fbpx
Wikipedia

Timeline of crystallography

This is a timeline of crystallography.

18th Century edit

  • 1723 – Moritz Anton Cappeller introduces the term ‘crystallography’.[1]
  • 1766 – Pierre-Joseph Macquer, in his Dictionnaire de Chymie, promotes mechanisms of crystallization based on the idea that crystals are composed of polyhedral molecules (primitive integrantes).[2]
  • 1772 – Jean-Baptiste L. Romé de l'Isle develops geometrical ideas on crystal structure in his Essai de Cristallographie. He also described the twinning phenomenon in crystals.[3]
  • 1781 – Abbé René Just Haüy (often termed the "Father of Modern Crystallography"[4]) discovers that crystals always cleave along crystallographic planes. Based on this observation, and the fact that the inter-facial angles in each crystal species always have the same value, Haüy concluded that crystals must be periodic and composed of regularly arranged rows of tiny polyhedra (molécules intégrantes). This theory explained why all crystal planes are related by small rational numbers (the law of rational indices).[5][6]
  • 1783 – Jean-Baptiste L. Romé de l'Isle in the second edition of his Cristallographie uses the contact goniometer to discover the law of constant interfacial angles: angles are constant and characteristic for crystals of the same chemical substance.[7]
  • 1784 – René Just Haüy publishes his Law of Decrements: a crystal is composed of molecules arranged periodically in three dimensions.[8]
  • 1795 – René Just Haüy lectures on his Law of Symmetry: “[…] the manner in which Nature creates crystals is always obeying [...] the law of the greatest possible symmetry, in the sense that oppositely situated but corresponding parts are always equal in number, arrangement, and form of their faces”.[9]

19th Century edit

20th Century edit

21st Century edit

  • 2000 - Janos Hajdu, Richard Neutze, and colleagues calculated that they could use Sayre’s ideas from the 1950s, to implement a ‘diffraction before destruction’ concept, using an X-ray free-electron laser (XFEL).[116]
  • 2001 - Harry F. Noller’s group publish the 5.5-Å structure of the complete Thermus thermophilus 70S ribosome. This structure revealed that the major functional regions of the ribosome were based on RNA, establishing the primordial role of RNA in translation.[117]
  • 2001 - Roger Kornberg’s group publish the 2.8-Å structure of Saccharomyces cerevisiae RNA polymerase. The structure allowed both transcription initiation and elongation mechanisms to be deduced. Simultaneously, this group reported the structure of free RNA polymerase II, which contributed towards the eventual visualisation of the interaction between DNA, RNA, and the ribosome.[118][119][120]
  • 2002 - Michael Woolfson wins the sixth IUCr Ewald Prize "for his exceptional contributions in developing the conceptual and theoretical framework of direct methods along with the algorithm design and computer programs for automatic solutions that changed the face of structural science and for his contributions to crystallographic education and international collaboration, which have strengthened the intellectual development of crystallographers worldwide".[121]
  • 2005 - Philip Coppens wins the seventh IUCr Ewald Prize "for his contributions to developing the fields of electron density determination and the crystallography of molecular excited states, and for his contributions to the education and inspiration of young crystallographers as an enthusiastic teacher by participating in and organizing many courses and workshops".[122]
  • 2007 - Two X-ray crystal structures of a GPCR, the human β2 adrenergic receptor, were published. Because many drugs elicit their biological effect(s) by binding to a GPCR, the structures of these and other GPCRs may be used to develop efficacious drugs with few side effects.[123][124]
  • 2008 - David Sayre wins the eighth IUCr Ewald Prize "for the unique breadth of his contributions to crystallography, which range from seminal contributions to the solving of the phase problem to the complex physics of imaging generic objects by X-ray diffraction and microscopy, and for never losing touch with the physical reality of the processes involved".[125]
  • 2009 - Venkatraman Ramakrishnan, Thomas A. Steitz and Ada E. Yonath share the Nobel Prize in Chemistry "for studies of the structure and function of the ribosome."[126]
  • 2011 - Sandra Van Aert, Kees Joost Batenburg et. al. determined the 3D atomic positions of a silver nanoparticle using electron tomography.[127]
  • 2011 - Dan Shechtman receives the Nobel Prize in chemistry "for the discovery of quasicrystals."[128]
  • 2011 - Eleanor Dodson, Carmelo Giacovazzo and George M. Sheldrick share the ninth IUCr Ewald Prize "for the enormous impact they have made on structural crystallography through the development of new methods that have then been made available to users as constantly maintained and extended software. Their invaluable contributions to computational crystallography have resulted in the leading program suites CCP4, SIR and SHELX, respectively. All over the world thousands of crystallographers benefit from their achievements on a daily basis".[129]
  • 2014 - Aloysio Janner and Ted Janssen share the tenth IUCr Ewald Prize "for the development of superspace crystallography and its application to the analysis of aperiodic crystals".[130]
  • 2017 - Jacques Dubochet, Joachim Frank and Richard Henderson share the Nobel Prize in chemistry "for developing cryo-electron microscopy for the high-resolution structure determination of biomolecules in solution.""[131]
  • 2017 - Tom Blundell wins the eleventh IUCr Ewald Prize "for his work as one of the worldwide leaders in crystallographic innovation, especially at the interface with life sciences; starting with his work on determining the structure of insulin with Dorothy Hodgkin, he determined an exceptionally broad array of medically critical human protein structures, championing methods enabling drug design and discovery through structural optimization, crystallographic fragment screening, and computational modelling, and for being a leader in advanced crystallographic education internationally".[132]
  • 2021 - Olga Kennard wins the twelfth IUCr Ewald Prize "for her invaluable pioneering contribution to the development of crystallographic databases, in particular the Cambridge Structural Database (CSD)".[133]
  • 2023 - Wayne Hendrickson wins the thirteenth IUCr Ewald Prize "for his exceptional contribution to structural biology including the development of MAD/SAD methods and crystallographic theory. No-one else is so singularly and formatively identified with the explosive growth in biological crystallography and the consequent benefits to chemistry and biology.".[134]

References edit

  1. ^ Cappeller, M.A. (1723), Prodromus crystallographiae de crystallis improprie sic dictis commentarium, H.R. Wyssing, Lucerne
  2. ^ Macquer, P.-J. (1766). Dictionnaire de Chymie, Lacombe, Paris
  3. ^ Romé de l'Isle, J.-B. L. (1772). Essai de Cristallographie, Paris
  4. ^ Brock, H. (1910). The Catholic Encyclopedia, New York: Robert Appleton Company.
  5. ^ Haüy, R.J. (1782). Sur la structure des cristaux de grenat, Observations sur la physique, sur l’histoire naturelle et sur les arts, XIX, 366-370
  6. ^ Haüy, R.J. (1782). Sur la structure des cristaux des spaths calcaires, Observations sur la physique, sur l’histoire naturelle et sur les arts. XX, 33-39
  7. ^ Romé de l'Isle, J.-B. L. (1783). Cristallographie ou description des formes propres à tous les corps du règne minéral dans l'état de combinaison saline, pierreuse ou métallique, Paris
  8. ^ Haüy, R.J. (1784). Essai d’une théorie sur la structure des cristaux, appliquée à plusieurs genres de substances cristallisées, Chez Gogué et Née de La Rochelle, Paris
  9. ^ Haüy, R.J. (1795). Leçons de Physique, in Séances des Ecoles normales […], L. Reynier, Paris
  10. ^ Haüy, R.J. (1801). Traité de Minéralogie, Chez Louis, Paris
  11. ^ Haüy, R.J. (1822). Traité de Cristallographie, Bachelier et Huzard, Paris
  12. ^ Haüy, R.J. (1815). Memoire sur une loi de cristallisation appelée loi de symmétrie, Mémoires du Muséum d’Histoire naturelle 1, 81-101, 206-225, 273-298, 341-352
  13. ^ Weiss, C.S. (1815). Uebersichtliche Darstellung der versschiedenen naturlichen Abteilungen der Kristallisations-Systeme, Abh. K. Akad. Wiss. Berlin. 289-337, 1814-1815.
