fbpx
Wikipedia

Smoothed-particle hydrodynamics

Smoothed-particle hydrodynamics (SPH) is a computational method used for simulating the mechanics of continuum media, such as solid mechanics and fluid flows. It was developed by Gingold and Monaghan[2] and Lucy[3] in 1977, initially for astrophysical problems. It has been used in many fields of research, including astrophysics, ballistics, volcanology, and oceanography. It is a meshfree Lagrangian method (where the co-ordinates move with the fluid), and the resolution of the method can easily be adjusted with respect to variables such as density.

Schematic view of an SPH convolution
Flow around cylinder with free surface modelled with SPH. See[1] for similar simulations.

Method edit

Advantages edit

  • By construction, SPH is a meshfree method, which makes it ideally suited to simulate problems dominated by complex boundary dynamics, like free surface flows, or large boundary displacement.
  • The lack of a mesh significantly simplifies the model implementation and its parallelization, even for many-core architectures.[4][5]
  • SPH can be easily extended to a wide variety of fields, and hybridized with some other models, as discussed in Modelling Physics.
  • As discussed in section on weakly compressible SPH, the method has great conservation features.
  • The computational cost of SPH simulations per number of particles is significantly less than the cost of grid-based simulations per number of cells when the metric of interest is related to fluid density (e.g., the probability density function of density fluctuations).[6] This is the case because in SPH the resolution is put where the matter is.

Limitations edit

  • Setting boundary conditions in SPH such as inlets and outlets[7] and walls[8] is more difficult than with grid-based methods. In fact, it has been stated that "the treatment of boundary conditions is certainly one of the most difficult technical points of the SPH method".[9] This challenge is partly because in SPH the particles near the boundary change with time.[10] Nonetheless, wall boundary conditions for SPH are available[8][10][11]
  • The computational cost of SPH simulations per number of particles is significantly larger than the cost of grid-based simulations per number of cells when the metric of interest is not (directly) related to density (e.g., the kinetic-energy spectrum).[6] Therefore, overlooking issues of parallel speedup, the simulation of constant-density flows (e.g., external aerodynamics) is more efficient with grid-based methods than with SPH.

Examples edit

Fluid dynamics edit

 
Fig. SPH simulation of ocean waves using FLUIDS v.1 (Hoetzlein)

Smoothed-particle hydrodynamics is being increasingly used to model fluid motion as well. This is due to several benefits over traditional grid-based techniques. First, SPH guarantees conservation of mass without extra computation since the particles themselves represent mass. Second, SPH computes pressure from weighted contributions of neighboring particles rather than by solving linear systems of equations. Finally, unlike grid-based techniques, which must track fluid boundaries, SPH creates a free surface for two-phase interacting fluids directly since the particles represent the denser fluid (usually water) and empty space represents the lighter fluid (usually air). For these reasons, it is possible to simulate fluid motion using SPH in real time. However, both grid-based and SPH techniques still require the generation of renderable free surface geometry using a polygonization technique such as metaballs and marching cubes, point splatting, or 'carpet' visualization. For gas dynamics it is more appropriate to use the kernel function itself to produce a rendering of gas column density (e.g., as done in the SPLASH visualisation package).

One drawback over grid-based techniques is the need for large numbers of particles to produce simulations of equivalent resolution. In the typical implementation of both uniform grids and SPH particle techniques, many voxels or particles will be used to fill water volumes that are never rendered. However, accuracy can be significantly higher with sophisticated grid-based techniques, especially those coupled with particle methods (such as particle level sets), since it is easier to enforce the incompressibility condition in these systems. SPH for fluid simulation is being used increasingly in real-time animation and games where accuracy is not as critical as interactivity.

Recent work in SPH for fluid simulation has increased performance, accuracy, and areas of application:

  • B. Solenthaler, 2009, develops Predictive-Corrective SPH (PCISPH) to allow for better incompressibility constraints[12]
  • M. Ihmsen et al., 2010, introduce boundary handling and adaptive time-stepping for PCISPH for accurate rigid body interactions[13]
  • K. Bodin et al., 2011, replace the standard equation of state pressure with a density constraint and apply a variational time integrator[14]
  • R. Hoetzlein, 2012, develops efficient GPU-based SPH for large scenes in Fluids v.3[15]
  • N. Akinci et al., 2012, introduce a versatile boundary handling and two-way SPH-rigid coupling technique that is completely based on hydrodynamic forces; the approach is applicable to different types of SPH solvers[16]
  • M. Macklin et al., 2013 simulates incompressible flows inside the Position Based Dynamics framework, for bigger timesteps[17]
  • N. Akinci et al., 2013, introduce a versatile surface tension and two-way fluid-solid adhesion technique that allows simulating a variety of interesting physical effects that are observed in reality[18]
  • J. Kyle and E. Terrell, 2013, apply SPH to Full-Film Lubrication[19]
  • A. Mahdavi and N. Talebbeydokhti, 2015, propose a hybrid algorithm for implementation of solid boundary condition and simulate flow over a sharp crested weir[20]
  • S. Tavakkol et al., 2016, develop curvSPH, which makes the horizontal and vertical size of particles independent and generates uniform mass distribution along curved boundaries[21]
  • W. Kostorz and A. Esmail-Yakas, 2020, propose a general, efficient and simple method for evaluating normalization factors near piecewise-planar boundaries[11]
  • Colagrossi et al., 2019, study flow around a cylinder close to a free-surface and compare with other techniques[1]

Astrophysics edit

Smoothed-particle hydrodynamics's adaptive resolution, numerical conservation of physically conserved quantities, and ability to simulate phenomena covering many orders of magnitude make it ideal for computations in theoretical astrophysics.[22]

Simulations of galaxy formation, star formation, stellar collisions,[23] supernovae[24] and meteor impacts are some of the wide variety of astrophysical and cosmological uses of this method.

SPH is used to model hydrodynamic flows, including possible effects of gravity. Incorporating other astrophysical processes which may be important, such as radiative transfer and magnetic fields is an active area of research in the astronomical community, and has had some limited success.[25][26]

Solid mechanics edit

Libersky and Petschek[27][28] extended SPH to Solid Mechanics. The main advantage of SPH in this application is the possibility of dealing with larger local distortion than grid-based methods. This feature has been exploited in many applications in Solid Mechanics: metal forming, impact, crack growth, fracture, fragmentation, etc.

Another important advantage of meshfree methods in general, and of SPH in particular, is that mesh dependence problems are naturally avoided given the meshfree nature of the method. In particular, mesh alignment is related to problems involving cracks and it is avoided in SPH due to the isotropic support of the kernel functions. However, classical SPH formulations suffer from tensile instabilities[29] and lack of consistency.[30] Over the past years, different corrections have been introduced to improve the accuracy of the SPH solution, leading to the RKPM by Liu et al.[31] Randles and Libersky[32] and Johnson and Beissel[33] tried to solve the consistency problem in their study of impact phenomena.

Dyka et al.[34][35] and Randles and Libersky[36] introduced the stress-point integration into SPH and Ted Belytschko et al.[37] showed that the stress-point technique removes the instability due to spurious singular modes, while tensile instabilities can be avoided by using a Lagrangian kernel. Many other recent studies can be found in the literature devoted to improve the convergence of the SPH method.

Recent improvements in understanding the convergence and stability of SPH have allowed for more widespread applications in Solid Mechanics. Other examples of applications and developments of the method include:

  • Metal forming simulations.[38]
  • SPH-based method SPAM (Smoothed Particle Applied Mechanics) for impact fracture in solids by William G. Hoover.[39]
  • Modified SPH (SPH/MLSPH) for fracture and fragmentation.[40]
  • Taylor-SPH (TSPH) for shock wave propagation in solids.[41]
  • Generalized coordinate SPH (GSPH) allocates particles inhomogeneously in the Cartesian coordinate system and arranges them via mapping in a generalized coordinate system in which the particles are aligned at a uniform spacing.[42]

Numerical tools edit

Interpolations edit

The Smoothed-Particle Hydrodynamics (SPH) method works by dividing the fluid into a set of discrete moving elements  , referred to as particles. Their Lagrangian nature allows setting their position   by integration of their velocity   as:

 

These particles interact through a kernel function with characteristic radius known as the "smoothing length", typically represented in equations by  . This means that the physical quantity of any particle can be obtained by summing the relevant properties of all the particles that lie within the range of the kernel, the latter being used as a weighting function  . This can be understood in two steps. First an arbitrary field   is written as a convolution with  :

 

The error in making the above approximation is order  . Secondly, the integral is approximated using a Riemann summation over the particles:

 

where the summation over   includes all particles in the simulation.   is the volume of particle  ,   is the value of the quantity   for particle   and   denotes position. For example, the density   of particle   can be expressed as:

 

where   denotes the particle mass and   the particle density, while   is a short notation for  . The error done in approximating the integral by a discrete sum depends on  , on the particle size (i.e.  ,   being the space dimension), and on the particle arrangement in space. The latter effect is still poorly known.[43]

Kernel functions commonly used include the Gaussian function, the quintic spline and the Wendland   kernel.[44] The latter two kernels are compactly supported (unlike the Gaussian, where there is a small contribution at any finite distance away), with support proportional to  . This has the advantage of saving computational effort by not including the relatively minor contributions from distant particles.

Although the size of the smoothing length can be fixed in both space and time, this does not take advantage of the full power of SPH. By assigning each particle its own smoothing length and allowing it to vary with time, the resolution of a simulation can be made to automatically adapt itself depending on local conditions. For example, in a very dense region where many particles are close together, the smoothing length can be made relatively short, yielding high spatial resolution. Conversely, in low-density regions where individual particles are far apart and the resolution is low, the smoothing length can be increased, optimising the computation for the regions of interest.

Discretization of governing equations edit

For particles of constant mass, differentiating the interpolated density   with respect to time yields

 

where   is the gradient of   with respect to  . Comparing this equation with the continuity equation in the Lagrangian description (using material derivatives),

 

it is apparent that its right-hand side is an approximation of  ; hence one defines a discrete divergence operator as follows:

 

This operator gives an SPH approximation of   at the particle   for a given set of particles with given masses  , positions   and velocities  .

The other important equation for a compressible inviscid fluid is the Euler equation for momentum balance:

 

Similarly to continuity, the task is to define a discrete gradient operator in order to write

 

One choice is

 

which has the property of being skew-adjoint with the divergence operator above, in the sense that

 

this being a discrete version of the continuum identity

 

This property leads to nice conservation properties.[45]

Notice also that this choice leads to a symmetric divergence operator and antisymmetric gradient. Although there are several ways of discretizing the pressure gradient in the Euler equations, the above antisymmetric form is the most acknowledged one. It supports strict conservation of linear and angular momentum. This means that a force that is exerted on particle   by particle   equals the one that is exerted on particle   by particle   including the sign change of the effective direction, thanks to the antisymmetry property  .

Nevertheless, other operators have been proposed, which may perform better numerically or physically. For instance, one drawback of these operators is that while the divergence   is zero-order consistent (i.e. yields zero when applied to a constant vector field), it can be seen that the gradient   is not. Several techniques have been proposed to circumvent this issue, leading to renormalized operators (see e.g.[46]).

Variational principle edit

The above SPH governing equations can be derived from a least action principle, starting from the Lagrangian of a particle system:

 ,

where   is the particle specific internal energy. The Euler–Lagrange equation of variational mechanics reads, for each particle:

 

When applied to the above Lagrangian, it gives the following momentum equation:

 

where the chain rule has been used, since   depends on  , and the latter, on the position of the particles. Using the thermodynamic property   we may write

 

Plugging the SPH density interpolation and differentiating explicitly   leads to

 

which is the SPH momentum equation already mentioned, where we recognize the   operator. This explains why linear momentum is conserved, and allows conservation of angular momentum and energy to be conserved as well.[47]

Time integration edit

From the work done in the 80's and 90's on numerical integration of point-like particles in large accelerators, appropriate time integrators have been developed with accurate conservation properties on the long term; they are called symplectic integrators. The most popular in the SPH literature is the leapfrog scheme, which reads for each particle  :

 

where   is the time step, superscripts stand for time iterations while   is the particle acceleration, given by the right-hand side of the momentum equation.

Other symplectic integrators exist (see the reference textbook[48]). It is recommended to use a symplectic (even low-order) scheme instead of a high order non-symplectic scheme, to avoid error accumulation after many iterations.

Integration of density has not been studied extensively (see below for more details).

Symplectic schemes are conservative but explicit, thus their numerical stability requires stability conditions, analogous to the Courant-Friedrichs-Lewy condition (see below).

Boundary techniques edit

 
SPH Convolution support split close to a boundary

In case the SPH convolution shall be practiced close to a boundary, i.e. closer than s · h, then the integral support is truncated. Indeed, when the convolution is affected by a boundary, the convolution shall be split in 2 integrals,

 

where B(r) is the compact support ball centered at r, with radius s · h, and Ω(r) denotes the part of the compact support inside the computational domain, Ω ∩ B(r). Hence, imposing boundary conditions in SPH is completely based on approximating the second integral on the right hand side. The same can be of course applied to the differential operators computation,

 

Several techniques has been introduced in the past to model boundaries in SPH.

Integral neglect edit

 
SPH free-surface model by means of integral neglect

The most straightforward boundary model is neglecting the integral,

 

such that just the bulk interactions are taken into account,

 

This is a popular approach when free-surface is considered in monophase simulations.[49]

The main benefit of this boundary condition is its obvious simplicity. However, several consistency issues shall be considered when this boundary technique is applied.[49] That's in fact a heavy limitation on its potential applications.

