fbpx
Wikipedia

Isotopes of tellurium

There are 39 known isotopes and 17 nuclear isomers of tellurium (52Te), with atomic masses that range from 104 to 142. These are listed in the table below.

Isotopes of tellurium (52Te)
Main isotopes[1] Decay
abun­dance half-life (t1/2) mode pro­duct
120Te 0.09% stable
121Te synth 16.78 d ε 121Sb
122Te 2.55% stable
123Te 0.89% stable[2]
124Te 4.74% stable
125Te 7.07% stable
126Te 18.8% stable
127Te synth 9.35 h β 127I
128Te 31.7% 2.2×1024 y ββ 128Xe
129Te synth 69.6 min β 129I
130Te 34.1% 8.2×1020 y ββ 130Xe
Standard atomic weight Ar°(Te)

Naturally-occurring tellurium on Earth consists of eight isotopes. Two of these have been found to be radioactive: 128Te and 130Te undergo double beta decay with half-lives of, respectively, 2.2×1024 (2.2 septillion) years (the longest half-life of all nuclides proven to be radioactive)[5] and 8.2×1020 (820 quintillion) years. The longest-lived artificial radioisotope of tellurium is 121Te with a half-life of about 19 days. Several nuclear isomers have longer half-lives, the longest being 121mTe with a half-life of 154 days.

The very-long-lived radioisotopes 128Te and 130Te are the two most common isotopes of tellurium. Of elements with at least one stable isotope, only indium and rhenium likewise have a radioisotope in greater abundance than a stable one.

It has been claimed that electron capture of 123Te was observed, but more recent measurements of the same team have disproved this.[6] The half-life of 123Te is longer than 9.2 × 1016 years, and probably much longer.[6]

124Te can be used as a starting material in the production of radionuclides by a cyclotron or other particle accelerators. Some common radionuclides that can be produced from tellurium-124 are iodine-123 and iodine-124.

The short-lived isotope 135Te (half-life 19 seconds) is produced as a fission product in nuclear reactors. It decays, via two beta decays, to 135Xe, the most powerful known neutron absorber, and the cause of the iodine pit phenomenon.

With the exception of beryllium, tellurium is the second lightest element observed to have isotopes capable of undergoing alpha decay, with isotopes 104Te to 109Te being seen to undergo this mode of decay. Some lighter elements, namely those in the vicinity of 8Be, have isotopes with delayed alpha emission (following proton or beta emission) as a rare branch.

