fbpx
Wikipedia

Strain (mechanics)

In mechanics, strain is defined as relative deformation, compared to a reference position configuration. Different equivalent choices may be made for the expression of a strain field depending on whether it is defined with respect to the initial or the final configuration of the body and on whether the metric tensor or its dual is considered.

Strain
Other names
Strain tensor
SI unit1
Other units
%
In SI base unitsm/m
Behaviour under
coord transformation
tensor
Dimension

Strain has dimension of a length ratio, with SI base units of meter per meter (m/m). Hence strains are dimensionless and are usually expressed as a decimal fraction or a percentage. Parts-per notation is also used, e.g., parts per million or parts per billion (sometimes called "microstrains" and "nanostrains", respectively), corresponding to μm/m and nm/m.

Strain can be formulated as the spatial derivative of displacement:

where I is the identity tensor. The displacement of a body may be expressed in the form x = F(X), where X is the reference position of material points of the body; displacement has units of length and does not distinguish between rigid body motions (translations and rotations) and deformations (changes in shape and size) of the body. The spatial derivative of a uniform translation is zero, thus strains measure how much a given displacement differs locally from a rigid-body motion.[1]

A strain is in general a tensor quantity. Physical insight into strains can be gained by observing that a given strain can be decomposed into normal and shear components. The amount of stretch or compression along material line elements or fibers is the normal strain, and the amount of distortion associated with the sliding of plane layers over each other is the shear strain, within a deforming body.[2] This could be applied by elongation, shortening, or volume changes, or angular distortion.[3]

The state of strain at a material point of a continuum body is defined as the totality of all the changes in length of material lines or fibers, the normal strain, which pass through that point and also the totality of all the changes in the angle between pairs of lines initially perpendicular to each other, the shear strain, radiating from this point. However, it is sufficient to know the normal and shear components of strain on a set of three mutually perpendicular directions.

If there is an increase in length of the material line, the normal strain is called tensile strain; otherwise, if there is reduction or compression in the length of the material line, it is called compressive strain.

Strain regimes edit

Depending on the amount of strain, or local deformation, the analysis of deformation is subdivided into three deformation theories:

  • Finite strain theory, also called large strain theory, large deformation theory, deals with deformations in which both rotations and strains are arbitrarily large. In this case, the undeformed and deformed configurations of the continuum are significantly different and a clear distinction has to be made between them. This is commonly the case with elastomers, plastically-deforming materials and other fluids and biological soft tissue.
  • Infinitesimal strain theory, also called small strain theory, small deformation theory, small displacement theory, or small displacement-gradient theory where strains and rotations are both small. In this case, the undeformed and deformed configurations of the body can be assumed identical. The infinitesimal strain theory is used in the analysis of deformations of materials exhibiting elastic behavior, such as materials found in mechanical and civil engineering applications, e.g. concrete and steel.
  • Large-displacement or large-rotation theory, which assumes small strains but large rotations and displacements.

Strain measures edit

In each of these theories the strain is then defined differently. The engineering strain is the most common definition applied to materials used in mechanical and structural engineering, which are subjected to very small deformations. On the other hand, for some materials, e.g., elastomers and polymers, subjected to large deformations, the engineering definition of strain is not applicable, e.g. typical engineering strains greater than 1%;[4] thus other more complex definitions of strain are required, such as stretch, logarithmic strain, Green strain, and Almansi strain.

Engineering strain edit

Engineering strain, also known as Cauchy strain, is expressed as the ratio of total deformation to the initial dimension of the material body on which forces are applied. In the case of a material line element or fiber axially loaded, its elongation gives rise to an engineering normal strain or engineering extensional strain e, which equals the relative elongation or the change in length ΔL per unit of the original length L of the line element or fibers (in meters per meter). The normal strain is positive if the material fibers are stretched and negative if they are compressed. Thus, we have

 
, where e is the engineering normal strain, L is the original length of the fiber and l is the final length of the fiber.

