fbpx
Wikipedia

Isotopes of thallium

Thallium (81Tl) has 41 isotopes with atomic masses that range from 176 to 216. 203Tl and 205Tl are the only stable isotopes and 204Tl is the most stable radioisotope with a half-life of 3.78 years. 207Tl, with a half-life of 4.77 minutes, has the longest half-life of naturally occurring Tl radioisotopes. All isotopes of thallium are either radioactive or observationally stable, meaning that they are predicted to be radioactive but no actual decay has been observed.

Isotopes of thallium (81Tl)
Main isotopes[1] Decay
abun­dance half-life (t1/2) mode pro­duct
201Tl synth 3.0421 d ε 201Hg
203Tl 29.5% stable
204Tl synth 3.78 y β 204Pb
ε + β+ 204Hg
205Tl 70.5% stable
Standard atomic weight Ar°(Tl)

Thallium-202 (half-life 12.23 days) can be made in a cyclotron[4] while thallium-204 (half-life 3.78 years) is made by the neutron activation of stable thallium in a nuclear reactor.[5]

In the fully ionized state, the isotope 205Tl becomes beta-radioactive, decaying to 205Pb,[6] but 203Tl remains stable.

205Tl is the decay product of bismuth-209, an isotope that was once thought to be stable but is now known to undergo alpha decay with an extremely long half-life of 2.01×1019 y.[7] 205Tl is at the end of the neptunium series decay chain.

The neptunium series decay chain, which ends at 205Tl.

List of isotopes edit

Nuclide[8]
[n 1]
Historic
name
Z N Isotopic mass (Da)[9]
[n 2][n 3]
Half-life
[n 4]
Decay
mode

