fbpx
Wikipedia

Monoidal category

In mathematics, a monoidal category (or tensor category) is a category equipped with a bifunctor

that is associative up to a natural isomorphism, and an object I that is both a left and right identity for ⊗, again up to a natural isomorphism. The associated natural isomorphisms are subject to certain coherence conditions, which ensure that all the relevant diagrams commute.

The ordinary tensor product makes vector spaces, abelian groups, R-modules, or R-algebras into monoidal categories. Monoidal categories can be seen as a generalization of these and other examples. Every (small) monoidal category may also be viewed as a "categorification" of an underlying monoid, namely the monoid whose elements are the isomorphism classes of the category's objects and whose binary operation is given by the category's tensor product.

A rather different application, for which monoidal categories can be considered an abstraction, is a system of data types closed under a type constructor that takes two types and builds an aggregate type. The types serve as the objects, and ⊗ is the aggregate constructor. The associativity up to isomorphism is then a way of expressing that different ways of aggregating the same data—such as and —store the same information even though the aggregate values need not be the same. The aggregate type may be analogous to the operation of addition (type sum) or of multiplication (type product). For type product, the identity object is the unit , so there is only one inhabitant of the type, and that is why a product with it is always isomorphic to the other operand. For type sum, the identity object is the void type, which stores no information, and it is impossible to address an inhabitant. The concept of monoidal category does not presume that values of such aggregate types can be taken apart; on the contrary, it provides a framework that unifies classical and quantum information theory.[1]

In category theory, monoidal categories can be used to define the concept of a monoid object and an associated action on the objects of the category. They are also used in the definition of an enriched category.

Monoidal categories have numerous applications outside of category theory proper. They are used to define models for the multiplicative fragment of intuitionistic linear logic. They also form the mathematical foundation for the topological order in condensed matter physics. Braided monoidal categories have applications in quantum information, quantum field theory, and string theory.

Formal definition edit

A monoidal category is a category   equipped with a monoidal structure. A monoidal structure consists of the following:

  • a bifunctor   called the monoidal product,[2] or tensor product,
  • an object   called the monoidal unit,[2] unit object, or identity object,
  • three natural isomorphisms subject to certain coherence conditions expressing the fact that the tensor operation:
    • is associative: there is a natural (in each of three arguments  ,  ,  ) isomorphism  , called associator, with components  ,
    • has   as left and right identity: there are two natural isomorphisms   and  , respectively called left and right unitor, with components   and  .

Note that a good way to remember how   and   act is by alliteration; Lambda,  , cancels the identity on the left, while Rho,  , cancels the identity on the right.

The coherence conditions for these natural transformations are:

  • for all  ,  ,   and   in  , the pentagon diagram
 
This is one of the main diagrams used to define a monoidal category; it is perhaps the most important one.
commutes;
  • for all   and   in  , the triangle diagram
 
This is one of the diagrams used in the definition of a monoidal cateogory. It takes care of the case for when there is an instance of an identity between two objects.
commutes.

A strict monoidal category is one for which the natural isomorphisms α, λ and ρ are identities. Every monoidal category is monoidally equivalent to a strict monoidal category.

Examples edit

  • Any category with finite products can be regarded as monoidal with the product as the monoidal product and the terminal object as the unit. Such a category is sometimes called a cartesian monoidal category. For example:
    • Set, the category of sets with the Cartesian product, any particular one-element set serving as the unit.
    • Cat, the category of small categories with the product category, where the category with one object and only its identity map is the unit.
  • Dually, any category with finite coproducts is monoidal with the coproduct as the monoidal product and the initial object as the unit. Such a monoidal category is called cocartesian monoidal
  • R-Mod, the category of modules over a commutative ring R, is a monoidal category with the tensor product of modulesR serving as the monoidal product and the ring R (thought of as a module over itself) serving as the unit. As special cases one has:
  • For any commutative ring R, the category of R-algebras is monoidal with the tensor product of algebras as the product and R as the unit.
  • The category of pointed spaces (restricted to compactly generated spaces for example) is monoidal with the smash product serving as the product and the pointed 0-sphere (a two-point discrete space) serving as the unit.
  • The category of all endofunctors on a category C is a strict monoidal category with the composition of functors as the product and the identity functor as the unit.
  • Just like for any category E, the full subcategory spanned by any given object is a monoid, it is the case that for any 2-category E, and any object C in Ob(E), the full 2-subcategory of E spanned by {C} is a monoidal category. In the case E = Cat, we get the endofunctors example above.
  • Bounded-above meet semilattices are strict symmetric monoidal categories: the product is meet and the identity is the top element.
  • Any ordinary monoid   is a small monoidal category with object set  , only identities for morphisms,   as tensor product and   as its identity object. Conversely, the set of isomorphism classes (if such a thing makes sense) of a monoidal category is a monoid w.r.t. the tensor product.
  • Any commutative monoid   can be realized as a monoidal category with a single object. Recall that a category with a single object is the same thing as an ordinary monoid. By an Eckmann-Hilton argument, adding another monoidal product on   requires the product to be commutative.