  14. ^ Melhado, Evan M. (1980-01-01). "Mitscherlich's Discovery of Isomorphism". Historical Studies in the Physical Sciences. 11 (1): 87–123. doi:10.2307/27757472. ISSN 0073-2672. JSTOR 27757472.
  15. ^ Mohs, F. (1822). On the crystallographic discoveries and systems of Weiss and Mohs, The Edinburgh Philosophical Journal VIII, 275-290
  16. ^ Neumann, F.E. (1823). Beiträge zur Krystallonomie, Ernst Siegfried Mittler, Berlin und Posen
  17. ^ Seeber, L.A. (1824). Versuch einer Erklärung des inneren Baues der Festen Körper, Ann. Phys. 76, 229-248, 349-371
  18. ^ Frankenheim, M.L. (1826). Crystallonomische Aufsätze, Isis (Jena) 19, 497-515, 542-565
  19. ^ Hessel J.F.C. (1830). Krystallometrie oder Krystallonomie und Krystallographie, in Gehler’s Physikalisches Wörterbuch, 8, 1023-1360, Schwickert, Leipzig
  20. ^ Wöhler; Liebig (1832). "Untersuchungen über das Radikal der Benzoesäure". Annalen der Pharmacie (in German). 3 (3): 249–282. doi:10.1002/jlac.18320030302. hdl:2027/hvd.hxdg3f.
  21. ^ Miller, W.H. (1839). A Treatise on Crystallography, Deighton-Parker, Cambridge, London
  22. ^ Delafosse, G. (1840). De la Structure des Cristaux […] sur l’Importance de l’etude de la Symétrie dans les différentes Branches de l’Histoire Naturelle […], Fain and Thunot, Paris
  23. ^ Frankenheim, M.L. (1842). System der Kristalle. Nova Acta Acad. Naturae Curiosorum, 19, No. 2, 469-660
  24. ^ Pasteur, L. (1848). Mémoire sur la relation qui peut exister entre la forme cristalline et la composition chimique, et sur la cause de la polarisation rotatoire (Memoir on the relationship that can exist between crystalline form and chemical composition, and on the cause of rotary polarization), Comptes rendus de l'Académie des sciences (Paris), 26 : 535–538
  25. ^ Bravais, A. (1850). Mémoire sur les systèmes formés par des points distribués regulièrement sur un plan ou dans l’espace, J. l’Ecole Polytechnique 19, 1
  26. ^ Gadolin, A. (1871). Mémoire sur la déduction d’un seul principe de tous les systems cristallographiques avec leurs subdivisions (Memoir on the deduction from a single principle of all the crystal systems with their subdivisions), Acta Soc. Sci. Fennicae. 9, 1-71
  27. ^ Sohncke, L. (1879). Entwickelung einer Theorie der Krystallstruktur, B.G. Teubner, Leipzig
  28. ^ Fedorov, E. (1891). The symmetry of regular systems of figures, Zap. Miner. Obshch. (Trans. Miner. Soc. Saint Petersburg) 28, 1-146
  29. ^ Schoenflies, A. (1891). Kristallsysteme und Kristallstruktur. B. G. Teubner
  30. ^ Barlow W. (1894). Über die Geometrischen Eigenschaften homogener starrer Strukturen und ihre Anwendung auf Krystalle (On the geometrical properties of homogeneous rigid structures and their application to crystals), Zeitschrift für Krystallographie und Minerologie, vol. 23, pages 1–63.
  31. ^ Röntgen, W.C. (23 January 1896). On a new kind of rays. Nature 53, 274-276
  32. ^ "XIII. Polarised röntgen radiation". Philosophical Transactions of the Royal Society of London. Series A, Containing Papers of a Mathematical or Physical Character. 204 (372–386): 467–479. 1905. doi:10.1098/rsta.1905.0013. ISSN 0264-3952.
  33. ^ Walter, B.; Pohl, R. (1908). "Zur Frage der Beugung der Röntgenstrahlen". Annalen der Physik (in German). 330 (4): 715–724. Bibcode:1908AnP...330..715W. doi:10.1002/andp.19083300405.
  34. ^ Walter, B.; Pohl, R. (1909). "Weitere Versuche über die Beugung der Röntgenstrahlen". Annalen der Physik (in German). 334 (7): 331–354. Bibcode:1909AnP...334..331W. doi:10.1002/andp.19093340707.
  35. ^ Laue, Max von (1912). Eine quantitative prüfung der theorie für die interferenz-erscheinungen bei Röntgenstrahlen, Sitzungsberichte der Kgl. Bayer. Akad. Der Wiss. 363–373
  36. ^ Bragg, W.L. (1913). The Diffraction of Short Electromagnetic Waves by a Crystal, Proc. Cambridge Phil. Soc. 17, 43-57
  37. ^ Baumhauer, Heinrich (1912-12-01). "VII. Über die Krystalle des Carborundums". Zeitschrift für Kristallographie - Crystalline Materials. 50 (1–6): 33–39. doi:10.1524/zkri.1912.50.1.33. ISSN 2196-7105. S2CID 102105832.
  38. ^ Bragg, W. L. (1913). The structure of crystals as indicated by their diffraction of X-rays, Proc. Royal. Soc. Lond. A, 89, 248–77
  39. ^ "The Nobel Prize in Physics 1914"
  40. ^ "The Nobel Prize in Physics 1915"
  41. ^ Debye, P. & Scherrer P. (1916). Interferenzen an regellos orientierten Teilchen im Röntgenlicht, I. Physik. Z. 17, 277–283
  42. ^ Ewald, P. P. (1916). "Zur Begründung der Kristalloptik". Annalen der Physik (in German). 354 (2): 117–143. Bibcode:1916AnP...354..117E. doi:10.1002/andp.19163540202.
  43. ^ Hull, A.W. (1917). The crystal structure of iron, Phys. Rev. 9, 83-87
  44. ^ Dickinson, R. G. & Raymond, A. L. (1923). The crystal structure of hexamethylenetetramine, J. Am. Chem. Soc. 45, 22–29
  45. ^ Gonell, H. J. & Mark, H. (1923). Röntgenographische Bestimmung der Strukturformel des Hexamethylentetramins, Z. Phys. Chem. 107, 181–218
  46. ^ Bragg, W. H. & Gibbs, R. E. (1925). The structure of α and β quartz, Proc. R. Soc. Lond. A 109, 405–426
  47. ^ Goldschmidt, V. M. (1926). Geochemische Verteilungsgesetze, VII: Die Gesetze der Krystallochemie (Skrifter Norsk. Vid. Akademie, Oslo, Mat. Nat. Kl.
  48. ^ Machatschki, F. (1928). Zur Frage der Struktur und Konstitution der Feldspäte, Zentralbl. Min. 97–100
  49. ^ Lonsdale, K. (1928). The structure of the benzene ring. Nature 122, 810
  50. ^ Niggli, Paul (1928). Krystallographische und strukturtheoretische Grundbegriffe (in German). Leipzig: Akad. Verl.-Ges. OCLC 180664864.
  51. ^ Pauling, L. (1929). The principles determining the structure of complex ionic crystals, J. Am. Chem. Soc. 51, 1010–1026
  52. ^ Bragg W. L. (1930). The structure of silicates, Z. Kistallogr. 74, 237–305
  53. ^ Ewald, Paul Peter; Hermann, C (1931). Strukturbericht, 1913-1928 (in German). Leipzig: Akademische Verlagsgesellschaft. OCLC 29150452.
  54. ^ Rinne, Friedrich (1932-11-01). "Über Beziehungen der gewässerten Bromphenanthrensulfosäure zu organismischen Parakristallen". Zeitschrift für Kristallographie - Crystalline Materials. 82 (1–6): 379–393. doi:10.1524/zkri.1932.82.1.379. ISSN 2196-7105. S2CID 100926260.
  55. ^ Rinne, Friedrich (1933). "Investigations and considerations concerning paracrystallinity". Transactions of the Faraday Society. 29 (140): 1016–1032. doi:10.1039/TF9332901016. ISSN 0014-7672.