[n 5]
Daughter
isotope

[n 6]
Spin and
parity
[n 7][n 4]
Natural abundance (mole fraction)
Excitation energy[n 4] Normal proportion Range of variation
176Tl[10] 81 95 176.00059(21)# 2.4+1.6
−0.7
 ms
p (~63%) 175Hg (3−, 4−, 5−)
α (~37%) 172Au
176mTl ~671 keV 290+200
−80
 μs
p (~50%) 175Hg
α (~50%) 172mAu
177Tl[11] 81 96 176.996427(27) 18(5) ms α (73%) 173Au (1/2+)
p (27%) 176Hg
177mTl 807(18) keV 230(40) μs p (51%) 176Hg (11/2−)
α (49%) 173Au
178Tl[12] 81 97 177.99490(12)# 255(9) ms α (62%) 174Au (4-,5-)
β+ (38%) 178Hg
β+, SF (0.15%) (various)
179Tl[13] 81 98 178.99109(5) 437(9) ms α (60%) 175Au (1/2+)
β+ (40%) 179Hg
179m1Tl 825(10)# keV 1.41(2) ms α 175Au (11/2−)
IT (rare) 179Tl
β+ (rare) 179Hg
179m2Tl 904.5(9) keV 119(14) ns IT 179Tl (9/2−)
180Tl[14] 81 99 179.98991(13)# 1.09(1) s β+ (93%) 180Hg 4-#
α (7%) 176Au
β+, SF (0.0032%) 100Ru, 80Kr[15]
181Tl[16] 81 100 180.986257(10) 2.9(1) s β+ (91.4%) 181Hg 1/2+#
α (8.6%) 177Au
181mTl 834.9(4) keV 1.40(3) ms IT (99.60%) 181Tl (9/2−)
α (0.40%) 177Au
182Tl 81 101 181.98567(8) 2.0(3) s β+ (96%) 182Hg 2−#
α (4%) 178Au
182m1Tl 100(100)# keV 2.9(5) s α 178Au (7+)
β+ (rare) 182Hg
182m2Tl 600(140)# keV 10−
183Tl 81 102 182.982193(10) 6.9(7) s β+ (98%) 183Hg 1/2+#
α (2%) 179Au
183m1Tl 630(17) keV 53.3(3) ms IT (99.99%) 183Tl 9/2−#
α (.01%) 179Au
183m2Tl 976.8(3) keV 1.48(10) μs (13/2+)
184Tl 81 103 183.98187(5) 9.7(6) s β+ 184Hg 2−#
184m1Tl 100(100)# keV 10# s β+ (97.9%) 184Hg 7+#
α (2.1%) 180Au
184m2Tl 500(140)# keV 47.1 ms IT (99.911%) (10−)
α (.089%) 180Au
185Tl 81 104 184.97879(6) 19.5(5) s α 181Au 1/2+#
β+ 185Hg
185mTl 452.8(20) keV 1.93(8) s IT (99.99%) 185Tl 9/2−#
α (.01%) 181Au
β+ 185Hg
186Tl 81 105 185.97833(20) 40# s β+ 186Hg (2−)
α (.006%) 182Au
186m1Tl 320(180) keV 27.5(10) s β+ 186Hg (7+)
186m2Tl 690(180) keV 2.9(2) s (10−)
187Tl 81 106 186.975906(9) ~51 s β+ 187Hg (1/2+)
α (rare) 183Au
187mTl 335(3) keV 15.60(12) s α 183Au (9/2−)
IT 187Tl
β+ 187Hg
188Tl 81 107 187.97601(4) 71(2) s β+ 188Hg (2−)
188m1Tl 40(30) keV 71(1) s β+ 188Hg (7+)
188m2Tl 310(30) keV 41(4) ms (9−)
189Tl 81 108 188.973588(12) 2.3(2) min β+ 189Hg (1/2+)
189mTl 257.6(13) keV 1.4(1) min β+ (96%) 189Hg (9/2−)
IT (4%) 189Tl
190Tl 81 109 189.97388(5) 2.6(3) min β+ 190Hg 2(−)
190m1Tl 130(90)# keV 3.7(3) min β+ 190Hg 7(+#)
190m2Tl 290(70)# keV 750(40) μs (8−)
190m3Tl 410(70)# keV >1 μs 9−
191Tl 81 110 190.971786(8) 20# min β+ 191Hg (1/2+)
191mTl 297(7) keV 5.22(16) min β+ 191Hg 9/2(−)
192Tl 81 111 191.97223(3) 9.6(4) min β+ 192Hg (2−)
192m1Tl 160(50) keV 10.8(2) min β+ 192Hg (7+)
192m2Tl 407(54) keV 296(5) ns (8−)
193Tl 81 112 192.97067(12) 21.6(8) min β+ 193Hg 1/2(+#)
193mTl 369(4) keV 2.11(15) min IT (75%) 193Tl 9/2−
β+ (25%) 193Hg
194Tl 81 113 193.97120(15) 33.0(5) min β+ 194Hg 2−
α (10−7%) 190Au
194mTl 300(200)# keV 32.8(2) min β+ 194Hg (7+)
195Tl 81 114 194.969774(15) 1.16(5) h β+ 195Hg 1/2+
195mTl 482.63(17) keV 3.6(4) s IT 195Tl 9/2−
196Tl 81 115 195.970481(13) 1.84(3) h β+ 196Hg 2−
196mTl 394.2(5) keV 1.41(2) h β+ (95.5%) 196Hg (7+)
IT (4.5%) 196Tl
197Tl 81 116 196.969575(18) 2.84(4) h β+ 197Hg 1/2+