Properties and associated notions edit

It follows from the three defining coherence conditions that a large class of diagrams (i.e. diagrams whose morphisms are built using  ,  ,  , identities and tensor product) commute: this is Mac Lane's "coherence theorem". It is sometimes inaccurately stated that all such diagrams commute.

There is a general notion of monoid object in a monoidal category, which generalizes the ordinary notion of monoid from abstract algebra. Ordinary monoids are precisely the monoid objects in the cartesian monoidal category Set. Further, any (small) strict monoidal category can be seen as a monoid object in the category of categories Cat (equipped with the monoidal structure induced by the cartesian product).

Monoidal functors are the functors between monoidal categories that preserve the tensor product and monoidal natural transformations are the natural transformations, between those functors, which are "compatible" with the tensor product.

Every monoidal category can be seen as the category B(∗, ∗) of a bicategory B with only one object, denoted ∗.

The concept of a category C enriched in a monoidal category M replaces the notion of a set of morphisms between pairs of objects in C with the notion of an M-object of morphisms between every two objects in C.

Free strict monoidal category edit

For every category C, the free strict monoidal category Σ(C) can be constructed as follows:

  • its objects are lists (finite sequences) A1, ..., An of objects of C;
  • there are arrows between two objects A1, ..., Am and B1, ..., Bn only if m = n, and then the arrows are lists (finite sequences) of arrows f1: A1B1, ..., fn: AnBn of C;
  • the tensor product of two objects A1, ..., An and B1, ..., Bm is the concatenation A1, ..., An, B1, ..., Bm of the two lists, and, similarly, the tensor product of two morphisms is given by the concatenation of lists. The identity object is the empty list.

This operation Σ mapping category C to Σ(C) can be extended to a strict 2-monad on Cat.

Specializations edit

Preordered monoids edit

A preordered monoid is a monoidal category in which for every two objects  , there exists at most one morphism   in C. In the context of preorders, a morphism   is sometimes notated  . The reflexivity and transitivity properties of an order, defined in the traditional sense, are incorporated into the categorical structure by the identity morphism and the composition formula in C, respectively. If   and  , then the objects   are isomorphic which is notated  .

Introducing a monoidal structure to the preorder C involves constructing

  • an object  , called the monoidal unit, and
  • a functor  , denoted by " ", called the monoidal multiplication.

  and   must be unital and associative, up to isomorphism, meaning:

  and  .

As · is a functor,

if   and   then  .

The other coherence conditions of monoidal categories are fulfilled through the preorder structure as every diagram commutes in a preorder.

The natural numbers are an example of a monoidal preorder: having both a monoid structure (using + and 0) and a preorder structure (using ≤) forms a monoidal preorder as   and   implies  .

The free monoid on some generating set produces a monoidal preorder, producing the semi-Thue system.

See also edit

References edit

  1. ^ Baez, John; Stay, Mike (2011). "Physics, topology, logic and computation: a Rosetta Stone" (PDF). In Coecke, Bob (ed.). New Structures for Physics. Lecture Notes in Physics. Vol. 813. Springer. pp. 95–172. arXiv:0903.0340. CiteSeerX 10.1.1.296.1044. doi:10.1007/978-3-642-12821-9_2. ISBN 978-3-642-12821-9. ISSN 0075-8450. S2CID 115169297. Zbl 1218.81008.
  2. ^ a b Fong, Brendan; Spivak, David I. (2018-10-12). "Seven Sketches in Compositionality: An Invitation to Applied Category Theory". arXiv:1803.05316 [math.CT].
  • Joyal, André; Street, Ross (1993). "Braided Tensor Categories" (PDF). Advances in Mathematics. 102 (1): 20–78. doi:10.1006/aima.1993.1055.
  • Joyal, André; Street, Ross (1988). "Planar diagrams and tensor algebra" (PDF).
  • Kelly, G. Max (1964). "On MacLane's Conditions for Coherence of Natural Associativities, Commutativities, etc". Journal of Algebra. 1 (4): 397–402. doi:10.1016/0021-8693(64)90018-3.
  • Kelly, G.M. (1982). Basic Concepts of Enriched Category Theory (PDF). London Mathematical Society Lecture Note Series. Vol. 64. Cambridge University Press. ISBN 978-0-521-28702-9. OCLC 1015056596. Zbl 0478.18005.
  • Mac Lane, Saunders (1963). "Natural Associativity and Commutativity". Rice University Studies. 49 (4): 28–46. CiteSeerX 10.1.1.953.2731. hdl:1911/62865.
  • Mac Lane, Saunders (1998). Categories for the Working Mathematician. Graduate Texts in Mathematics. Vol. 5 (2nd ed.). Springer. ISBN 0-387-98403-8. Zbl 0906.18001.
  • Monoidal category at the nLab