  56. ^ Patterson, A. L. (1934). A Fourier series method for the determination of the components of interatomic distances in crystals, Phys. Rev. 46, 372–376
  57. ^ Kamminga H. (1989). The International Union of Crystallography: its formation and early development, Acta Cryst, A45, 581–601
  58. ^ "The Nobel Prize in Chemistry 1936"
  59. ^ "The Nobel Prize in Physics 1937"
  60. ^ Brindley, G. W.; Robinson, Keith (1945). "Structure of Kaolinite". Nature. 156 (3970): 661–662. Bibcode:1945Natur.156R.661B. doi:10.1038/156661b0. ISSN 1476-4687. S2CID 4054610.
  61. ^ Kamminga, Harmke (1989). The International Union of Crystallography: its formation and early development, Acta Crystallogr. A45, 581–601
  62. ^ "The Nobel Prize in Chemistry 1946"
  63. ^ Ramsdell, Lewis S. (1947). "Studies on silicon carbide" (PDF). American Mineralogist. 32 (1–2): 64–82. ISSN 0003-004X.
  64. ^ Shull, C. G. & Smart, J. S. (1949). Detection of antiferromagnetism by neutron diffraction, Phys. Rev. 76, 1256
  65. ^ Karle, J. & Hauptman, H. (1950). The phases and magnitudes of the structure factors, Acta Crystallogr. 3, 181–187
  66. ^ Bijvoet, J. M., Peerdeman, A. F. & van Bommel, A. J. (1951). Determination of the absolute configuration of optically active compounds by means of X-Rays, Nature 168, 271–272
  67. ^ Pauling, L., Corey, R. B. & Branson, H. R. (1951). The structure of proteins: two hydrogen bonded helical configurations of the polypeptide chain, Proc. Natl. Acad. Sci. USA 37, 205–211
  68. ^ Corey, R. B. & Pauling, L. (1951). The pleated sheet, a new layer conformation of polypeptide chains, Proc. Natl Acad. Sci. USA 37, 251–256
  69. ^ Shubnikov, A.V. (1951). Symmetry and antisymmetry of finite figures, Izv. Akad. Nauk SSSR, Moscow (in Russian)
  70. ^ Shubnikov, A.V. and Belov, N.V. (1964). Colored Symmetry, Holser, W.T. (ed.), New York, Pergamon
  71. ^ Sayre, D. (1952). Some implications of a theorem due to Shannon, Acta Crystallogr. 5, 843
  72. ^ Fischer, E. O. & Pfab, W. (1952). Cyclopentadien-metallkomplexe, ein Neuer Typ Metallorganischer Verbindungen, Z. Naturforsch. B 7, 377–379
  73. ^ Wilkinson, G. (1975). The iron sandwich. A recollection of the first four months, J. Organomet. Chem. 100, 273–278
  74. ^ Magnéli, A. (1953-06-10). "Structures of the ReO3-type with recurrent dislocations of atoms: 'homologous series' of molybdenum and tungsten oxides". Acta Crystallographica. 6 (6): 495–500. doi:10.1107/S0365110X53001381. ISSN 0365-110X. S2CID 98622295.
  75. ^ Watson, J. D. & Crick, F. H. C. (1953). Molecular structure of nucleic acids: a structure for deoxyribose nucleic acid, Nature 171, 737–738
  76. ^ Franklin, R. E. & Gosling, R. G. (1953). Molecular configuration in sodium thymonucleate, Nature 171, 740–741
  77. ^ Wilkins, M. H. F., Stokes, A. R. & Wilson, H. R. (1953). Molecular structure of deoxypentose nucleic acids, Nature 171, 738–740
  78. ^ Ukichiro Nakaya (2013). Snow crystals. Cambridge: Harvard Univ Press. ISBN 978-0-674-18276-9. OCLC 900567451.
  79. ^ "The Nobel Prize in Chemistry 1954"
  80. ^ Cruickshank, D. W. J. (1956-09-01). "The analysis of the anisotropic thermal motion of molecules in crystals". Acta Crystallographica. 9 (9): 754–756. doi:10.1107/s0365110x56002047. ISSN 0365-110X.
  81. ^ Kendrew, J. C. et al. (1960). Structure of myoglobin: a three-dimensional Fourier synthesis at 2 Å resolution, Nature 185, 422–427
  82. ^ Perutz, M. F. et al. (1960). Structure of haemoglobin: a three-dimensional Fourier synthesis at 5.5-Å resolution, obtained by X-ray analysis, Nature 185, 416–422
  83. ^ Rossmann, M. G. & Blow, D. M. (1962). The detection of sub-units within the crystallographic asymmetric unit, Acta Crystallogr. 15, 24–31
  84. ^ "The Nobel Prize in Chemistry 1962"
  85. ^ "The Nobel Prize in Medicine 1962"
  86. ^ "The Nobel Prize in Chemistry 1964"
  87. ^ Rietveld, H. M. (1967). Line profiles of neutron powder-diffraction peaks for structure refinement, Acta Crystallogr. 22, 151–152
  88. ^ DeRosier, D. J. & Klug, A. (1968). Reconstruction of three-dimensional structures from electron micrographs, Nature 217, 130–134
  89. ^ Blundell TL, Cutfield JF, Cutfield SM, Dodson EJ, Dodson GG, Hodgkin DC, et al. (1971). Atomic positions in rhombohedral 2-zinc insulin crystals, Nature, 231 (5304), 506–11
  90. ^ Protein Data Bank, Nature New Biol. 233, 223 (1971)
  91. ^ Meyer, E. F. Jr (1971). Interactive computer display for the three-dimensional study of macromolecular structures, Nature 232, 255–257
  92. ^ Kim, S. H. et al. (1973). Three-dimensional structure of a yeast phenylalanine transfer RNA: folding of the polynucleotide chain, Science 179, 285–288
  93. ^ "The Nobel Prize in Chemistry 1973"
  94. ^ "The Nobel Prize in Chemistry 1976"
  95. ^ Harrison, S. C. et al. (1978). Tomato bushy stunt virus at 2.9 Å resolution, Nature 276, 368–373
  96. ^ "Gregori Aminoff Prize"
  97. ^ Karle J. (1980). Some Developments in Anomalous Dispersion for the Structural Investigation of Macromolecular Systems in Biology, International Journal of Quantum Chemistry: Quantum Biology Symposium, 7, 357–367
  98. ^ "The Nobel Prize in Chemistry 1982"
  99. ^ Shechtman, D. Blech, I., Gratias, D. & Cahn, J. W. (1984). Metallic phase with long-range orientational order and no translational symmetry, Phys. Rev. Lett. 53, 1951–1953
  100. ^ Richmond, T. J., Finch, J. T., Rushton, B., Rhodes, D. & Klug, A. (1984). Structure of the nucleosome core particle at 7 Å resolution, Nature 311, 532–537
  101. ^ "The Nobel Prize in Chemistry 1985"
  102. ^ Deisenhofer J., Epp, O., Miki, K., Huber, R. & Michel, H. (1985). Structure of the protein subunits in the photosynthetic reaction centre of Rhodopseudomonas viridis at 3 Å resolution, Nature 318, 618–624
  103. ^ "The Nobel Prize in Physics 1986"
  104. ^ "First Ewald Prize"
  105. ^ "The Nobel Prize in Chemistry 1988"
  106. ^ "Second Ewald Prize"
  107. ^ Weiss, M. S. et al. (1991). Molecular architecture and electrostatic properties of a bacterial porin, Science 254, 1627–1630
  108. ^ "Report of the Executive Committee for 1991". Acta Crystallographica Section A. 48 (6): 922–946. 1992. doi:10.1107/S0108767392008328.
