fbpx
Wikipedia

Stellar black hole

A stellar black hole (or stellar-mass black hole) is a black hole formed by the gravitational collapse of a star.[1] They have masses ranging from about 5 to several tens of solar masses.[2] They are the remnants of supernova explosions, which may be observed as a type of gamma ray burst. These black holes are also referred to as collapsars.

Artist's impression of a stellar-mass black hole (left) in the spiral galaxy NGC 300; it is associated with a Wolf–Rayet star

Properties edit

By the no-hair theorem, a black hole can only have three fundamental properties: mass, electric charge, and angular momentum. The angular momentum of a stellar black hole is due to the conservation of angular momentum of the star or objects that produced it.

The gravitational collapse of a star is a natural process that can produce a black hole. It is inevitable at the end of the life of a massive star when all stellar energy sources are exhausted. If the mass of the collapsing part of the star is below the Tolman–Oppenheimer–Volkoff (TOV) limit for neutron-degenerate matter, the end product is a compact star – either a white dwarf (for masses below the Chandrasekhar limit) or a neutron star or a (hypothetical) quark star. If the collapsing star has a mass exceeding the TOV limit, the crush will continue until zero volume is achieved and a black hole is formed around that point in space.

The maximum mass that a neutron star can possess before further collapsing into a black hole is not fully understood. In 1939, it was estimated at 0.7 solar masses, called the TOV limit. In 1996, a different estimate put this upper mass in a range from 1.5 to 3 solar masses.[3] The maximum observed mass of neutron stars is about 2.14 M for PSR J0740+6620 discovered in September, 2019.[4]

In the theory of general relativity, a black hole could exist of any mass. The lower the mass, the higher the density of matter has to be in order to form a black hole. (See, for example, the discussion in Schwarzschild radius, the radius of a black hole.) There are no known stellar processes that can produce black holes with mass less than a few times the mass of the Sun. If black holes that small exist, they are most likely primordial black holes. Until 2016, the largest known stellar black hole was 15.65±1.45 solar masses.[5] In September 2015, a rotating black hole of 62±4 solar masses was discovered by gravitational waves as it formed in a merger event of two smaller black holes.[6] As of June 2020, the binary system 2MASS J05215658+4359220 was reported[7] to host the smallest-mass black hole currently known to science, with a mass 3.3 solar masses and a diameter of only 19.5 kilometers.

There is observational evidence for two other types of black holes, which are much more massive than stellar black holes. They are intermediate-mass black holes (in the center of globular clusters) and supermassive black holes in the center of the Milky Way and other galaxies.

X-ray compact binary systems edit

Stellar black holes in close binary systems are observable when the matter is transferred from a companion star to the black hole; the energy released in the fall toward the compact star is so large that the matter heats up to temperatures of several hundred million degrees and radiates in X-rays. The black hole, therefore, is observable in X-rays, whereas the companion star can be observed with optical telescopes. The energy release for black holes and neutron stars are of the same order of magnitude. Black holes and neutron stars are therefore often difficult to distinguish.

The derived masses come from observations of compact X-ray sources (combining X-ray and optical data). All identified neutron stars have a mass below 3.0 solar masses; none of the compact systems with a mass above 3.0 solar masses display the properties of a neutron star. The combination of these facts makes it more and more likely that the class of compact stars with a mass above 3.0 solar masses are in fact black holes.

Note that this proof of the existence of stellar black holes is not entirely observational but relies on theory: we can think of no other object for these massive compact systems in stellar binaries besides a black hole. A direct proof of the existence of a black hole would be if one actually observes the orbit of a particle (or a cloud of gas) that falls into the black hole.

Black hole kicks edit

The large distances above the galactic plane achieved by some binaries are the result of black hole natal kicks. The velocity distribution of black hole natal kicks seems similar to that of neutron star kick velocities. One might have expected that it would be the momenta that were the same with black holes receiving lower velocity than neutron stars due to their higher mass but that doesn't seem to be the case,[8] which may be due to the fall-back of asymmetrically expelled matter increasing the momentum of the resulting black hole.[9]

Mass gaps edit

It is predicted by some models of stellar evolution that black holes with masses in two ranges cannot be directly formed by the gravitational collapse of a star. These are sometimes distinguished as the "lower" and "upper" mass gaps, roughly representing the ranges of 2 to 5 and 50 to 150 solar masses (M), respectively.[10] Another range given for the upper gap is 52 to 133 M.[11] 150 M has been regarded as the upper mass limit for stars in the current era of the universe.[12]

Lower mass gap edit

A lower mass gap is suspected on the basis of a scarcity of observed candidates with masses within a few solar masses above the maximum possible neutron star mass.[10] The existence and theoretical basis for this possible gap are uncertain.[13] The situation may be complicated by the fact that any black holes found in this mass range may have been created via the merging of binary neutron star systems, rather than stellar collapse.[14] The LIGO/Virgo collaboration has reported three candidate events among their gravitational wave observations in run O3 with component masses that fall in this lower mass gap. There has also been reported an observation of a bright, rapidly rotating giant star in a binary system with an unseen companion emitting no light, including x-rays, but having a mass of 3.3+2.8
−0.7
solar masses. This is interpreted to suggest that there may be many such low-mass black holes that are not currently consuming any material and are hence undetectable via the usual x-ray signature.[15]

Upper mass gap edit

The upper mass gap is predicted by comprehensive models of late-stage stellar evolution. It is expected that with increasing mass, supermassive stars reach a stage where a pair-instability supernova occurs, during which pair production, the production of free electrons and positrons in the collision between atomic nuclei and energetic gamma rays, temporarily reduces the internal pressure supporting the star's core against gravitational collapse.[16] This pressure drop leads to a partial collapse, which in turn causes greatly accelerated burning in a runaway thermonuclear explosion, resulting in the star being blown completely apart without leaving a stellar remnant behind.[17]

Pair-instability supernovae can only happen in stars with a mass range from around 130 to 250 solar masses (M) (and low to moderate metallicity (low abundance of elements other than hydrogen and helium – a situation common in Population III stars)). However, this mass gap is expected to be extended down to about 45 solar masses by the process of pair-instability pulsational mass loss, before the occurrence of a "normal" supernova explosion and core collapse.[18] In nonrotating stars the lower bound of the upper mass gap may be as high as 60 M.[19] The possibility of direct collapse into black holes of stars with core mass > 133 M, requiring total stellar mass of > 260 M has been considered, but there may be little chance of observing such a high-mass supernova remnant; i.e., the lower bound of the upper mass gap may represent a mass cutoff.[11]

Observations of the LB-1 system of a star and unseen companion were initially interpreted in terms of a black hole with a mass of about 70 solar masses, which would be excluded by the upper mass gap. However, further investigations have weakened this claim.

Black holes may also be found in the mass gap through mechanisms other than those involving a single star, such as the merger of black holes.

Candidates edit

Our Milky Way galaxy contains several stellar-mass black hole candidates (BHCs) which are closer to us than the supermassive black hole in the galactic center region. Most of these candidates are members of X-ray binary systems in which the compact object draws matter from its partner via an accretion disk. The probable black holes in these pairs range from three to more than a dozen solar masses.[20][21][22]