External links edit

  •   Media related to Monoidal category at Wikimedia Commons

monoidal, category, internal, product, redirects, here, confused, with, inner, product, mathematics, monoidal, category, tensor, category, category, displaystyle, mathbf, equipped, with, bifunctor, displaystyle, otimes, mathbf, times, mathbf, mathbf, that, ass. Internal product redirects here Not to be confused with Inner product In mathematics a monoidal category or tensor category is a category C displaystyle mathbf C equipped with a bifunctor C C C displaystyle otimes mathbf C times mathbf C to mathbf C that is associative up to a natural isomorphism and an object I that is both a left and right identity for again up to a natural isomorphism The associated natural isomorphisms are subject to certain coherence conditions which ensure that all the relevant diagrams commute The ordinary tensor product makes vector spaces abelian groups R modules or R algebras into monoidal categories Monoidal categories can be seen as a generalization of these and other examples Every small monoidal category may also be viewed as a categorification of an underlying monoid namely the monoid whose elements are the isomorphism classes of the category s objects and whose binary operation is given by the category s tensor product A rather different application for which monoidal categories can be considered an abstraction is a system of data types closed under a type constructor that takes two types and builds an aggregate type The types serve as the objects and is the aggregate constructor The associativity up to isomorphism is then a way of expressing that different ways of aggregating the same data such as a b c displaystyle a b c and a b c displaystyle a b c store the same information even though the aggregate values need not be the same The aggregate type may be analogous to the operation of addition type sum or of multiplication type product For type product the identity object is the unit displaystyle so there is only one inhabitant of the type and that is why a product with it is always isomorphic to the other operand For type sum the identity object is the void type which stores no information and it is impossible to address an inhabitant The concept of monoidal category does not presume that values of such aggregate types can be taken apart on the contrary it provides a framework that unifies classical and quantum information theory 1 In category theory monoidal categories can be used to define the concept of a monoid object and an associated action on the objects of the category They are also used in the definition of an enriched category Monoidal categories have numerous applications outside of category theory proper They are used to define models for the multiplicative fragment of intuitionistic linear logic They also form the mathematical foundation for the topological order in condensed matter physics Braided monoidal categories have applications in quantum information quantum field theory and string theory Contents 1 Formal definition 2 Examples 3 Properties and associated notions 3 1 Free strict monoidal category 4 Specializations 4 1 Preordered monoids 5 See also 6 References 7 External linksFormal definition editA monoidal category is a category C displaystyle mathbf C nbsp equipped with a monoidal structure A monoidal structure consists of the following a bifunctor C C C displaystyle otimes colon mathbf C times mathbf C to mathbf C nbsp called the monoidal product 2 or tensor product an object I displaystyle I nbsp called the monoidal unit 2 unit object or identity object three natural isomorphisms subject to certain coherence conditions expressing the fact that the tensor operation is associative there is a natural in each of three arguments A displaystyle A nbsp B displaystyle B nbsp C displaystyle C nbsp isomorphism a displaystyle alpha nbsp called associator with components a A B C A B C A B C displaystyle alpha A B C colon A otimes B otimes C cong A otimes B otimes C nbsp has I displaystyle I nbsp as left and right identity there are two natural isomorphisms l displaystyle lambda nbsp and r displaystyle rho nbsp respectively called left and right unitor with components l A I A A displaystyle lambda A colon I otimes A cong A nbsp and r A A I A displaystyle rho A colon A otimes I cong A nbsp Note that a good way to remember how l displaystyle lambda nbsp and r displaystyle rho nbsp act is by alliteration Lambda l displaystyle lambda nbsp cancels the identity on the left while Rho r displaystyle rho nbsp cancels the identity on the right The coherence conditions for these natural transformations are for all A displaystyle A nbsp B displaystyle B nbsp C displaystyle C nbsp and D displaystyle D nbsp in C displaystyle mathbf C nbsp the pentagon diagram nbsp This is one of the main diagrams used to define a monoidal category it is perhaps the most important one dd commutes for all A displaystyle A nbsp and B