  109. ^ "Third Ewald Prize"
  110. ^ Abrahams, J. P., Leslie, A, G., Lutter, R. & Walker, J. E. (1994). Structure at 2.8 Å resolution of F1-ATPase from bovine heart mitochondria, Nature 370, 621–628
  111. ^ "The Nobel Prize in Chemistry 1994"
  112. ^ "Fourth Ewald Prize"
  113. ^ Pebay-Peyroula, E., Rummel, G., Rosenbusch, J. P. & Landau, E. M. (1997). X-ray structure of bacteriorhodopsin at 2.5 angstroms from microcrystals grown in lipidic cubic phases, Science 277, 1676–1681
  114. ^ "The Nobel Prize in Chemistry 1997"
  115. ^ "Fifth Ewald Prize"
  116. ^ Neutze, R., Wouts, R., van der Spoel, D., Weckert, E. & Hajdu, J. (2000). Potential for biomolecular imaging with femtosecond X-ray pulses, Nature 406, 752–757
  117. ^ Yusupov, M. M. et al. (2001). Crystal structure of the ribosome at 5.5 Å resolution, Science 292, 883–896
  118. ^ Yusupov, M. M. et al. (2001). Crystal structure of the ribosome at 5.5 Å resolution, Science 292, 883–896
  119. ^ Cramer, P., Bushnell, D. A. & Kornberg, R. D. (2001). Structural basis of transcription: RNA polymerase II at 2.8 Å resolution, Science 292, 1863–1876
  120. ^ Gnatt, A. L., Cramer, P., Fu, J., Bushnell, D. A. & Kornberg, R. D. (2001). Structural basis of transcription: an RNA polymerase II elongation complex at 3.3 Å resolution, Science 292, 1876–1882
  121. ^ "Sixth Ewald Prize"
  122. ^ "Seventh Ewald Prize"
  123. ^ Rasmussen, S. G. et al. (2007). Crystal structure of the human β2 adrenergic G-protein-coupled receptor, Nature 450, 383–387
  124. ^ Cherezov, V. et al. (2007). High-resolution crystal structure of an engineered human β2-adrenergic G protein-coupled receptor, Science 318, 1258–1265
  125. ^ "Eighth Ewald Prize"
  126. ^ "The Nobel Prize in Chemistry 2009"
  127. ^ Van Aert, Sandra; Batenburg, Kees J.; Rossell, Marta D.; Erni, Rolf; Van Tendeloo, Gustaaf (2011-02-02). "Three-dimensional atomic imaging of crystalline nanoparticles". Nature. 470 (7334): 374–377. Bibcode:2011Natur.470..374V. doi:10.1038/nature09741. ISSN 0028-0836. PMID 21289625. S2CID 4310850.
  128. ^ "The Nobel Prize in Chemistry 2011"
  129. ^ "Ninth Ewald Prize"
  130. ^ "Tenth Ewald Prize"
  131. ^ "The Nobel Prize in Chemistry 2017"
  132. ^ "Eleventh Ewald Prize"
  133. ^ "Twelfth Ewald Prize"
  134. ^ "Thirteenth Ewald Prize"

Further reading edit

  • Authier, André (2013), Early Days of X-ray Crystallography, Oxford Univ. Press
  • Burke, John G. (1966), Origins of the Science of Crystals, University of California Press
  • Ewald, P. P. (ed.) (1962), 50 Years of X-ray Diffraction, IUCR, Oosthoek
  • Kubbinga, H. (2012), Crystallography from Haüy to Laue: controversies on the molecular and atomistic nature of solids, Z. Kristallogr. 227, 1–26
  • Lima-de-Faria, José (ed.) (1990), Historical atlas of crystallography, Springer Netherlands
  • Milestones in Crystallography, Nature, August 2014
  • Whitlock, H.P. (1934). A Century of Progress in Crystallography, The American Mineralogist, 19, 93-100

timeline, crystallography, this, timeline, crystallography, contents, 18th, century, 19th, century, 20th, century, 21st, century, references, further, reading18th, century, edit1723, moritz, anton, cappeller, introduces, term, crystallography, 1766, pierre, jo. This is a timeline of crystallography Contents 1 18th Century 2 19th Century 3 20th Century 4 21st Century 5 References 6 Further reading18th Century edit1723 Moritz Anton Cappeller introduces the term crystallography 1 1766 Pierre Joseph Macquer in his Dictionnaire de Chymie promotes mechanisms of crystallization based on the idea that crystals are composed of polyhedral molecules primitive integrantes 2 1772 Jean Baptiste L Rome de l Isle develops geometrical ideas on crystal structure in his Essai de Cristallographie He also described the twinning phenomenon in crystals 3 1781 Abbe Rene Just Hauy often termed the Father of Modern Crystallography 4 discovers that crystals always cleave along crystallographic planes Based on this observation and the fact that the inter facial angles in each crystal species always have the same value Hauy concluded that crystals must be periodic and composed of regularly arranged rows of tiny polyhedra molecules integrantes This theory explained why all crystal planes are related by small rational numbers the law of rational indices 5 6 1783 Jean Baptiste L Rome de l Isle in the second edition of his Cristallographie uses the contact goniometer to discover the law of constant interfacial angles angles are constant and characteristic for crystals of the same chemical substance 7 1784 Rene Just Hauy publishes his Law of Decrements a crystal is composed of molecules arranged periodically in three dimensions 8 1795 Rene Just Hauy lectures on his Law of Symmetry the manner in which Nature creates crystals is always obeying the law of the greatest possible symmetry in the sense that oppositely situated but corresponding parts are always equal in number arrangement and form of their faces 9 19th Century edit1801 Rene Just Hauy publishes his multi volume Traite de Mineralogie in Paris A second edition under the title Traite de Cristallographie was published in 1822 10 11 1815 Rene Just Hauy publishes his Law of Symmetry 12 1815 Christian Samuel Weiss founder of the dynamist school of crystallography develops a geometric treatment of crystals in which crystallographic axes are the basis for classification of crystals rather than Hauy s polyhedral molecules 13 1819 Eilhard Mitscherlich discovers crystallographic isomorphism 14 1822 Friedrich Mohs attempts to bring the molecular approach of Hauy and the geometric approach of Weiss into agreement 15 1823 Franz Ernst Neumann invents a system of crystal face notation by using the reciprocals of the intercepts with crystal axes which becomes the standard for the next 60 years 16 1824 Ludwig August Seeber conceives of the concept of using an array of discrete molecular points to represent a crystal 17 1826 Moritz Ludwig Frankenheim derives the 32 crystal classes by using the crystallographic restriction consistent with Hauy s laws that only 2 3 4 and 6 fold rotational axes are permitted 18 1830 Johann F C Hessel publishes an independent geometrical derivation of the 32 point groups crystal classes 19 1832 Friedrich Wohler and Justus von Liebig discovered polymorphism in molecular crystals using the example of benzamide 20 1839 William Hallowes Miller invents zonal relations by projecting the faces of a crystal upon the surface of a circumscribed sphere Miller indices are defined which form a notation system in crystallography for planes in crystal Bravais lattices 21 1840 Gabriel Delafosse independently of Seeber represents crystal structure as an array of discrete points generated by defined translations 22 1842 Moritz Frankenheim derives 15 different theoretical networks of points in space not dependent on molecular shape 23 1848 Louis Pasteur discovers that sodium ammonium tartrate can crystallize in left and right handed forms and showed that the two forms can rotate polarized light in opposite directions This was the first demonstration of molecular chirality and also the first explanation of isomerism 24 1850 Auguste Bravais derives the 14 space lattices 25 1869 Axel Gadolin independently of Hessel derives the 32 crystal classes using stereographic projection 26 1879 Leonhard Sohncke lists the 65 crystallographic point systems using rotations and reflections in addition to translations 27 1891 Derivation of the 230 space groups by adding mirror image symmetry to Sohncke s work by a collaborative effort of Evgraf Fedorov and Arthur Schoenflies 28 29 1894 William Barlow using a sphere packing approach independently derives the 230 space groups 30 1895 Wilhelm Conrad Rontgen on 8 November 1895 produced and detected electromagnetic radiation in a wavelength range now known as X rays or Rontgen rays an achievement that earned him the first Nobel Prize in Physics in 1901 X rays became the major mode of crystallographic research in the 20th century 31 20th Century edit1905 Charles Glover Barkla discovered X ray polarization effect 32 1908 Bernhard Walter and Robert Wichard Pohl observed X ray diffraction from a slit 33 34 1912 Max von Laue discovers diffraction patterns