List of isotopes edit

Nuclide
[n 1]
Z N Isotopic mass (Da)
[n 2][n 3]
Half-life
[n 4][n 5]
Decay
mode

[n 6]
Daughter
isotope

[n 7]
Spin and
parity
[n 8][n 5]
Natural abundance (mole fraction)
Excitation energy Normal proportion Range of variation
104Te[7] 52 52 <18 ns α 100Sn 0+
105Te 52 53 104.94364(54)# 620(70) ns α 101Sn 5/2+#
106Te 52 54 105.93750(14) 70(20) µs
[70(+20−10) µs]
α 102Sn 0+
107Te 52 55 106.93501(32)# 3.1(1) ms α (70%) 103Sn 5/2+#
β+ (30%) 107Sb
108Te 52 56 107.92944(11) 2.1(1) s α (49%) 104Sn 0+
β+ (48.5%) 108Sb
β+, p (2.4%) 107Sn
β+, α (.065%) 104In
109Te 52 57 108.92742(7) 4.6(3) s β+ (86.99%) 109Sb (5/2+)
β+, p (9.4%) 108Sn
α (7.9%) 105Sn
β+, α (.005%) 105In
110Te 52 58 109.92241(6) 18.6(8) s β+ (99.99%) 110Sb 0+
β+, p (.003%) 109Sn
111Te 52 59 110.92111(8) 19.3(4) s β+ 111Sb (5/2)+#
β+, p (rare) 110Sn
112Te 52 60 111.91701(18) 2.0(2) min β+ 112Sb 0+
113Te 52 61 112.91589(3) 1.7(2) min β+ 113Sb (7/2+)
114Te 52 62 113.91209(3) 15.2(7) min β+ 114Sb 0+
115Te 52 63 114.91190(3) 5.8(2) min β+ 115Sb 7/2+
115m1Te 10(7) keV 6.7(4) min β+ 115Sb (1/2)+
IT 115Te
115m2Te 280.05(20) keV 7.5(2) µs 11/2−
116Te 52 64 115.90846(3) 2.49(4) h β+ 116Sb 0+
117Te 52 65 116.908645(14) 62(2) min β+ 117Sb 1/2+
117mTe 296.1(5) keV 103(3) ms IT 117Te (11/2−)
118Te 52 66 117.905828(16) 6.00(2) d EC 118Sb 0+
119Te 52 67 118.906404(9) 16.05(5) h β+ 119Sb 1/2+
119mTe 260.96(5) keV 4.70(4) d β+ (99.99%) 119Sb 11/2−
IT (.008%) 119Te
120Te 52 68 119.90402(1) Observationally Stable[n 9] 0+ 9(1)×10−4
121Te 52 69 120.904936(28) 19.16(5) d β+ 121Sb 1/2+
121mTe 293.991(22) keV 154(7) d IT (88.6%) 121Te 11/2−
β+ (11.4%) 121Sb
122Te 52 70 121.9030439(16) Stable 0+ 0.0255(12)
123Te 52 71 122.9042700(16) Observationally Stable[n 10] 1/2+ 0.0089(3)
123mTe 247.47(4) keV 119.2(1) d IT 123Te 11/2−
124Te 52 72 123.9028179(16) Stable 0+ 0.0474(14)
125Te[n 11] 52 73 124.9044307(16) Stable 1/2+ 0.0707(15)
125mTe 144.772(9) keV 57.40(15) d IT 125Te 11/2−
126Te 52 74 125.9033117(16) Stable 0+ 0.1884(25)
127Te[n 11] 52 75 126.9052263(16) 9.35(7) h β 127I 3/2+
127mTe 88.26(8) keV 109(2) d IT (97.6%) 127Te 11/2−
β (2.4%) 127I
128Te[n 11][n 12] 52 76 127.9044631(19) 2.2(3)×1024 y[n 13] ββ 128Xe 0+ 0.3174(8)
128mTe 2790.7(4) keV 370(30) ns 10+
129Te[n 11] 52 77 128.9065982(19) 69.6(3) min β 129I 3/2+
129mTe 105.50(5) keV 33.6(1) d β (36%) 129I 11/2−
IT (64%) 129Te
130Te[n 11][n 12] 52 78 129.9062244(21) 8.2(0.2 (stat.), 0.6 (syst.))×1020 y ββ 130Xe 0+ 0.3408(62)
130m1Te 2146.41(4) keV 115(8) ns (7)−
130m2Te 2661(7) keV 1.90(8) µs (10+)
130m3Te 4375.4(18) keV 261(33) ns
131Te[n 11] 52 79 130.9085239(21) 25.0(1) min β 131I 3/2+
131mTe 182.250(20) keV 30(2) h β (77.8%) 131I 11/2−
IT (22.2%) 131Te
132Te[n 11] 52 80 131.908553(7) 3.204(13) d β 132I 0+
133Te 52 81 132.910955(26) 12.5(3) min β 133I (3/2+)
133mTe 334.26(4) keV 55.4(4) min β (82.5%) 133I (11/2−)
IT (17.5%) 133Te
134Te 52 82 133.911369(11) 41.8(8) min β 134I 0+
134mTe 1691.34(16) keV 164.1(9) ns 6+
135Te[n 14] 52 83 134.91645(10) 19.0(2) s β 135I (7/2−)
135mTe 1554.88(17) keV 510(20) ns (19/2−)
136Te 52 84 135.92010(5) 17.63(8) s β (98.7%) 136I 0+
β, n (1.3%) 135I
137Te 52 85 136.92532(13) 2.49(5) s β (97.01%) 137I 3/2−#
β, n (2.99%) 136I
138Te 52 86 137.92922(22)# 1.4(4) s β (93.7%) 138I 0+
β, n (6.3%) 137I
139Te 52 87 138.93473(43)# 500 ms
[>300 ns]#
β 139I 5/2−#
β, n 138I
140Te 52 88 139.93885(32)# 300 ms
[>300 ns]#
β 140I 0+
β, n 139I
141Te 52 89 140.94465(43)# 100 ms
[>300 ns]#
β 141I 5/2−#
β, n 140I
142Te 52 90 141.94908(64)# 50 ms
[>300 ns]#
β 142I 0+
This table header & footer:
  1. ^ mTe – Excited nuclear isomer.
  2. ^ ( ) – Uncertainty (1σ) is given in concise form in parentheses after the corresponding last digits.
  3. ^ # – Atomic mass marked #: value and uncertainty derived not from purely experimental data, but at least partly from trends from the Mass Surface (TMS).
  4. ^ Bold half-life – nearly stable, half-life longer than age of universe.
  5. ^ a b # – Values marked # are not purely derived from experimental data, but at least partly from trends of neighboring nuclides (TNN).
  6. ^ Modes of decay:
  7. ^ Bold symbol as daughter – Daughter product is stable.
  8. ^ ( ) spin value – Indicates spin with weak assignment arguments.
  9. ^ Believed to undergo β+β+ decay to 120Sn with a half-life over 2.2×1016 years
  10. ^ Believed to undergo β+ decay to 123Sb with a half-life over 9.2×1016 years
  11. ^ a b c d e f g Fission product
  12. ^ a b Primordial radionuclide
  13. ^ Longest measured half-life of any nuclide
  14. ^ Very short-lived fission product, responsible for the iodine pit as precursor of 135Xe via 135I