Fluid Extension edit

 
SPH Fluid Extension Boundary technique

Probably the most popular methodology, or at least the most traditional one, to impose boundary conditions in SPH, is Fluid Extension technique. Such technique is based on populating the compact support across the boundary with so-called ghost particles, conveniently imposing their field values.[50]

Along this line, the integral neglect methodology can be considered as a particular case of fluid extensions, where the field, A, vanish outside the computational domain.

The main benefit of this methodology is the simplicity, provided that the boundary contribution is computed as part of the bulk interactions. Also, this methodology has been deeply analyzed in the literature.[51][50][52]

On the other hand, deploying ghost particles in the truncated domain is not a trivial task, such that modelling complex boundary shapes becomes cumbersome. The 2 most popular approaches to populate the empty domain with ghost particles are Mirrored-Particles[53] and Fixed-Particles.[50]

Boundary Integral edit

 
SPH Boundary Integral model

The newest Boundary technique is the Boundary Integral methodology.[54] In this methodology, the empty volume integral is replaced by a surface integral, and a renormalization:

 
 

with nj the normal of the generic j-th boundary element. The surface term can be also solved considering a semi-analytic expression.[54]

Modelling physics edit

Hydrodynamics edit

Weakly compressible approach edit

Another way to determine the density is based on the SPH smoothing operator itself. Therefore, the density is estimated from the particle distribution utilizing the SPH interpolation. To overcome undesired errors at the free surface through kernel truncation, the density formulation can again be integrated in time. [54]

The weakly compressible SPH in fluid dynamics is based on the discretization of the Navier–Stokes equations or Euler equations for compressible fluids. To close the system, an appropriate equation of state is utilized to link pressure   and density  . Generally, the so-called Cole equation [55] (sometimes mistakenly referred to as the "Tait equation") is used in SPH. It reads

 

where   is the reference density and   the speed of sound. For water,   is commonly used. The background pressure   is added to avoid negative pressure values.

Real nearly incompressible fluids such as water are characterized by very high speeds of sound of the order  . Hence, pressure information travels fast compared to the actual bulk flow, which leads to very small Mach numbers  . The momentum equation leads to the following relation:

 

where   is the density change and   the velocity vector. In practice a value of c smaller than the real one is adopted to avoid time steps too small in the time integration scheme. Generally a numerical speed of sound is adopted such that density variation smaller than 1% are allowed. This is the so-called weak-compressibility assumption. This corresponds to a Mach number smaller than 0.1, which implies:

 

where the maximum velocity   needs to be estimated, for e.g. by Torricelli's law or an educated guess. Since only small density variations occur, a linear equation of state can be adopted:[56]

 

Usually the weakly-compressible schemes are affected by a high-frequency spurious noise on the pressure and density fields. [57] This phenomenon is caused by the nonlinear interaction of acoustic waves and by fact that the scheme is explicit in time and centered in space .[58]

Through the years, several techniques have been proposed to get rid of this problem. They can be classified in three different groups:

  1. the schemes that adopt density filters,
  2. the models that add a diffusive term in the continuity equation,
  3. the schemes that employ Riemann solvers to model the particle interaction.
Density filter technique edit

The schemes of the first group apply a filter directly on the density field to remove the spurious numerical noise. The most used filters are the MLS (moving least squares) and the Shepard filter[57] which can be applied at each time step or every n time steps. The more frequent is the use of the filtering procedure, the more regular density and pressure fields are obtained. On the other hand, this leads to an increase of the computational costs. In long time simulations, the use of the filtering procedure may lead to the disruption of the hydrostatic pressure component and to an inconsistency between the global volume of fluid and the density field. Further, it does not ensure the enforcement of the dynamic free-surface boundary condition.

Diffusive term technique edit

A different way to smooth out the density and pressure field is to add a diffusive term inside the continuity equation (group 2) :

 

The first schemes that adopted such an approach were described in Ferrari [59] and in Molteni[56] where the diffusive term was modeled as a Laplacian of the density field. A similar approach was also used in Fatehi and Manzari .[60]

 
SPH simulation: pressure distribution of a dam-break flow using standard SPH formulation
 
SPH simulation: pressure distribution of a dam-break flow using standard δ-SPH formulation

In Antuono et al. [61] a correction to the diffusive term of Molteni[56] was proposed to remove some inconsistencies close to the free-surface. In this case the adopted diffusive term is equivalent to a high-order differential operator on the density field.[62] The scheme is called δ-SPH and preserves all the conservation properties of the SPH without diffusion (e.g., linear and angular momenta, total energy, see [63] ) along with a smooth and regular representation of the density and pressure fields.

In the third group there are those SPH schemes which employ numerical fluxes obtained through Riemann solvers to model the particle interactions.[64][65][66]

Riemann solver technique edit
 
SPH simulation: pressure distribution of a dam-break flow using Riemann solver with the low-dissipation limiter.

For an SPH method based on Riemann solvers, an inter-particle Riemann problem is constructed along a unit vector   pointing form particle   to particle  . In this Riemann problem the initial left and right states are on particles   and   , respectively. The   and   states are

 

The solution of the Riemann problem results in three waves emanating from the discontinuity. Two waves, which can be shock or rarefaction wave, traveling with the smallest or largest wave speed. The middle wave is always a contact discontinuity and separates two intermediate states, denoted by   and  . By assuming that the intermediate state satisfies   and  , a linearized Riemann solver for smooth flows or with only moderately strong shocks can be written as

 

where   and   are inter-particle averages. With the solution of the Riemann problem, i.e.   and  , the discretization of the SPH method is

 
 

where  . This indicates that the inter-particle average velocity and pressure are simply replaced by the solution of the Riemann problem. By comparing both it can be seen that the intermediate velocity and pressure from the inter-particle averages amount to implicit dissipation, i.e. density regularization and numerical viscosity, respectively.

Since the above discretization is very dissipative a straightforward modification is to apply a limiter to decrease the implicit numerical dissipations introduced by limiting the intermediate pressure by [67]

 

where the limiter is defined as

 

Note that   ensures that there is no dissipation when the fluid is under the action of an expansion wave, i.e.  , and that the parameter  , is used to modulate dissipation when the fluid is under the action of a compression wave, i.e.  . Numerical experiments found the   is generally effective. Also note that the dissipation introduced by the intermediate velocity is not limited.

Incompressible approach edit

Viscosity modelling edit

In general, the description of hydrodynamic flows require a convenient treatment of diffusive processes to model the viscosity in the Navier–Stokes equations. It needs special consideration because it involves the Laplacian differential operator. Since the direct computation does not provide satisfactory results, several approaches to model the diffusion have been proposed.

  • Artificial viscosity

Introduced by Monaghan and Gingold [68] the artificial viscosity was used to deal with high Mach number fluid flows. It reads

 

Here,   is controlling a volume viscosity while   acts similar to the Neumann Richtmeyr artificial viscosity. The   is defined by

 

where ηh is a small fraction of h (e.g. 0.01h) to prevent possible numerical infinities at close distances.

The artificial viscosity also has shown to improve the overall stability of general flow simulations. Therefore, it is applied to inviscid problems in the following form

 

It is possible to not only stabilize inviscid simulations but also to model the physical viscosity by this approach. To do so

 

is substituted in the equation above, where   is the number of spartial dimensions of the model. This approach introduces the bulk viscosity  .

  • Morris

For low Reynolds numbers the viscosity model by Morris [69] was proposed.

 
  • LoShao

Additional physics edit

  • Surface tension
  • Heat transfer
  • Turbulence

Multiphase extensions edit

Astrophysics edit

Often in astrophysics, one wishes to model self-gravity in addition to pure hydrodynamics. The particle-based nature of SPH makes it ideal to combine with a particle-based gravity solver, for instance tree gravity code,[70] particle mesh, or particle-particle particle-mesh.

Solid mechanics and fluid-structure interaction (FSI) edit

Total Lagrangian formulation for solid mechanics edit

To discretize the governing equations of solid dynamics, a correction matrix   [71] [72] is first introduced to reproducing rigid-body rotation as

 

(1)

where

 

stands for the gradient of the kernel function evaluated at the initial reference configuration. Note that subscripts   and   are used to denote solid particles, and smoothing length   is identical to that in the discretization of fluid equations.

Using the initial configuration as the reference, the solid density is directly evaluated as

 

(2)

where   is the Jacobian determinant of deformation tensor  .

We can now discretize the momentum equation in the following form

 

(3)

where inter-particle averaged first Piola-Kirchhoff stress   is defined as

 

(4)

Also   and   correspond to the fluid pressure and viscous forces acting on the solid particle  , respectively.

Fluid-structure coupling edit

In fluid-structure coupling, the surrounding solid structure is behaving as a moving boundary for fluid, and the no-slip boundary condition is imposed at the fluid-structure interface. The interaction forces   and   acting on a fluid particle  , due to the presence of the neighboring solid particle  , can be obtained as [73]

 

(5)

and

 

(6)

Here, the imaginary pressure   and velocity   are defined by

 

(7)

where   denotes the surface normal direction of the solid structure, and the imaginary particle density   is calculated through the equation of state.

Accordingly, the interaction forces   and   acting on a solid particle   are given by

 

(8)

and

 

(9)

The anti-symmetric property of the derivative of the kernel function will ensure the momentum conservation for each pair of interacting particles   and  .

Others edit

The discrete element method, used for simulating granular materials, is related to SPH.