from crystals in an x ray beam 35 1912 Bragg diffraction expressed through Bragg s law is first presented by Lawrence Bragg on 11 November 1912 to the Cambridge Philosophical Society 36 1912 Heinrich Baumhauer discovered and described polytypism in crystals of carborundum or silicon carbide 37 1913 Lawrence Bragg publishes the first observation of x ray diffraction by crystals 38 1914 Max von Laue wins the Nobel Prize in Physics for his discovery of the diffraction of X rays by crystals 39 1915 William and Lawrence Bragg share the Nobel Prize in Physics for their services in the analysis of crystal structure by means of X rays 40 1916 Peter Debye and Paul Scherrer discover powder polycrystalline diffraction 41 1916 Paul Peter Ewald predicted the Pendellosung effect which is a foundational aspect of the dynamical diffraction theory of X rays 42 1917 Albert W Hull independently discovers powder diffraction in researching the crystal structure of iron 43 1923 Roscoe Dickinson and Albert Raymond and independently H J Gonell and Hermann Mark first show that an organic molecule specifically hexamethylenetetramine could be characterized by x ray crystallography 44 45 1923 William H Bragg and R E Gibbs elucidate the structure of quartz 46 1926 Victor Goldschmidt distinguishes between atomic and ionic radii and postulates some rules for atom substitution in crystal structures 47 1928 Felix Machatschki working with Goldschmidt shows that silicon can be replaced by aluminium in feldspar structures 48 1928 Kathleen Lonsdale uses x rays to determine that the structure of benzene is a flat hexagonal ring 49 1928 Paul Niggli introduced reduced cells for simplifying structures using a technique now known as Niggli reduction 50 1929 Linus Pauling formulated a set of rules to describe the structure of complex ionic crystals 51 1930 Lawrence Bragg assembles the first classification of silicates describing their structure in terms of grouping of SiO4 tetrahedra 52 1931 Paul Ewald and Carl Hermann published the first volume of the Strukturbericht Structure Report 53 which established the systematic classification of crystal structure prototypes also known as the Strukturbericht designation 1932 Friedrich Rinne introduced the concept of paracrystallinity for liquid crystals and amorphous materials 54 55 1934 Arthur Patterson introduces the Patterson function which uses diffraction intensities to determine the interatomic distances within a crystal setting limits to the possible phase values for the reflected x rays 56 1934 The first volumes in the series of International Tables for Crystallography are published 57 1936 Peter Debye wins the Nobel Prize in Chemistry for his contributions to our knowledge of molecular structure through his investigations on dipole moments and on the diffraction of X rays and electrons in gases 58 1937 Clinton Joseph Davisson and George Paget Thomson share the Nobel Prize in physics for their experimental discovery of the diffraction of electrons by crystals 59 1945 George W Brindley and Keith Robinson solved the crystal structure of kaolinite 60 1946 Foundation of the International Union of Crystallography 61 1946 James Batcheller Sumner shares the Nobel Prize in Chemistry for his discovery that enzymes can be crystallized 62 1947 Lewis Stephen Ramsdell systematically classified the polytypes of silicon carbide and introduced the Ramsdell notation 63 1949 Clifford Shull opens a new field of magnetic crystallography based on neutron diffraction 64 1950 Karle and Hauptman introduce useful formulae for phase determination known as Direct Methods 65 1951 Bijvoet and his colleagues using anomalous scattering confirm Emil Fischer s arbitrary assignment of absolute configuration in relation to the direction of optical rotation of polarized light was correct in practice 66 1951 Linus Pauling determines the structure of the a helix and the b sheet in polypeptide chains for which he won the 1954 Nobel prize in Chemistry 67 68 1951 Alexei Vasilievich Shubnikov publishes Symmetry and antisymmetry of finite figures 69 70 which opened up the field of antisymmetry in magnetic structures 1952 David Sayre suggests that the phase problem could be more easily solved by having at least one more intensity measurement beyond those of the Bragg peaks in each dimension This concept is understood today as oversampling 71 1952 Geoffrey Wilkinson and Ernst Otto Fischer determine the structure of ferrocene the first metallic sandwich compound for which they win the 1973 Nobel prize in Chemistry 72 73 1953 Arne Magneli introduced the term homologous series to describe polytypes of transition metal oxides that exhibit crystallographic shear structures 74 1953 Determination of the structure of DNA by 3 British teams for which Watson Crick and Wilkins win the 1962 Nobel Prize in Physiology or Medicine in 1962 Franklin s death in 1958 made her ineligible for the award 75 76 77 1954 Ukichiro Nakaya s book Snow Crystals Natural and Artificial dedicated to the modern study of snow crystals is published 78 1954 Linus Pauling wins the Nobel Prize in Chemistry for his research into the nature of the chemical bond and its application to the elucidation of the structure of complex substances specifically the determination of the structure of the a helix and the b sheet in polypeptide chains 79 1956 Durward W J Cruickshank developed the theoretical framework for anisotropic displacement parameters also known as the thermal ellipsoid 80 1960 John Kendrew determines the structure of myoglobin for which he shares the 1962 Nobel Prize in Chemistry 81 1960 After many years of research Max Perutz determines the structure of haemoglobin for which he shares the 1962 Nobel Prize in Chemistry 82 1962 Michael Rossmann and David Blow lay the foundation for the molecular replacement approach which provides phase information without requiring additional experimental effort 83 1962 Max Perutz and John Kendrew share the Nobel Prize for Chemistry for their studies of the structures of globular proteins namely haemoglobin and myoglobin respectively 84 1962 James Watson Francis Crick and Maurice Wilkins win the Nobel Prize in Physiology or Medicine for their discoveries concerning the molecular structure of nucleic acids and its significance for information transfer in living material specifically for their determination of the structure of DNA 85 1964 Dorothy Hodgkin wins the Nobel Prize for Chemistry for her determinations by X ray techniques of the structures of important biochemical substances The substances included penicillin and vitamin B12 86 1967 Hugo Rietveld invents the Rietveld refinement method for computation of crystal structures 87 1968 Aaron Klug and David DeRosier use electron microscopy to visualise the structure of the tail of bacteriophage T4 a common virus thus signalling a breakthrough in macromolecular structure determination 88 1968 Dorothy Hodgkin after 35 years of work finally deciphers the structure of insulin 89 1971 Establishment of the Protein Data Bank PDB At PDB Edgar Meyer develops the first general software tools for handling and visualizing protein structural data 90 91 1973 Alex Rich s group publish the first report of a polynucleotide crystal structure that of the yeast transfer RNA tRNA for phenylalanine 92 1973 Geoffrey Wilkinson and Ernst Fischer share the Nobel Prize in Chemistry for their pioneering work performed independently on the chemistry of the organometallic so called sandwich compounds specifically the structure of ferrocene 93 1976 William Lipscomb wins the Nobel Prize in Chemistry for his studies on the structure of boranes illuminating problems of chemical bonding 94 1978 Stephen C Harrison provides the first high resolution structure of a virus tomato bushy stunt virus which is icosahedral in form 95 1979 The first award of the Gregori Aminoff Prize for a contribution in the field of crystallography is made by the Royal Swedish Academy of Sciences to Paul Peter Ewald 96 1980 Jerome Karle and Wayne Hendrickson develop multi wavelength anomalous dispersion MAD a technique to facilitate the determination of the three dimensional structure of biological macromolecules via a solution of the phase problem 97 1982 Aaron Klug wins