References edit

  1. ^ Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae.
  2. ^ Alessandrello, A.; Arnaboldi, C.; Brofferio, C.; Capelli, S.; Cremonesi, O.; Fiorini, E.; Nucciotti, A.; Pavan, M.; Pessina, G.; Pirro, S.; Previtali, E.; Sisti, M.; Vanzini, M.; Zanotti, L.; Giuliani, A.; Pedretti, M.; Bucci, C.; Pobes, C. (2003). "New limits on naturally occurring electron capture of 123Te". Physical Review C. 67: 014323. arXiv:hep-ex/0211015. Bibcode:2003PhRvC..67a4323A. doi:10.1103/PhysRevC.67.014323.
  3. ^ "Standard Atomic Weights: Tellurium". CIAAW. 1969.
  4. ^ Prohaska, Thomas; Irrgeher, Johanna; Benefield, Jacqueline; Böhlke, John K.; Chesson, Lesley A.; Coplen, Tyler B.; Ding, Tiping; Dunn, Philip J. H.; Gröning, Manfred; Holden, Norman E.; Meijer, Harro A. J. (2022-05-04). "Standard atomic weights of the elements 2021 (IUPAC Technical Report)". Pure and Applied Chemistry. doi:10.1515/pac-2019-0603. ISSN 1365-3075.
  5. ^ Many isotopes are expected to have longer half-lives, but decay has not yet been observed in these, allowing only a lower limit to be placed on their half-lives
  6. ^ a b A. Alessandrello; et al. (January 2003). "New Limits on Naturally Occurring Electron Capture of 123Te". Physical Review C. 67 (1): 014323. arXiv:hep-ex/0211015. Bibcode:2003PhRvC..67a4323A. doi:10.1103/PhysRevC.67.014323. S2CID 119523039.
  7. ^ Auranen, K.; et al. (2018). "Superallowed α decay to doubly magic 100Sn" (PDF). Physical Review Letters. 121 (18): 182501. Bibcode:2018PhRvL.121r2501A. doi:10.1103/PhysRevLett.121.182501. PMID 30444390.
  • Isotope masses from:
    • Audi, Georges; Bersillon, Olivier; Blachot, Jean; Wapstra, Aaldert Hendrik (2003), "The NUBASE evaluation of nuclear and decay properties", Nuclear Physics A, 729: 3–128, Bibcode:2003NuPhA.729....3A, doi:10.1016/j.nuclphysa.2003.11.001
  • Isotopic compositions and standard atomic masses from:
    • de Laeter, John Robert; Böhlke, John Karl; De Bièvre, Paul; Hidaka, Hiroshi; Peiser, H. Steffen; Rosman, Kevin J. R.; Taylor, Philip D. P. (2003). "Atomic weights of the elements. Review 2000 (IUPAC Technical Report)". Pure and Applied Chemistry. 75 (6): 683–800. doi:10.1351/pac200375060683.
    • Wieser, Michael E. (2006). "Atomic weights of the elements 2005 (IUPAC Technical Report)". Pure and Applied Chemistry. 78 (11): 2051–2066. doi:10.1351/pac200678112051.
  • "News & Notices: Standard Atomic Weights Revised". International Union of Pure and Applied Chemistry. 19 October 2005.
  • Half-life, spin, and isomer data selected from the following sources.