Name Mass (solar masses) Orbital period
(days)
Distance
from
Earth (ly)
Celestial
Coordinates[23]
BHC Companion
Gaia BH3 32.70 ± 0.82 0.76 ± 0.05 4,253.1 ± 98.5 01926 19:39:19 +14:55:54
Cyg X-1 21.2 ± 2.2[24] 40.6+7.7
−7.1
[24]
5.6 06000...8000 19:58:22 +35:12:06
GRS 1915+105/V1487 Aql 14 ± 4.0 ≈1 33.5 40000 19:15:12 +10:56:44
V404 Cyg 12 ± 2 6.0 6.5 07800 ± 460[25] 20:24:04 +33:52:03
A0620-00/V616 Mon 11 ± 2 2.6–2.8 0.33 03500 06:22:44 −00:20:45
XTE J1650-500 9.7 ± 1.6[26] 5–10 0.32[27] 10763 16:50:01 −49:57:45
Gaia BH1 9.62 ± 0.18 0.93 ± 0.05 185.59 ± 0.05 01560 17:28:41 −00:34:52
XTE J1550-564/V381 Nor 9.6 ± 1.2 6.0...7.5 1.5 17000 15:50:59 −56:28:36
4U 1543-475/IL Lupi 9.4 ± 1.0 0.25 1.1 24000 15:47:09 −47:40:10
Gaia BH2 8.94 ± 0.34 1.07 ± 0.19 1,276.7 ± 0.6 03800 13:50:17 −59:14:20
MAXI J1305-704[28] 8.9+1.6
−1.0
0.43 ± 0.16 0.394 ± 0.004 24500 13:06:55 −70:27:05
GS 1354-64 (BW Cir)[29] 7.9 ± 0.5 1.1 ± 0.1 2.5445 >81500 13:58:10 −64:44:06
XTE J1859+226 (V406 Vul)[30] 7.8 ± 1.9 0.55 ± 0.16 0.276 ± 0.003 18:58:42 +22:39:29
HD 130298[31] >7.7 ± 1.5 24.2 ± 3.8 14.60 07910 14:49:34 −56:25:38
NGC 3201 #21859[32][33] 7.68 ± 0.50 0.61 ± 0.05 2.2422 ± 0.0001 15700 10:17:39 −46:24:25
GS 2000+25/QZ Vul 7.5 ± 0.3 4.9...5.1 0.35 08800 20:02:50 +25:14:11
XTE J1819-254/V4641 Sgr 7.1 ± 0.3 5...8 2.82 24000...40000[34] 18:19:22 −25:24:25
LB-1 (disputed)[35] 7 ± 2[35] 1.5 ± 0.4[35] 78.7999 ± 0.0097[35] 15000[36] 06:11:49 +22:49:32[37]
GRS 1124-683/Nova Muscae 1991/GU Mus 7.0 ± 0.6 0.43 17000 11:26:27 −68:40:32
H 1705-25/Nova Ophiuchi 1977/V2107 Oph[38] 6.95 ± 1.35[39] 0.34 ± 0.08 0.52125 17:08:15 −25:05:30
XTE J1118+480/KV UMa 6.8 ± 0.4 6...6.5 0.17 06200 11:18:11 +48:02:13
MAXI J1820+070[40] 6.75+0.64
−0.46
0.49 ± 0.1 0.68549 ± 0.00001 09800 18:20:22 +07:11:07
GRO J1655-40/V1033 Sco 6.3 ± 0.3 2.6...2.8 2.8 05000...11000 16:54:00 −39:50:45
GX 339-4/V821 Ara 5.8 5...6 1.75 15000 17:02:50 −48:47:23
GRO J1719-24 ≥4.9 ≈1.6 possibly 0.6[41] 08500 17:19:37 −25:01:03
NGC 3201 #12560[32][33] 4.53 ± 0.21 0.81 ± 0.05 167.01 ± 0.09 15700 10:17:37 −46:24:55
GRS 1009-45 /
Nova Velorum 1993/MM Velorum[42]
4.3 ± 0.1 0.5...0.65 0.285206 ±
0.0000014
17200 10:13:36 −45:04:33
GRO J0422+32/V518 Per 4 ± 1 1.1 0.21 08500 04:21:43 +32:54:27

Extragalactic edit

Candidates outside our galaxy come from gravitational wave detections:

Outside our galaxy
Name BHC mass
(solar masses)
Companion mass
(solar masses )
Orbital period
(days)
Distance from Earth
(light years)
Location[23]
GW190521 (155+17
−11
) M
78+9
−5
[43]
78+9
−5
[43]
GW150914 (62 ± 4) M 36 ± 4 29 ± 4 . 1.3 billion
GW170104 (48.7 ± 5) M 31.2 ± 7 19.4 ± 6 . 1.4 billion
GW170814 (53.2+3.2
−2.5
) M
30.5+5.7
−3.0
25.3+2.8
−4.2
1.8 billion
GW190412 29.7 8.4 2.4 billion
GW190814 22.2–24.3 2.50–2.67
GW151226 (21.8 ± 3.5) M 14.2 ± 6 7.5 ± 2.3 . 2.9 billion
GW170608 12+7
−2
7 ± 2 1.1 billion

Candidates outside our galaxy from X-ray binaries:

Name Host galaxy BHC mass
(solar masses)
Companion mass
(solar masses )
Orbital period
(days)
Distance from Earth
(light years)
IC 10 X-1[44] IC 10 ≥23.1 ± 2.1 ≥17 1.45175 2.15 million
NGC 300 X-1[45] NGC 300 17 ± 4 26+7
−5
1.3663375 6.5 million
M33 X-7 Triangulum Galaxy 15.65 ± 1.45 70 ± 6.9 3.45301 ± 0.00002 2.7 million
LMC X-1[46] Large Magellanic Cloud 10.91 ± 1.41 31.79 ± 3.48 3.9094 ± 0.0008 180,000[47]
LMC X-3[48] Large Magellanic Cloud 6.98 ± 0.56 3.63 ± 0.57 1.704808 157,000

The disappearance of N6946-BH1 following a failed supernova in NGC 6946 may have resulted in the formation of a black hole.[49]