the Nobel Prize in Chemistry for his development of crystallographic electron microscopy and his structural elucidation of biologically important nucleic acid protein complexes 98 1984 Dan Shechtman discovers quasicrystals for which he receives the Nobel Prize in Chemistry in 2011 These structures have no unit cell and no periodic translational order but have long range bond orientational order which generates a defined diffraction pattern 99 1984 Aaron Klug and his colleagues provide an advance in determining the structure of protein nucleic acid complexes when they solve the structure of the 206 kDa nucleosome core particle 100 1985 Jerome Karle shares the Nobel Prize in Chemistry with Herbert A Hauptman for their outstanding achievements in the development of direct methods for the determination of crystal structures Karle developed the theoretical basis for multiple wavelength anomalous diffraction MAD 101 1985 Hartmut Michel and his colleagues report the first high resolution X ray crystal structure of an integral membrane protein when they publish the structure of a photosynthetic reaction centre Michel Deisenhofer and Huber share the 1988 Nobel Prize in Chemistry for this work 102 1986 Ernst Ruska shares the Nobel Prize in Physics for his fundamental work in electron optics and for the design of the first electron microscope 103 1987 John M Cowley and Alexander F Moodie share the first IUCr Ewald Prize for their outstanding achievements in electron diffraction and microscopy They carried out pioneering work on the dynamical scattering of electrons and the direct imaging of crystal structures and structure defects by high resolution electron microscopy The physical optics approach used by Cowley and Moodie takes into account many hundreds of scattered beams and represents a far reaching extension of the dynamical theory for X rays first developed by P P Ewald 104 1988 Johann Deisenhofer Robert Huber and Hartmut Michel share the Nobel Prize in Chemistry for the determination of the three dimensional structure of a photosynthetic reaction centre 105 1990 Boris K Vainshtein wins the second IUCr Ewald Prize for his contributions to the development of theories and methods of structure analysis by electron and X ray diffraction and for his applications of his theories to structural investigations of polymers liquid crystals peptides and proteins 106 1991 Georg E Schulz and colleagues report the structure of a bacterial porin a membrane protein with a cylindrical shape a b barrel 107 1992 The International Union of Crystallography changes the IUCr s definition of a crystal to any solid having an essentially discrete diffraction pattern thus formally recognizing quasicrystals 108 1993 Norio Kato wins the third IUCr Ewald Prize for his outstanding and profound contributions to the dynamical theory of X ray diffraction of spherical waves by perfect crystals and slightly deformed nearly perfect crystals for the experimental exploitation of these theories towards the characterization of the defect structure of single crystals and for his extraordinary achievements in X ray diffraction topography 109 1994 Jan Pieter Abrahams et al reported the structure of an F1 ATPase which uses the proton motive force across the inner mitochondrial membrane to facilitate the synthesis of adenosine triphosphate ATP 110 1994 Bertram Brockhouse and Clifford Shull share the Nobel Prize in Physics for pioneering contributions to the development of neutron scattering techniques for studies of condensed matter Specifically Brockhouse for the development of neutron spectroscopy and Shull for the development of the neutron diffraction technique 111 1996 Michael Rossmann wins the fourth IUCr Ewald Prize for his work on molecular replacement and the use of non crystallographic symmetry in the determination of macromolecular structure and for his research on the structure of viruses which is foremost among the triumphs of crystallography 112 1997 The X ray crystal structure of bacteriorhodopsin was the first time the lipidic cubic phase LCP was used to facilitate the crystallization of a membrane protein LCP has since been used to obtain the structures of many unique membrane proteins including G protein coupled receptors GPCRs 113 1997 Paul D Boyer and John E Walker share one half of the Nobel Prize in Chemistry for their elucidation of the enzymatic mechanism underlying the synthesis of adenosine triphosphate ATP Walker determined the crystal structure of ATP synthase and this structure confirmed a mechanism earlier proposed by Boyer mainly on the basis of isotopic studies 114 1999 G N Ramachandran wins the fifth IUCr Ewald Prize for his outstanding contributions to the field of crystallography in the area of anomalous scattering and its use in the solution of the phase problem in the analysis of the structure of fibres collagen in particular and foremost for his fundamental works on the macromolecular conformation and the validation of macromolecular structures by means of the Ramachandran plot which even today remains the most useful validation tool 115 21st Century edit2000 Janos Hajdu Richard Neutze and colleagues calculated that they could use Sayre s ideas from the 1950s to implement a diffraction before destruction concept using an X ray free electron laser XFEL 116 2001 Harry F Noller s group publish the 5 5 A structure of the complete Thermus thermophilus 70S ribosome This structure revealed that the major functional regions of the ribosome were based on RNA establishing the primordial role of RNA in translation 117 2001 Roger Kornberg s group publish the 2 8 A structure of Saccharomyces cerevisiae RNA polymerase The structure allowed both transcription initiation and elongation mechanisms to be deduced Simultaneously this group reported the structure of free RNA polymerase II which contributed towards the eventual visualisation of the interaction between DNA RNA and the ribosome 118 119 120 2002 Michael Woolfson wins the sixth IUCr Ewald Prize for his exceptional contributions in developing the conceptual and theoretical framework of direct methods along with the algorithm design and computer programs for automatic solutions that changed the face of structural science and for his contributions to crystallographic education and international collaboration which have strengthened the intellectual development of crystallographers worldwide 121 2005 Philip Coppens wins the seventh IUCr Ewald Prize for his contributions to developing the fields of electron density determination and the crystallography of molecular excited states and for his contributions to the education and inspiration of young crystallographers as an enthusiastic teacher by participating in and organizing many courses and workshops 122 2007 Two X ray crystal structures of a GPCR the human b2 adrenergic receptor were published Because many drugs elicit their biological effect s by binding to a GPCR the structures of these and other GPCRs may be used to develop efficacious drugs with few side effects 123 124 2008 David Sayre wins the eighth IUCr Ewald Prize for the unique breadth of his contributions to crystallography which range from seminal contributions to the solving of the phase problem to the complex physics of imaging generic objects by X ray diffraction and microscopy and for never losing touch with the physical reality of the processes involved 125 2009 Venkatraman Ramakrishnan Thomas A Steitz and Ada E Yonath share the Nobel Prize in Chemistry for studies of the structure and function of the ribosome 126 2011 Sandra Van Aert Kees Joost Batenburg et al determined the 3D atomic positions of a silver nanoparticle using electron tomography 127 2011 Dan Shechtman receives the Nobel Prize in chemistry for the discovery of quasicrystals 128 2011 Eleanor Dodson Carmelo Giacovazzo and George M Sheldrick share the ninth IUCr Ewald Prize for the enormous impact they have made on structural crystallography through the development of new methods that have then been made available to users as constantly maintained and extended software Their invaluable contributions to computational crystallography have resulted in the leading program suites CCP4 SIR and SHELX respectively All over the