isotopes, tellurium, there, known, isotopes, nuclear, isomers, tellurium, 52te, with, atomic, masses, that, range, from, these, listed, table, below, 52te, main, isotopes, decay, abun, dance, half, life, mode, duct, 120te, stable, 121te, synth, 121sb, 122te, s. There are 39 known isotopes and 17 nuclear isomers of tellurium 52Te with atomic masses that range from 104 to 142 These are listed in the table below Isotopes of tellurium 52Te Main isotopes 1 Decay abun dance half life t1 2 mode pro duct 120Te 0 09 stable 121Te synth 16 78 d e 121Sb 122Te 2 55 stable 123Te 0 89 stable 2 124Te 4 74 stable 125Te 7 07 stable 126Te 18 8 stable 127Te synth 9 35 h b 127I 128Te 31 7 2 2 1024 y b b 128Xe 129Te synth 69 6 min b 129I 130Te 34 1 8 2 1020 y b b 130XeStandard atomic weight Ar Te 127 60 0 03 3 127 60 0 03 abridged 4 viewtalkedit Naturally occurring tellurium on Earth consists of eight isotopes Two of these have been found to be radioactive 128Te and 130Te undergo double beta decay with half lives of respectively 2 2 1024 2 2 septillion years the longest half life of all nuclides proven to be radioactive 5 and 8 2 1020 820 quintillion years The longest lived artificial radioisotope of tellurium is 121Te with a half life of about 19 days Several nuclear isomers have longer half lives the longest being 121mTe with a half life of 154 days The very long lived radioisotopes 128Te and 130Te are the two most common isotopes of tellurium Of elements with at least one stable isotope only indium and rhenium likewise have a radioisotope in greater abundance than a stable one It has been claimed that electron capture of 123Te was observed but more recent measurements of the same team have disproved this 6 The half life of 123Te is longer than 9 2 1016 years and probably much longer 6 124Te can be used as a starting material in the production of radionuclides by a cyclotron or other particle accelerators Some common radionuclides that can be produced from tellurium 124 are iodine 123 and iodine 124 The short lived isotope 135Te half life 19 seconds is produced as a fission product in nuclear reactors It decays via two beta decays to 135Xe the most powerful known neutron absorber and the cause of the iodine pit phenomenon With the exception of beryllium tellurium is the second lightest element observed to have isotopes capable of undergoing alpha decay with isotopes 104Te to 109Te being seen to undergo this mode of decay Some lighter elements namely those in the vicinity of 8Be have isotopes with delayed alpha emission following proton or beta emission as a rare branch List of isotopes editNuclide n 1 Z N Isotopic mass Da n 2 n 3 Half life n 4 n 5 Decaymode n 6 Daughterisotope n 7 Spin andparity n 8 n 5 Natural abundance mole fraction Excitation energy Normal proportion Range of variation 104Te 7 52 52 lt 18 ns a 100Sn 0 105Te 52 53 104 94364 54 620 70 ns a 101Sn 5 2 106Te 52 54 105 93750 14 70 20 µs 70 20 10 µs a 102Sn 0 107Te 52 55 106 93501 32 3 1 1 ms a 70 103Sn 5 2 b 30 107Sb 108Te 52 56 107 92944 11 2 1 1 s a 49 104Sn 0 b 48 5 108Sb b p 2 4 107Sn b a 065 104In 109Te 52 57 108 92742 7 4 6 3 s b 86 99 109Sb 5 2 b p 9 4 108Sn a 7 9 105Sn b a 005 105In 110Te 52 58 109 92241 6 18 6 8 s b 99 99 110Sb 0 b p 003 109Sn 111Te 52 59 110 92111 8 19 3 4 s b 111Sb 5 2 b p rare 110Sn 112Te 52 60 111 91701 18 2 0 2 min b 112Sb 0 113Te 52 61 