197mTl 608.22(8) keV 540(10) ms IT 197Tl 9/2−
198Tl 81 117 197.97048(9) 5.3(5) h β+ 198Hg 2−
198m1Tl 543.5(4) keV 1.87(3) h β+ (54%) 198Hg 7+
IT (46%) 198Tl
198m2Tl 687.2(5) keV 150(40) ns (5+)
198m3Tl 742.3(4) keV 32.1(10) ms (10−)#
199Tl 81 118 198.96988(3) 7.42(8) h β+ 199Hg 1/2+
199mTl 749.7(3) keV 28.4(2) ms IT 199Tl 9/2−
200Tl 81 119 199.970963(6) 26.1(1) h β+ 200Hg 2−
200m1Tl 753.6(2) keV 34.3(10) ms IT 200Tl 7+
200m2Tl 762.0(2) keV 0.33(5) μs 5+
201Tl[n 8] 81 120 200.970819(16) 72.912(17) h EC 201Hg 1/2+
201mTl 919.50(9) keV 2.035(7) ms IT 201Tl (9/2−)
202Tl 81 121 201.972106(16) 12.23(2) d β+ 202Hg 2−
202mTl 950.19(10) keV 572(7) μs 7+
203Tl 81 122 202.9723442(14) Observationally Stable[n 9] 1/2+ 0.2952(1) 0.29494–0.29528
203mTl 3400(300) keV 7.7(5) μs (25/2+)
204Tl 81 123 203.9738635(13) 3.78(2) y β (97.1%) 204Pb 2−
EC (2.9%) 204Hg
204m1Tl 1104.0(4) keV 63(2) μs (7)+
204m2Tl 2500(500) keV 2.6(2) μs (12−)
204m3Tl 3500(500) keV 1.6(2) μs (20+)
205Tl[n 10] 81 124 204.9744275(14) Observationally Stable[n 11] 1/2+ 0.7048(1) 0.70472–0.70506
205m1Tl 3290.63(17) keV 2.6(2) μs 25/2+
205m2Tl 4835.6(15) keV 235(10) ns (35/2–)
206Tl Radium E 81 125 205.9761103(15) 4.200(17) min β 206Pb 0− Trace[n 12]
206mTl 2643.11(19) keV 3.74(3) min IT 206Tl (12–)
207Tl Actinium C 81 126 206.977419(6) 4.77(2) min β 207Pb 1/2+ Trace[n 13]
207mTl 1348.1(3) keV 1.33(11) s IT (99.9%) 207Tl 11/2–
β (.1%) 207Pb
208Tl Thorium C" 81 127 207.9820187(21) 3.053(4) min β 208Pb 5+ Trace[n 14]
209Tl 81 128 208.985359(8) 2.161(7) min β 209Pb 1/2+ Trace[n 15]
210Tl Radium C″ 81 129 209.990074(12) 1.30(3) min β (99.991%) 210Pb (5+)# Trace[n 12]
β, n (.009%) 209Pb
211Tl 81 130 210.993480(50) 80(16) s β (97.8%) 211Pb 1/2+
β, n (2.2%) 210Pb
212Tl 81 131 211.998340(220)# 31(8) s β (98.2%) 212Pb (5+)
β, n (1.8%) 211Pb
213Tl 81 132 213.001915(29) 24(4) s β (92.4%) 213Pb 1/2+
β, n (7.6%) 212Pb
214Tl 81 133 214.006940(210)# 11(2) s β (66%) 214Pb 5+#
β, n (34%) 213Pb
215Tl 81 134 215.010640(320)# 10(4) s β (95.4%) 215Pb 1/2+#
β, n (4.6%) 214Pb
216Tl 81 135 216.015800(320)# 6(3) s β 216Pb 5+#
β, n (<11.5%) 215Pb
This table header & footer:
  1. ^ mTl – Excited nuclear isomer.
  2. ^ ( ) – Uncertainty (1σ) is given in concise form in parentheses after the corresponding last digits.
  3. ^ # – Atomic mass marked #: value and uncertainty derived not from purely experimental data, but at least partly from trends from the Mass Surface (TMS).
  4. ^ a b c # – Values marked # are not purely derived from experimental data, but at least partly from trends of neighboring nuclides (TNN).
  5. ^ Modes of decay:
  6. ^ Bold symbol as daughter – Daughter product is stable.
  7. ^ ( ) spin value – Indicates spin with weak assignment arguments.
  8. ^ Main isotope used in scintigraphy
  9. ^ Believed to undergo α decay to 199Au
  10. ^ Final decay product of 4n+1 decay chain (the Neptunium series)
  11. ^ Believed to undergo α decay to 201Au
  12. ^ a b Intermediate decay product of 238U
  13. ^ Intermediate decay product of 235U
  14. ^ Intermediate decay product of 232Th
  15. ^ Intermediate decay product of 237Np