See also edit

References edit

  1. ^ Celotti, A.; Miller, J.C.; Sciama, D.W. (1999). "Astrophysical evidence for the existence of black holes". Classical and Quantum Gravity. 16 (12A): A3–A21. arXiv:astro-ph/9912186. Bibcode:1999CQGra..16A...3C. doi:10.1088/0264-9381/16/12A/301. S2CID 17677758.
  2. ^ Hughes, Scott A. (2005). "Trust but verify: The case for astrophysical black holes". arXiv:hep-ph/0511217.
  3. ^ Bombaci, I. (1996). "The Maximum Mass of a Neutron Star". Astronomy and Astrophysics. 305: 871–877. Bibcode:1996A&A...305..871B.
  4. ^ Cromartie, H. T.; Fonseca, E.; Ransom, S. M.; Demorest, P. B.; Arzoumanian, Z.; Blumer, H.; Brook, P. R.; DeCesar, M. E.; Dolch, T. (16 September 2019). "Relativistic Shapiro delay measurements of an extremely massive millisecond pulsar". Nature Astronomy. 4: 72–76. arXiv:1904.06759. Bibcode:2020NatAs...4...72C. doi:10.1038/s41550-019-0880-2. ISSN 2397-3366. S2CID 118647384.
  5. ^ Bulik, Tomasz (2007). "Black holes go extragalactic". Nature. 449 (7164): 799–801. doi:10.1038/449799a. PMID 17943114. S2CID 4389109.
  6. ^ Abbott, BP; et al. (2016). "Observation of Gravitational Waves from a Binary Black Hole Merger". Physical Review Letters. 116 (6): 061102. arXiv:1602.03837. Bibcode:2016PhRvL.116f1102A. doi:10.1103/PhysRevLett.116.061102. PMID 26918975. S2CID 124959784.
  7. ^ Thompson, Todd (1 November 2019). "A noninteracting low-mass black hole–giant star binary system". Science. 366 (6465): 637–640. arXiv:1806.02751. Bibcode:2019Sci...366..637T. doi:10.1126/science.aau4005. PMID 31672898. S2CID 207815062. from the original on 11 September 2020. Retrieved 3 June 2020.
  8. ^ Repetto, Serena; Davies, Melvyn B.; Sigurdsson, Steinn (2012). "Investigating stellar-mass black hole kicks". Monthly Notices of the Royal Astronomical Society. 425 (4): 2799–2809. arXiv:1203.3077. Bibcode:2012MNRAS.425.2799R. doi:10.1111/j.1365-2966.2012.21549.x. S2CID 119245969.
  9. ^ Janka, Hans-Thomas (2013). "Natal kicks of stellar mass black holes by asymmetric mass ejection in fallback supernovae". Monthly Notices of the Royal Astronomical Society. 434 (2): 1355–1361. arXiv:1306.0007. Bibcode:2013MNRAS.434.1355J. doi:10.1093/mnras/stt1106. S2CID 119281755.
  10. ^ a b Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abraham, S.; Acernese, F.; Ackley, K.; Adams, C.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.; Allen, G.; Allocca, A.; Aloy, M. A.; Altin, P. A.; Amato, A.; Ananyeva, A.; Anderson, S. B.; Anderson, W. G.; Angelova, S. V.; Antier, S.; Appert, S.; Arai, K.; et al. (2019). "Binary Black Hole Population Properties Inferred from the First and Second Observing Runs of Advanced LIGO and Advanced Virgo". The Astrophysical Journal. 882 (2): L24. arXiv:1811.12940. Bibcode:2019ApJ...882L..24A. doi:10.3847/2041-8213/ab3800. S2CID 119216482. from the original on 11 September 2020. Retrieved 20 March 2020.
  11. ^ a b Woosley, S.E. (2017). "Pulsational Pair-instability Supernovae". The Astrophysical Journal. 836 (2): 244. arXiv:1608.08939. Bibcode:2017ApJ...836..244W. doi:10.3847/1538-4357/836/2/244. S2CID 119229139.
  12. ^ Figer, D.F. (2005). "An upper limit to the masses of stars". Nature. 434 (7030): 192–194. arXiv:astro-ph/0503193. Bibcode:2005Natur.434..192F. doi:10.1038/nature03293. PMID 15758993. S2CID 4417561.
  13. ^ Kreidberg, Laura; Bailyn, Charles D.; Farr, Will M.; Kalogera, Vicky (2012). "Mass Measurements of Black Holes in X-Ray Transients: Is There a Mass Gap?". The Astrophysical Journal. 757 (1): 36. arXiv:1205.1805. Bibcode:2012ApJ...757...36K. doi:10.1088/0004-637X/757/1/36. ISSN 0004-637X. S2CID 118452794.
  14. ^ Safarzadeh, Mohammadtaher; Hamers, Adrian S.; Loeb, Abraham; Berger, Edo (2019). "Formation and Merging of Mass Gap Black Holes in Gravitational-wave Merger Events from Wide Hierarchical Quadruple Systems". The Astrophysical Journal. 888 (1): L3. arXiv:1911.04495. doi:10.3847/2041-8213/ab5dc8. ISSN 2041-8213. S2CID 208527307.
  15. ^ Thompson, Todd A.; Kochanek, Christopher S.; Stanek, Krzysztof Z.; Badenes, Carles; Post, Richard S.; Jayasinghe, Tharindu; Latham, David W.; Bieryla, Allyson; Esquerdo, Gilbert A.; Berlind, Perry; Calkins, Michael L.; Tayar, Jamie; Lindegren, Lennart; Johnson, Jennifer A.; Holoien, Thomas W.-S.; Auchettl, Katie; Covey, Kevin (2019). "A noninteracting low-mass black hole–giant star binary system". Science. 366 (6465): 637–640. arXiv:1806.02751. Bibcode:2019Sci...366..637T. doi:10.1126/science.aau4005. ISSN 0036-8075. PMID 31672898. S2CID 207815062.
  16. ^ Rakavy, G.; Shaviv, G. (June 1967). "Instabilities in Highly Evolved Stellar Models". The Astrophysical Journal. 148: 803. Bibcode:1967ApJ...148..803R. doi:10.1086/149204.
  17. ^ Fraley, Gary S. (1968). "Supernovae Explosions Induced by Pair-Production Instability" (PDF). Astrophysics and Space Science. 2 (1): 96–114. Bibcode:1968Ap&SS...2...96F. doi:10.1007/BF00651498. S2CID 122104256. (PDF) from the original on 1 December 2019. Retrieved 25 February 2020.
  18. ^ Farmer, R.; Renzo, M.; de Mink, S. E.; Marchant, P.; Justham, S. (2019). "Mind the Gap: The Location of the Lower Edge of the Pair-instability Supernova Black Hole Mass Gap" (PDF). The Astrophysical Journal. 887 (1): 53. arXiv:1910.12874. Bibcode:2019ApJ...887...53F. doi:10.3847/1538-4357/ab518b. ISSN 1538-4357. S2CID 204949567. (PDF) from the original on 6 May 2020. Retrieved 20 March 2020.
  19. ^ Mapelli, M.; Spera, M.; Montanari, E.; Limongi, M.; Chieffi, A.; Giacobbo, N.; Bressan, A.; Bouffanais, Y. (2020). "Impact of the Rotation and Compactness of Progenitors on the Mass of Black Holes". The Astrophysical Journal. 888 (2): 76. arXiv:1909.01371. Bibcode:2020ApJ...888...76M. doi:10.3847/1538-4357/ab584d. S2CID 213050523.
  20. ^ Casares, Jorge (2006). "Observational evidence for stellar-mass black holes". Proceedings of the International Astronomical Union. 2: 3–12. arXiv:astro-ph/0612312. doi:10.1017/S1743921307004590. S2CID 119474341.
  21. ^ Garcia, M.R.; et al. (2003). "Resolved Jets and Long Period Black Hole Novae". Astrophys. J. 591: 388–396. arXiv:astro-ph/0302230. doi:10.1086/375218. S2CID 17521575.
  22. ^ McClintock, Jeffrey E.; Remillard, Ronald A. (2003). "Black Hole Binaries". arXiv:astro-ph/0306213.
  23. ^ a b ICRS coordinates obtained from SIMBAD. Format: right ascension (hh:mm:ss) ±declination (dd:mm:ss).
  24. ^ a b Miller-Jones, James C. A.; Bahramian, Arash; Orosz, Jerome A.; Mandel, Ilya; Gou, Lijun; Maccarone, Thomas J.; Neijssel, Coenraad J.; Zhao, Xueshan; Ziółkowski, Janusz; Reid, Mark J.; Uttley, Phil; Zheng, Xueying; Byun, Do-Young; Dodson, Richard; Grinberg, Victoria; Jung, Taehyun; Kim, Jeong-Sook; Marcote, Benito; Markoff, Sera; Rioja, María J.; Rushton, Anthony P.; Russell, David M.; Sivakoff, Gregory R.; Tetarenko, Alexandra J.; Tudose, Valeriu; Wilms, Joern (5 March 2021). "Cygnus X-1 contains a 21–solar mass black hole—Implications for massive star winds". Science. 371 (6533): 1046–1049. arXiv:2102.09091. Bibcode:2021Sci...371.1046M. doi:10.1126/science.abb3363. PMID 33602863. S2CID 231951746.
  25. ^ Miller-Jones, J. A. C.; Jonker; Dhawan (2009). "The first accurate parallax distance to a black hole". The Astrophysical Journal Letters. 706 (2): L230. arXiv:0910.5253. Bibcode:2009ApJ...706L.230M. doi:10.1088/0004-637X/706/2/L230. S2CID 17750440.
  26. ^ Shaposhnikov, N.; Titarchuk, L. (2009). "Determination of Black Hole Masses in Galactic Black Hole Binaries using Scaling of Spectral and Variability Characteristics". The Astrophysical Journal. 699 (1): 453–468. arXiv:0902.2852v1. Bibcode:2009ApJ...699..453S. doi:10.1088/0004-637X/699/1/453. S2CID 18336866.