The true shear strain is defined as the change in the angle (in radians) between two material line elements initially perpendicular to each other in the undeformed or initial configuration. The engineering shear strain is defined as the tangent of that angle, and is equal to the length of deformation at its maximum divided by the perpendicular length in the plane of force application, which sometimes makes it easier to calculate.

Stretch ratio edit

The stretch ratio or extension ratio (symbol λ) is an alternative measure related to the extensional or normal strain of an axially loaded differential line element. It is defined as the ratio between the final length l and the initial length L of the material line.

 

The extension ratio λ is related to the engineering strain e by

 
This equation implies that when the normal strain is zero, so that there is no deformation, the stretch ratio is equal to unity.

The stretch ratio is used in the analysis of materials that exhibit large deformations, such as elastomers, which can sustain stretch ratios of 3 or 4 before they fail. On the other hand, traditional engineering materials, such as concrete or steel, fail at much lower stretch ratios.

Logarithmic strain edit

The logarithmic strain ε, also called, true strain or Hencky strain.[5] Considering an incremental strain (Ludwik)

 
the logarithmic strain is obtained by integrating this incremental strain:
 
where e is the engineering strain. The logarithmic strain provides the correct measure of the final strain when deformation takes place in a series of increments, taking into account the influence of the strain path.[2]

Green strain edit

The Green strain is defined as:

 

Almansi strain edit

The Euler-Almansi strain is defined as

 

Strain tensor edit

The (infinitesimal) strain tensor (symbol  ) is defined in the International System of Quantities (ISQ), more specifically in ISO 80000-4 (Mechanics), as a "tensor quantity representing the deformation of matter caused by stress. Strain tensor is symmetric and has three linear strain and three shear strain (Cartesian) components."[6] ISO 80000-4 further defines linear strain as the "quotient of change in length of an object and its length" and shear strain as the "quotient of parallel displacement of two surfaces of a layer and the thickness of the layer".[6] Thus, strains are classified as either normal or shear. A normal strain is perpendicular to the face of an element, and a shear strain is parallel to it. These definitions are consistent with those of normal stress and shear stress.

The strain tensor can then be expressed in terms of normal and shear components as:

 

Geometric setting edit

 
Two-dimensional geometric deformation of an infinitesimal material element

Consider a two-dimensional, infinitesimal, rectangular material element with dimensions dx × dy, which, after deformation, takes the form of a rhombus. The deformation is described by the displacement field u. From the geometry of the adjacent figure we have

 
and
 
For very small displacement gradients the squares of the derivative of   and   are negligible and we have
 

Normal strain edit

For an isotropic material that obeys Hooke's law, a normal stress will cause a normal strain. Normal strains produce dilations.

The normal strain in the x-direction of the rectangular element is defined by

 
Similarly, the normal strain in the y- and z-directions becomes
 

Shear strain edit

Shear strain
Common symbols
γ or ε
SI unit1, or radian
Derivations from
other quantities
γ = τ/G

The engineering shear strain (γxy) is defined as the change in angle between lines AC and AB. Therefore,

 

From the geometry of the figure, we have

 
For small displacement gradients we have
 
For small rotations, i.e. α and β are ≪ 1 we have tan αα, tan ββ. Therefore,
 
thus
 
By interchanging x and y and ux and uy, it can be shown that γxy = γyx.

Similarly, for the yz- and xz-planes, we have

 

Volume strain edit

The volumetric strain, also called bulk strain, is the relative variation of the volume, as arising from dilation or compression; it is the first strain invariant or trace of the tensor:

 
Actually, if we consider a cube with an edge length a, it is a quasi-cube after the deformation (the variations of the angles do not change the volume) with the dimensions   and V0 = a3, thus
 
as we consider small deformations,
 
therefore the formula.

 

In case of pure shear, we can see that there is no change of the volume.

Metric tensor edit

A strain field associated with a displacement is defined, at any point, by the change in length of the tangent vectors representing the speeds of arbitrarily parametrized curves passing through that point. A basic geometric result, due to Fréchet, von Neumann and Jordan, states that, if the lengths of the tangent vectors fulfil the axioms of a norm and the parallelogram law, then the length of a vector is the square root of the value of the quadratic form associated, by the polarization formula, with a positive definite bilinear map called the metric tensor.