Variants of the method edit

References edit

  1. ^ a b Colagrossi (2019). "Viscous flow past a cylinder close to a free surface: benchmarks with steady, periodic and metastable responses, solved by meshfree and mesh-based schemes". Computers and Fluids. 181: 345–363. doi:10.1016/j.compfluid.2019.01.007. S2CID 128143912.
  2. ^ Gingold, Robert A.; Monaghan, Joseph J. (1977). "Smoothed particle hydrodynamics: theory and application to non-spherical stars". Monthly Notices of the Royal Astronomical Society. 181 (3): 375–89. Bibcode:1977MNRAS.181..375G. doi:10.1093/mnras/181.3.375.
  3. ^ L.B. Lucy (1977). "A numerical approach to the testing of the fission hypothesis". Astron. J. 82: 1013–1024. Bibcode:1977AJ.....82.1013L. doi:10.1086/112164.
  4. ^ Takahiro Harada; Seiichi Koshizuka; Yoichiro Kawaguchi (2007). Smoothed particle hydrodynamics on GPUs. Computer Graphics International. pp. 63–70.
  5. ^ Alejandro Crespo; Jose M. Dominguez; Anxo Barreiro; Moncho Gomez-Gesteira; Benedict D. Rogers (2011). "GPUs, a new tool of acceleration in CFD: efficiency and reliability on smoothed particle hydrodynamics methods". PLOS ONE. 6 (6): e20685. Bibcode:2011PLoSO...620685C. doi:10.1371/journal.pone.0020685. PMC 3113801. PMID 21695185.
  6. ^ a b Price, D. J. (2011). "Smoothed Particle Hydrodynamics: Things I wish my mother taught me". Advances in Computational Astrophysics: Methods. 453: 249. arXiv:1111.1259. Bibcode:2012ASPC..453..249P.
  7. ^ "The Smoothed Particle Hydrodynamics Method vs. Finite Volume Numerical Methods". 2018-03-21. Retrieved 2018-08-30.
  8. ^ a b Adami, S. and Hu, X. Y. and Adams, N. A.. (2012). "A generalized wall boundary condition for smoothed particle hydrodynamics". Journal of Computational Physics. 231 (21): 7057–7075. Bibcode:2012JCoPh.231.7057A. doi:10.1016/j.jcp.2012.05.005.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  9. ^ Shadloo, M. S. and Oger, G. and Touze, D. L.. (2016). "Smoothed particle hydrodynamics method for fluid flows, towards industrial applications: Motivations, current state, and challenges". Computers and Fluids. 136: 11–34. doi:10.1016/j.compfluid.2016.05.029.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  10. ^ a b Fraser, K.and Kiss, L. I. and St-George, L. (2016). "A generalized wall boundary condition for smoothed particle hydrodynamics". 14th International LS-DYNA Conference.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  11. ^ a b Kostorz (2020). "A semi-analytical boundary integral method for radial functions with application to Smoothed Particle Hydrodynamics". Journal of Computational Physics. 417: 109565. Bibcode:2020JCoPh.41709565K. doi:10.1016/j.jcp.2020.109565. S2CID 219438340.
  12. ^ Solenthaler (2009). "Predictive-Corrective Incompressible SPH". {{cite journal}}: Cite journal requires |journal= (help)
  13. ^ Imhsen (2010). "Boundary handling and adaptive time-stepping for PCISPH". Workshop on Virtual Reality Interaction and Physical Simulation VRIPHYS.
  14. ^ Bodin (2011). "Constraint Fluids". IEEE Transactions on Visualization and Computer Graphics. 18 (3): 516–26. doi:10.1109/TVCG.2011.29. PMID 22241284. S2CID 14023161.
  15. ^ Hoetzlein (2012). "Fluids v.3, A Large scale, Open Source Fluid Simulator". {{cite journal}}: Cite journal requires |journal= (help)
  16. ^ Akinci (2012). "Versatile Rigid-Fluid Coupling for Incompressible SPH". ACM Transactions on Graphics. 31 (4): 1–8. doi:10.1145/2185520.2185558. S2CID 5669154.
  17. ^ Macklin (2013). "Position Based Fluids". ACM Transactions on Graphics. 32 (4): 1–12. doi:10.1145/2461912.2461984. S2CID 611962.
  18. ^ Akinci (2013). "Versatile Surface Tension and Adhesion for SPH Fluids SPH". ACM Transactions on Graphics. 32 (6): 1–8. CiteSeerX 10.1.1.462.8293. doi:10.1145/2508363.2508395. S2CID 12550964.
  19. ^ Journal of Tribology (2013). "Application of Smoothed Particle Hydrodynamics to Full-Film Lubrication". {{cite journal}}: Cite journal requires |journal= (help)
  20. ^ Mahdavi and Talebbeydokhti (2015). "A hybrid solid boundary treatment algorithm for smoothed particle hydrodynamics". Scientia Iranica, Transaction A, Civil Engineering. 22 (4): 1457–1469.
  21. ^ International Journal for Numerical Methods in Fluids (2016). "Curvilinear smoothed particle hydrodynamics". International Journal for Numerical Methods in Fluids. 83 (2): 115–131. Bibcode:2017IJNMF..83..115T. doi:10.1002/fld.4261. S2CID 124425780.
  22. ^ Price, Daniel J (2009). "Astrophysical Smooth Particle Hydrodynamics". New Astron.rev. 53 (4–6): 78–104. arXiv:0903.5075. Bibcode:2009NewAR..53...78R. doi:10.1016/j.newar.2009.08.007. S2CID 129246.
  23. ^ Rosswog, Stephan (2015). "SPH Methods in the Modelling of Compact Objects". Living Rev Comput Astrophys. 1 (1): 1. arXiv:1406.4224. Bibcode:2015LRCA....1....1R. doi:10.1007/lrca-2015-1. S2CID 119119783.
  24. ^ Price, Daniel J; Rockefeller, Gabriel; Warren, Michael S (2006). "SNSPH: A Parallel 3-D Smoothed Particle Radiation Hydrodynamics Code". Astrophys. J. 643: 292–305. arXiv:astro-ph/0512532. doi:10.1086/501493. S2CID 16733573.
  25. ^ "Star Formation with Radiative Transfer".
  26. ^ Price, Daniel J. (2012-02-01). "Smoothed particle hydrodynamics and magnetohydrodynamics". Journal of Computational Physics. Special Issue: Computational Plasma Physics. 231 (3): 759–794. arXiv:1012.1885. doi:10.1016/j.jcp.2010.12.011. ISSN 0021-9991.
  27. ^ Libersky, L.D.; Petschek, A.G. (1990). Smooth Particle Hydrodynamics with Strength of Materials, Advances in the Free Lagrange Method. Lecture Notes in Physics. Vol. 395. pp. 248–257. doi:10.1007/3-540-54960-9_58. ISBN 978-3-540-54960-4.
  28. ^ L.D. Libersky; A.G. Petschek; A.G. Carney; T.C. Hipp; J.R. Allahdadi; F.A. High (1993). "Strain Lagrangian hydrodynamics: a three-dimensional SPH code for dynamic material response". J. Comput. Phys. 109 (1): 67–75. Bibcode:1993JCoPh.109...67L. doi:10.1006/jcph.1993.1199.
  29. ^ J.W. Swegle; D.A. Hicks; S.W. Attaway (1995). "Smooth particle hydrodynamics stability analysis". J. Comput. Phys. 116 (1): 123–134. Bibcode:1995JCoPh.116..123S. doi:10.1006/jcph.1995.1010.
  30. ^ T. Belytschko; Y. Krongauz; J. Dolbow; C. Gerlach (1998). "On the completeness of meshfree particle methods". Int. J. Numer. Methods Eng. 43 (5): 785–819. Bibcode:1998IJNME..43..785B. CiteSeerX 10.1.1.28.491. doi:10.1002/(sici)1097-0207(19981115)43:5<785::aid-nme420>3.0.co;2-9.
  31. ^ W.K. Liu; S. Jun; Y.F. Zhang (1995). "Reproducing kernel particle methods". Int. J. Numer. Methods Eng. 20 (8–9): 1081–1106. Bibcode:1995IJNMF..20.1081L. doi:10.1002/fld.1650200824.
  32. ^ P.W. Randles; L.D. Libersky (1997). "Recent improvements in SPH modelling of hypervelocity impact". Int. J. Impact Eng. 20 (6–10): 525–532. doi:10.1016/s0734-743x(97)87441-6.
  33. ^ G.R. Johnson; S.R. Beissel (1996). "Normalized smoothing functions for SPH impact computations". Int. J. Numer. Methods Eng. 39 (16): 2725–2741. Bibcode:1996IJNME..39.2725J. doi:10.1002/(sici)1097-0207(19960830)39:16<2725::aid-nme973>3.0.co;2-9.
  34. ^ C.T. Dyka; R.P. Ingel (1995). "An approach for tension instability in Smoothed Particle Hydrodynamics". Comput. Struct. 57 (4): 573–580. doi:10.1016/0045-7949(95)00059-p.
  35. ^ C.T. Dyka; P.W. Randles; R.P. Ingel (1997). "Stress points for tension instability in SPH". Int. J. Numer. Methods Eng. 40 (13): 2325–2341. Bibcode:1997IJNME..40.2325D. doi:10.1002/(sici)1097-0207(19970715)40:13<2325::aid-nme161>3.0.co;2-8.
  36. ^ P.W. Randles; L.D. Libersky (2000). "Normalized SPH with stress points". Int. J. Numer. Methods Eng. 48 (10): 1445–1462. Bibcode:2000IJNME..48.1445R. doi:10.1002/1097-0207(20000810)48:10<1445::aid-nme831>3.0.co;2-9.
  37. ^ T. Belytschko; Y. Guo; W.K. Liu; S.P. Xiao (2000). "A unified stability analysis of meshless particle methods". Int. J. Numer. Methods Eng. 48 (9): 1359–1400. Bibcode:2000IJNME..48.1359B. doi:10.1002/1097-0207(20000730)48:9<1359::aid-nme829>3.0.co;2-u.
  38. ^ J. Bonet; S. Kulasegaram (2000). "Correction and stabilization of smooth particle hydrodynamics methods with applications in metal forming simulations". Int. J. Numer. Methods Eng. 47 (6): 1189–1214. Bibcode:2000IJNME..47.1189B. doi:10.1002/(sici)1097-0207(20000228)47:6<1189::aid-nme830>3.0.co;2-i.
  39. ^ W. G. Hoover; C. G. Hoover (2001). "SPAM-based recipes for continuum simulations". Computing in Science and Engineering. 3 (2): 78–85. Bibcode:2001CSE.....3b..78H. doi:10.1109/5992.909007.
  40. ^ T. Rabczuk; J. Eibl; L. Stempniewski (2003). "Simulation of high velocity concrete fragmentation using SPH/MLSPH". Int. J. Numer. Methods Eng. 56 (10): 1421–1444. Bibcode:2003IJNME..56.1421R. doi:10.1002/nme.617. S2CID 119799557.
  41. ^ M.I. Herreros; M. Mabssout (2011). "A two-steps time discretization scheme using the SPH method for shock wave propagation". Comput. Methods Appl. Mech. Engrg. 200 (21–22): 1833–1845. Bibcode:2011CMAME.200.1833H. doi:10.1016/j.cma.2011.02.006.
  42. ^ S. Yashiro; T. Okabe (2015). "Smoothed particle hydrodynamics in a generalized coordinate system with a finite-deformation constitutive model". Int. J. Numer. Methods Eng. 103 (11): 781–797. Bibcode:2015IJNME.103..781Y. doi:10.1002/nme.4906. hdl:2324/4476056. S2CID 121935150.
  43. ^ N.J. Quinlan; M. Basa; M. Lastiwka (2006). "Truncation error in mesh-free particle methods" (PDF). International Journal for Numerical Methods in Engineering. 66 (13): 2064–2085. Bibcode:2006IJNME..66.2064Q. doi:10.1002/nme.1617. hdl:10379/1170. S2CID 53701216.
  44. ^ H. Wendland (1995). "Piecewise polynomial, positive definite and compactly supported radial functions of minimal degree". Advances in Computational Mathematics. 4 (4): 389–396. doi:10.1007/BF02123482. S2CID 36452865.
  45. ^ A. Mayrhofer; B.D. Rogers; D. Violeau; M. Ferrand (2013). "Investigation of wall bounded flows using SPH and the unified semi-analytical wall boundary conditions". Computer Physics Communications. 184 (11): 2515–2527. arXiv:1304.3692. Bibcode:2013CoPhC.184.2515M. CiteSeerX 10.1.1.770.4985. doi:10.1016/j.cpc.2013.07.004. S2CID 35008128.
  46. ^ J. Bonet; T.S. Lok (1999). "Variational and momentum preservation aspects of Smoothed Particle Hydrodynamics formulations". Computers Methods in Applied Mechanical Engineering. 180 (1–2): 97–115. Bibcode:1999CMAME.180...97B. doi:10.1016/S0045-7825(99)00051-1.
  47. ^ J.J. Monaghan (2005). "Smoothed particle hydrodynamics". Reports on Progress in Physics. 68 (8): 1703–1759. Bibcode:2005RPPh...68.1703M. doi:10.1088/0034-4885/68/8/R01. S2CID 5987481.
  48. ^ E. Hairer; C. Lubich; G. Wanner (2006). Geometric Numerical Integration. Springer. ISBN 978-3-540-30666-5.
  49. ^ a b Andrea Colagrossi; Matteo Antuono; David Le Touzè (2009). "Theoretical considerations on the free-surface role in the smoothed-particle-hydrodynamics model". Physical Review E. 79 (5): 056701. Bibcode:2009PhRvE..79e6701C. doi:10.1103/PhysRevE.79.056701. PMID 19518587.
  50. ^ a b c Bejamin Bouscasse; Andrea Colagrossi; Salvatore Marrone; Matteo Antuono (2013). "Nonlinear water wave interaction with floating bodies in SPH". Journal of Fluids and Structures. 42: 112–129. Bibcode:2013JFS....42..112B. doi:10.1016/j.jfluidstructs.2013.05.010.
  51. ^ Fabricio Macià; Matteo Antuono; Leo M González; Andrea Colagrossi (2011). "Theoretical analysis of the no-slip boundary condition enforcement in SPH methods". Progress of Theoretical Physics. 125 (6): 1091–1121. Bibcode:2011PThPh.125.1091M. doi:10.1143/PTP.125.1091.
  52. ^ Jose Luis Cercos-Pita; Matteo Antuono; Andrea Colagrossi; Antonio Souto (2017). "SPH energy conservation for fluid--solid interactions". Computer Methods in Applied Mechanics and Engineering. 317: 771–791. Bibcode:2017CMAME.317..771C. doi:10.1016/j.cma.2016.12.037.
  53. ^ J. Campbell; R. Vignjevic; L. Libersky (2000). "A contact algorithm for smoothed particle hydrodynamics". Computer Methods in Applied Mechanics and Engineering. 184 (1): 49–65. Bibcode:2000CMAME.184...49C. doi:10.1016/S0045-7825(99)00442-9.
  54. ^ a b c M. Ferrand, D.R. Laurence, B.D. Rogers, D. Violeau, C. Kassiotis (2013). "Unified semi-analytical wall boundary conditions for inviscid, laminar or turbulent flows in the meshless SPH method". International Journal for Numerical Methods in Fluids. 71 (4). Int. J. Numer. Meth. Fluids: 446–472. Bibcode:2013IJNMF..71..446F. doi:10.1002/fld.3666. S2CID 124465492.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  55. ^ H. R. Cole (1948). Underwater Explosions. Princeton, New Jersey: Princeton University Press.
  56. ^ a b c D. Molteni, A. Colagrossi (2009). "A simple procedure to improve the pressure evaluation in hydrodynamic context using the SPH". Computer Physics Communications. 180 (6): 861–872. Bibcode:2009CoPhC.180..861M. doi:10.1016/j.cpc.2008.12.004.
  57. ^ a b Colagrossi, Andrea; Landrini, Maurizio (2003). "Numerical simulation of interfacial flows by smoothed particle hydrodynamics". Journal of Computational Physics. 191 (2): 448–475. Bibcode:2003JCoPh.191..448C. doi:10.1016/S0021-9991(03)00324-3.
  58. ^ Randall J. LeVeque (2007). Finite difference methods for ordinary and partial differential equations: steady-state and time-dependent problems. Siam.
  59. ^ A. Ferrari, M. Dumbser, E. Toro, A. Armanini (2009). "A new 3D parallel SPH scheme for free surface flows". Computers & Fluids. 38 (6). Elsevier: 1203–1217. doi:10.1016/j.compfluid.2008.11.012.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  60. ^ Fatehi, R and Manzari, MT (2011). "A remedy for numerical oscillations in weakly compressible smoothed particle hydrodynamics". International Journal for Numerical Methods in Fluids. 67 (9). Wiley Online Library: 1100–1114. Bibcode:2011IJNMF..67.1100F. doi:10.1002/fld.2406. S2CID 121381641.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  61. ^ M. Antuono, A. Colagrossi, S. Marrone, D. Molteni (2010). "Free-surface flows solved by means of SPH schemes with numerical diffusive terms". Computer Physics Communications. 181 (3). Elsevier: 532–549. Bibcode:2010CoPhC.181..532A. doi:10.1016/j.cpc.2009.11.002.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  62. ^ M. Antuono, A. Colagrossi, S. Marrone (2012). "Numerical diffusive terms in weakly-compressible SPH schemes". Computer Physics Communications. 183 (12). Elsevier: 2570–2580. Bibcode:2012CoPhC.183.2570A. doi:10.1016/j.cpc.2012.07.006.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  63. ^ Antuono Matteo and Marrone S and Colagrossi A and Bouscasse B (2015). "Energy balance in the δ-SPH scheme". Computer Methods in Applied Mechanics and Engineering. 289. Elsevier: 209–226. Bibcode:2015CMAME.289..209A. doi:10.1016/j.cma.2015.02.004.
  64. ^ JP. Vila (1999). "On particle weighted methods and smooth particle hydrodynamics". Mathematical Models and Methods in Applied Sciences. 9 (2). World Scientific: 161–209. doi:10.1142/S0218202599000117.
  65. ^ Marongiu Jean-Christophe and Leboeuf Francis and Caro Joëlle and Parkinson Etienne (2010). "Free surface flows simulations in Pelton turbines using an hybrid SPH-ALE method" (PDF). Journal of Hydraulic Research. 48 (S1). Taylor & Francis: 40–49. doi:10.1080/00221686.2010.9641244. S2CID 121493014.
  66. ^ De Leffe, Matthieu (2011). Modelisation d'écoulements visqueux par methode SPH en vue d'application à l'hydrodynamique navale. PhD Thesis, Ecole centrale de Nantes.
  67. ^ Chi Zhang and Xiangyu Hu and Nikolaus Adams (2017). "A weakly compressible SPH method based on a low-dissipation Riemann solver". Journal of Computational Physics. 335: 605–620. Bibcode:2017JCoPh.335..605Z. doi:10.1016/j.jcp.2017.01.027.
  68. ^ Monaghan, Joseph J.; Gingold, Robert A. (1983). "Shock Simulation by the Particle Method". Journal of Computational Physics. 52 (2): 347–389. Bibcode:1983JCoPh..52..374M. doi:10.1016/0021-9991(83)90036-0.
  69. ^ J. P. Morris; P. J. Fox; Y. Zhu (1997). "Modeling Low Reynolds Number Incompressible Flows Using SPH". Journal of Computational Physics. 136 (1): 214–226. Bibcode:1997JCoPh.136..214M. doi:10.1006/jcph.1997.5776.
  70. ^ Marios D. Dikaiakos; Joachim Stadel, PKDGRAV The Parallel k-D Tree Gravity Code, retrieved February 1, 2017
  71. ^ Vignjevic, Rade; Reveles, Juan R.; Campbell, James (2006). "SPH in a total Lagrangian formalism". Computer Modeling in Engineering and Sciences. 44: 181–198.
  72. ^ Han, Luhui; Hu, Xiangyu (2018). "SPH modeling of fluid-structure interaction". Journal of Hydrodynamics. 30 (1): 62–69. Bibcode:2018JHyDy..30...62H. doi:10.1007/s42241-018-0006-9. S2CID 125369012.
  73. ^ Chi Zhang; Massoud Rezavand; Xiangyu Hu (2020). "A multi-resolution SPH method for fluid-structure interactions". Journal of Computational Physics. 429: 110028. arXiv:1911.13255. doi:10.1016/j.jcp.2020.110028. ISSN 0021-9991. S2CID 208513116.