  27. ^ Orosz, J.A.; et al. (2004). "Orbital Parameters for the Black Hole Binary XTE J1650–500". The Astrophysical Journal. 616 (1): 376–382. arXiv:astro-ph/0404343. Bibcode:2004ApJ...616..376O. doi:10.1086/424892. S2CID 13933140.
  28. ^ Mata Sánchez, D.; Rau, A.; Álvarez Hernández, A.; van Grunsven, T. F. J.; Torres, M. A. P.; Jonker, P. G. (1 September 2021). "Dynamical confirmation of a stellar mass black hole in the transient X-ray dipping binary MAXI J1305-704". Monthly Notices of the Royal Astronomical Society. 506 (1): 581–594. arXiv:2104.07042. Bibcode:2021MNRAS.506..581M. doi:10.1093/mnras/stab1714. ISSN 0035-8711.
  29. ^ Casares, J.; Orosz, J. A.; Zurita, C.; Shahbaz, T.; Corral-Santana, J. M.; McClintock, J. E.; Garcia, M. R.; Martínez-Pais, I. G.; Charles, P. A.; Fender, R. P.; Remillard, R. A. (1 March 2009). "Refined Orbital Solution and Quiescent Variability in the Black Hole Transient GS 1354-64 (= BW Cir)". The Astrophysical Journal Supplement Series. 181 (1): 238–243. Bibcode:2009ApJS..181..238C. doi:10.1088/0067-0049/181/1/238. ISSN 0067-0049.
  30. ^ Yanes-Rizo, I. V.; Torres, M. A. P.; Casares, J.; Motta, S. E.; Muñoz-Darias, T.; Rodríguez-Gil, P.; Armas Padilla, M.; Jiménez-Ibarra, F.; Jonker, P. G.; Corral-Santana, J. M.; Fender, R. (1 November 2022). "A refined dynamical mass for the black hole in the X-ray transient XTE J1859+226". Monthly Notices of the Royal Astronomical Society. 517 (1): 1476–1482. arXiv:2209.10395. Bibcode:2022MNRAS.517.1476Y. doi:10.1093/mnras/stac2719. ISSN 0035-8711.
  31. ^ Mahy, L.; Sana, H.; Shenar, T.; Sen, K.; Langer, N.; Marchant, P.; Abdul-Masih, M.; Banyard, G.; Bodensteiner, J.; Bowman, D. M.; Dsilva, K.; Fabry, M.; Hawcroft, C.; Janssens, S.; Van Reeth, T. (1 August 2022). "Identifying quiescent compact objects in massive Galactic single-lined spectroscopic binaries". Astronomy and Astrophysics. 664: A159. arXiv:2207.07752. Bibcode:2022A&A...664A.159M. doi:10.1051/0004-6361/202243147. ISSN 0004-6361.
  32. ^ a b Giesers, Benjamin; Kamann, Sebastian; Dreizler, Stefan; Husser, Tim-Oliver; Askar, Abbas; Göttgens, Fabian; Brinchmann, Jarle; Latour, Marilyn; Weilbacher, Peter M.; Wendt, Martin; Roth, Martin M. (1 December 2019). "A stellar census in globular clusters with MUSE: Binaries in NGC 3201". Astronomy and Astrophysics. 632: A3. arXiv:1909.04050. Bibcode:2019A&A...632A...3G. doi:10.1051/0004-6361/201936203. ISSN 0004-6361.
  33. ^ a b Rodriguez, Carl L. (1 April 2023). "Constraints on the Cosmological Coupling of Black Holes from the Globular Cluster NGC 3201". The Astrophysical Journal. 947 (1): L12. arXiv:2302.12386. Bibcode:2023ApJ...947L..12R. doi:10.3847/2041-8213/acc9b6. ISSN 0004-637X.
  34. ^ Orosz; et al. (2001). "A Black Hole in the Superluminal source SAX J1819.3-2525 (V4641 Sgr)". The Astrophysical Journal. 555 (1): 489. arXiv:astro-ph/0103045v1. Bibcode:2001ApJ...555..489O. doi:10.1086/321442. S2CID 50248739.
  35. ^ a b c d Shenar, T.; Bodensteiner, J.; Abdul-Masih, M.; Fabry, M.; Marchant, P.; Banyard, G.; Bowman, D. M.; Dsilva, K.; Hawcroft, C.; Reggiani, M.; Sana, H. (July 2020). "The 'hidden' companion in LB-1 unveiled by spectral disentangling". Astronomy and Astrophysics (Letter to the Editor). 630: L6. arXiv:2004.12882. Bibcode:2020A&A...639L...6S. doi:10.1051/0004-6361/202038275.
  36. ^ Chinese Academy of Science (27 November 2019). "Chinese Academy of Sciences leads discovery of unpredicted stellar black hole". EurekAlert!. from the original on 28 November 2019. Retrieved 29 November 2019.
  37. ^ Liu, Jifeng; et al. (27 November 2019). "A wide star–black-hole binary system from radial-velocity measurements". Nature. 575 (7784): 618–621. arXiv:1911.11989. Bibcode:2019Natur.575..618L. doi:10.1038/s41586-019-1766-2. PMID 31776491. S2CID 208310287.
  38. ^ Dashwood Brown, Cordelia; Gandhi, Poshak; Zhao, Yue (1 January 2024). "On the natal kick of the black hole X-ray binary H 1705-250". Monthly Notices of the Royal Astronomical Society. 527 (1): L82–L87. arXiv:2310.11492. Bibcode:2024MNRAS.527L..82D. doi:10.1093/mnrasl/slad151. ISSN 0035-8711.
  39. ^ Remillard, Ronald A.; McClintock, Jeffrey E. (1 September 2006). "X-Ray Properties of Black-Hole Binaries". Annual Review of Astronomy and Astrophysics. 44 (1): 49–92. arXiv:astro-ph/0606352. Bibcode:2006ARA&A..44...49R. doi:10.1146/annurev.astro.44.051905.092532. ISSN 0066-4146.
  40. ^ Mikołajewska, Joanna; Zdziarski, Andrzej A.; Ziółkowski, Janusz; Torres, Manuel A. P.; Casares, Jorge (1 May 2022). "The Donor of the Black Hole X-Ray Binary MAXI J1820+070". The Astrophysical Journal. 930 (1): 9. arXiv:2201.13201. Bibcode:2022ApJ...930....9M. doi:10.3847/1538-4357/ac6099. ISSN 0004-637X.
  41. ^ Masetti, N.; Bianchini, A.; Bonibaker, J.; della Valle, M.; Vio, R. (1996), "The superhump phenomenon in GRS 1716-249 (=X-Ray Nova Ophiuchi 1993)", Astronomy and Astrophysics, 314: 123, Bibcode:1996A&A...314..123M
  42. ^ Filippenko, Alexei V.; Leonard, Douglas C.; Matheson, Thomas; Li, Weidong; Moran, Edward C.; Riess, Adam G. (1 August 1999). "A Black Hole in the X-Ray Nova Velorum 1993". Publications of the Astronomical Society of the Pacific. 111 (762): 969–979. arXiv:astro-ph/9904271. Bibcode:1999PASP..111..969F. doi:10.1086/316413. ISSN 0004-6280.
  43. ^ a b Gayathri, V.; et al. (2020). "GW190521 as a Highly Eccentric Black Hole Merger". arXiv:2009.05461 [astro-ph.HE].
  44. ^ Laycock, Silas G. T.; Cappallo, Rigel C.; Moro, Matthew J. (1 January 2015). "Chandra and XMM monitoring of the black hole X-ray binary IC 10 X-1". Monthly Notices of the Royal Astronomical Society. 446 (2): 1399–1410. arXiv:1410.3417. Bibcode:2015MNRAS.446.1399L. doi:10.1093/mnras/stu2151. ISSN 0035-8711.
  45. ^ Binder, Breanna A.; Sy, Janelle M.; Eracleous, Michael; Christodoulou, Dimitris M.; Bhattacharya, Sayantan; Cappallo, Rigel; Laycock, Silas; Plucinsky, Paul P.; Williams, Benjamin F. (1 March 2021). "The Wolf-Rayet + Black Hole Binary NGC 300 X-1: What is the Mass of the Black Hole?". The Astrophysical Journal. 910 (1): 74. arXiv:2102.07065. Bibcode:2021ApJ...910...74B. doi:10.3847/1538-4357/abe6a9. ISSN 0004-637X.
  46. ^ Orosz, Jerome A.; Steeghs, Danny; McClintock, Jeffrey E.; Torres, Manuel A. P.; Bochkov, Ivan; Gou, Lijun; Narayan, Ramesh; Blaschak, Michael; Levine, Alan M.; Remillard, Ronald A.; Bailyn, Charles D.; Dwyer, Morgan M.; Buxton, Michelle (1 May 2009). "A New Dynamical Model for the Black Hole Binary LMC X-1". The Astrophysical Journal. 697 (1): 573–591. arXiv:0810.3447. Bibcode:2009ApJ...697..573O. doi:10.1088/0004-637X/697/1/573. ISSN 0004-637X.
  47. ^ Haardt, F.; Galli, M. R.; Treves, A.; Chiappetti, L.; Dal Fiume, D.; Corongiu, A.; Belloni, T.; Frontera, F.; Kuulkers, E.; Stella, L. (1 March 2001). "Broadband X-Ray Spectra of the Persistent Black Hole Candidates LMC X-1 and LMC X-3". The Astrophysical Journal Supplement Series. 133 (1): 187–193. arXiv:astro-ph/0009231. Bibcode:2001ApJS..133..187H. doi:10.1086/319186. ISSN 0067-0049.
  48. ^ Orosz, Jerome A.; Steiner, James F.; McClintock, Jeffrey E.; Buxton, Michelle M.; Bailyn, Charles D.; Steeghs, Danny; Guberman, Alec; Torres, Manuel A. P. (1 October 2014). "The Mass of the Black Hole in LMC X-3". The Astrophysical Journal. 794 (2): 154. arXiv:1402.0085. Bibcode:2014ApJ...794..154O. doi:10.1088/0004-637X/794/2/154. ISSN 0004-637X.
  49. ^ Adams, S. M.; Kochanek, C. S; Gerke, J. R.; Stanek, K. Z.; Dai, X. (9 September 2016). "The search for failed supernovae with the Large Binocular Telescope: conformation of a disappearing star". arXiv:1609.01283v1 [astro-ph.SR].