See also edit

References edit

  1. ^ Lubliner, Jacob (2008). (PDF) (Revised ed.). Dover Publications. ISBN 978-0-486-46290-5. Archived from the original (PDF) on 2010-03-31.
  2. ^ a b Rees, David (2006). Basic Engineering Plasticity: An Introduction with Engineering and Manufacturing Applications. Butterworth-Heinemann. ISBN 0-7506-8025-3. from the original on 2017-12-22.
  3. ^ "Earth."Encyclopædia Britannica from Encyclopædia Britannica 2006 Ultimate Reference Suite DVD .[2009].
  4. ^ Rees, David (2006). Basic Engineering Plasticity: An Introduction with Engineering and Manufacturing Applications. Butterworth-Heinemann. p. 41. ISBN 0-7506-8025-3. from the original on 2017-12-22.
  5. ^ Hencky, H. (1928). "Über die Form des Elastizitätsgesetzes bei ideal elastischen Stoffen". Zeitschrift für technische Physik. 9: 215–220.
  6. ^ a b "ISO 80000-4:2019". ISO. 2013-08-20. Retrieved 2023-08-28.

strain, mechanics, mechanics, strain, defined, relative, deformation, compared, reference, position, configuration, different, equivalent, choices, made, expression, strain, field, depending, whether, defined, with, respect, initial, final, configuration, body. In mechanics strain is defined as relative deformation compared to a reference position configuration Different equivalent choices may be made for the expression of a strain field depending on whether it is defined with respect to the initial or the final configuration of the body and on whether the metric tensor or its dual is considered StrainOther namesStrain tensorSI unit1Other units In SI base unitsm mBehaviour undercoord transformationtensorDimension1 displaystyle 1 Strain has dimension of a length ratio with SI base units of meter per meter m m Hence strains are dimensionless and are usually expressed as a decimal fraction or a percentage Parts per notation is also used e g parts per million or parts per billion sometimes called microstrains and nanostrains respectively corresponding to mm m and nm m Strain can be formulated as the spatial derivative of displacement e X x X F I displaystyle boldsymbol varepsilon doteq cfrac partial partial mathbf X left mathbf x mathbf X right boldsymbol F boldsymbol I where I is the identity tensor The displacement of a body may be expressed in the form x F X where X is the reference position of material points of the body displacement has units of length and does not distinguish between rigid body motions translations and rotations and deformations changes in shape and size of the body The spatial derivative of a uniform translation is zero thus strains measure how much a given displacement differs locally from a rigid body motion 1 A strain is in general a tensor quantity Physical insight into strains can be gained by observing that a given strain can be decomposed into normal and shear components The amount of stretch or compression along material line elements or fibers is the normal strain and the amount of distortion associated with the sliding of plane layers over each other is the shear strain within a deforming body 2 This could be applied by elongation shortening or volume changes or angular distortion 3 The state of strain at a material point of a continuum body is defined as the totality of all the changes in length of material lines or fibers the normal strain which pass through that point and also the totality of all the changes in the angle between pairs of lines initially perpendicular to each other the shear strain radiating from this point However it is sufficient to know the normal and shear components of strain on a set of three mutually perpendicular directions If there is an increase in length of the material line the normal strain is called tensile strain otherwise if there is reduction or compression in the length of the material line it is called compressive strain Contents 1 Strain regimes 2 Strain measures 2 1 Engineering strain 2 2 Stretch ratio 2 3 Logarithmic strain 2 4 Green strain 2 5 Almansi strain 3 Strain tensor 3 1 Geometric setting 3 2 Normal strain 3 3 Shear strain 3 4 Volume strain 4 Metric tensor 5 See also 6 ReferencesStrain regimes editDepending on the amount of strain or local deformation the analysis of deformation is subdivided into three