112 91589 3 1 7 2 min b 113Sb 7 2 114Te 52 62 113 91209 3 15 2 7 min b 114Sb 0 115Te 52 63 114 91190 3 5 8 2 min b 115Sb 7 2 115m1Te 10 7 keV 6 7 4 min b 115Sb 1 2 IT 115Te 115m2Te 280 05 20 keV 7 5 2 µs 11 2 116Te 52 64 115 90846 3 2 49 4 h b 116Sb 0 117Te 52 65 116 908645 14 62 2 min b 117Sb 1 2 117mTe 296 1 5 keV 103 3 ms IT 117Te 11 2 118Te 52 66 117 905828 16 6 00 2 d EC 118Sb 0 119Te 52 67 118 906404 9 16 05 5 h b 119Sb 1 2 119mTe 260 96 5 keV 4 70 4 d b 99 99 119Sb 11 2 IT 008 119Te 120Te 52 68 119 90402 1 Observationally Stable n 9 0 9 1 10 4 121Te 52 69 120 904936 28 19 16 5 d b 121Sb 1 2 121mTe 293 991 22 keV 154 7 d IT 88 6 121Te 11 2 b 11 4 121Sb 122Te 52 70 121 9030439 16 Stable 0 0 0255 12 123Te 52 71 122 9042700 16 Observationally Stable n 10 1 2 0 0089 3 123mTe 247 47 4 keV 119 2 1 d IT 123Te 11 2 124Te 52 72 123 9028179 16 Stable 0 0 0474 14 125Te n 11 52 73 124 9044307 16 Stable 1 2 0 0707 15 125mTe 144 772 9 keV 57 40 15 d IT 125Te 11 2 126Te 52 74 125 9033117 16 Stable 0 0 1884 25 127Te n 11 52 75 126 9052263 16 9 35 7 h b 127I 3 2 127mTe 88 26 8 keV 109 2 d IT 97 6 127Te 11 2 b 2 4 127I 128Te n 11 n 12 52 76 127 9044631 19 2 2 3 1024 y n 13 b b 128Xe 0 0 3174 8 128mTe 2790 7 4 keV 370 30 ns 10 129Te n 11 52 77 128 9065982 19 69 6 3 min b 129I 3 2 129mTe 105 50 5 keV 33 6 1 d b 36 129I 11 2 IT 64 129Te 130Te n 11 n 12 52 78 129 9062244 21 8 2 0 2 stat 0 6 syst 1020 y b b 130Xe 0 0 3408 62 130m1Te 2146 41 4 keV 115 8 ns 7 130m2Te 2661 7 keV 1 90 8 µs 10 130m3Te 4375 4 18 keV 261 33 ns 131Te n 11 52 79 130 9085239 21 25 0 1 min b 131I 3 2 131mTe 182 250 20 keV 30 2 h b 77 8 131I 11 2 IT 22 2 131Te 132Te n 11 52 80 131 908553 7 3 204 13 d b 132I 0 133Te 52 81 132 910955 26 12 5 3 min b 133I 3 2 133mTe 334 26 4 keV 55 4 4 min b 82 5 133I 11 2 IT 17 5 133Te 134Te 52 82 133 911369 11 41 8 8 min b 134I 0 134mTe 1691 34 16 keV 164 1 9 ns 6 135Te n 14 52 83 134 91645 10 19 0 2 s b 135I 7 2 135mTe 1554 88 17 keV 510 20 ns 19 2 136Te 52 84 135 92010 5 17 63 8 s b 98 7 136I 0 b n 1 3 135I 137Te 52 85 136 92532 13 2 49 5 s b 97 01 137I 3 2 b n 2 99 136I 138Te 52 86 137 92922 22 1 4 4 s b 93 7 138I 0 b n 6 3 137I 139Te 52 87 138 93473 43 500 ms gt 300 ns b 139I 5 2 b n 138I 140Te 52 88 139 93885 32 300 ms gt 300 ns b 140I 0 b n 139I 141Te 52 89 140 94465 43 100 ms gt 300 ns b 141I 5 2 b n 140I 142Te 52 90 141 94908 64 50 ms gt 300 ns b 142I 0 This table header amp footer view mTe Excited nuclear isomer Uncertainty 1s is given in concise form in parentheses after the corresponding last digits Atomic mass marked value and uncertainty derived not from purely experimental data but at least partly from trends from the Mass Surface TMS Bold half life nearly stable half life longer than age of universe a b Values marked are not purely derived from experimental data but at least partly from trends of neighboring nuclides TNN Modes of decay EC Electron capture IT Isomeric transition n Neutron emission p Proton emission Bold symbol as daughter Daughter product is stable spin value Indicates spin with weak assignment arguments Believed to undergo b b decay to 120Sn with a half life over 2 2 1016 years Believed to undergo b decay to 123Sb with a half life over 9 2 1016 years a b c d e f g Fission product a b Primordial radionuclide Longest measured half life of any nuclide Very short lived fission product responsible