External links edit

  • Black Holes: Gravity's Relentless Pull 17 May 2008 at the Wayback Machine Award-winning interactive multimedia Web site about the physics and astronomy of black holes from the Space Telescope Science Institute
  • Ziółkowski, Janusz (2003). "Black Hole Candidates". Frontier Objects in Astrophysics and Particle Physics: 411. arXiv:astro-ph/0307307. Bibcode:2003foap.conf..411Z.
  • Heaviest Stellar Black Hole Discovered in Nearby Galaxy, Newswise, 17-Oct-2007

stellar, black, hole, confused, with, black, hole, star, stellar, black, hole, stellar, mass, black, hole, black, hole, formed, gravitational, collapse, star, they, have, masses, ranging, from, about, several, tens, solar, masses, they, remnants, supernova, ex. Not to be confused with black hole star A stellar black hole or stellar mass black hole is a black hole formed by the gravitational collapse of a star 1 They have masses ranging from about 5 to several tens of solar masses 2 They are the remnants of supernova explosions which may be observed as a type of gamma ray burst These black holes are also referred to as collapsars Artist s impression of a stellar mass black hole left in the spiral galaxy NGC 300 it is associated with a Wolf Rayet star Contents 1 Properties 2 X ray compact binary systems 3 Black hole kicks 4 Mass gaps 4 1 Lower mass gap 4 2 Upper mass gap 5 Candidates 5 1 Extragalactic 6 See also 7 References 8 External linksProperties editBy the no hair theorem a black hole can only have three fundamental properties mass electric charge and angular momentum The angular momentum of a stellar black hole is due to the conservation of angular momentum of the star or objects that produced it The gravitational collapse of a star is a natural process that can produce a black hole It is inevitable at the end of the life of a massive star when all stellar energy sources are exhausted If the mass of the collapsing part of the star is below the Tolman Oppenheimer Volkoff TOV limit for neutron degenerate matter the end product is a compact star either a white dwarf for masses below the Chandrasekhar limit or a neutron star or a hypothetical quark star If the collapsing star has a mass exceeding the TOV limit the crush will continue until zero volume is achieved and a black hole is formed around that point in space The maximum mass that a neutron star can possess before further collapsing into a black hole is not fully understood In 1939 it was estimated at 0 7 solar masses called the TOV limit In 1996 a different estimate put this upper mass in a range from 1 5 to 3 solar masses 3 The maximum observed mass of neutron stars is about 2 14 M for PSR J0740 6620 discovered in September 2019 4 In the theory of general relativity a black hole could exist of any mass The lower the mass the higher the density of matter has to be in order to form a black hole See for example the discussion in Schwarzschild radius the radius of a black hole There are no known stellar processes that can produce black holes with mass less than a few times the mass of the Sun If black holes that small exist they are most likely primordial black holes Until 2016 the largest known stellar black hole was 15 65 1 45 solar masses 5 In September 2015 a rotating black hole of 62 4 solar masses was discovered by gravitational waves as it formed in a merger event of two smaller black holes 6 As of June 2020 update the binary system 2MASS J05215658 4359220 was reported 7 to host the smallest mass black hole currently known to science with a mass 3 3 solar masses and a diameter of only 19 5 kilometers There is observational evidence for two other types of black holes which are much more massive than stellar black holes They are intermediate mass black holes in the center of globular clusters and supermassive black holes in the center of the Milky Way and other galaxies X ray compact binary systems editStellar black holes in close binary systems are observable when the matter is transferred from a companion star to the black hole the energy released in the fall toward the compact star is so large that the matter heats up to temperatures of several hundred million degrees and radiates in X rays The black hole therefore is observable in X rays whereas the companion star can be observed with optical telescopes The energy release for black holes and neutron stars are of the same order of magnitude Black holes and neutron stars are therefore often difficult to distinguish The derived masses come from observations of compact X ray sources combining X ray and optical data All identified neutron stars have a mass below 3 0 solar masses none of the compact systems with a mass above 3 0 solar masses display the properties of a neutron star The combination of these facts makes it more and more likely that the class of compact stars with a mass above 3 0 solar masses are in fact black holes Note that this proof of the existence of stellar black holes is not entirely observational but relies on theory we can think of no other object for these massive compact systems in stellar binaries besides a black hole A direct proof of the existence of a black hole would be if one actually observes the orbit of a particle or a cloud of gas that falls into the black hole Black hole kicks editThe large distances above the galactic plane achieved by some binaries are the result of black hole natal kicks The velocity distribution of black hole natal kicks seems similar to that of neutron star kick velocities One might have expected that it would be the momenta that were the same with black holes receiving lower velocity than neutron stars due to their higher mass but that doesn t seem to be the case 8 which may be due to the fall back of asymmetrically expelled matter increasing the momentum of the resulting black hole 9 Mass gaps editIt is predicted by some models of stellar evolution that black holes with masses in two ranges cannot be directly formed by the gravitational collapse of a star These are sometimes distinguished as the lower and upper mass gaps roughly representing the ranges of 2 to 5 and 50 to 150 solar masses M respectively 10 Another range given for the upper gap is 52 to 133 M 11 150 M has been regarded as the upper mass limit for stars in the current era of the universe 12 Lower mass gap edit A lower mass gap is suspected on the basis of a scarcity of observed candidates with masses within a few solar masses above the maximum possible neutron star mass 10 The existence and theoretical basis for this possible gap are uncertain 13 The situation may be complicated by the fact that any black holes found in this mass range may have been created via the merging of binary neutron star systems rather than stellar collapse 14 The LIGO Virgo collaboration has reported three