world thousands of crystallographers benefit from their achievements on a daily basis 129 2014 Aloysio Janner and Ted Janssen share the tenth IUCr Ewald Prize for the development of superspace crystallography and its application to the analysis of aperiodic crystals 130 2017 Jacques Dubochet Joachim Frank and Richard Henderson share the Nobel Prize in chemistry for developing cryo electron microscopy for the high resolution structure determination of biomolecules in solution 131 2017 Tom Blundell wins the eleventh IUCr Ewald Prize for his work as one of the worldwide leaders in crystallographic innovation especially at the interface with life sciences starting with his work on determining the structure of insulin with Dorothy Hodgkin he determined an exceptionally broad array of medically critical human protein structures championing methods enabling drug design and discovery through structural optimization crystallographic fragment screening and computational modelling and for being a leader in advanced crystallographic education internationally 132 2021 Olga Kennard wins the twelfth IUCr Ewald Prize for her invaluable pioneering contribution to the development of crystallographic databases in particular the Cambridge Structural Database CSD 133 2023 Wayne Hendrickson wins the thirteenth IUCr Ewald Prize for his exceptional contribution to structural biology including the development of MAD SAD methods and crystallographic theory No one else is so singularly and formatively identified with the explosive growth in biological crystallography and the consequent benefits to chemistry and biology 134 References edit Cappeller M A 1723 Prodromus crystallographiae de crystallis improprie sic dictis commentarium H R Wyssing Lucerne Macquer P J 1766 Dictionnaire de Chymie Lacombe Paris Rome de l Isle J B L 1772 Essai de Cristallographie Paris Brock H 1910 The Catholic Encyclopedia New York Robert Appleton Company Hauy R J 1782 Sur la structure des cristaux de grenat Observations sur la physique sur l histoire naturelle et sur les arts XIX 366 370 Hauy R J 1782 Sur la structure des cristaux des spaths calcaires Observations sur la physique sur l histoire naturelle et sur les arts XX 33 39 Rome de l Isle J B L 1783 Cristallographie ou description des formes propres a tous les corps du regne mineral dans l etat de combinaison saline pierreuse ou metallique Paris Hauy R J 1784 Essai d une theorie sur la structure des cristaux appliquee a plusieurs genres de substances cristallisees Chez Gogue et Nee de La Rochelle Paris Hauy R J 1795 Lecons de Physique in Seances des Ecoles normales L Reynier Paris Hauy R J 1801 Traite de Mineralogie Chez Louis Paris Hauy R J 1822 Traite de Cristallographie Bachelier et Huzard Paris Hauy R J 1815 Memoire sur une loi de cristallisation appelee loi de symmetrie Memoires du Museum d Histoire naturelle 1 81 101 206 225 273 298 341 352 Weiss C S 1815 Uebersichtliche Darstellung der versschiedenen naturlichen Abteilungen der Kristallisations Systeme Abh K Akad Wiss Berlin 289 337 1814 1815 Melhado Evan M 1980 01 01 Mitscherlich s Discovery of Isomorphism Historical Studies in the Physical Sciences 11 1 87 123 doi 10 2307 27757472 ISSN 0073 2672 JSTOR 27757472 Mohs F 1822 On the crystallographic discoveries and systems of Weiss and Mohs The Edinburgh Philosophical Journal VIII 275 290 Neumann F E 1823 Beitrage zur Krystallonomie Ernst Siegfried Mittler Berlin und Posen Seeber L A 1824 Versuch einer Erklarung des inneren Baues der Festen Korper Ann Phys 76 229 248 349 371 Frankenheim M L 1826 Crystallonomische Aufsatze Isis Jena 19 497 515 542 565 Hessel J F C 1830 Krystallometrie oder Krystallonomie und Krystallographie in Gehler s Physikalisches Worterbuch 8 1023 1360 Schwickert Leipzig Wohler Liebig 1832 Untersuchungen uber das Radikal der Benzoesaure Annalen der Pharmacie in German 3 3 249 282 doi 10 1002 jlac 18320030302 hdl 2027 hvd hxdg3f Miller W H 1839 A Treatise on Crystallography Deighton Parker Cambridge London Delafosse G 1840 De la Structure des Cristaux sur l Importance de l etude de la Symetrie dans les differentes Branches de l Histoire Naturelle Fain and Thunot Paris Frankenheim M L 1842 System der Kristalle Nova Acta Acad Naturae Curiosorum 19 No 2 469 660 Pasteur L 1848 Memoire sur la relation qui peut exister entre la forme cristalline et la composition chimique et sur la cause de la polarisation rotatoire Memoir on the relationship that can exist between crystalline form and chemical composition and on the cause of rotary polarization Comptes rendus de l Academie des sciences Paris 26 535 538 Bravais A 1850 Memoire sur les systemes formes par des points distribues regulierement sur un plan ou dans l espace J l Ecole Polytechnique 19 1 Gadolin A 1871 Memoire sur la deduction d un seul principe de tous les systems cristallographiques avec leurs subdivisions Memoir on the deduction from a single principle of all the crystal systems with their subdivisions Acta Soc Sci Fennicae 9 1 71 Sohncke L 1879 Entwickelung einer Theorie der Krystallstruktur B G Teubner Leipzig Fedorov E 1891 The symmetry of regular systems of figures Zap Miner Obshch Trans Miner Soc Saint Petersburg 28 1 146 Schoenflies A 1891 Kristallsysteme und Kristallstruktur B G Teubner Barlow W 1894 Uber die Geometrischen Eigenschaften homogener starrer Strukturen und ihre Anwendung auf Krystalle On the geometrical properties of homogeneous rigid structures and their application to crystals Zeitschrift fur Krystallographie und Minerologie vol 23 pages 1 63 Rontgen W C 23 January 1896 On a new kind of rays Nature 53 274 276 XIII Polarised rontgen radiation Philosophical Transactions of the Royal Society of London Series A Containing Papers of a Mathematical or Physical Character 204 372 386 467 479 1905 doi 10 1098 rsta 1905 0013 ISSN 0264 3952 Walter B Pohl R 1908 Zur Frage der Beugung der Rontgenstrahlen Annalen der Physik in German 330 4 715 724 Bibcode 1908AnP 330 715W doi 10 1002 andp 19083300405 Walter B Pohl R 1909 Weitere Versuche uber die Beugung der Rontgenstrahlen Annalen der Physik in German 334 7 331 354 Bibcode 1909AnP 334 331W doi 10 1002 andp 19093340707 Laue Max von 1912 Eine quantitative prufung der theorie fur die interferenz erscheinungen bei Rontgenstrahlen Sitzungsberichte der Kgl Bayer Akad Der Wiss 363 373 Bragg W L 1913 The Diffraction of Short Electromagnetic Waves by a Crystal Proc Cambridge Phil Soc 17 43 57 Baumhauer Heinrich 1912 12 01 VII Uber die Krystalle des Carborundums Zeitschrift fur Kristallographie Crystalline Materials 50 1 6 33 39 doi 10 1524 zkri 1912 50 1 33 ISSN 2196 7105 S2CID 102105832 Bragg W L 1913 The structure of crystals as indicated by their diffraction of X rays Proc Royal Soc Lond A 89 248 77 The Nobel Prize in Physics 1914 The Nobel Prize in Physics 1915 Debye P amp Scherrer P 1916 Interferenzen an regellos orientierten Teilchen im Rontgenlicht I Physik Z 17 277 283 Ewald P P 1916 Zur Begrundung der Kristalloptik Annalen der Physik in German 354 2 117 143 Bibcode 1916AnP 354 117E doi 10 1002 andp 19163540202 Hull A W 1917 The crystal structure of iron Phys Rev 9 83 87 Dickinson R G amp Raymond A L 1923 The crystal structure of hexamethylenetetramine J Am Chem Soc 45 22 29 Gonell H J amp Mark H 1923 Rontgenographische Bestimmung der Strukturformel des Hexamethylentetramins Z Phys Chem 107 181 218 Bragg W H amp Gibbs R E 1925 The structure of a and b quartz Proc R Soc Lond A 109 405 426 Goldschmidt V M 1926 Geochemische Verteilungsgesetze VII Die Gesetze der Krystallochemie Skrifter Norsk Vid Akademie Oslo Mat Nat Kl Machatschki F 1928 Zur Frage der Struktur und Konstitution der Feldspate Zentralbl Min 97 100 Lonsdale K 1928 The structure of the benzene ring Nature 122 810 Niggli Paul 1928 Krystallographische und strukturtheoretische Grundbegriffe in German Leipzig Akad Verl Ges OCLC 180664864 Pauling L 1929 The principles determining the structure of complex ionic crystals J Am Chem Soc 51 1010 1026 Bragg W L 1930 The structure of silicates Z Kistallogr 74 237 305 Ewald Paul Peter Hermann C 1931 Strukturbericht 1913 1928 in German Leipzig Akademische Verlagsgesellschaft OCLC 29150452 Rinne Friedrich 1932 11 01 Uber Beziehungen der gewasserten Bromphenanthrensulfosaure zu organismischen