Thallium-201 edit

Thallium-201 (201Tl) is a synthetic radioisotope of thallium. It has a half-life of 73 hours and decays by electron capture, emitting X-rays (~70–80 keV), and photons of 135 and 167 keV in 10% total abundance.[17] Thallium-201 is synthesized by the neutron activation of stable thallium in a nuclear reactor,[17][18] or by the 203Tl(p, 3n)201Pb nuclear reaction in cyclotrons, as 201Pb naturally decays to 201Tl afterwards.[19] It is a radiopharmaceutical, as it has good imaging characteristics without excessive patient radiation dose. It is the most popular isotope used for thallium nuclear cardiac stress tests.[20]

References edit

  1. ^ Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae.
  2. ^ "Standard Atomic Weights: Thallium". CIAAW. 2009.
  3. ^ Prohaska, Thomas; Irrgeher, Johanna; Benefield, Jacqueline; Böhlke, John K.; Chesson, Lesley A.; Coplen, Tyler B.; Ding, Tiping; Dunn, Philip J. H.; Gröning, Manfred; Holden, Norman E.; Meijer, Harro A. J. (2022-05-04). "Standard atomic weights of the elements 2021 (IUPAC Technical Report)". Pure and Applied Chemistry. doi:10.1515/pac-2019-0603. ISSN 1365-3075.
  4. ^ . doe.gov. Department of Energy. Archived from the original on 2006-12-09. Retrieved 23 March 2018.
  5. ^ Manual for reactor produced radioisotopes from the International Atomic Energy Agency
  6. ^ (PDF). Archived from the original (PDF) on October 29, 2013. Retrieved June 9, 2013.
  7. ^ Marcillac, P.; Coron, N.; Dambier, G.; et al. (2003). "Experimental detection of α-particles from the radioactive decay of natural bismuth". Nature. 422 (6934): 876–878. Bibcode:2003Natur.422..876D. doi:10.1038/nature01541. PMID 12712201. S2CID 4415582.
  8. ^ Half-life, decay mode, nuclear spin, and isotopic composition is sourced in:
    Audi, G.; Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S. (2017). "The NUBASE2016 evaluation of nuclear properties" (PDF). Chinese Physics C. 41 (3): 030001. Bibcode:2017ChPhC..41c0001A. doi:10.1088/1674-1137/41/3/030001.
  9. ^ Wang, M.; Audi, G.; Kondev, F. G.; Huang, W. J.; Naimi, S.; Xu, X. (2017). "The AME2016 atomic mass evaluation (II). Tables, graphs, and references" (PDF). Chinese Physics C. 41 (3): 030003-1–030003-442. doi:10.1088/1674-1137/41/3/030003.
  10. ^ Al-Aqeel, Muneerah Abdullah M. "Decay Spectroscopy of the Thallium Isotopes 176,177Tl". University of Liverpool. ProQuest 2447566201. Retrieved 21 June 2023.
  11. ^ Poli, G. L.; Davids, C. N.; Woods, P. J.; Seweryniak, D.; Batchelder, J. C.; Brown, L. T.; Bingham, C. R.; Carpenter, M. P.; Conticchio, L. F.; Davinson, T.; DeBoer, J.; Hamada, S.; Henderson, D. J.; Irvine, R. J.; Janssens, R. V. F.; Maier, H. J.; Müller, L.; Soramel, F.; Toth, K. S.; Walters, W. B.; Wauters, J. (1 June 1999). "Proton and $\ensuremath{\alpha}$ radioactivity below the $Z=82$ shell closure". Physical Review C. 59 (6): R2979–R2983. doi:10.1103/PhysRevC.59.R2979. Retrieved 21 June 2023.
  12. ^ Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (1 March 2021). "The NUBASE2020 evaluation of nuclear physics properties *". Chinese Physics C, High Energy Physics and Nuclear Physics. 45 (3): 030001. Bibcode:2021ChPhC..45c0001K. doi:10.1088/1674-1137/abddae. ISSN 1674-1137. OSTI 1774641.
  13. ^ Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (1 March 2021). "The NUBASE2020 evaluation of nuclear physics properties *". Chinese Physics C, High Energy Physics and Nuclear Physics. 45 (3): 030001. Bibcode:2021ChPhC..45c0001K. doi:10.1088/1674-1137/abddae. ISSN 1674-1137. OSTI 1774641.
  14. ^ Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (1 March 2021). "The NUBASE2020 evaluation of nuclear physics properties *". Chinese Physics C, High Energy Physics and Nuclear Physics. 45 (3): 030001. Bibcode:2021ChPhC..45c0001K. doi:10.1088/1674-1137/abddae. ISSN 1674-1137. OSTI 1774641.
  15. ^ Reich, E. S. (2010). "Mercury serves up a nuclear surprise: a new type of fission". Scientific American. Retrieved 12 May 2011.
  16. ^ Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (1 March 2021). "The NUBASE2020 evaluation of nuclear physics properties *". Chinese Physics C, High Energy Physics and Nuclear Physics. 45 (3): 030001. Bibcode:2021ChPhC..45c0001K. doi:10.1088/1674-1137/abddae. ISSN 1674-1137. OSTI 1774641.
  17. ^ a b Audi, Georges; Bersillon, Olivier; Blachot, Jean; Wapstra, Aaldert Hendrik (2003), "The NUBASE evaluation of nuclear and decay properties", Nuclear Physics A, 729: 3–128, Bibcode:2003NuPhA.729....3A, doi:10.1016/j.nuclphysa.2003.11.001
  18. ^ "Manual for reactor produced radioisotopes" (PDF). International Atomic Energy Agency. 2003. (PDF) from the original on 2011-05-21. Retrieved 2010-05-13.
  19. ^ Cyclotron Produced Radionuclides: Principles and Practice (PDF). International Atomic Energy Agency. 2008. ISBN 9789201002082. Retrieved 2022-07-01.
  20. ^ Maddahi, Jamshid; Berman, Daniel (2001). "Detection, Evaluation, and Risk Stratification of Coronary Artery Disease by Thallium-201 Myocardial Perfusion Scintigraphy 155". Cardiac SPECT imaging (2nd ed.). Lippincott Williams & Wilkins. pp. 155–178. ISBN 978-0-7817-2007-6. from the original on 2017-02-22. Retrieved 2016-09-26.
  • Isotope masses from:
    • Audi, Georges; Bersillon, Olivier; Blachot, Jean; Wapstra, Aaldert Hendrik (2003), "The NUBASE evaluation of nuclear and decay properties", Nuclear Physics A, 729: 3–128, Bibcode:2003NuPhA.729....3A, doi:10.1016/j.nuclphysa.2003.11.001
  • Isotopic compositions and standard atomic masses from:
    • de Laeter, John Robert; Böhlke, John Karl; De Bièvre, Paul; Hidaka, Hiroshi; Peiser, H. Steffen; Rosman, Kevin J. R.; Taylor, Philip D. P. (2003). "Atomic weights of the elements. Review 2000 (IUPAC Technical Report)". Pure and Applied Chemistry. 75 (6): 683–800. doi:10.1351/pac200375060683.
    • Wieser, Michael E. (2006). "Atomic weights of the elements 2005 (IUPAC Technical Report)". Pure and Applied Chemistry. 78 (11): 2051–2066. doi:10.1351/pac200678112051.
  • "News & Notices: Standard Atomic Weights Revised". International Union of Pure and Applied Chemistry. 19 October 2005.
  • Half-life, spin, and isomer data selected from the following sources.