candidate events among their gravitational wave observations in run O3 with component masses that fall in this lower mass gap There has also been reported an observation of a bright rapidly rotating giant star in a binary system with an unseen companion emitting no light including x rays but having a mass of 3 3 2 8 0 7 solar masses This is interpreted to suggest that there may be many such low mass black holes that are not currently consuming any material and are hence undetectable via the usual x ray signature 15 Upper mass gap edit The upper mass gap is predicted by comprehensive models of late stage stellar evolution It is expected that with increasing mass supermassive stars reach a stage where a pair instability supernova occurs during which pair production the production of free electrons and positrons in the collision between atomic nuclei and energetic gamma rays temporarily reduces the internal pressure supporting the star s core against gravitational collapse 16 This pressure drop leads to a partial collapse which in turn causes greatly accelerated burning in a runaway thermonuclear explosion resulting in the star being blown completely apart without leaving a stellar remnant behind 17 Pair instability supernovae can only happen in stars with a mass range from around 130 to 250 solar masses M and low to moderate metallicity low abundance of elements other than hydrogen and helium a situation common in Population III stars However this mass gap is expected to be extended down to about 45 solar masses by the process of pair instability pulsational mass loss before the occurrence of a normal supernova explosion and core collapse 18 In nonrotating stars the lower bound of the upper mass gap may be as high as 60 M 19 The possibility of direct collapse into black holes of stars with core mass gt 133 M requiring total stellar mass of gt 260 M has been considered but there may be little chance of observing such a high mass supernova remnant i e the lower bound of the upper mass gap may represent a mass cutoff 11 Observations of the LB 1 system of a star and unseen companion were initially interpreted in terms of a black hole with a mass of about 70 solar masses which would be excluded by the upper mass gap However further investigations have weakened this claim Black holes may also be found in the mass gap through mechanisms other than those involving a single star such as the merger of black holes Candidates editSee also List of black holes and List of nearest known black holes Our Milky Way galaxy contains several stellar mass black hole candidates BHCs which are closer to us than the supermassive black hole in the galactic center region Most of these candidates are members of X ray binary systems in which the compact object draws matter from its partner via an accretion disk The probable black holes in these pairs range from three to more than a dozen solar masses 20 21 22 Name Mass solar masses Orbital period days DistancefromEarth ly CelestialCoordinates 23 BHC Companion Gaia BH3 32 70 0 82 0 76 0 05 4 253 1 98 5 0 1926 19 39 19 14 55 54 Cyg X 1 21 2 2 2 24 40 6 7 7 7 1 24 5 6 0 6000 8000 19 58 22 35 12 06 GRS 1915 105 V1487 Aql 14 4 0 1 33 5 40000 19 15 12 10 56 44 V404 Cyg 12 2 6 0 6 5 0 7800 460 25 20 24 04 33 52 03 A0620 00 V616 Mon 11 2 2 6 2 8 0 33 0 3500 06 22 44 00 20 45 XTE J1650 500 9 7 1 6 26 5 10 0 32 27 10763 16 50 01 49 57 45 Gaia BH1 9 62 0 18 0 93 0 05 185 59 0 05 0 1560 17 28 41 00 34 52 XTE J1550 564 V381 Nor 9 6 1 2 6 0 7 5 1 5 17000 15 50 59 56 28 36 4U 1543 475 IL Lupi 9 4 1 0 0 25 1 1 24000 15 47 09 47 40 10 Gaia BH2 8 94 0 34 1 07 0 19 1 276 7 0 6 0 3800 13 50 17 59 14 20 MAXI J1305 704 28 8 9 1 6 1 0 0 43 0 16 0 394 0 004 24500 13 06 55 70 27 05 GS 1354 64 BW Cir 29 7 9 0 5 1 1 0 1 2 5445 gt 81500 13 58 10 64 44 06 XTE J1859 226 V406 Vul 30 7 8 1 9 0 55 0 16 0 276 0 003 18 58 42 22 39 29 HD 130298 31 gt 7 7 1 5 24 2 3 8 14 60 0 7910 14 49 34 56 25 38 NGC 3201 21859 32 33 7 68 0 50 0 61 0 05 2 2422 0 0001 15700 10 17 39 46 24 25 GS 2000 25 QZ Vul 7 5 0 3 4 9 5 1 0 35 0 8800 20 02 50 25 14 11 XTE J1819 254 V4641 Sgr 7 1 0 3 5 8 2 82 24000 40000 34 18 19 22 25 24 25 LB 1 disputed 35 7 2 35 1 5 0 4 35 78 7999 0 0097 35 15000 36 06 11 49 22 49 32 37 GRS 1124 683 Nova Muscae 1991 GU Mus 7 0 0 6 0 43 17000 11 26 27 68 40 32 H 1705 25 Nova Ophiuchi 1977 V2107 Oph 38 6 95 1 35 39 0 34 0 08 0 52125 17 08 15 25 05 30 XTE J1118 480 KV UMa 6 8 0 4 6 6 5 0 17 0 6200 11 18 11 48 02 13 MAXI J1820 070 40 6 75 0 64 0 46 0 49 0 1 0 68549 0 00001 0 9800 18 20 22 07 11 07 GRO J1655 40 V1033 Sco 6 3 0 3 2 6 2 8 2 8 0 5000 11000 16 54 00 39 50 45 GX 339 4 V821 Ara 5 8 5 6 1 75 15000 17 02 50 48 47 23 GRO J1719 24 4 9 1 6 possibly 0 6 41 0 8500 17 19 37 25 01 03 NGC 3201 12560 32 33 4 53 0 21 0 81 0 05 167 01 0 09 15700 10 17 37 46 24 55 GRS 1009 45 Nova Velorum 1993 MM Velorum 42 4 3 0 1 0 5 0 65 0 285206 0 0000014 17200 10 13 36 45 04 33 GRO J0422 32 V518 Per 4 1 1 1 0 21 0 8500 04 21 43 32 54 27 Extragalactic edit Candidates outside our galaxy come from gravitational wave detections Outside our galaxy Name BHC mass solar masses Companion mass solar masses Orbital period days Distance from Earth light years Location 23 GW190521 155 17 11 M 78 9 5 43 78 9 5 43 GW150914 62 4 M 36 4 29 4 1 3 billion GW170104 48 7 5 M 31 2 7 19 4 6 1 4 billion GW170814 53 2 3 2 2 5 M 30 5 5 7 3 0 25 3 2 8 4 2 1 8 billion GW190412 29 7 8 4 2 4 billion GW190814 22 2 24 3 2 50 2 67 GW151226 21 8 3 5 M 14 2 6 7 5 2 3 2 9 billion GW170608 12 7 2 7 2 1 1 billion Candidates outside our galaxy from X ray binaries Name Host galaxy BHC mass solar masses Companion mass solar masses Orbital period days Distance from Earth light years IC 10 X 1 44 IC 10 23 1 2 1 17 1 45175 2 15 million NGC 300 X 1 45 NGC 300 17 4 26 7 5 1 3663375 6 5 million M33 X 7 Triangulum Galaxy 15 65 1 45 70 6 9 3 45301 0 00002 2 7 million LMC X 1 46 Large Magellanic Cloud 10 91 1 41 31 79 3 48 3 9094 0 0008 180 000 47 LMC X 3 48 Large Magellanic Cloud 6 98 0 56 3 63 0 57 1 704808 157 000 The disappearance of N6946 BH1 following a failed supernova in NGC 6946 may have resulted in the formation of a black hole 49 See also editBlack holes in fiction Supermassive black hole Rogue black hole Primordial black holeReferences edit Celotti A Miller J C Sciama D W 1999 Astrophysical evidence for the existence of black holes Classical and Quantum Gravity 16 12A A3 A21 arXiv astro ph 9912186 Bibcode 1999CQGra 16A 3C doi 10 1088 0264 9381 16 12A 301 S2CID 17677758 Hughes Scott A 2005 Trust but verify The case for astrophysical black holes arXiv hep ph 0511217 Bombaci I 1996 The Maximum Mass of a Neutron Star Astronomy and Astrophysics 305 871 877 Bibcode 1996A amp A 305 871B Cromartie H T Fonseca E Ransom S M Demorest P B Arzoumanian Z Blumer H Brook P R DeCesar M E