displaystyle B nbsp in C displaystyle mathbf C nbsp the triangle diagram nbsp This is one of the diagrams used in the definition of a monoidal cateogory It takes care of the case for when there is an instance of an identity between two objects commutes A strict monoidal category is one for which the natural isomorphisms a l and r are identities Every monoidal category is monoidally equivalent to a strict monoidal category Examples editAny category with finite products can be regarded as monoidal with the product as the monoidal product and the terminal object as the unit Such a category is sometimes called a cartesian monoidal category For example Set the category of sets with the Cartesian product any particular one element set serving as the unit Cat the category of small categories with the product category where the category with one object and only its identity map is the unit Dually any category with finite coproducts is monoidal with the coproduct as the monoidal product and the initial object as the unit Such a monoidal category is called cocartesian monoidal R Mod the category of modules over a commutative ring R is a monoidal category with the tensor product of modules R serving as the monoidal product and the ring R thought of as a module over itself serving as the unit As special cases one has K Vect the category of vector spaces over a field K with the one dimensional vector space K serving as the unit Ab the category of abelian groups with the group of integers Z serving as the unit For any commutative ring R the category of R algebras is monoidal with the tensor product of algebras as the product and R as the unit The category of pointed spaces restricted to compactly generated spaces for example is monoidal with the smash product serving as the product and the pointed 0 sphere a two point discrete space serving as the unit The category of all endofunctors on a category C is a strict monoidal category with the composition of functors as the product and the identity functor as the unit Just like for any category E the full subcategory spanned by any given object is a monoid it is the case that for any 2 category E and any object C in Ob E the full 2 subcategory of E spanned by C is a monoidal category In the case E Cat we get the endofunctors example above Bounded above meet semilattices are strict symmetric monoidal categories the product is meet and the identity is the top element Any ordinary monoid M 1 displaystyle M cdot 1 nbsp is a small monoidal category with object set M displaystyle M nbsp only identities for morphisms displaystyle cdot nbsp as tensor product and 1 displaystyle 1 nbsp as its identity object Conversely the set of isomorphism classes if such a thing makes sense of a monoidal category is a monoid w r t the tensor product Any commutative monoid M 1 displaystyle M cdot 1 nbsp can be realized as a monoidal category with a single object Recall that a category with a single object is the same thing as an ordinary monoid By an Eckmann Hilton argument adding another monoidal product on M displaystyle M nbsp requires the product to be commutative Properties and associated notions editIt follows from the three defining coherence conditions that a large class of diagrams i e diagrams whose morphisms are built using a displaystyle alpha nbsp l displaystyle lambda nbsp r displaystyle rho nbsp identities and tensor product commute this is Mac Lane s coherence theorem It is sometimes inaccurately stated that all such diagrams commute There is a general notion of monoid object in a monoidal category which generalizes the ordinary notion of monoid from abstract algebra Ordinary monoids are precisely the monoid objects in the cartesian monoidal category Set Further any small strict monoidal category can be seen as a monoid object in the category of categories Cat equipped with the monoidal structure induced by the cartesian product Monoidal functors are the functors between monoidal categories that preserve the tensor product and monoidal natural transformations are the natural transformations between those functors which are compatible with the tensor product Every monoidal category can be seen as the category B of a bicategory B with only one object denoted The concept of a category C enriched in a monoidal category M replaces the notion of a set of morphisms between pairs of objects in C with the notion of an M object of morphisms between every two objects in C Free strict monoidal category edit For every category C the free strict monoidal category S C can be constructed as follows its objects are lists finite sequences A1 An of objects of C there are arrows between two objects A1 Am and B1 Bn only if m n and then the arrows are lists finite sequences of arrows f1 A1 B1 fn An Bn of C the tensor product of two objects A1 An and B1 Bm is the concatenation A1 An B1 Bm of the two lists and similarly the tensor product of two morphisms is given by the concatenation of lists The