Further reading edit

  • Hoover, W. G. (2006); Smooth Particle Applied Mechanics: The State of the Art, World Scientific.
  • Stellingwerf, R. F.; Wingate, C. A.; "Impact Modelling with SPH", Memorie della Societa Astronomia Italiana, Vol. 65, p. 1117 (1994).
  • Amada, T.; Imura, M.; Yasumuro, Y.; Manabe, Y.; and Chihara, K. (2004); "Particle-based fluid simulation on GPU", in Proceedings of ACM Workshop on General-purpose Computing on Graphics Processors (August, 2004, Los Angeles, California).
  • Desbrun, M.; and Cani, M.-P. (1996). "Smoothed Particles: a new paradigm for animating highly deformable bodies" in Proceedings of Eurographics Workshop on Computer Animation and Simulation (August 1996, Poitiers, France).
  • Hegeman, K.; Carr, N. A.; and Miller, G. S. P.; "Particle-based fluid simulation on the GPU", in Proceedings of International Conference on Computational Science (Reading, UK, May 2006), Lecture Notes in Computer Science v. 3994/2006 (Springer-Verlag).
  • Kelager, M. (2006) Lagrangian Fluid Dynamics Using Smoothed Particle Hydrodynamics, MSc Thesis, Univ. Copenhagen.
  • Kolb, A.; and Cuntz, N. (2005); "Dynamic particle coupling for GPU-based fluid simulation", in Proceedings of the 18th Symposium on Simulation Techniques (2005) pp. 722–727.
  • Liu, G. R.; and Liu, M. B.; Smoothed Particle Hydrodynamics: a meshfree particle method, Singapore: World Scientific (2003).
  • Monaghan, Joseph J. (1992). "Smoothed Particle Hydrodynamics", Annual Review of Astronomy and Astrophysics (1992). 30 : 543–74.
  • Muller, M.; Charypar, D.; and Gross, M.; "Particle-based Fluid Simulation for Interactive Applications", in Breen, D; and Lin, M. (eds.), Proceedings of Eurographics/SIGGRAPH Symposium on Computer Animation (2003).
  • Vesterlund, M.; Simulation and Rendering of a Viscous Fluid Using Smoothed Particle Hydrodynamics, MSc Thesis, Umea University, Sweden.
  • Violeau, D.; Fluid Mechanics and the SPH method, Oxford University Press (2012).

External links edit

  • First large simulation of star formation using SPH
  • SPHERIC (SPH rEsearch and engineeRing International Community)
  • ITVO is the web-site of The Italian Theoretical Virtual Observatory created to query a database of numerical simulation archive.
  • SPHC Image Gallery depicts a wide variety of test cases, experimental validations, and commercial applications of the SPH code SPHC.
  • A derivation of the SPH model starting from Navier-Stokes equations

Software edit

  • Algodoo is a 2D simulation framework for education using SPH
  • AQUAgpusph is the free (GPLv3) SPH of the researchers, by the researchers, for the researchers
  • dive solutions is a commercial web-based SPH engineering software for CFD purposes
  • DualSPHysics is a mostly open source SPH code based on SPHysics and using GPU computing. The open source components are available under the LGPL.
  • FLUIDS v.1 is a simple, open source (Zlib), real-time 3D SPH implementation in C++ for liquids for CPU and GPU.
  • Fluidix is a GPU-based particle simulation API available from OneZero Software
  • GADGET [1] is a freely available (GPL) code for cosmological N-body/SPH simulations
  • GPUSPH SPH simulator with viscosity (GPLv3)
  • Pasimodo is a program package for particle-based simulation methods, e.g. SPH
  • LAMMPS is a massively parallel, open-source classical molecular dynamics code that can perform SPH simulations
  • Physics Abstraction Layer is an open source abstraction system that supports real time physics engines with SPH support
  • PreonLab is a commercial engineering software developed by FIFTY2 Technology implementing an implicit SPH method
  • Punto is a freely available visualisation tool for particle simulations
  • pysph Open Source Framework for Smoothed Particle Hydrodynamics in Python (New BSD License)
  • Py-SPHViewer Open Source python visualisation tool for Smoothed Particle Hydrodynamics simulations.[1]
  • RealFlow Commercial SPH solver for the cinema industry.
  • RheoCube is a commercial SaaS product by Lorenz Research for the study and prediction of complex-fluid rheology and stability
  • SimPARTIX is a commercial simulation package for SPH and Discrete element method (DEM) simulations from Fraunhofer IWM
  • SPH-flow
  • SPHERA
  • SPHinXsys is an open source multi-physics, multi-resolution SPH library. It provides C++ APIs for physical accurate simulation and aims to model coupled industrial dynamic systems including fluid, solid, multi-body dynamics and beyond.
  • SPHysics is an open source SPH implementation in Fortran
  • is an open source (GPL) visualisation tool for SPH simulations
  • SYMPLER: A freeware SYMbolic ParticLE simulatoR from the University of Freiburg.
  • Nauticle is a general-purpose computational tool for particle-based numerical methods.
  • NDYNAMICS is a commercial fluid simulation software based on implicit SPH developed by CENTROID LAB currently used for internal/external flooding/nuclear/chemical engineering applications.
  1. ^ Benitez-Llambay, Alejandro (2015-07-28), "Py-Sphviewer: Py-Sphviewer V1.0.0", Zenodo, Bibcode:2015zndo.....21703B, doi:10.5281/zenodo.21703, retrieved 2022-03-30