for the iodine pit as precursor of 135Xe via 135IReferences edit Kondev F G Wang M Huang W J Naimi S Audi G 2021 The NUBASE2020 evaluation of nuclear properties PDF Chinese Physics C 45 3 030001 doi 10 1088 1674 1137 abddae Alessandrello A Arnaboldi C Brofferio C Capelli S Cremonesi O Fiorini E Nucciotti A Pavan M Pessina G Pirro S Previtali E Sisti M Vanzini M Zanotti L Giuliani A Pedretti M Bucci C Pobes C 2003 New limits on naturally occurring electron capture of 123Te Physical Review C 67 014323 arXiv hep ex 0211015 Bibcode 2003PhRvC 67a4323A doi 10 1103 PhysRevC 67 014323 Standard Atomic Weights Tellurium CIAAW 1969 Prohaska Thomas Irrgeher Johanna Benefield Jacqueline Bohlke John K Chesson Lesley A Coplen Tyler B Ding Tiping Dunn Philip J H Groning Manfred Holden Norman E Meijer Harro A J 2022 05 04 Standard atomic weights of the elements 2021 IUPAC Technical Report Pure and Applied Chemistry doi 10 1515 pac 2019 0603 ISSN 1365 3075 Many isotopes are expected to have longer half lives but decay has not yet been observed in these allowing only a lower limit to be placed on their half lives a b A Alessandrello et al January 2003 New Limits on Naturally Occurring Electron Capture of 123Te Physical Review C 67 1 014323 arXiv hep ex 0211015 Bibcode 2003PhRvC 67a4323A doi 10 1103 PhysRevC 67 014323 S2CID 119523039 Auranen K et al 2018 Superallowed a decay to doubly magic 100Sn PDF Physical Review Letters 121 18 182501 Bibcode 2018PhRvL 121r2501A doi 10 1103 PhysRevLett 121 182501 PMID 30444390 Isotope masses from Audi Georges Bersillon Olivier Blachot Jean Wapstra Aaldert Hendrik 2003 The NUBASE evaluation of nuclear and decay properties Nuclear Physics A 729 3 128 Bibcode 2003NuPhA 729 3A doi 10 1016 j nuclphysa 2003 11 001 Isotopic compositions and standard atomic masses from de Laeter John Robert Bohlke John Karl De Bievre Paul Hidaka Hiroshi Peiser H Steffen Rosman Kevin J R Taylor Philip D P 2003 Atomic weights of the elements Review 2000 IUPAC Technical Report Pure and Applied Chemistry 75 6 683 800 doi 10 1351 pac200375060683 Wieser Michael E 2006 Atomic weights of the elements 2005 IUPAC Technical Report Pure and Applied Chemistry 78 11 2051 2066 doi 10 1351 pac200678112051 News amp Notices Standard Atomic Weights Revised International Union of Pure and Applied Chemistry 19 October 2005 Half life spin and isomer data selected from the following sources Audi Georges Bersillon Olivier Blachot Jean Wapstra Aaldert Hendrik 2003 The NUBASE evaluation of nuclear and decay properties Nuclear Physics A 729 3 128 Bibcode 2003NuPhA 729 3A doi 10 1016 j nuclphysa 2003 11 001 National Nuclear Data Center NuDat 2 x database Brookhaven National Laboratory Holden Norman E 2004 11 Table of the Isotopes In Lide David R ed CRC Handbook of Chemistry and Physics 85th ed Boca Raton Florida CRC Press ISBN 978 0 8493 0485 9 Alduino C Alfonso K Artusa D R Avignone F T Azzolini O Banks T I Bari G Beeman J W Bellini F 2017 01 01 Measurement of the two neutrino double beta decay half life of 130Te with the CUORE 0 experiment The European Physical Journal C 77 1 13 arXiv 1609 01666 Bibcode 2017EPJC 77 13A doi 10 1140 epjc s10052 016 4498 6 ISSN 1434 6044 S2CID 254105128 Retrieved from https en wikipedia org w index php title Isotopes of tellurium amp oldid 1195978608 Tellurium 123, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.