isotopes, thallium, thallium, 81tl, isotopes, with, atomic, masses, that, range, from, 203tl, 205tl, only, stable, isotopes, 204tl, most, stable, radioisotope, with, half, life, years, 207tl, with, half, life, minutes, longest, half, life, naturally, occurring. Thallium 81Tl has 41 isotopes with atomic masses that range from 176 to 216 203Tl and 205Tl are the only stable isotopes and 204Tl is the most stable radioisotope with a half life of 3 78 years 207Tl with a half life of 4 77 minutes has the longest half life of naturally occurring Tl radioisotopes All isotopes of thallium are either radioactive or observationally stable meaning that they are predicted to be radioactive but no actual decay has been observed Isotopes of thallium 81Tl Main isotopes 1 Decayabun dance half life t1 2 mode pro duct201Tl synth 3 0421 d e 201Hg203Tl 29 5 stable204Tl synth 3 78 y b 204Pbe b 204Hg205Tl 70 5 stableStandard atomic weight Ar Tl 204 382 204 385 2 204 38 0 01 abridged 3 viewtalkeditThallium 202 half life 12 23 days can be made in a cyclotron 4 while thallium 204 half life 3 78 years is made by the neutron activation of stable thallium in a nuclear reactor 5 In the fully ionized state the isotope 205Tl becomes beta radioactive decaying to 205Pb 6 but 203Tl remains stable 205Tl is the decay product of bismuth 209 an isotope that was once thought to be stable but is now known to undergo alpha decay with an extremely long half life of 2 01 1019 y 7 205Tl is at the end of the neptunium series decay chain The neptunium series decay chain which ends at 205Tl List of isotopes editNuclide 8 n 1 Historicname Z N Isotopic mass Da 9 n 2 n 3 Half life n 4 Decaymode n 5 Daughterisotope n 6 Spin andparity n 7 n 4 Natural abundance mole fraction Excitation energy n 4 Normal proportion Range of variation176Tl 10 81 95 176 00059 21 2 4 1 6 0 7 ms p 63 175Hg 3 4 5 a 37 172Au176mTl 671 keV 290 200 80 ms p 50 175Hga 50 172mAu177Tl 11 81 96 176 996427 27 18 5 ms a 73 173Au 1 2 p 27 176Hg177mTl 807 18 keV 230 40 ms p 51 176Hg 11 2 a 49 173Au178Tl 12 81 97 177 99490 12 255 9 ms a 62 174Au 4 5 b 38 178Hgb SF 0 15 various 179Tl 13 81 98 178 99109 5 437 9 ms a 60 175Au 1 2 b 40 179Hg179m1Tl 825 10 keV 1 41 2 ms a 175Au 11 2 IT rare 179Tlb rare 179Hg179m2Tl 904 5 9 keV 119 14 ns IT 179Tl 9 2 180Tl 14 81 99 179 98991 13 1 09 1 s b 93 180Hg 4 a 7 176Aub SF 0 0032 100Ru 80Kr 15 181Tl 16 81 100 180 986257 10 2 9 1 s b 91 4 181Hg 1 2 a 8 6 177Au181mTl 834 9 4 keV 1 40 3 ms IT 99 60 181Tl 9 2 a 0 40 177Au182Tl 81 101 181 98567 8 2 0 3 s b 96 182Hg 2 a 4 178Au182m1Tl 100 100 keV 2 9 5 s a 178Au 7 b rare 182Hg182m2Tl 600 140 keV 10 183Tl 81 102 182 982193 10 6 9 7 s b 98 183Hg 1 2 a 2 179Au183m1Tl 630 17 keV 53 3 3 ms IT 99 99 183Tl 9 2 a 01 179Au183m2Tl 976 8 3 keV 1 48 10 ms 13 2 184Tl 81 103 183 98187 5 9 7 6 s b 184Hg 2 184m1Tl 100 100 keV 10 s b 97 9 184Hg 7 a 2 1 180Au184m2Tl 500 140 keV 47 1 ms IT 99 911 10 a 089 180Au185Tl 81 104 184 97879 6 19 5 5 s a 181Au 1 2 b 185Hg185mTl 452 8 20 keV 1 93 8 s IT 99 99 185Tl 9 2 a 01 181Aub 185Hg186Tl 81 105 185 97833 20 40 s b 186Hg 2 a 006 182Au186m1Tl 320 180 keV 27 5 10 s b 186Hg 7 186m2Tl 690 180 keV 2 9 2 s 10 187Tl 81 106 186 975906 9 51 s b 187Hg 1 2 a rare 183Au187mTl 335 3 keV 15 60 12 s a 183Au 9 2 IT 187Tlb 187Hg188Tl 81 107 187 97601 4 71 2 s b 188Hg 2 188m1Tl 