Dolch T 16 September 2019 Relativistic Shapiro delay measurements of an extremely massive millisecond pulsar Nature Astronomy 4 72 76 arXiv 1904 06759 Bibcode 2020NatAs 4 72C doi 10 1038 s41550 019 0880 2 ISSN 2397 3366 S2CID 118647384 Bulik Tomasz 2007 Black holes go extragalactic Nature 449 7164 799 801 doi 10 1038 449799a PMID 17943114 S2CID 4389109 Abbott BP et al 2016 Observation of Gravitational Waves from a Binary Black Hole Merger Physical Review Letters 116 6 061102 arXiv 1602 03837 Bibcode 2016PhRvL 116f1102A doi 10 1103 PhysRevLett 116 061102 PMID 26918975 S2CID 124959784 Thompson Todd 1 November 2019 A noninteracting low mass black hole giant star binary system Science 366 6465 637 640 arXiv 1806 02751 Bibcode 2019Sci 366 637T doi 10 1126 science aau4005 PMID 31672898 S2CID 207815062 Archived from the original on 11 September 2020 Retrieved 3 June 2020 Repetto Serena Davies Melvyn B Sigurdsson Steinn 2012 Investigating stellar mass black hole kicks Monthly Notices of the Royal Astronomical Society 425 4 2799 2809 arXiv 1203 3077 Bibcode 2012MNRAS 425 2799R doi 10 1111 j 1365 2966 2012 21549 x S2CID 119245969 Janka Hans Thomas 2013 Natal kicks of stellar mass black holes by asymmetric mass ejection in fallback supernovae Monthly Notices of the Royal Astronomical Society 434 2 1355 1361 arXiv 1306 0007 Bibcode 2013MNRAS 434 1355J doi 10 1093 mnras stt1106 S2CID 119281755 a b Abbott B P Abbott R Abbott T D Abraham S Acernese F Ackley K Adams C Adhikari R X Adya V B Affeldt C Agathos M Agatsuma K Aggarwal N Aguiar O D Aiello L Ain A Ajith P Allen G Allocca A Aloy M A Altin P A Amato A Ananyeva A Anderson S B Anderson W G Angelova S V Antier S Appert S Arai K et al 2019 Binary Black Hole Population Properties Inferred from the First and Second Observing Runs of Advanced LIGO and Advanced Virgo The Astrophysical Journal 882 2 L24 arXiv 1811 12940 Bibcode 2019ApJ 882L 24A doi 10 3847 2041 8213 ab3800 S2CID 119216482 Archived from the original on 11 September 2020 Retrieved 20 March 2020 a b Woosley S E 2017 Pulsational Pair instability Supernovae The Astrophysical Journal 836 2 244 arXiv 1608 08939 Bibcode 2017ApJ 836 244W doi 10 3847 1538 4357 836 2 244 S2CID 119229139 Figer D F 2005 An upper limit to the masses of stars Nature 434 7030 192 194 arXiv astro ph 0503193 Bibcode 2005Natur 434 192F doi 10 1038 nature03293 PMID 15758993 S2CID 4417561 Kreidberg Laura Bailyn Charles D Farr Will M Kalogera Vicky 2012 Mass Measurements of Black Holes in X Ray Transients Is There a Mass Gap The Astrophysical Journal 757 1 36 arXiv 1205 1805 Bibcode 2012ApJ 757 36K doi 10 1088 0004 637X 757 1 36 ISSN 0004 637X S2CID 118452794 Safarzadeh Mohammadtaher Hamers Adrian S Loeb Abraham Berger Edo 2019 Formation and Merging of Mass Gap Black Holes in Gravitational wave Merger Events from Wide Hierarchical Quadruple Systems The Astrophysical Journal 888 1 L3 arXiv 1911 04495 doi 10 3847 2041 8213 ab5dc8 ISSN 2041 8213 S2CID 208527307 Thompson Todd A Kochanek Christopher S Stanek Krzysztof Z Badenes Carles Post Richard S Jayasinghe Tharindu Latham David W Bieryla Allyson Esquerdo Gilbert A Berlind Perry Calkins Michael L Tayar Jamie Lindegren Lennart Johnson Jennifer A Holoien Thomas W S Auchettl Katie Covey Kevin 2019 A noninteracting low mass black hole giant star binary system Science 366 6465 637 640 arXiv 1806 02751 Bibcode 2019Sci 366 637T doi 10 1126 science aau4005 ISSN 0036 8075 PMID 31672898 S2CID 207815062 Rakavy G Shaviv G June 1967 Instabilities in Highly Evolved Stellar Models The Astrophysical Journal 148 803 Bibcode 1967ApJ 148 803R doi 10 1086 149204 Fraley Gary S 1968 Supernovae Explosions Induced by Pair Production Instability PDF Astrophysics and Space Science 2 1 96 114 Bibcode 1968Ap amp SS 2 96F doi 10 1007 BF00651498 S2CID 122104256 Archived PDF from the original on 1 December 2019 Retrieved 25 February 2020 Farmer R Renzo M de Mink S E Marchant P Justham S 2019 Mind the Gap The Location of the Lower Edge of the Pair instability Supernova Black Hole Mass Gap PDF The Astrophysical Journal 887 1 53 arXiv 1910 12874 Bibcode 2019ApJ 887 53F doi 10 3847 1538 4357 ab518b ISSN 1538 4357 S2CID 204949567 Archived PDF from the original on 6 May 2020 Retrieved 20 March 2020 Mapelli M Spera M Montanari E Limongi M Chieffi A Giacobbo N Bressan A Bouffanais Y 2020 Impact of the Rotation and Compactness of Progenitors on the Mass of Black Holes The Astrophysical Journal 888 2 76 arXiv 1909 01371 Bibcode 2020ApJ 888 76M doi 10 3847 1538 4357 ab584d S2CID 213050523 Casares Jorge 2006 Observational evidence for stellar mass black holes Proceedings of the International Astronomical Union 2 3 12 arXiv astro ph 0612312 doi 10 1017 S1743921307004590 S2CID 119474341 Garcia M R et al 2003 Resolved Jets and Long Period Black Hole Novae Astrophys J 591 388 396 arXiv astro ph 0302230 doi 10 1086 375218 S2CID 17521575 McClintock Jeffrey E Remillard Ronald A 2003 Black Hole Binaries arXiv astro ph 0306213 a b ICRS coordinates obtained from SIMBAD Format right ascension hh mm ss declination dd mm ss a b Miller Jones James C A Bahramian Arash Orosz Jerome A Mandel Ilya Gou Lijun Maccarone Thomas J Neijssel Coenraad J Zhao Xueshan Ziolkowski Janusz Reid Mark J Uttley Phil Zheng Xueying Byun Do Young Dodson Richard Grinberg Victoria Jung Taehyun Kim Jeong Sook Marcote Benito Markoff Sera Rioja Maria J Rushton Anthony P Russell David M Sivakoff Gregory R Tetarenko Alexandra J Tudose Valeriu Wilms Joern 5 March 2021 Cygnus X 1 contains a 21 solar mass black hole Implications for massive star winds Science 371 6533 1046 1049 arXiv 2102 09091 Bibcode 2021Sci 371 1046M doi 10 1126 science abb3363 PMID 33602863 S2CID 231951746 Miller Jones J A C Jonker Dhawan 2009 The first accurate parallax distance to a black hole The Astrophysical Journal Letters 706 2 L230 arXiv 0910 5253 Bibcode 2009ApJ 706L 230M doi 10 1088 0004 637X 706 2 L230 S2CID 17750440 Shaposhnikov N Titarchuk L 2009 Determination of Black Hole Masses in Galactic Black Hole Binaries using Scaling of Spectral and Variability Characteristics The Astrophysical Journal 699 1 453 468 arXiv 0902 2852v1 Bibcode 2009ApJ 699 453S doi 10 1088 0004 637X 699 1 453 S2CID 18336866 Orosz J A et al 2004 Orbital Parameters for the Black Hole Binary XTE J1650 500 The Astrophysical Journal 616 1 376 382 arXiv astro ph 0404343 Bibcode 2004ApJ 616 376O doi 10 1086 424892 S2CID 13933140 Mata Sanchez D Rau A Alvarez Hernandez A van Grunsven T F J Torres M A P Jonker P G 1 September 2021 Dynamical confirmation of a stellar mass black hole in the transient X ray dipping binary MAXI J1305 704 Monthly Notices of the Royal Astronomical Society 506 1 581 594 arXiv 2104 07042 Bibcode 2021MNRAS 506 581M doi 10 1093 mnras stab1714 ISSN 0035 8711 Casares J Orosz J A Zurita C Shahbaz T Corral Santana