deformation theories Finite strain theory also called large strain theory large deformation theory deals with deformations in which both rotations and strains are arbitrarily large In this case the undeformed and deformed configurations of the continuum are significantly different and a clear distinction has to be made between them This is commonly the case with elastomers plastically deforming materials and other fluids and biological soft tissue Infinitesimal strain theory also called small strain theory small deformation theory small displacement theory or small displacement gradient theory where strains and rotations are both small In this case the undeformed and deformed configurations of the body can be assumed identical The infinitesimal strain theory is used in the analysis of deformations of materials exhibiting elastic behavior such as materials found in mechanical and civil engineering applications e g concrete and steel Large displacement or large rotation theory which assumes small strains but large rotations and displacements Strain measures editIn each of these theories the strain is then defined differently The engineering strain is the most common definition applied to materials used in mechanical and structural engineering which are subjected to very small deformations On the other hand for some materials e g elastomers and polymers subjected to large deformations the engineering definition of strain is not applicable e g typical engineering strains greater than 1 4 thus other more complex definitions of strain are required such as stretch logarithmic strain Green strain and Almansi strain Engineering strain edit Engineering strain also known as Cauchy strain is expressed as the ratio of total deformation to the initial dimension of the material body on which forces are applied In the case of a material line element or fiber axially loaded its elongation gives rise to an engineering normal strain or engineering extensional strain e which equals the relative elongation or the change in length DL per unit of the original length L of the line element or fibers in meters per meter The normal strain is positive if the material fibers are stretched and negative if they are compressed Thus we havee D L L l L L displaystyle e frac Delta L L frac l L L nbsp where e is the engineering normal strain L is the original length of the fiber and l is the final length of the fiber The true shear strain is defined as the change in the angle in radians between two material line elements initially perpendicular to each other in the undeformed or initial configuration The engineering shear strain is defined as the tangent of that angle and is equal to the length of deformation at its maximum divided by the perpendicular length in the plane of force application which sometimes makes it easier to calculate Stretch ratio edit The stretch ratio or extension ratio symbol l is an alternative measure related to the extensional or normal strain of an axially loaded differential line element It is defined as the ratio between the final length l and the initial length L of the material line l l L displaystyle lambda frac l L nbsp The extension ratio l is related to the engineering strain e bye l 1 displaystyle e lambda 1 nbsp This equation implies that when the normal strain is zero so that there is no deformation the stretch ratio is equal to unity The stretch ratio is used in the analysis of materials that exhibit large deformations such as elastomers which can sustain stretch ratios of 3 or 4 before they fail On the other hand traditional engineering materials such as concrete or steel fail at much lower stretch ratios Logarithmic strain edit The logarithmic strain e also called true strain or Hencky strain 5 Considering an incremental strain Ludwik d e d l l displaystyle delta varepsilon frac delta l l nbsp the logarithmic strain is obtained by integrating this incremental strain d e L l d l l e ln l L ln l ln 1 e e e 2 2 e 3 3 displaystyle begin aligned int delta varepsilon amp int L l frac delta l l varepsilon amp ln left frac l L right ln lambda amp ln 1 e amp e frac e 2 2 frac e 3 3 cdots end aligned nbsp where e is the engineering strain The logarithmic strain provides the