40 30 keV 71 1 s b 188Hg 7 188m2Tl 310 30 keV 41 4 ms 9 189Tl 81 108 188 973588 12 2 3 2 min b 189Hg 1 2 189mTl 257 6 13 keV 1 4 1 min b 96 189Hg 9 2 IT 4 189Tl190Tl 81 109 189 97388 5 2 6 3 min b 190Hg 2 190m1Tl 130 90 keV 3 7 3 min b 190Hg 7 190m2Tl 290 70 keV 750 40 ms 8 190m3Tl 410 70 keV gt 1 ms 9 191Tl 81 110 190 971786 8 20 min b 191Hg 1 2 191mTl 297 7 keV 5 22 16 min b 191Hg 9 2 192Tl 81 111 191 97223 3 9 6 4 min b 192Hg 2 192m1Tl 160 50 keV 10 8 2 min b 192Hg 7 192m2Tl 407 54 keV 296 5 ns 8 193Tl 81 112 192 97067 12 21 6 8 min b 193Hg 1 2 193mTl 369 4 keV 2 11 15 min IT 75 193Tl 9 2 b 25 193Hg194Tl 81 113 193 97120 15 33 0 5 min b 194Hg 2 a 10 7 190Au194mTl 300 200 keV 32 8 2 min b 194Hg 7 195Tl 81 114 194 969774 15 1 16 5 h b 195Hg 1 2 195mTl 482 63 17 keV 3 6 4 s IT 195Tl 9 2 196Tl 81 115 195 970481 13 1 84 3 h b 196Hg 2 196mTl 394 2 5 keV 1 41 2 h b 95 5 196Hg 7 IT 4 5 196Tl197Tl 81 116 196 969575 18 2 84 4 h b 197Hg 1 2 197mTl 608 22 8 keV 540 10 ms IT 197Tl 9 2 198Tl 81 117 197 97048 9 5 3 5 h b 198Hg 2 198m1Tl 543 5 4 keV 1 87 3 h b 54 198Hg 7 IT 46 198Tl198m2Tl 687 2 5 keV 150 40 ns 5 198m3Tl 742 3 4 keV 32 1 10 ms 10 199Tl 81 118 198 96988 3 7 42 8 h b 199Hg 1 2 199mTl 749 7 3 keV 28 4 2 ms IT 199Tl 9 2 200Tl 81 119 199 970963 6 26 1 1 h b 200Hg 2 200m1Tl 753 6 2 keV 34 3 10 ms IT 200Tl 7 200m2Tl 762 0 2 keV 0 33 5 ms 5 201Tl n 8 81 120 200 970819 16 72 912 17 h EC 201Hg 1 2 201mTl 919 50 9 keV 2 035 7 ms IT 201Tl 9 2 202Tl 81 121 201 972106 16 12 23 2 d b 202Hg 2 202mTl 950 19 10 keV 572 7 ms 7 203Tl 81 122 202 9723442 14 Observationally Stable n 9 1 2 0 2952 1 0 29494 0 29528203mTl 3400 300 keV 7 7 5 ms 25 2 204Tl 81 123 203 9738635 13 3 78 2 y b 97 1 204Pb 2 EC 2 9 204Hg204m1Tl 1104 0 4 keV 63 2 ms 7 204m2Tl 2500 500 keV 2 6 2 ms 12 204m3Tl 3500 500 keV 1 6 2 ms 20 205Tl n 10 81 124 204 9744275 14 Observationally Stable n 11 1 2 0 7048 1 0 70472 0 70506205m1Tl 3290 63 17 keV 2 6 2 ms 25 2 205m2Tl 4835 6 15 keV 235 10 ns 35 2 206Tl Radium E 81 125 205 9761103 15 4 200 17 min b 206Pb 0 Trace n 12 206mTl 2643 11 19 keV 3 74 3 min IT 206Tl 12 207Tl Actinium C 81 126 206 977419 6 4 77 2 min b 207Pb 1 2 Trace n 13 207mTl 1348 1 3 keV 1 33 11 s IT 99 9 207Tl 11 2 b 1 207Pb208Tl Thorium C 81 127 207 9820187 21 3 053 4 min b 208Pb 5 Trace n 14 209Tl 81 128 208 985359 8 2 161 7 min b 209Pb 1 2 Trace n 15 210Tl Radium C 81 129 209 990074 12 1 30 3 min b 99 991 210Pb 5 Trace n 12 b n 009 209Pb211Tl 81 130 210 993480 50 80 16 s b 97 8 211Pb 1 2 b n 2 2 210Pb212Tl 81 131 211 998340 220 31 8 s b 98 2 212Pb 5 b n 1 8 211Pb213Tl 81 132 213 001915 29 24 4 s b 92 4 213Pb 1 2 b n 7 6 212Pb214Tl 81 133 214 006940 210 11 2 s b 66 214Pb 5 b n 34 213Pb215Tl 81 134 215 010640 320 10 4 s b 95 4 215Pb 1 2 b n 4 6 214Pb216Tl 81 135 216 015800 320 6 3 s b 216Pb 5 b n lt 11 5 215PbThis table header amp footer view mTl Excited nuclear isomer Uncertainty 1s is given in concise form in parentheses after the corresponding last digits Atomic mass marked value and uncertainty derived not from purely experimental data but at least partly from trends from the Mass Surface TMS a b c Values marked are not purely derived from experimental data but at least partly from trends of neighboring nuclides TNN Modes of decay EC Electron captureIT Isomeric transitionn Neutron emissionp Proton emission