J M McClintock J E Garcia M R Martinez Pais I G Charles P A Fender R P Remillard R A 1 March 2009 Refined Orbital Solution and Quiescent Variability in the Black Hole Transient GS 1354 64 BW Cir The Astrophysical Journal Supplement Series 181 1 238 243 Bibcode 2009ApJS 181 238C doi 10 1088 0067 0049 181 1 238 ISSN 0067 0049 Yanes Rizo I V Torres M A P Casares J Motta S E Munoz Darias T Rodriguez Gil P Armas Padilla M Jimenez Ibarra F Jonker P G Corral Santana J M Fender R 1 November 2022 A refined dynamical mass for the black hole in the X ray transient XTE J1859 226 Monthly Notices of the Royal Astronomical Society 517 1 1476 1482 arXiv 2209 10395 Bibcode 2022MNRAS 517 1476Y doi 10 1093 mnras stac2719 ISSN 0035 8711 Mahy L Sana H Shenar T Sen K Langer N Marchant P Abdul Masih M Banyard G Bodensteiner J Bowman D M Dsilva K Fabry M Hawcroft C Janssens S Van Reeth T 1 August 2022 Identifying quiescent compact objects in massive Galactic single lined spectroscopic binaries Astronomy and Astrophysics 664 A159 arXiv 2207 07752 Bibcode 2022A amp A 664A 159M doi 10 1051 0004 6361 202243147 ISSN 0004 6361 a b Giesers Benjamin Kamann Sebastian Dreizler Stefan Husser Tim Oliver Askar Abbas Gottgens Fabian Brinchmann Jarle Latour Marilyn Weilbacher Peter M Wendt Martin Roth Martin M 1 December 2019 A stellar census in globular clusters with MUSE Binaries in NGC 3201 Astronomy and Astrophysics 632 A3 arXiv 1909 04050 Bibcode 2019A amp A 632A 3G doi 10 1051 0004 6361 201936203 ISSN 0004 6361 a b Rodriguez Carl L 1 April 2023 Constraints on the Cosmological Coupling of Black Holes from the Globular Cluster NGC 3201 The Astrophysical Journal 947 1 L12 arXiv 2302 12386 Bibcode 2023ApJ 947L 12R doi 10 3847 2041 8213 acc9b6 ISSN 0004 637X Orosz et al 2001 A Black Hole in the Superluminal source SAX J1819 3 2525 V4641 Sgr The Astrophysical Journal 555 1 489 arXiv astro ph 0103045v1 Bibcode 2001ApJ 555 489O doi 10 1086 321442 S2CID 50248739 a b c d Shenar T Bodensteiner J Abdul Masih M Fabry M Marchant P Banyard G Bowman D M Dsilva K Hawcroft C Reggiani M Sana H July 2020 The hidden companion in LB 1 unveiled by spectral disentangling Astronomy and Astrophysics Letter to the Editor 630 L6 arXiv 2004 12882 Bibcode 2020A amp A 639L 6S doi 10 1051 0004 6361 202038275 Chinese Academy of Science 27 November 2019 Chinese Academy of Sciences leads discovery of unpredicted stellar black hole EurekAlert Archived from the original on 28 November 2019 Retrieved 29 November 2019 Liu Jifeng et al 27 November 2019 A wide star black hole binary system from radial velocity measurements Nature 575 7784 618 621 arXiv 1911 11989 Bibcode 2019Natur 575 618L doi 10 1038 s41586 019 1766 2 PMID 31776491 S2CID 208310287 Dashwood Brown Cordelia Gandhi Poshak Zhao Yue 1 January 2024 On the natal kick of the black hole X ray binary H 1705 250 Monthly Notices of the Royal Astronomical Society 527 1 L82 L87 arXiv 2310 11492 Bibcode 2024MNRAS 527L 82D doi 10 1093 mnrasl slad151 ISSN 0035 8711 Remillard Ronald A McClintock Jeffrey E 1 September 2006 X Ray Properties of Black Hole Binaries Annual Review of Astronomy and Astrophysics 44 1 49 92 arXiv astro ph 0606352 Bibcode 2006ARA amp A 44 49R doi 10 1146 annurev astro 44 051905 092532 ISSN 0066 4146 Mikolajewska Joanna Zdziarski Andrzej A Ziolkowski Janusz Torres Manuel A P Casares Jorge 1 May 2022 The Donor of the Black Hole X Ray Binary MAXI J1820 070 The Astrophysical Journal 930 1 9 arXiv 2201 13201 Bibcode 2022ApJ 930 9M doi 10 3847 1538 4357 ac6099 ISSN 0004 637X Masetti N Bianchini A Bonibaker J della Valle M Vio R 1996 The superhump phenomenon in GRS 1716 249 X Ray Nova Ophiuchi 1993 Astronomy and Astrophysics 314 123 Bibcode 1996A amp A 314 123M Filippenko Alexei V Leonard Douglas C Matheson Thomas Li Weidong Moran Edward C Riess Adam G 1 August 1999 A Black Hole in the X Ray Nova Velorum 1993 Publications of the Astronomical Society of the Pacific 111 762 969 979 arXiv astro ph 9904271 Bibcode 1999PASP 111 969F doi 10 1086 316413 ISSN 0004 6280 a b Gayathri V et al 2020 GW190521 as a Highly Eccentric Black Hole Merger arXiv 2009 05461 astro ph HE Laycock Silas G T Cappallo Rigel C Moro Matthew J 1 January 2015 Chandra and XMM monitoring of the black hole X ray binary IC 10 X 1 Monthly Notices of the Royal Astronomical Society 446 2 1399 1410 arXiv 1410 3417 Bibcode 2015MNRAS 446 1399L doi 10 1093 mnras stu2151 ISSN 0035 8711 Binder Breanna A Sy Janelle M Eracleous Michael Christodoulou Dimitris M Bhattacharya Sayantan Cappallo Rigel Laycock Silas Plucinsky Paul P Williams Benjamin F 1 March 2021 The Wolf Rayet Black Hole Binary NGC 300 X 1 What is the Mass of the Black Hole The Astrophysical Journal 910 1 74 arXiv 2102 07065 Bibcode 2021ApJ 910 74B doi 10 3847 1538 4357 abe6a9 ISSN 0004 637X Orosz Jerome A Steeghs Danny McClintock Jeffrey E Torres Manuel A P Bochkov Ivan Gou Lijun Narayan Ramesh Blaschak Michael Levine Alan M Remillard Ronald A Bailyn Charles D Dwyer Morgan M Buxton Michelle 1 May 2009 A New Dynamical Model for the Black Hole Binary LMC X 1 The Astrophysical Journal 697 1 573 591 arXiv 0810 3447 Bibcode 2009ApJ 697 573O doi 10 1088 0004 637X 697 1 573 ISSN 0004 637X Haardt F Galli M R Treves A Chiappetti L Dal Fiume D Corongiu A Belloni T Frontera F Kuulkers E Stella L 1 March 2001 Broadband X Ray Spectra of the Persistent Black Hole Candidates LMC X 1 and LMC X 3 The Astrophysical Journal Supplement Series 133 1 187 193 arXiv astro ph 0009231 Bibcode 2001ApJS 133 187H doi 10 1086 319186 ISSN 0067 0049 Orosz Jerome A Steiner James F McClintock Jeffrey E Buxton Michelle M Bailyn Charles D Steeghs Danny Guberman Alec Torres Manuel A P 1 October 2014 The Mass of the Black Hole in LMC X 3 The Astrophysical Journal 794 2 154 arXiv 1402 0085 Bibcode 2014ApJ 794 154O doi 10 1088 0004 637X 794 2 154 ISSN 0004 637X Adams S M Kochanek C S Gerke J R Stanek K Z Dai X 9 September 2016 The search for failed supernovae with the Large Binocular Telescope conformation of a disappearing star arXiv 1609 01283v1 astro ph SR External links edit nbsp Look up collapsar in Wiktionary the free dictionary Black Holes Gravity s Relentless Pull Archived 17 May 2008 at the Wayback Machine Award winning interactive multimedia Web site about the physics and astronomy of black holes from the Space Telescope Science Institute Black hole diagrams Ziolkowski Janusz 2003 Black Hole Candidates Frontier Objects in Astrophysics and Particle Physics 411 arXiv astro ph 0307307 Bibcode 2003foap conf 411Z Heaviest Stellar Black Hole Discovered in Nearby Galaxy Newswise 17 Oct 2007 Portals nbsp Astronomy nbsp Physics nbsp Spaceflight nbsp Outer space nbsp Solar System Retrieved from https en wikipedia org w index php title Stellar black hole amp oldid 1220500750, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.