correct measure of the final strain when deformation takes place in a series of increments taking into account the influence of the strain path 2 Green strain edit Main article Finite strain theory The Green strain is defined as e G 1 2 l 2 L 2 L 2 1 2 l 2 1 displaystyle varepsilon G tfrac 1 2 left frac l 2 L 2 L 2 right tfrac 1 2 lambda 2 1 nbsp Almansi strain edit Main article Finite strain theory The Euler Almansi strain is defined ase E 1 2 l 2 L 2 l 2 1 2 1 1 l 2 displaystyle varepsilon E tfrac 1 2 left frac l 2 L 2 l 2 right tfrac 1 2 left 1 frac 1 lambda 2 right nbsp Strain tensor editFurther information Infinitesimal strain theory Infinitesimal strain tensor The infinitesimal strain tensor symbol e displaystyle boldsymbol varepsilon nbsp is defined in the International System of Quantities ISQ more specifically in ISO 80000 4 Mechanics as a tensor quantity representing the deformation of matter caused by stress Strain tensor is symmetric and has three linear strain and three shear strain Cartesian components 6 ISO 80000 4 further defines linear strain as the quotient of change in length of an object and its length and shear strain as the quotient of parallel displacement of two surfaces of a layer and the thickness of the layer 6 Thus strains are classified as either normal or shear A normal strain is perpendicular to the face of an element and a shear strain is parallel to it These definitions are consistent with those of normal stress and shear stress The strain tensor can then be expressed in terms of normal and shear components as e e x x e x y e x z e y x e y y e y z e z x e z y e z z e x x 1 2 g x y 1 2 g x z 1 2 g y x e y y 1 2 g y z 1 2 g z x 1 2 g z y e z z displaystyle underline underline boldsymbol varepsilon begin bmatrix varepsilon xx amp varepsilon xy amp varepsilon xz varepsilon yx amp varepsilon yy amp varepsilon yz varepsilon zx amp varepsilon zy amp varepsilon zz end bmatrix begin bmatrix varepsilon xx amp tfrac 1 2 gamma xy amp tfrac 1 2 gamma xz tfrac 1 2 gamma yx amp varepsilon yy amp tfrac 1 2 gamma yz tfrac 1 2 gamma zx amp tfrac 1 2 gamma zy amp varepsilon zz end bmatrix nbsp Geometric setting edit nbsp Two dimensional geometric deformation of an infinitesimal material elementConsider a two dimensional infinitesimal rectangular material element with dimensions dx dy which after deformation takes the form of a rhombus The deformation is described by the displacement field u From the geometry of the adjacent figure we havel e n g t h A B d x displaystyle mathrm length AB dx nbsp and l e n g t h a b d x u x x d x 2 u y x d x 2 d x 2 1 u x x 2 d x 2 u y x 2 d x 1 u x x 2 u y x 2 displaystyle begin aligned mathrm length ab amp sqrt left dx frac partial u x partial x dx right 2 left frac partial u y partial x dx right 2 amp sqrt dx 2 left 1 frac partial u x partial x right 2 dx 2 left frac partial u y partial x right 2 amp dx sqrt left 1 frac partial u x partial x right 2 left frac partial u y partial x right 2 end aligned nbsp For very small displacement gradients the squares of the derivative of u y displaystyle u y nbsp and u x displaystyle u x nbsp are negligible and we have l e n g t h a b d x 1 u x x d x u x x d x displaystyle mathrm length ab approx dx left 1 frac partial u x partial x right dx frac partial u x partial x dx nbsp Normal strain edit For an isotropic material that obeys Hooke s law a normal stress will cause a normal strain Normal strains produce dilations The normal strain in the x direction of the rectangular element is defined bye x extension original length l e n g t h a b l e n g t h A B l e n g t h A B u x x displaystyle varepsilon x frac text extension text original length frac mathrm length ab mathrm length AB mathrm length AB frac partial u x partial x nbsp Similarly the normal strain in the y and z directions becomes e y u y y e z u z z displaystyle varepsilon y frac partial u y partial y quad qquad varepsilon z frac partial u z partial z nbsp Shear strain edit Shear strainCommon symbolsg or eSI unit1 or radianDerivations fromother quantitiesg t GThe engineering shear strain gxy is defined as the change in angle between lines AC and AB Therefore g x y a b displaystyle gamma xy alpha beta nbsp From the geometry of