Parakristallen Zeitschrift fur Kristallographie Crystalline Materials 82 1 6 379 393 doi 10 1524 zkri 1932 82 1 379 ISSN 2196 7105 S2CID 100926260 Rinne Friedrich 1933 Investigations and considerations concerning paracrystallinity Transactions of the Faraday Society 29 140 1016 1032 doi 10 1039 TF9332901016 ISSN 0014 7672 Patterson A L 1934 A Fourier series method for the determination of the components of interatomic distances in crystals Phys Rev 46 372 376 Kamminga H 1989 The International Union of Crystallography its formation and early development Acta Cryst A45 581 601 The Nobel Prize in Chemistry 1936 The Nobel Prize in Physics 1937 Brindley G W Robinson Keith 1945 Structure of Kaolinite Nature 156 3970 661 662 Bibcode 1945Natur 156R 661B doi 10 1038 156661b0 ISSN 1476 4687 S2CID 4054610 Kamminga Harmke 1989 The International Union of Crystallography its formation and early development Acta Crystallogr A45 581 601 The Nobel Prize in Chemistry 1946 Ramsdell Lewis S 1947 Studies on silicon carbide PDF American Mineralogist 32 1 2 64 82 ISSN 0003 004X Shull C G amp Smart J S 1949 Detection of antiferromagnetism by neutron diffraction Phys Rev 76 1256 Karle J amp Hauptman H 1950 The phases and magnitudes of the structure factors Acta Crystallogr 3 181 187 Bijvoet J M Peerdeman A F amp van Bommel A J 1951 Determination of the absolute configuration of optically active compounds by means of X Rays Nature 168 271 272 Pauling L Corey R B amp Branson H R 1951 The structure of proteins two hydrogen bonded helical configurations of the polypeptide chain Proc Natl Acad Sci USA 37 205 211 Corey R B amp Pauling L 1951 The pleated sheet a new layer conformation of polypeptide chains Proc Natl Acad Sci USA 37 251 256 Shubnikov A V 1951 Symmetry and antisymmetry of finite figures Izv Akad Nauk SSSR Moscow in Russian Shubnikov A V and Belov N V 1964 Colored Symmetry Holser W T ed New York Pergamon Sayre D 1952 Some implications of a theorem due to Shannon Acta Crystallogr 5 843 Fischer E O amp Pfab W 1952 Cyclopentadien metallkomplexe ein Neuer Typ Metallorganischer Verbindungen Z Naturforsch B 7 377 379 Wilkinson G 1975 The iron sandwich A recollection of the first four months J Organomet Chem 100 273 278 Magneli A 1953 06 10 Structures of the ReO3 type with recurrent dislocations of atoms homologous series of molybdenum and tungsten oxides Acta Crystallographica 6 6 495 500 doi 10 1107 S0365110X53001381 ISSN 0365 110X S2CID 98622295 Watson J D amp Crick F H C 1953 Molecular structure of nucleic acids a structure for deoxyribose nucleic acid Nature 171 737 738 Franklin R E amp Gosling R G 1953 Molecular configuration in sodium thymonucleate Nature 171 740 741 Wilkins M H F Stokes A R amp Wilson H R 1953 Molecular structure of deoxypentose nucleic acids Nature 171 738 740 Ukichiro Nakaya 2013 Snow crystals Cambridge Harvard Univ Press ISBN 978 0 674 18276 9 OCLC 900567451 The Nobel Prize in Chemistry 1954 Cruickshank D W J 1956 09 01 The analysis of the anisotropic thermal motion of molecules in crystals Acta Crystallographica 9 9 754 756 doi 10 1107 s0365110x56002047 ISSN 0365 110X Kendrew J C et al 1960 Structure of myoglobin a three dimensional Fourier synthesis at 2 A resolution Nature 185 422 427 Perutz M F et al 1960 Structure of haemoglobin a three dimensional Fourier synthesis at 5 5 A resolution obtained by X ray analysis Nature 185 416 422 Rossmann M G amp Blow D M 1962 The detection of sub units within the crystallographic asymmetric unit Acta Crystallogr 15 24 31 The Nobel Prize in Chemistry 1962 The Nobel Prize in Medicine 1962 The Nobel Prize in Chemistry 1964 Rietveld H M 1967 Line profiles of neutron powder diffraction peaks for structure refinement Acta Crystallogr 22 151 152 DeRosier D J amp Klug A 1968 Reconstruction of three dimensional structures from electron micrographs Nature 217 130 134 Blundell TL Cutfield JF Cutfield SM Dodson EJ Dodson GG Hodgkin DC et al 1971 Atomic positions in rhombohedral 2 zinc insulin crystals Nature 231 5304 506 11 Protein Data Bank Nature New Biol 233 223 1971 Meyer E F Jr 1971 Interactive computer display for the three dimensional study of macromolecular structures Nature 232 255 257 Kim S H et al 1973 Three dimensional structure of a yeast phenylalanine transfer RNA folding of the polynucleotide chain Science 179 285 288 The Nobel Prize in Chemistry 1973 The Nobel Prize in Chemistry 1976 Harrison S C et al 1978 Tomato bushy stunt virus at 2 9 A resolution Nature 276 368 373 Gregori Aminoff Prize Karle J 1980 Some Developments in Anomalous Dispersion for the Structural Investigation of Macromolecular Systems in Biology International Journal of Quantum Chemistry Quantum Biology Symposium 7 357 367 The Nobel Prize in Chemistry 1982 Shechtman D Blech I Gratias D amp Cahn J W 1984 Metallic phase with long range orientational order and no translational symmetry Phys Rev Lett 53 1951 1953 Richmond T J Finch J T Rushton B Rhodes D amp Klug A 1984 Structure of the nucleosome core particle at 7 A resolution Nature 311 532 537 The Nobel Prize in Chemistry 1985 Deisenhofer J Epp O Miki K Huber R amp Michel H 1985 Structure of the protein subunits in the photosynthetic reaction centre of Rhodopseudomonas viridis at 3 A resolution Nature 318 618 624 The Nobel Prize in Physics 1986 First Ewald Prize The Nobel Prize in Chemistry 1988 Second Ewald Prize Weiss M S et al 1991 Molecular architecture and electrostatic properties of a bacterial porin Science 254 1627 1630 Report of the Executive Committee for 1991 Acta Crystallographica Section A 48 6 922 946 1992 doi 10 1107 S0108767392008328 Third Ewald Prize Abrahams J P Leslie A G Lutter R amp Walker J E 1994 Structure at 2 8 A resolution of F1 ATPase from bovine heart mitochondria Nature 370 621 628 The Nobel Prize in Chemistry 1994 Fourth Ewald Prize Pebay Peyroula E Rummel G Rosenbusch J P amp Landau E M 1997 X ray structure of bacteriorhodopsin at 2 5 angstroms from microcrystals grown in lipidic cubic phases Science 277 1676 1681 The Nobel Prize in Chemistry 1997 Fifth Ewald Prize Neutze R Wouts R van der Spoel D Weckert E amp Hajdu J 2000 Potential for biomolecular imaging with femtosecond X ray pulses Nature 406 752 757 Yusupov M M et al 2001 Crystal structure of the ribosome at 5 5 A resolution Science 292 883 896 Yusupov M M et al 2001 Crystal structure of the ribosome at 5 5 A resolution Science 292 883 896 Cramer P Bushnell D A amp Kornberg R D 2001 Structural basis of transcription RNA polymerase II at 2 8 A resolution Science 292 1863 1876 Gnatt A L Cramer P Fu J Bushnell D A amp Kornberg R D 2001 Structural basis of transcription an RNA polymerase II elongation complex at 3 3 A resolution Science 292 1876 1882 Sixth Ewald Prize Seventh Ewald Prize Rasmussen S G et al 2007 Crystal structure of the human b2 adrenergic G protein coupled receptor Nature 450 383 387 Cherezov V et al 2007 High resolution crystal structure of an engineered human b2 adrenergic G protein coupled receptor Science 318 1258 1265 Eighth Ewald Prize The Nobel Prize in Chemistry 2009 Van Aert Sandra Batenburg Kees J Rossell Marta D Erni Rolf Van Tendeloo Gustaaf 2011 02 02 Three dimensional atomic imaging of crystalline nanoparticles Nature 470 7334 374 377 Bibcode 2011Natur 470 374V doi 10 1038 nature09741 ISSN 0028 0836 PMID 21289625 S2CID 4310850 The Nobel Prize in Chemistry 2011 Ninth Ewald Prize Tenth Ewald Prize The Nobel Prize in Chemistry 2017 Eleventh Ewald Prize Twelfth Ewald Prize Thirteenth Ewald Prize Further reading editAuthier Andre 2013 Early Days of X ray Crystallography Oxford Univ Press Burke John G 1966 Origins of the Science of Crystals University of California Press Ewald P P ed 1962 50 Years of X ray Diffraction IUCR Oosthoek Kubbinga H 2012 Crystallography from Hauy to Laue controversies on the molecular and atomistic nature of solids Z Kristallogr 227 1 26 Lima de Faria Jose ed 1990 Historical atlas of crystallography Springer Netherlands Milestones in Crystallography Nature August 2014 Whitlock H P 1934 A Century of Progress in Crystallography The American Mineralogist 19 93 100 Retrieved from https en wikipedia org w index php title Timeline of crystallography amp oldid 1170972686, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.