smoothed, particle, hydrodynamics, computational, method, used, simulating, mechanics, continuum, media, such, solid, mechanics, fluid, flows, developed, gingold, monaghan, lucy, 1977, initially, astrophysical, problems, been, used, many, fields, research, inc. Smoothed particle hydrodynamics SPH is a computational method used for simulating the mechanics of continuum media such as solid mechanics and fluid flows It was developed by Gingold and Monaghan 2 and Lucy 3 in 1977 initially for astrophysical problems It has been used in many fields of research including astrophysics ballistics volcanology and oceanography It is a meshfree Lagrangian method where the co ordinates move with the fluid and the resolution of the method can easily be adjusted with respect to variables such as density Schematic view of an SPH convolution Flow around cylinder with free surface modelled with SPH See 1 for similar simulations Contents 1 Method 1 1 Advantages 1 2 Limitations 2 Examples 2 1 Fluid dynamics 2 2 Astrophysics 2 3 Solid mechanics 3 Numerical tools 3 1 Interpolations 3 2 Discretization of governing equations 3 3 Variational principle 3 4 Time integration 3 5 Boundary techniques 3 5 1 Integral neglect 3 5 2 Fluid Extension 3 5 3 Boundary Integral 4 Modelling physics 4 1 Hydrodynamics 4 1 1 Weakly compressible approach 4 1 1 1 Density filter technique 4 1 1 2 Diffusive term technique 4 1 1 3 Riemann solver technique 4 1 2 Incompressible approach 4 1 3 Viscosity modelling 4 1 4 Additional physics 4 1 5 Multiphase extensions 4 2 Astrophysics 4 3 Solid mechanics and fluid structure interaction FSI 4 3 1 Total Lagrangian formulation for solid mechanics 4 3 2 Fluid structure coupling 4 4 Others 5 Variants of the method 6 References 7 Further reading 8 External links 8 1 SoftwareMethod editAdvantages edit By construction SPH is a meshfree method which makes it ideally suited to simulate problems dominated by complex boundary dynamics like free surface flows or large boundary displacement The lack of a mesh significantly simplifies the model implementation and its parallelization even for many core architectures 4 5 SPH can be easily extended to a wide variety of fields and hybridized with some other models as discussed in Modelling Physics As discussed in section on weakly compressible SPH the method has great conservation features The computational cost of SPH simulations per number of particles is significantly less than the cost of grid based simulations per number of cells when the metric of interest is related to fluid density e g the probability density function of density fluctuations 6 This is the case because in SPH the resolution is put where the matter is Limitations edit Setting boundary conditions in SPH such as inlets and outlets 7 and walls 8 is more difficult than with grid based methods In fact it has been stated that the treatment of boundary conditions is certainly one of the most difficult technical points of the SPH method 9 This challenge is partly because in SPH the particles near the boundary change with time 10 Nonetheless wall boundary conditions for SPH are available 8 10 11 The computational cost of SPH simulations per number of particles is significantly larger than the cost of grid based simulations per number of cells when the metric of interest is not directly related to density e g the kinetic energy spectrum 6 Therefore overlooking issues of parallel speedup the simulation of constant density flows e g external aerodynamics is more efficient with grid based methods than with SPH Examples editFluid dynamics edit nbsp Fig SPH simulation of ocean waves using FLUIDS v 1 Hoetzlein Smoothed particle hydrodynamics is being increasingly used to model fluid motion as well This is due to several benefits over traditional grid based techniques First SPH guarantees conservation of mass without extra computation since the particles themselves represent mass Second SPH computes pressure from weighted contributions of neighboring particles rather than by solving linear systems of equations Finally unlike grid based techniques which must track fluid boundaries SPH creates a free surface for two phase interacting fluids directly since the particles represent the denser fluid usually water and empty space represents the lighter fluid usually air For these reasons it is possible to simulate fluid motion using SPH in real time However both grid based and SPH techniques still require the generation of renderable free surface geometry using a polygonization technique such as metaballs and marching cubes point splatting or carpet visualization For gas dynamics it is more appropriate to use the kernel function itself to produce a rendering of gas column density e g as done in the SPLASH visualisation package One drawback over grid based techniques is the need for large numbers of particles to produce simulations of equivalent resolution In the typical implementation of both uniform grids and SPH particle techniques many voxels or particles will be used to fill water volumes that are never rendered However accuracy can be significantly higher with sophisticated grid based techniques especially those coupled with particle methods such as particle level sets since it is easier to enforce the incompressibility condition in these systems SPH for fluid simulation is being used increasingly in real time animation and games where accuracy is not as critical as interactivity Recent work in SPH for fluid simulation has increased performance accuracy and areas of application B Solenthaler 2009 develops Predictive Corrective SPH PCISPH to allow for better incompressibility constraints 12 M Ihmsen et al 2010 introduce boundary handling and adaptive time stepping for PCISPH for accurate rigid body interactions 13 K Bodin et al 2011 replace the standard equation of state pressure with a density constraint and apply a variational time integrator 14 R Hoetzlein 2012 develops efficient GPU based SPH for large scenes in Fluids v 3 15 N Akinci et al 2012 introduce a versatile boundary handling and two way SPH rigid coupling technique that is completely based on hydrodynamic forces the approach is applicable to different types of SPH solvers 16 M Macklin et al 2013 simulates incompressible flows inside the Position Based Dynamics framework for bigger timesteps 17 N Akinci et al 2013 introduce a versatile surface tension and two way fluid solid adhesion technique that allows simulating a variety of interesting physical effects that are observed in reality 18 J Kyle and E Terrell 2013 apply SPH to Full Film Lubrication 19 A Mahdavi and N Talebbeydokhti 2015 propose a hybrid algorithm for implementation of solid boundary condition and simulate flow over a sharp crested weir 20 S Tavakkol et al 2016 develop curvSPH which makes the horizontal and vertical size of particles independent and generates uniform mass distribution along curved boundaries 21 W Kostorz and A Esmail Yakas 2020 propose a general efficient and simple method for evaluating normalization factors near piecewise planar boundaries 11 Colagrossi et al 2019 study flow around a cylinder close to a free surface and compare with other techniques 1 Astrophysics edit Smoothed particle hydrodynamics s adaptive resolution numerical conservation of physically conserved quantities and ability to simulate phenomena covering many orders of magnitude make it ideal for computations in theoretical astrophysics 22 Simulations of galaxy formation star formation stellar collisions 23 supernovae 24 and meteor impacts are some of the wide variety of astrophysical and cosmological uses of this method SPH is used to model hydrodynamic flows including possible effects of gravity Incorporating other astrophysical processes which may be important such as radiative transfer and magnetic fields is an active area of research in the astronomical community and has had some limited success 25 26 Solid mechanics edit Libersky and Petschek 27 28 extended SPH to Solid Mechanics The main advantage of SPH in this application is the possibility of dealing with larger local distortion than grid based methods This feature has been exploited in many applications in Solid Mechanics metal forming impact crack growth fracture fragmentation etc Another important advantage of meshfree methods in general and of SPH in particular is that mesh dependence problems are naturally avoided given the meshfree nature of the method In particular mesh alignment is related to problems involving cracks and it is avoided in SPH due to the isotropic support of the kernel functions However classical SPH formulations suffer from tensile instabilities 29 and lack of consistency 30 Over the past years different corrections have been introduced to improve the accuracy of the SPH solution leading to the RKPM by Liu et al 31 Randles and Libersky 32 and Johnson and Beissel 33 tried to solve the consistency problem in their study of impact phenomena Dyka et al 34 35 and Randles and Libersky 36 introduced the stress point integration into SPH and Ted Belytschko et al 37 showed that the stress point technique removes the instability due to spurious singular modes while tensile instabilities can be avoided by using a Lagrangian kernel Many other recent studies can be found in the literature devoted to improve the convergence of the SPH method Recent improvements in understanding the convergence and stability of SPH have allowed for more widespread applications in Solid Mechanics Other examples of applications and developments of the method include Metal forming simulations 38 SPH based method SPAM Smoothed Particle Applied Mechanics for impact fracture in solids by William G Hoover 39 Modified SPH SPH MLSPH for fracture and fragmentation 40 Taylor SPH TSPH for shock wave propagation in solids 41 Generalized coordinate SPH GSPH allocates particles inhomogeneously in the Cartesian coordinate system and arranges them via mapping in a generalized coordinate system in which the particles are aligned at a uniform spacing 42 Numerical tools editInterpolations edit The Smoothed Particle Hydrodynamics SPH method works by dividing the fluid into a set of discrete moving elements i j displaystyle i j nbsp referred to as particles Their Lagrangian nature allows setting their position r i displaystyle mathbf r i nbsp by integration of their velocity v i displaystyle mathbf v i nbsp as d r i d t v i displaystyle frac mathrm d boldsymbol r i mathrm d t boldsymbol v i nbsp These particles interact through a kernel function with characteristic radius known as the smoothing length typically represented in equations by h displaystyle h nbsp This means that the physical quantity of any particle can be obtained by summing the relevant properties of all the particles that lie within the range of the kernel the latter being used as a weighting function W displaystyle W nbsp This can be understood in two steps First an arbitrary field A displaystyle A nbsp is written as a convolution with W displaystyle W nbsp A r A r W r r h d V r displaystyle A boldsymbol r int A left boldsymbol r prime right W boldsymbol r boldsymbol r prime h mathrm d V left boldsymbol r right nbsp The error in making the above approximation is order h 2 displaystyle h 2 nbsp Secondly the integral is approximated using a Riemann summation over the particles A r j V j A j W r r j h displaystyle A boldsymbol r sum j V j A j W boldsymbol r boldsymbol r j h nbsp where the summation over j displaystyle j nbsp includes all particles in the simulation V j displaystyle V j nbsp is the volume of particle j displaystyle j nbsp A j displaystyle A j nbsp is the value of the quantity A displaystyle A nbsp for particle j displaystyle j nbsp and r displaystyle boldsymbol r nbsp denotes position For example the density r i displaystyle rho i nbsp of particle i displaystyle i nbsp can be expressed as r i r r i j m j W i j displaystyle rho i rho boldsymbol r i sum j m j W ij nbsp where m j r j V j displaystyle m j rho j V j nbsp denotes the particle mass and r j displaystyle rho j nbsp the particle density while W i j W j i displaystyle W ij W ji nbsp is a short notation for W r i r j h displaystyle W boldsymbol r i boldsymbol r j h nbsp The error done in approximating the integral by a discrete sum depends on h displaystyle h nbsp on the particle size i e V j 1 d displaystyle V j 1 d nbsp d displaystyle d nbsp being the space dimension and on the particle arrangement in space The latter effect is still poorly known 43 Kernel functions commonly used include the Gaussian function the quintic spline and the Wendland C 2 displaystyle C 2 nbsp kernel 44 The latter two kernels are compactly supported unlike the Gaussian where there is a small contribution at any finite distance away with support proportional to h displaystyle h nbsp This has the advantage of saving computational effort by not including the relatively minor contributions from distant particles Although the size of the smoothing length can be fixed in both space and time this does not take advantage of the full power of SPH By assigning each particle its own smoothing length and allowing it to vary with time the resolution of a simulation can be made to automatically adapt itself depending on local conditions For example in a very dense region where many particles are close together the smoothing length can be made relatively short yielding high spatial resolution Conversely in low density regions where individual particles are far apart and the resolution is low the smoothing length can be increased optimising the computation for the regions of interest Discretization of governing equations edit For particles of constant mass differentiating the interpolated density r i displaystyle rho i nbsp with respect to time yields d r i d t j m j v i v j W i j displaystyle frac d rho i dt sum j m j left boldsymbol v i boldsymbol v j right cdot nabla W ij nbsp where W i j W j i displaystyle nabla W ij nabla W ji nbsp is the gradient of W i j displaystyle W ij nbsp with respect to r i displaystyle boldsymbol r i nbsp Comparing this equation with the continuity equation in the Lagrangian description using material derivatives d r d t r v displaystyle frac d rho dt rho nabla cdot boldsymbol v nbsp it is apparent that its right hand side is an approximation of r v displaystyle rho nabla cdot mathbf v nbsp hence one defines a discrete divergence operator as follows D i v j 1 r i j m j v i v j W i j displaystyle operatorname D i left boldsymbol v j right frac 1 rho i sum j m j left boldsymbol v i boldsymbol v j right cdot nabla W ij nbsp This operator gives an SPH approximation of v displaystyle nabla cdot mathbf v nbsp at the particle i displaystyle i nbsp for a given set of particles with given masses m j displaystyle m j nbsp positions r j displaystyle left mathbf r j right nbsp and velocities v j displaystyle left mathbf v j right nbsp The other important equation for a compressible inviscid fluid is the Euler equation for momentum balance d v d t 1 r p g displaystyle frac d boldsymbol v dt frac 1 rho nabla p