the figure we havetan a u y x d x d x u x x d x u y x 1 u x x tan b u x y d y d y u y y d y u x y 1 u y y displaystyle begin aligned tan alpha amp frac tfrac partial u y partial x dx dx tfrac partial u x partial x dx frac tfrac partial u y partial x 1 tfrac partial u x partial x tan beta amp frac tfrac partial u x partial y dy dy tfrac partial u y partial y dy frac tfrac partial u x partial y 1 tfrac partial u y partial y end aligned nbsp For small displacement gradients we have u x x 1 u y y 1 displaystyle frac partial u x partial x ll 1 frac partial u y partial y ll 1 nbsp For small rotations i e a and b are 1 we have tan a a tan b b Therefore a u y x b u x y displaystyle alpha approx frac partial u y partial x beta approx frac partial u x partial y nbsp thus g x y a b u y x u x y displaystyle gamma xy alpha beta frac partial u y partial x frac partial u x partial y nbsp By interchanging x and y and ux and uy it can be shown that gxy gyx Similarly for the yz and xz planes we haveg y z g z y u y z u z y g z x g x z u z x u x z displaystyle gamma yz gamma zy frac partial u y partial z frac partial u z partial y quad qquad gamma zx gamma xz frac partial u z partial x frac partial u x partial z nbsp Volume strain edit This section is an excerpt from Infinitesimal strain theory Volumetric strain edit The volumetric strain also called bulk strain is the relative variation of the volume as arising from dilation or compression it is the first strain invariant or trace of the tensor d D V V 0 I 1 e 11 e 22 e 33 displaystyle delta frac Delta V V 0 I 1 varepsilon 11 varepsilon 22 varepsilon 33 nbsp Actually if we consider a cube with an edge length a it is a quasi cube after the deformation the variations of the angles do not change the volume with the dimensions a 1 e 11 a 1 e 22 a 1 e 33 displaystyle a cdot 1 varepsilon 11 times a cdot 1 varepsilon 22 times a cdot 1 varepsilon 33 nbsp and V0 a3 thus D V V 0 1 e 11 e 22 e 33 e 11 e 22 e 11 e 33 e 22 e 33 e 11 e 22 e 33 a 3 a 3 a 3 displaystyle frac Delta V V 0 frac left 1 varepsilon 11 varepsilon 22 varepsilon 33 varepsilon 11 cdot varepsilon 22 varepsilon 11 cdot varepsilon 33 varepsilon 22 cdot varepsilon 33 varepsilon 11 cdot varepsilon 22 cdot varepsilon 33 right cdot a 3 a 3 a 3 nbsp as we consider small deformations 1 e i i e i i e j j e 11 e 22 e 33 displaystyle 1 gg varepsilon ii gg varepsilon ii cdot varepsilon jj gg varepsilon 11 cdot varepsilon 22 cdot varepsilon 33 nbsp therefore the formula nbsp In case of pure shear we can see that there is no change of the volume Metric tensor editMain article Finite strain theory Deformation tensors in curvilinear coordinates A strain field associated with a displacement is defined at any point by the change in length of the tangent vectors representing the speeds of arbitrarily parametrized curves passing through that point A basic geometric result due to Frechet von Neumann and Jordan states that if the lengths of the tangent vectors fulfil the axioms of a norm and the parallelogram law then the length of a vector is the square root of the value of the quadratic form associated by the polarization formula with a positive definite bilinear map called the metric tensor See also editStress measures Strain rate Strain tensorReferences edit Lubliner Jacob 2008 Plasticity Theory PDF Revised ed Dover Publications ISBN 978 0 486 46290 5 Archived from the original PDF on 2010 03 31 a b Rees David 2006 Basic Engineering Plasticity An Introduction with Engineering and Manufacturing Applications Butterworth Heinemann ISBN 0 7506 8025 3 Archived from the original on 2017 12 22 Earth Encyclopaedia Britannica from Encyclopaedia Britannica 2006 Ultimate Reference Suite DVD 2009 Rees David 2006 Basic Engineering Plasticity An Introduction with Engineering and Manufacturing Applications Butterworth Heinemann p 41 ISBN 0 7506 8025 3 Archived from the original on 2017 12 22 Hencky H 1928 Uber die Form des Elastizitatsgesetzes bei ideal elastischen Stoffen Zeitschrift fur technische Physik 9 215 220 a b ISO 80000 4 2019 ISO 2013 08 20 Retrieved 2023 08 28 Retrieved from https en wikipedia org w index php title Strain mechanics amp oldid 1200626827, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.