image of this map is a transformation semigroup isomorphic to S Cayley representation editIn group theory Cayley s theorem asserts that any group G is isomorphic to a subgroup of the symmetric group of G regarded as a set so that G is a permutation group This theorem generalizes straightforwardly to monoids any monoid M is a transformation monoid of its underlying set via the action given by left or right multiplication This action is faithful because if ax bx for all x in M then by taking x equal to the identity element we have a b For a semigroup S without a left or right identity element we take X to be the underlying set of the monoid corresponding to S to realise S as a transformation semigroup of X In particular any finite semigroup can be represented as a subsemigroup of transformations of a set X with X S 1 and if S is a monoid we have the sharper bound X S as in the case of finite groups 3 21 In computer science edit In computer science Cayley representations can be applied to improve the asymptotic efficiency of semigroups by reassociating multiple composed multiplications The action given by left multiplication results in right associated multiplication and vice versa for the action given by right multiplication Despite having the same results for any semigroup the asymptotic efficiency will differ Two examples of useful transformation monoids given by an action of left multiplication are the functional variation of the difference list data structure and the monadic Codensity transformation a Cayley representation of a monad which is a monoid in a particular monoidal functor category 4 Transformation monoid of an automaton editLet M be a deterministic automaton with state space S and alphabet A The words in the free monoid A induce transformations of S giving rise to a monoid morphism from A to the full transformation monoid TS The image of this morphism is the transformation semigroup of M 3 78 For a regular language the syntactic monoid is isomorphic to the transformation monoid of the minimal automaton of the language 3 81 See also editSemiautomaton Krohn Rhodes theory Symmetric inverse semigroup Biordered set Special classes of semigroups Composition ringReferences edit Dominique Perrin Jean Eric Pin 2004 Infinite Words Automata Semigroups Logic and Games Academic Press p 448 ISBN 978 0 12 532111 2 Alfred Hoblitzelle Clifford G B Preston 1967 The Algebraic Theory of Semigroups Volume II American Mathematical Soc p 254 ISBN 978 0 8218 0272 4 a b c Anderson James A 2006 Automata Theory with Modern Applications With contributions by Tom Head Cambridge Cambridge University Press doi 10 1017 CBO9780511607202 ISBN 978 0 521 61324 8 Zbl 1127 68049 Rivas Exequiel Jaskelioff Mauro 2017 Notions of Computation as Monoids Journal of Functional Programming 27 e21 arXiv 1406 4823 doi 10 1017 S0956796817000132 Clifford A H Preston G B 1961 The algebraic theory of semigroups Vol I Mathematical Surveys Vol 7 Providence R I American Mathematical Society ISBN 978 0 8218 0272 4 Zbl 0111 03403 Howie John M 1995 Fundamentals of Semigroup Theory London Mathematical Society Monographs New Series Vol 12 Oxford Clarendon Press ISBN 978 0 19 851194 6 Zbl 0835 20077 Mati Kilp Ulrich Knauer Alexander V Mikhalev 2000 Monoids Acts and Categories with Applications to Wreath Products and Graphs Expositions in Mathematics 29 Walter de Gruyter Berlin ISBN 978 3 11 015248 7 Retrieved from https en wikipedia org w index php title Transformation semigroup amp oldid 1199177729, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.