boldsymbol g nbsp Similarly to continuity the task is to define a discrete gradient operator in order to write d v i d t 1 r G i p j g displaystyle frac d boldsymbol v i dt frac 1 rho operatorname mathbf G i left p j right boldsymbol g nbsp One choice is G i p j r i j m j p i r i 2 p j r j 2 W i j displaystyle operatorname mathbf G i left p j right rho i sum j m j left frac p i rho i 2 frac p j rho j 2 right nabla W ij nbsp which has the property of being skew adjoint with the divergence operator above in the sense that i V i v i G i p j i V i p i D i v j displaystyle sum i V i boldsymbol v i cdot operatorname mathbf G i left p j right sum i V i p i operatorname D i left boldsymbol v j right nbsp this being a discrete version of the continuum identity v grad p p div v displaystyle int boldsymbol v cdot operatorname grad p int p operatorname div cdot boldsymbol v nbsp This property leads to nice conservation properties 45 Notice also that this choice leads to a symmetric divergence operator and antisymmetric gradient Although there are several ways of discretizing the pressure gradient in the Euler equations the above antisymmetric form is the most acknowledged one It supports strict conservation of linear and angular momentum This means that a force that is exerted on particle i displaystyle i nbsp by particle j displaystyle j nbsp equals the one that is exerted on particle j displaystyle j nbsp by particle i displaystyle i nbsp including the sign change of the effective direction thanks to the antisymmetry property W i j W j i displaystyle nabla W ij nabla W ji nbsp Nevertheless other operators have been proposed which may perform better numerically or physically For instance one drawback of these operators is that while the divergence D displaystyle operatorname D nbsp is zero order consistent i e yields zero when applied to a constant vector field it can be seen that the gradient G displaystyle operatorname mathbf G nbsp is not Several techniques have been proposed to circumvent this issue leading to renormalized operators see e g 46 Variational principle edit The above SPH governing equations can be derived from a least action principle starting from the Lagrangian of a particle system L j m j 1 2 v j 2 e j g r j displaystyle mathcal L sum j m j left tfrac 1 2 boldsymbol v j 2 e j boldsymbol g cdot boldsymbol r j right nbsp where e j displaystyle e j nbsp is the particle specific internal energy The Euler Lagrange equation of variational mechanics reads for each particle d d t L v i L r i displaystyle frac mathrm d mathrm d t frac partial mathcal L partial boldsymbol v i frac partial mathcal L partial boldsymbol r i nbsp When applied to the above Lagrangian it gives the following momentum equation m i d v i d t j m j e j r i m i g j m j e j r j r j r i m i g displaystyle m i frac mathrm d boldsymbol v i mathrm d t sum j m j frac partial e j partial boldsymbol r i m i boldsymbol g sum j m j frac partial e j partial rho j frac partial rho j partial boldsymbol r i m i boldsymbol g nbsp where the chain rule has been used since e j displaystyle e j nbsp depends on r j displaystyle rho j nbsp and the latter on the position of the particles Using the thermodynamic property d e p r 2 d r displaystyle mathrm d e left p rho 2 right mathrm d rho nbsp we may write m i d v i d t j m j p j r j 2 r j r i m i g displaystyle m i frac mathrm d boldsymbol v i mathrm d t sum j m j frac p j rho j 2 frac partial rho j partial boldsymbol r i m i boldsymbol g nbsp Plugging the SPH density interpolation and differentiating explicitly r j r i displaystyle tfrac partial rho j partial boldsymbol r i nbsp leads to d v i d t j m j p i r i 2 p j r j 2 W i j g displaystyle frac mathrm d boldsymbol v i mathrm d t sum j m j left frac p i rho i 2 frac p j rho j 2 right nabla W ij boldsymbol g nbsp which is the SPH momentum equation already mentioned where we recognize the G displaystyle operatorname mathbf G nbsp operator This explains why linear momentum is conserved and allows conservation of angular momentum and energy to be conserved as well 47 Time integration edit From the work done in the 80 s and 90 s on numerical integration of point like particles in large accelerators appropriate time integrators have been developed with accurate conservation properties on the long term they are called symplectic integrators The most popular in the SPH literature is the leapfrog scheme which reads for each particle i displaystyle i nbsp v i n 1 2 v i n a i n D t 2 r i n 1 r i n v i i 1 2 D t v i n 1 v i n 1 2 a i i 1 D t 2 displaystyle begin aligned boldsymbol v i n 1 2 amp boldsymbol v i n boldsymbol a i n frac Delta t 2 boldsymbol r i n 1 amp boldsymbol r i n boldsymbol v i i 1 2 Delta t boldsymbol v i n 1 amp boldsymbol v i n 1 2 boldsymbol a i i 1 frac Delta t 2 end aligned nbsp where D t displaystyle Delta t nbsp is the time step superscripts stand for time iterations while a i displaystyle boldsymbol a i nbsp is the particle acceleration given by the right hand side of the momentum equation Other symplectic integrators exist see the reference textbook 48 It is recommended to use a symplectic even low order scheme instead of a high order non symplectic scheme to avoid error accumulation after many iterations Integration of density has not been studied extensively see below for more details Symplectic schemes are conservative but explicit thus their numerical stability requires stability conditions analogous to the Courant Friedrichs Lewy condition see below Boundary techniques edit nbsp SPH Convolution support split close to a boundary In case the SPH convolution shall be practiced close to a boundary i e closer than s h then the integral support is truncated Indeed when the convolution is affected by a boundary the convolution shall be split in 2 integrals A r W r A r W r r h d r B r W r A r W r r h d r displaystyle A boldsymbol r int Omega boldsymbol r A left boldsymbol r prime right W boldsymbol r boldsymbol r prime h d boldsymbol r prime int B boldsymbol r Omega boldsymbol r A left boldsymbol r prime right W boldsymbol r boldsymbol r prime h d boldsymbol r prime nbsp where B r is the compact support ball centered at r with radius s h and W r denotes the part of the compact support inside the computational domain W B r Hence imposing boundary conditions in SPH is completely based on approximating the second integral on the right hand side The same can be of course applied to the differential operators computation A r W r A r W r r h d r B r W r A r W r r h d r displaystyle nabla A boldsymbol r int Omega boldsymbol r A left boldsymbol r prime right nabla W boldsymbol r boldsymbol r prime h d boldsymbol r prime int B boldsymbol r Omega boldsymbol r A left boldsymbol r prime right nabla W boldsymbol r boldsymbol r prime h d boldsymbol r prime nbsp Several techniques has been introduced in the past to model boundaries in SPH Integral neglect edit nbsp SPH free surface model by means of integral neglect The most straightforward boundary model is neglecting the integral B r W r A r W r r h d r 0 displaystyle int B boldsymbol r Omega boldsymbol r A left boldsymbol r prime right nabla W boldsymbol r boldsymbol r prime h d boldsymbol r prime simeq boldsymbol 0 nbsp such that just the bulk interactions are taken into account A i j W i V j A j W i j displaystyle nabla A i sum j in Omega i V j A j nabla W ij nbsp This is a popular approach when free surface is considered in monophase simulations 49 The main benefit of this boundary condition is its obvious simplicity However several consistency issues shall be considered when this boundary technique is applied 49 That s in fact a heavy limitation on its potential applications Fluid Extension edit nbsp SPH Fluid Extension Boundary technique Probably the most popular methodology or at least the most traditional one to impose boundary conditions in SPH is Fluid Extension technique Such technique is based on populating the compact support across the boundary with so called ghost particles conveniently imposing their field values 50 Along this line the integral neglect methodology can be considered as a particular case of fluid extensions where the field A vanish outside the computational domain The main benefit of this methodology is the simplicity provided that the boundary contribution is computed as part of the bulk interactions Also this methodology has been deeply analyzed in the literature 51 50 52 On the other hand deploying ghost particles in the truncated domain is not a trivial task such that modelling complex boundary shapes becomes cumbersome The 2 most popular approaches to populate the empty domain with ghost particles are Mirrored Particles 53 and Fixed Particles 50 Boundary Integral edit nbsp SPH Boundary Integral model The newest Boundary technique is the Boundary Integral methodology 54 In this methodology the empty volume integral is replaced by a surface integral and a renormalization A i 1 g i j W i V j A j W i j j W i S j A j n j W i j displaystyle nabla A i frac 1 gamma i left sum j in Omega i V j A j nabla W ij sum j in partial Omega i S j A j boldsymbol n j W ij right nbsp g i j W i V j W i j displaystyle gamma i sum j in Omega i V j W ij nbsp with nj the normal of the generic j th boundary element The surface term can be also solved considering a semi analytic expression 54 Modelling physics editHydrodynamics edit Weakly compressible approach edit Another way to determine the density is based on the SPH smoothing operator itself Therefore the density is estimated from the particle distribution utilizing the SPH interpolation To overcome undesired errors at the free surface through kernel truncation the density formulation can again be integrated in time 54 The weakly compressible SPH in fluid dynamics is based on the discretization of the Navier Stokes equations or Euler equations for compressible fluids To close the system an appropriate equation of state is utilized to link pressure p displaystyle p nbsp and density r displaystyle rho nbsp Generally the so called Cole equation 55 sometimes mistakenly referred to as the Tait equation is used in SPH It reads p r 0 c 2 g r r 0 g 1 p 0 displaystyle p frac rho 0 c 2 gamma left left frac rho rho 0 right gamma 1 right p 0 nbsp where r 0 displaystyle rho 0 nbsp is the reference density and c displaystyle c nbsp the speed of sound For water g 7 displaystyle gamma 7 nbsp is commonly used The background pressure p 0 displaystyle p 0 nbsp is added to avoid negative pressure values Real nearly incompressible fluids such as water are characterized by very high speeds of sound of the order 10 3 m s displaystyle 10 3 mathrm m s nbsp Hence pressure information travels fast compared to the actual bulk flow which leads to very small Mach numbers M displaystyle M nbsp The momentum equation leads to the following relation d r r 0 v 2 c 2 M 2 displaystyle frac delta rho rho 0 approx frac boldsymbol v 2 c 2 M 2 nbsp where r displaystyle rho nbsp is the density change and v displaystyle v nbsp the velocity vector In practice a value of c smaller than the real one is adopted to avoid time steps too small in the time integration scheme Generally a numerical speed of sound is adopted such that density variation smaller than 1 are allowed This is the so called weak compressibility assumption This corresponds to a Mach number smaller than 0 1 which implies c 10 v max displaystyle c 10v text max nbsp where the maximum velocity v max displaystyle v text max nbsp needs to be estimated for e g by Torricelli s law or an educated guess Since only small density variations occur a linear equation of state can be adopted 56 p c 2 r r 0 displaystyle p c 2 left rho rho 0 right nbsp Usually the weakly compressible schemes are affected by a high frequency spurious noise on the pressure and density fields 57 This phenomenon is caused by the nonlinear interaction of acoustic waves and by fact that the scheme is explicit in time and centered in space 58 Through the years several techniques have been proposed to get rid of this problem They can be classified in three different groups the schemes that adopt density filters the models that add a diffusive term in the continuity equation the schemes that employ Riemann solvers to model the particle interaction Density filter technique edit The schemes of the first group apply a filter directly on the density field to remove the spurious numerical noise The most used filters are the MLS moving least squares and the Shepard filter 57 which can be applied at each time step or every n time steps The more frequent is the use of the filtering procedure the more regular density and pressure fields are obtained On the other hand this leads to an increase of the computational costs In long time simulations the use of the filtering procedure may lead to the disruption of the hydrostatic pressure component and to an inconsistency between the global volume of fluid and the density field Further it does not ensure the enforcement of the dynamic free surface boundary condition Diffusive term technique edit A different way to smooth out the density and pressure field is to add a diffusive term inside the continuity equation group 2 d r i d t j m j v i v j W i j D i r displaystyle displaystyle frac d rho i dt sum j m j left boldsymbol v i boldsymbol v j right cdot nabla W ij mathcal D i rho nbsp The first schemes that adopted such an approach were described in Ferrari 59 and in Molteni 56 where the diffusive term was modeled as a Laplacian of the density field A similar approach was also used in Fatehi and Manzari 60 nbsp SPH simulation pressure distribution of a dam break flow using standard SPH formulation nbsp SPH simulation pressure distribution of a dam break flow using standard d SPH formulation In Antuono et al 61 a correction to the diffusive term of Molteni 56 was proposed to remove some inconsistencies close to the free surface In this case the adopted diffusive term is equivalent to a high order differential operator on the density field 62 The scheme is called d SPH and preserves all the conservation properties of the SPH without diffusion e g linear and angular momenta total energy see 63 along with a smooth and regular representation of the density and pressure fields In the third group there are those SPH schemes which employ numerical fluxes obtained through Riemann solvers to model the particle interactions 64 65 66 Riemann solver technique edit nbsp SPH simulation pressure distribution of a dam break flow using Riemann solver with the low dissipation limiter For an SPH method based on Riemann solvers an inter particle Riemann problem is constructed along a unit vector e i j r i j r i j displaystyle mathbf e ij mathbf r ij r ij nbsp pointing form particle i displaystyle i nbsp to particle j displaystyle j nbsp In this Riemann problem the initial left and right states are on particles i displaystyle i nbsp and j displaystyle j nbsp respectively The L displaystyle L nbsp and R displaystyle R nbsp states are r L U L P L r i v i e i j P i r R U R P R r j v j e i j P j