Bold symbol as daughter Daughter product is stable spin value Indicates spin with weak assignment arguments Main isotope used in scintigraphy Believed to undergo a decay to 199Au Final decay product of 4n 1 decay chain the Neptunium series Believed to undergo a decay to 201Au a b Intermediate decay product of 238U Intermediate decay product of 235U Intermediate decay product of 232Th Intermediate decay product of 237NpThallium 201 editThallium 201 201Tl is a synthetic radioisotope of thallium It has a half life of 73 hours and decays by electron capture emitting X rays 70 80 keV and photons of 135 and 167 keV in 10 total abundance 17 Thallium 201 is synthesized by the neutron activation of stable thallium in a nuclear reactor 17 18 or by the 203Tl p 3n 201Pb nuclear reaction in cyclotrons as 201Pb naturally decays to 201Tl afterwards 19 It is a radiopharmaceutical as it has good imaging characteristics without excessive patient radiation dose It is the most popular isotope used for thallium nuclear cardiac stress tests 20 References edit Kondev F G Wang M Huang W J Naimi S Audi G 2021 The NUBASE2020 evaluation of nuclear properties PDF Chinese Physics C 45 3 030001 doi 10 1088 1674 1137 abddae Standard Atomic Weights Thallium CIAAW 2009 Prohaska Thomas Irrgeher Johanna Benefield Jacqueline Bohlke John K Chesson Lesley A Coplen Tyler B Ding Tiping Dunn Philip J H Groning Manfred Holden Norman E Meijer Harro A J 2022 05 04 Standard atomic weights of the elements 2021 IUPAC Technical Report Pure and Applied Chemistry doi 10 1515 pac 2019 0603 ISSN 1365 3075 Thallium Research doe gov Department of Energy Archived from the original on 2006 12 09 Retrieved 23 March 2018 Manual for reactor produced radioisotopes from the International Atomic Energy Agency Bound state beta decay of highly ionized atoms PDF Archived from the original PDF on October 29 2013 Retrieved June 9 2013 Marcillac P Coron N Dambier G et al 2003 Experimental detection of a particles from the radioactive decay of natural bismuth Nature 422 6934 876 878 Bibcode 2003Natur 422 876D doi 10 1038 nature01541 PMID 12712201 S2CID 4415582 Half life decay mode nuclear spin and isotopic composition is sourced in Audi G Kondev F G Wang M Huang W J Naimi S 2017 The NUBASE2016 evaluation of nuclear properties PDF Chinese Physics C 41 3 030001 Bibcode 2017ChPhC 41c0001A doi 10 1088 1674 1137 41 3 030001 Wang M Audi G Kondev F G Huang W J Naimi S Xu X 2017 The AME2016 atomic mass evaluation II Tables graphs and references PDF Chinese Physics C 41 3 030003 1 030003 442 doi 10 1088 1674 1137 41 3 030003 Al Aqeel Muneerah Abdullah M Decay Spectroscopy of the Thallium Isotopes 176 177Tl University of Liverpool ProQuest 2447566201 Retrieved 21 June 2023 Poli G L Davids C N Woods P J Seweryniak D Batchelder J C Brown L T Bingham C R Carpenter M P Conticchio L F Davinson T DeBoer J Hamada S Henderson D J Irvine R J Janssens R V F Maier H J Muller L Soramel F Toth K S Walters W B Wauters J 1 June 1999 Proton and ensuremath alpha radioactivity below the Z 82 shell closure Physical Review C 59 6 R2979 R2983 doi 10 1103 PhysRevC 59 R2979 Retrieved 21 June 2023 Kondev F G Wang M Huang W J Naimi S Audi G 1 March 2021 The NUBASE2020 evaluation of nuclear physics properties Chinese Physics C High Energy Physics and Nuclear Physics 45 3 030001 