identity object is the empty list This operation S mapping category C to S C can be extended to a strict 2 monad on Cat Specializations editIf in a monoidal category A B displaystyle A otimes B nbsp and B A displaystyle B otimes A nbsp are naturally isomorphic in a manner compatible with the coherence conditions we speak of a braided monoidal category If moreover this natural isomorphism is its own inverse we have a symmetric monoidal category A closed monoidal category is a monoidal category where the functor X X A displaystyle X mapsto X otimes A nbsp has a right adjoint which is called the internal Hom functor X H o m C A X displaystyle X mapsto mathrm Hom mathbf C A X nbsp Examples include cartesian closed categories such as Set the category of sets and compact closed categories such as FdVect the category of finite dimensional vector spaces Autonomous categories or compact closed categories or rigid categories are monoidal categories in which duals with nice properties exist they abstract the idea of FdVect Dagger symmetric monoidal categories equipped with an extra dagger functor abstracting the idea of FdHilb finite dimensional Hilbert spaces These include the dagger compact categories Tannakian categories are monoidal categories enriched over a field which are very similar to representation categories of linear algebraic groups Preordered monoids edit A preordered monoid is a monoidal category in which for every two objects c c O b C displaystyle c c in mathrm Ob mathbf C nbsp there exists at most one morphism c c displaystyle c to c nbsp in C In the context of preorders a morphism c c displaystyle c to c nbsp is sometimes notated c c displaystyle c leq c nbsp The reflexivity and transitivity properties of an order defined in the traditional sense are incorporated into the categorical structure by the identity morphism and the composition formula in C respectively If c c displaystyle c leq c nbsp and c c displaystyle c leq c nbsp then the objects c c displaystyle c c nbsp are isomorphic which is notated c c displaystyle c cong c nbsp Introducing a monoidal structure to the preorder C involves constructing an object I C displaystyle I in mathbf C nbsp called the monoidal unit and a functor C C C displaystyle mathbf C times mathbf C to mathbf C nbsp denoted by displaystyle cdot nbsp called the monoidal multiplication I displaystyle I nbsp and displaystyle cdot nbsp must be unital and associative up to isomorphism meaning c 1 c 2 c 3 c 1 c 2 c 3 displaystyle c 1 cdot c 2 cdot c 3 cong c 1 cdot c 2 cdot c 3 nbsp and I c c c I displaystyle I cdot c cong c cong c cdot I nbsp As is a functor if c 1 c 1 displaystyle c 1 to c 1 nbsp and c 2 c 2 displaystyle c 2 to c 2 nbsp then c 1 c 2 c 1 c 2 displaystyle c 1 cdot c 2 to c 1 cdot c 2 nbsp The other coherence conditions of monoidal categories are fulfilled through the preorder structure as every diagram commutes in a preorder The natural numbers are an example of a monoidal preorder having both a monoid structure using and 0 and a preorder structure using forms a monoidal preorder as m n displaystyle m leq n nbsp and m n displaystyle m leq n nbsp implies m m n n displaystyle m m leq n n nbsp The free monoid on some generating set produces a monoidal preorder producing the semi Thue system See also edit nbsp Mathematics portal Skeleton category theory Spherical category Monoidal category actionReferences edit Baez John Stay Mike 2011 Physics topology logic and computation a Rosetta Stone PDF In Coecke Bob ed New Structures for Physics Lecture Notes in Physics Vol 813 Springer pp 95 172 arXiv 0903 0340 CiteSeerX 10 1 1 296 1044 doi 10 1007 978 3 642 12821 9 2 ISBN 978 3 642 12821 9 ISSN 0075 8450 S2CID 115169297 Zbl 1218 81008 a b Fong Brendan Spivak David I 2018 10 12 Seven Sketches in Compositionality An Invitation to Applied Category Theory arXiv 1803 05316 math CT Joyal Andre Street Ross 1993 Braided Tensor Categories PDF Advances in Mathematics 102 1 20 78 doi 10 1006 aima 1993 1055 Joyal Andre Street Ross 1988 Planar diagrams and tensor algebra PDF Kelly G Max 1964 On MacLane s Conditions for Coherence of Natural Associativities Commutativities etc Journal of Algebra 1 4 397 402 doi 10 1016 0021 8693 64 90018 3 Kelly G M 1982 Basic Concepts of Enriched Category Theory PDF London Mathematical Society Lecture Note Series Vol 64 Cambridge University Press ISBN 978 0 521 28702 9 OCLC 1015056596 Zbl 0478 18005 Mac Lane Saunders 1963 Natural Associativity and Commutativity Rice University Studies 49 4 28 46 CiteSeerX 10 1 1 953 2731 hdl 1911 62865 Mac Lane Saunders 1998 Categories for the Working Mathematician Graduate Texts in Mathematics Vol 5 2nd ed Springer ISBN 0 387 98403 8 Zbl 0906 18001 Monoidal category at the nLabExternal links edit nbsp Media related to Monoidal category at Wikimedia Commons Retrieved from https en wikipedia org w index php title Monoidal category amp oldid 1199881788, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.