displaystyle begin cases rho L U L P L rho i mathbf v i cdot mathbf e ij P i rho R U R P R rho j mathbf v j cdot mathbf e ij P j end cases nbsp The solution of the Riemann problem results in three waves emanating from the discontinuity Two waves which can be shock or rarefaction wave traveling with the smallest or largest wave speed The middle wave is always a contact discontinuity and separates two intermediate states denoted by r L U L P L displaystyle rho L ast U L ast P L ast nbsp and r R U R P R displaystyle rho R ast U R ast P R ast nbsp By assuming that the intermediate state satisfies U L U R U displaystyle U L ast U R ast U ast nbsp and P L P R P displaystyle P L ast P R ast P ast nbsp a linearized Riemann solver for smooth flows or with only moderately strong shocks can be written as U U 1 2 P L P R r c 0 P P 1 2 r c 0 U L U R displaystyle begin cases U ast overline U frac 1 2 frac P L P R bar rho c 0 P ast overline P frac 1 2 bar rho c 0 U L U R end cases nbsp where U U L U R 2 displaystyle overline U U L U R 2 nbsp and P P L P R 2 displaystyle overline P P L P R 2 nbsp are inter particle averages With the solution of the Riemann problem i e U displaystyle U ast nbsp and P displaystyle P ast nbsp the discretization of the SPH method isd r i d t 2 r i j m j r j v i v i W i j displaystyle frac d rho i dt 2 rho i sum j frac m j rho j mathbf v i mathbf v ast cdot nabla i W ij nbsp d v i d t 2 j m j P r i r j i W i j displaystyle frac d mathbf v i dt 2 sum j m j left frac P ast rho i rho j right nabla i W ij nbsp where v U e i j v i j U e i j displaystyle mathbf v ast U ast mathbf e ij overline mathbf v ij overline U mathbf e ij nbsp This indicates that the inter particle average velocity and pressure are simply replaced by the solution of the Riemann problem By comparing both it can be seen that the intermediate velocity and pressure from the inter particle averages amount to implicit dissipation i e density regularization and numerical viscosity respectively Since the above discretization is very dissipative a straightforward modification is to apply a limiter to decrease the implicit numerical dissipations introduced by limiting the intermediate pressure by 67 P P 1 2 b r U L U R displaystyle P ast overline P frac 1 2 beta overline rho U L U R nbsp where the limiter is defined asb min h max U L U R 0 c displaystyle beta min big eta max U L U R 0 overline c big nbsp Note that b displaystyle beta nbsp ensures that there is no dissipation when the fluid is under the action of an expansion wave i e U L lt U R displaystyle U L lt U R nbsp and that the parameter h displaystyle eta nbsp is used to modulate dissipation when the fluid is under the action of a compression wave i e U L U R displaystyle U L geq U R nbsp Numerical experiments found the h 3 displaystyle eta 3 nbsp is generally effective Also note that the dissipation introduced by the intermediate velocity is not limited Incompressible approach edit This section is empty You can help by adding to it October 2022 Viscosity modelling edit In general the description of hydrodynamic flows require a convenient treatment of diffusive processes to model the viscosity in the Navier Stokes equations It needs special consideration because it involves the Laplacian differential operator Since the direct computation does not provide satisfactory results several approaches to model the diffusion have been proposed Artificial viscosity Introduced by Monaghan and Gingold 68 the artificial viscosity was used to deal with high Mach number fluid flows It reads P i j a c i j ϕ i j b ϕ i j 2 r i j v i j r i j lt 0 0 v i j r i j 0 displaystyle Pi ij begin cases dfrac alpha bar c ij phi ij beta phi ij 2 bar rho ij amp quad boldsymbol v ij cdot boldsymbol r ij lt 0 0 amp quad boldsymbol v ij cdot boldsymbol r ij geq 0 end cases nbsp Here a displaystyle alpha nbsp is controlling a volume viscosity while b displaystyle beta nbsp acts similar to the Neumann Richtmeyr artificial viscosity The ϕ i j displaystyle phi ij nbsp is defined by ϕ i j h v i j r i j r i j 2 h h 2 displaystyle phi ij frac h boldsymbol v ij cdot boldsymbol r ij Vert boldsymbol r ij Vert 2 eta h 2 nbsp where hh is a small fraction of h e g 0 01h to prevent possible numerical infinities at close distances The artificial viscosity also has shown to improve the overall stability of general flow simulations Therefore it is applied to inviscid problems in the following form P i j a h c v i j r i j r i j 2 h h 2 displaystyle Pi ij alpha hc frac boldsymbol v ij cdot boldsymbol r ij Vert boldsymbol r ij Vert 2 eta h 2 nbsp It is possible to not only stabilize inviscid simulations but also to model the physical viscosity by this approach To do so a h c 2 n 2 m r displaystyle alpha hc 2 n 2 frac mu rho nbsp is substituted in the equation above where n displaystyle n nbsp is the number of spartial dimensions of the model This approach introduces the bulk viscosity z 5 3 m displaystyle zeta frac 5 3 mu nbsp Morris For low Reynolds numbers the viscosity model by Morris 69 was proposed n D v i j 2 n m j r j r i j w h i j r i j 2 h h 2 v i j displaystyle nu Delta boldsymbol v ij 2 nu frac m j rho j frac boldsymbol r ij cdot nabla w h ij Vert boldsymbol r ij Vert 2 eta h 2 boldsymbol v ij nbsp LoShao Additional physics edit Surface tension Heat transfer Turbulence Multiphase extensions edit Astrophysics edit Often in astrophysics one wishes to model self gravity in addition to pure hydrodynamics The particle based nature of SPH makes it ideal to combine with a particle based gravity solver for instance tree gravity code 70 particle mesh or particle particle particle mesh Solid mechanics and fluid structure interaction FSI edit Total Lagrangian formulation for solid mechanics edit To discretize the governing equations of solid dynamics a correction matrix B 0 displaystyle mathbb B 0 nbsp 71 72 is first introduced to reproducing rigid body rotation as B a 0 b V b 0 r b 0 r a 0 a 0 W a b 1 displaystyle mathbb B a 0 left sum b V b 0 left mathbf r b 0 mathbf r a 0 right otimes nabla a 0 W ab right 1 nbsp 1 where a 0 W a W r a b 0 h r a b 0 e a b 0 displaystyle nabla a 0 W a frac partial W left mathbf r ab 0 h right partial mathbf r ab 0 mathbf e ab 0 nbsp stands for the gradient of the kernel function evaluated at the initial reference configuration Note that subscripts a displaystyle a nbsp and b displaystyle b nbsp are used to denote solid particles and smoothing length h displaystyle h nbsp is identical to that in the discretization of fluid equations Using the initial configuration as the reference the solid density is directly evaluated as r a r a 0 1 J displaystyle rho a rho a 0 frac 1 J nbsp 2 where J det F displaystyle J det mathbb F nbsp is the Jacobian determinant of deformation tensor F displaystyle mathbb F nbsp We can now discretize the momentum equation in the following form m a d v d t 2 b V a V b P a b a 0 W a b g f a F p f a F v displaystyle m a frac text d mathbf v text d t 2 sum b V a V b tilde mathbb P ab nabla a 0 W ab mathbf g mathbf f a F p mathbf f a F v nbsp 3 where inter particle averaged first Piola Kirchhoff stress P displaystyle tilde mathbb P nbsp is defined as P a b 1 2 P a B a 0 P b B b 0 displaystyle tilde mathbb P ab frac 1 2 left mathbb P a mathbb B a 0 mathbb P b mathbb B b 0 right nbsp 4 Also f a F p displaystyle mathbf f a F p nbsp and f a F v displaystyle mathbf f a F v nbsp correspond to the fluid pressure and viscous forces acting on the solid particle a displaystyle a nbsp respectively Fluid structure coupling edit In fluid structure coupling the surrounding solid structure is behaving as a moving boundary for fluid and the no slip boundary condition is imposed at the fluid structure interface The interaction forces f i S p displaystyle mathbf f i S p nbsp and f i S v displaystyle mathbf f i S v nbsp acting on a fluid particle i displaystyle i nbsp due to the presence of the neighboring solid particle a displaystyle a nbsp can be obtained as 73 f i S p 2 a V i V a p i r a d p a d r i r i r a d i W r i a h displaystyle mathbf f i S p 2 sum a V i V a frac p i rho a d p a d rho i rho i rho a d nabla i W mathbf r ia h nbsp 5 and f i S v 2 a h V i V a v i v a d r i a W r i a h r i a displaystyle mathbf f i S v 2 sum a eta V i V a frac mathbf v i mathbf v a d r ia frac partial W mathbf r ia h partial r ia nbsp 6 Here the imaginary pressure p a d displaystyle p a d nbsp and velocity v a d displaystyle mathbf v a d nbsp are defined by p a d p i r i max 0 g d v a d t n S r i a n S v a d 2 v i v a displaystyle begin cases p a d p i rho i max 0 mathbf g frac text d mathbf v a text d t cdot mathbf n S mathbf r ia cdot mathbf n S mathbf v a d 2 mathbf v i mathbf v a end cases nbsp 7 where n S displaystyle mathbf n S nbsp denotes the surface normal direction of the solid structure and the imaginary particle density r a d displaystyle rho a d nbsp is calculated through the equation of state Accordingly the interaction forces f a F p displaystyle mathbf f a F p nbsp and f a F v displaystyle mathbf f a F v nbsp acting on a solid particle a displaystyle a nbsp are given by f a F p 2 i V a V i p a d r i p i r a d r i r a d a W r a i h displaystyle mathbf f a F p 2 sum i V a V i frac p a d rho i p i rho a d rho i rho a d nabla a W mathbf r ai h nbsp 8 and f a F v 2 i h V a V i v a d v i r i a W r i a h r a i displaystyle mathbf f a F v 2 sum i eta V a V i frac mathbf v a d mathbf v i r ia frac partial W mathbf r ia h partial r ai nbsp 9 The anti symmetric property of the derivative of the kernel function will ensure the momentum conservation for each pair of interacting particles i displaystyle i nbsp and a displaystyle a nbsp Others edit The discrete element method used for simulating granular materials is related to SPH Variants of the method editThis section is empty You can help by adding to it July 2018 References edit a b Colagrossi 2019 Viscous flow past a cylinder close to a free surface benchmarks with steady periodic and metastable responses solved by meshfree and mesh based schemes Computers and Fluids 181 345 363 doi 10 1016 j compfluid 2019 01 007 S2CID 128143912 Gingold Robert A Monaghan Joseph J 1977 Smoothed particle hydrodynamics theory and application to non spherical stars Monthly Notices of the Royal Astronomical Society 181 3 375 89 Bibcode 1977MNRAS 181 375G doi 10 1093 mnras 181 3 375 L B Lucy 1977 A numerical approach to the testing of the fission hypothesis Astron J 82 1013 1024 Bibcode 1977AJ 82 1013L doi 10 1086 112164 Takahiro Harada Seiichi Koshizuka Yoichiro Kawaguchi 2007 Smoothed particle hydrodynamics on GPUs Computer Graphics International pp 63 70 Alejandro Crespo Jose M Dominguez Anxo Barreiro Moncho Gomez Gesteira Benedict D Rogers 2011 GPUs a new tool of acceleration in CFD efficiency and reliability on smoothed particle hydrodynamics methods PLOS ONE 6 6 e20685 Bibcode 2011PLoSO 620685C doi 10 1371 journal pone 0020685 PMC 3113801 PMID 21695185 a b Price D J 2011 Smoothed Particle Hydrodynamics Things I wish my mother taught me Advances in Computational Astrophysics Methods 453 249 arXiv 1111 1259 Bibcode 2012ASPC 453 249P The Smoothed Particle Hydrodynamics Method vs Finite Volume Numerical Methods 2018 03 21 Retrieved 2018 08 30 a b Adami S and Hu X Y and Adams N A 2012 A generalized wall boundary condition for smoothed particle hydrodynamics Journal of Computational Physics 231 21 7057 7075 Bibcode 2012JCoPh 231 7057A doi 10 1016 j jcp 2012 05 005 a href Template Cite journal html title Template Cite journal cite journal a CS1 maint multiple names authors list link Shadloo M S and Oger G and Touze D L 2016 Smoothed particle hydrodynamics method for fluid flows towards industrial applications Motivations current state and challenges Computers and Fluids 136 11 34 doi 10 1016 j compfluid 2016 05 029 a href Template Cite journal html title Template Cite journal cite journal a CS1 maint multiple names authors list link a b Fraser K and Kiss L I and St George L 2016 A generalized wall boundary condition for smoothed particle hydrodynamics 14th International LS DYNA Conference a href Template Cite journal html title Template Cite journal cite journal a CS1 maint multiple names authors list link a b Kostorz 2020 A semi analytical boundary integral method for radial functions with application to Smoothed Particle Hydrodynamics Journal of Computational Physics 417 109565 Bibcode 2020JCoPh 41709565K doi 10 1016 j jcp 2020 109565 S2CID 219438340 Solenthaler 2009 Predictive Corrective Incompressible SPH a href Template Cite journal html title Template Cite journal cite journal a Cite journal requires journal help Imhsen 2010 Boundary handling and adaptive time stepping for PCISPH Workshop on Virtual Reality Interaction and Physical Simulation VRIPHYS Bodin 2011 Constraint Fluids IEEE Transactions on Visualization and Computer Graphics 18 3 516 26 doi 10 1109 TVCG 2011 29 PMID 22241284 S2CID 14023161 Hoetzlein 2012 Fluids v 3 A Large scale Open Source Fluid Simulator a href Template Cite journal html title Template Cite journal cite journal a Cite journal requires journal help Akinci 2012 Versatile Rigid Fluid Coupling for Incompressible SPH ACM Transactions on Graphics 31 4 1 8 doi 10 1145 2185520 2185558 S2CID 5669154 Macklin 2013 Position Based Fluids ACM Transactions on Graphics 32 4 1 12 doi 10 1145 2461912 2461984 S2CID 611962 Akinci 2013 Versatile Surface Tension and Adhesion for SPH Fluids SPH ACM Transactions on Graphics 32 6 1 8 CiteSeerX 10 1 1 462 8293 doi 10 1145 2508363 2508395 S2CID 12550964 Journal of Tribology 2013 Application of Smoothed Particle Hydrodynamics to Full Film Lubrication a href Template Cite journal html title Template Cite journal cite journal a Cite journal requires journal help Mahdavi and Talebbeydokhti 2015 A hybrid solid boundary treatment algorithm for smoothed particle hydrodynamics Scientia Iranica Transaction A Civil Engineering 22 4 1457 1469 International Journal for Numerical Methods in Fluids 2016 Curvilinear smoothed particle hydrodynamics International Journal for Numerical Methods in Fluids 83 2 115 131 Bibcode 2017IJNMF 83 115T doi 10 1002 fld 4261 S2CID 124425780 Price Daniel J 2009 Astrophysical Smooth Particle Hydrodynamics New Astron rev 53 4 6 78 104 arXiv 0903 5075 Bibcode 2009NewAR 53 78R doi 10 1016 j newar 2009 08 007 S2CID 129246 Rosswog Stephan 2015 SPH Methods in the Modelling of Compact Objects Living Rev Comput Astrophys 1 1 1 arXiv 1406 4224 Bibcode 2015LRCA 1 1R doi 10 1007 lrca 2015 1 S2CID 119119783 Price Daniel J Rockefeller Gabriel Warren Michael S 2006 SNSPH A Parallel 3 D Smoothed Particle Radiation Hydrodynamics Code Astrophys J 643 292 305 arXiv astro ph 0512532 doi 10 1086 501493 S2CID 16733573 Star Formation with Radiative Transfer Price Daniel J 2012 02 01 Smoothed particle hydrodynamics and magnetohydrodynamics Journal of Computational Physics Special Issue Computational Plasma Physics 231 3 759 794 arXiv 1012 1885 doi 10 1016 j jcp 2010 12 011 ISSN 0021 9991 Libersky L D Petschek A G 1990 Smooth Particle Hydrodynamics with Strength of