Bibcode 2021ChPhC 45c0001K doi 10 1088 1674 1137 abddae ISSN 1674 1137 OSTI 1774641 Kondev F G Wang M Huang W J Naimi S Audi G 1 March 2021 The NUBASE2020 evaluation of nuclear physics properties Chinese Physics C High Energy Physics and Nuclear Physics 45 3 030001 Bibcode 2021ChPhC 45c0001K doi 10 1088 1674 1137 abddae ISSN 1674 1137 OSTI 1774641 Kondev F G Wang M Huang W J Naimi S Audi G 1 March 2021 The NUBASE2020 evaluation of nuclear physics properties Chinese Physics C High Energy Physics and Nuclear Physics 45 3 030001 Bibcode 2021ChPhC 45c0001K doi 10 1088 1674 1137 abddae ISSN 1674 1137 OSTI 1774641 Reich E S 2010 Mercury serves up a nuclear surprise a new type of fission Scientific American Retrieved 12 May 2011 Kondev F G Wang M Huang W J Naimi S Audi G 1 March 2021 The NUBASE2020 evaluation of nuclear physics properties Chinese Physics C High Energy Physics and Nuclear Physics 45 3 030001 Bibcode 2021ChPhC 45c0001K doi 10 1088 1674 1137 abddae ISSN 1674 1137 OSTI 1774641 a b Audi Georges Bersillon Olivier Blachot Jean Wapstra Aaldert Hendrik 2003 The NUBASE evaluation of nuclear and decay properties Nuclear Physics A 729 3 128 Bibcode 2003NuPhA 729 3A doi 10 1016 j nuclphysa 2003 11 001 Manual for reactor produced radioisotopes PDF International Atomic Energy Agency 2003 Archived PDF from the original on 2011 05 21 Retrieved 2010 05 13 Cyclotron Produced Radionuclides Principles and Practice PDF International Atomic Energy Agency 2008 ISBN 9789201002082 Retrieved 2022 07 01 Maddahi Jamshid Berman Daniel 2001 Detection Evaluation and Risk Stratification of Coronary Artery Disease by Thallium 201 Myocardial Perfusion Scintigraphy 155 Cardiac SPECT imaging 2nd ed Lippincott Williams amp Wilkins pp 155 178 ISBN 978 0 7817 2007 6 Archived from the original on 2017 02 22 Retrieved 2016 09 26 Isotope masses from Audi Georges Bersillon Olivier Blachot Jean Wapstra Aaldert Hendrik 2003 The NUBASE evaluation of nuclear and decay properties Nuclear Physics A 729 3 128 Bibcode 2003NuPhA 729 3A doi 10 1016 j nuclphysa 2003 11 001 Isotopic compositions and standard atomic masses from de Laeter John Robert Bohlke John Karl De Bievre Paul Hidaka Hiroshi Peiser H Steffen Rosman Kevin J R Taylor Philip D P 2003 Atomic weights of the elements Review 2000 IUPAC Technical Report Pure and Applied Chemistry 75 6 683 800 doi 10 1351 pac200375060683 Wieser Michael E 2006 Atomic weights of the elements 2005 IUPAC Technical Report Pure and Applied Chemistry 78 11 2051 2066 doi 10 1351 pac200678112051 News amp Notices Standard Atomic Weights Revised International Union of Pure and Applied Chemistry 19 October 2005 Half life spin and isomer data selected from the following sources Audi Georges Bersillon Olivier Blachot Jean Wapstra Aaldert Hendrik 2003 The NUBASE evaluation of nuclear and decay properties Nuclear Physics A 729 3 128 Bibcode 2003NuPhA 729 3A doi 10 1016 j nuclphysa 2003 11 001 National Nuclear Data Center NuDat 2 x database Brookhaven National Laboratory Holden Norman E 2004 11 Table of the Isotopes In Lide David R ed CRC Handbook of Chemistry and Physics 85th ed Boca Raton Florida CRC Press ISBN 978 0 8493 0485 9 Retrieved from https en wikipedia org w index php title Isotopes of thallium amp oldid 1188201904 Thallium 207, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.