Materials Advances in the Free Lagrange Method Lecture Notes in Physics Vol 395 pp 248 257 doi 10 1007 3 540 54960 9 58 ISBN 978 3 540 54960 4 L D Libersky A G Petschek A G Carney T C Hipp J R Allahdadi F A High 1993 Strain Lagrangian hydrodynamics a three dimensional SPH code for dynamic material response J Comput Phys 109 1 67 75 Bibcode 1993JCoPh 109 67L doi 10 1006 jcph 1993 1199 J W Swegle D A Hicks S W Attaway 1995 Smooth particle hydrodynamics stability analysis J Comput Phys 116 1 123 134 Bibcode 1995JCoPh 116 123S doi 10 1006 jcph 1995 1010 T Belytschko Y Krongauz J Dolbow C Gerlach 1998 On the completeness of meshfree particle methods Int J Numer Methods Eng 43 5 785 819 Bibcode 1998IJNME 43 785B CiteSeerX 10 1 1 28 491 doi 10 1002 sici 1097 0207 19981115 43 5 lt 785 aid nme420 gt 3 0 co 2 9 W K Liu S Jun Y F Zhang 1995 Reproducing kernel particle methods Int J Numer Methods Eng 20 8 9 1081 1106 Bibcode 1995IJNMF 20 1081L doi 10 1002 fld 1650200824 P W Randles L D Libersky 1997 Recent improvements in SPH modelling of hypervelocity impact Int J Impact Eng 20 6 10 525 532 doi 10 1016 s0734 743x 97 87441 6 G R Johnson S R Beissel 1996 Normalized smoothing functions for SPH impact computations Int J Numer Methods Eng 39 16 2725 2741 Bibcode 1996IJNME 39 2725J doi 10 1002 sici 1097 0207 19960830 39 16 lt 2725 aid nme973 gt 3 0 co 2 9 C T Dyka R P Ingel 1995 An approach for tension instability in Smoothed Particle Hydrodynamics Comput Struct 57 4 573 580 doi 10 1016 0045 7949 95 00059 p C T Dyka P W Randles R P Ingel 1997 Stress points for tension instability in SPH Int J Numer Methods Eng 40 13 2325 2341 Bibcode 1997IJNME 40 2325D doi 10 1002 sici 1097 0207 19970715 40 13 lt 2325 aid nme161 gt 3 0 co 2 8 P W Randles L D Libersky 2000 Normalized SPH with stress points Int J Numer Methods Eng 48 10 1445 1462 Bibcode 2000IJNME 48 1445R doi 10 1002 1097 0207 20000810 48 10 lt 1445 aid nme831 gt 3 0 co 2 9 T Belytschko Y Guo W K Liu S P Xiao 2000 A unified stability analysis of meshless particle methods Int J Numer Methods Eng 48 9 1359 1400 Bibcode 2000IJNME 48 1359B doi 10 1002 1097 0207 20000730 48 9 lt 1359 aid nme829 gt 3 0 co 2 u J Bonet S Kulasegaram 2000 Correction and stabilization of smooth particle hydrodynamics methods with applications in metal forming simulations Int J Numer Methods Eng 47 6 1189 1214 Bibcode 2000IJNME 47 1189B doi 10 1002 sici 1097 0207 20000228 47 6 lt 1189 aid nme830 gt 3 0 co 2 i W G Hoover C G Hoover 2001 SPAM based recipes for continuum simulations Computing in Science and Engineering 3 2 78 85 Bibcode 2001CSE 3b 78H doi 10 1109 5992 909007 T Rabczuk J Eibl L Stempniewski 2003 Simulation of high velocity concrete fragmentation using SPH MLSPH Int J Numer Methods Eng 56 10 1421 1444 Bibcode 2003IJNME 56 1421R doi 10 1002 nme 617 S2CID 119799557 M I Herreros M Mabssout 2011 A two steps time discretization scheme using the SPH method for shock wave propagation Comput Methods Appl Mech Engrg 200 21 22 1833 1845 Bibcode 2011CMAME 200 1833H doi 10 1016 j cma 2011 02 006 S Yashiro T Okabe 2015 Smoothed particle hydrodynamics in a generalized coordinate system with a finite deformation constitutive model Int J Numer Methods Eng 103 11 781 797 Bibcode 2015IJNME 103 781Y doi 10 1002 nme 4906 hdl 2324 4476056 S2CID 121935150 N J Quinlan M Basa M Lastiwka 2006 Truncation error in mesh free particle methods PDF International Journal for Numerical Methods in Engineering 66 13 2064 2085 Bibcode 2006IJNME 66 2064Q doi 10 1002 nme 1617 hdl 10379 1170 S2CID 53701216 H Wendland 1995 Piecewise polynomial positive definite and compactly supported radial functions of minimal degree Advances in Computational Mathematics 4 4 389 396 doi 10 1007 BF02123482 S2CID 36452865 A Mayrhofer B D Rogers D Violeau M Ferrand 2013 Investigation of wall bounded flows using SPH and the unified semi analytical wall boundary conditions Computer Physics Communications 184 11 2515 2527 arXiv 1304 3692 Bibcode 2013CoPhC 184 2515M CiteSeerX 10 1 1 770 4985 doi 10 1016 j cpc 2013 07 004 S2CID 35008128 J Bonet T S Lok 1999 Variational and momentum preservation aspects of Smoothed Particle Hydrodynamics formulations Computers Methods in Applied Mechanical Engineering 180 1 2 97 115 Bibcode 1999CMAME 180 97B doi 10 1016 S0045 7825 99 00051 1 J J Monaghan 2005 Smoothed particle hydrodynamics Reports on Progress in Physics 68 8 1703 1759 Bibcode 2005RPPh 68 1703M doi 10 1088 0034 4885 68 8 R01 S2CID 5987481 E Hairer C Lubich G Wanner 2006 Geometric Numerical Integration Springer ISBN 978 3 540 30666 5 a b Andrea Colagrossi Matteo Antuono David Le Touze 2009 Theoretical considerations on the free surface role in the smoothed particle hydrodynamics model Physical Review E 79 5 056701 Bibcode 2009PhRvE 79e6701C doi 10 1103 PhysRevE 79 056701 PMID 19518587 a b c Bejamin Bouscasse Andrea Colagrossi Salvatore Marrone Matteo Antuono 2013 Nonlinear water wave interaction with floating bodies in SPH Journal of Fluids and Structures 42 112 129 Bibcode 2013JFS 42 112B doi 10 1016 j jfluidstructs 2013 05 010 Fabricio Macia Matteo Antuono Leo M Gonzalez Andrea Colagrossi 2011 Theoretical analysis of the no slip boundary condition enforcement in SPH methods Progress of Theoretical Physics 125 6 1091 1121 Bibcode 2011PThPh 125 1091M doi 10 1143 PTP 125 1091 Jose Luis Cercos Pita Matteo Antuono Andrea Colagrossi Antonio Souto 2017 SPH energy conservation for fluid solid interactions Computer Methods in Applied Mechanics and Engineering 317 771 791 Bibcode 2017CMAME 317 771C doi 10 1016 j cma 2016 12 037 J Campbell R Vignjevic L Libersky 2000 A contact algorithm for smoothed particle hydrodynamics Computer Methods in Applied Mechanics and Engineering 184 1 49 65 Bibcode 2000CMAME 184 49C doi 10 1016 S0045 7825 99 00442 9 a b c M Ferrand D R Laurence B D Rogers D Violeau C Kassiotis 2013 Unified semi analytical wall boundary conditions for inviscid laminar or turbulent flows in the meshless SPH method International Journal for Numerical Methods in Fluids 71 4 Int J Numer Meth Fluids 446 472 Bibcode 2013IJNMF 71 446F doi 10 1002 fld 3666 S2CID 124465492 a href Template Cite journal html title Template Cite journal cite journal a CS1 maint multiple names authors list link H R Cole 1948 Underwater Explosions Princeton New Jersey Princeton University Press a b c D Molteni A Colagrossi 2009 A simple procedure to improve the pressure evaluation in hydrodynamic context using the SPH Computer Physics Communications 180 6 861 872 Bibcode 2009CoPhC 180 861M doi 10 1016 j cpc 2008 12 004 a b Colagrossi Andrea Landrini Maurizio 2003 Numerical simulation of interfacial flows by smoothed particle hydrodynamics Journal of Computational Physics 191 2 448 475 Bibcode 2003JCoPh 191 448C doi 10 1016 S0021 9991 03 00324 3 Randall J LeVeque 2007 Finite difference methods for ordinary and partial differential equations steady state and time dependent problems Siam A Ferrari M Dumbser E Toro A Armanini 2009 A new 3D parallel SPH scheme for free surface flows Computers amp Fluids 38 6 Elsevier 1203 1217 doi 10 1016 j compfluid 2008 11 012 a href Template Cite journal html title Template Cite journal cite journal a CS1 maint multiple names authors list link Fatehi R and Manzari MT 2011 A remedy for numerical oscillations in weakly compressible smoothed particle hydrodynamics International Journal for Numerical Methods in Fluids 67 9 Wiley Online Library 1100 1114 Bibcode 2011IJNMF 67 1100F doi 10 1002 fld 2406 S2CID 121381641 a href Template Cite journal html title Template Cite journal cite journal a CS1 maint multiple names authors list link M Antuono A Colagrossi S Marrone D Molteni 2010 Free surface flows solved by means of SPH schemes with numerical diffusive terms Computer Physics Communications 181 3 Elsevier 532 549 Bibcode 2010CoPhC 181 532A doi 10 1016 j cpc 2009 11 002 a href Template Cite journal html title Template Cite journal cite journal a CS1 maint multiple names authors list link M Antuono A Colagrossi S Marrone 2012 Numerical diffusive terms in weakly compressible SPH schemes Computer Physics Communications 183 12 Elsevier 2570 2580 Bibcode 2012CoPhC 183 2570A doi 10 1016 j cpc 2012 07 006 a href Template Cite journal html title Template Cite journal cite journal a CS1 maint multiple names authors list link Antuono Matteo and Marrone S and Colagrossi A and Bouscasse B 2015 Energy balance in the d SPH scheme Computer Methods in Applied Mechanics and Engineering 289 Elsevier 209 226 Bibcode 2015CMAME 289 209A doi 10 1016 j cma 2015 02 004 JP Vila 1999 On particle weighted methods and smooth particle hydrodynamics Mathematical Models and Methods in Applied Sciences 9 2 World Scientific 161 209 doi 10 1142 S0218202599000117 Marongiu Jean Christophe and Leboeuf Francis and Caro Joelle and Parkinson Etienne 2010 Free surface flows simulations in Pelton turbines using an hybrid SPH ALE method PDF Journal of Hydraulic Research 48 S1 Taylor amp Francis 40 49 doi 10 1080 00221686 2010 9641244 S2CID 121493014 De Leffe Matthieu 2011 Modelisation d ecoulements visqueux par methode SPH en vue d application a l hydrodynamique navale PhD Thesis Ecole centrale de Nantes Chi Zhang and Xiangyu Hu and Nikolaus Adams 2017 A weakly compressible SPH method based on a low dissipation Riemann solver Journal of Computational Physics 335 605 620 Bibcode 2017JCoPh 335 605Z doi 10 1016 j jcp 2017 01 027 Monaghan Joseph J Gingold Robert A 1983 Shock Simulation by the Particle Method Journal of Computational Physics 52 2 347 389 Bibcode 1983JCoPh 52 374M doi 10 1016 0021 9991 83 90036 0 J P Morris P J Fox Y Zhu 1997 Modeling Low Reynolds Number Incompressible Flows Using SPH Journal of Computational Physics 136 1 214 226 Bibcode 1997JCoPh 136 214M doi 10 1006 jcph 1997 5776 Marios D Dikaiakos Joachim Stadel PKDGRAV The Parallel k D Tree Gravity Code retrieved February 1 2017 Vignjevic Rade Reveles Juan R Campbell James 2006 SPH in a total Lagrangian formalism Computer Modeling in Engineering and Sciences 44 181 198 Han Luhui Hu Xiangyu 2018 SPH modeling of fluid structure interaction Journal of Hydrodynamics 30 1 62 69 Bibcode 2018JHyDy 30 62H doi 10 1007 s42241 018 0006 9 S2CID 125369012 Chi Zhang Massoud Rezavand Xiangyu Hu 2020 A multi resolution SPH method for fluid structure interactions Journal of Computational Physics 429 110028 arXiv 1911 13255 doi 10 1016 j jcp 2020 110028 ISSN 0021 9991 S2CID 208513116 Further reading editHoover W G 2006 Smooth Particle Applied Mechanics The State of the Art World Scientific Stellingwerf R F Wingate C A Impact Modelling with SPH Memorie della Societa Astronomia Italiana Vol 65 p 1117 1994 Amada T Imura M Yasumuro Y Manabe Y and Chihara K 2004 Particle based fluid simulation on GPU in Proceedings of ACM Workshop on General purpose Computing on Graphics Processors August 2004 Los Angeles California Desbrun M and Cani M P 1996 Smoothed Particles a new paradigm for animating highly deformable bodies in Proceedings of Eurographics Workshop on Computer Animation and Simulation August 1996 Poitiers France Hegeman K Carr N A and Miller G S P Particle based fluid simulation on the GPU in Proceedings of International Conference on Computational Science Reading UK May 2006 Lecture Notes in Computer Science v 3994 2006 Springer Verlag Kelager M 2006 Lagrangian Fluid Dynamics Using Smoothed Particle Hydrodynamics MSc Thesis Univ Copenhagen Kolb A and Cuntz N 2005 Dynamic particle coupling for GPU based fluid simulation in Proceedings of the 18th Symposium on Simulation Techniques 2005 pp 722 727 Liu G R and Liu M B Smoothed Particle Hydrodynamics a meshfree particle method Singapore World Scientific 2003 Monaghan Joseph J 1992 Smoothed Particle Hydrodynamics Annual Review of Astronomy and Astrophysics 1992 30 543 74 Muller M Charypar D and Gross M Particle based Fluid Simulation for Interactive Applications in Breen D and Lin M eds Proceedings of Eurographics SIGGRAPH Symposium on Computer Animation 2003 Vesterlund M Simulation and Rendering of a Viscous Fluid Using Smoothed Particle Hydrodynamics MSc Thesis Umea University Sweden Violeau D Fluid Mechanics and the SPH method Oxford University Press 2012 External links editFirst large simulation of star formation using SPH SPHERIC SPH rEsearch and engineeRing International Community ITVO is the web site of The Italian Theoretical Virtual Observatory created to query a database of numerical simulation archive SPHC Image Gallery depicts a wide variety of test cases experimental validations and commercial applications of the SPH code SPHC A derivation of the SPH model starting from Navier Stokes equations Software edit Algodoo is a 2D simulation framework for education using SPH AQUAgpusph is the free GPLv3 SPH of the researchers by the researchers for the researchers dive solutions is a commercial web based SPH engineering software for CFD purposes DualSPHysics is a mostly open source SPH code based on SPHysics and using GPU computing The open source components are available under the LGPL FLUIDS v 1 is a simple open source Zlib real time 3D SPH implementation in C for liquids for CPU and GPU Fluidix is a GPU based particle simulation API available from OneZero Software GADGET 1 is a freely available GPL code for cosmological N body SPH simulations GPUSPH SPH simulator with viscosity GPLv3 Pasimodo is a program package for particle based simulation methods e g SPH LAMMPS is a massively parallel open source classical molecular dynamics code that can perform SPH simulations Physics Abstraction Layer is an open source abstraction system that supports real time physics engines with SPH support PreonLab is a commercial engineering software developed by FIFTY2 Technology implementing an implicit SPH method Punto is a freely available visualisation tool for particle simulations pysph Open Source Framework for Smoothed Particle Hydrodynamics in Python New BSD License Py SPHViewer Open Source python visualisation tool for Smoothed Particle Hydrodynamics simulations 1 RealFlow Commercial SPH solver for the cinema industry RheoCube is a commercial SaaS product by Lorenz Research for the study and prediction of complex fluid rheology and stability SimPARTIX is a commercial simulation package for SPH and Discrete element method DEM simulations from Fraunhofer IWM SPH flow SPHERA SPHinXsys is an open source multi physics multi resolution SPH library It provides C APIs for physical accurate simulation and aims to model coupled industrial dynamic systems including fluid solid multi body dynamics and beyond SPHysics is an open source SPH implementation in Fortran SPLASH is an open source GPL visualisation tool for SPH simulations SYMPLER A freeware SYMbolic ParticLE simulatoR from the University of Freiburg Nauticle is a general purpose computational tool for particle based numerical methods NDYNAMICS is a commercial fluid simulation software based on implicit SPH developed by CENTROID LAB currently used for internal external flooding nuclear chemical engineering applications Benitez Llambay Alejandro 2015 07 28 Py Sphviewer Py Sphviewer V1 0 0 Zenodo Bibcode 2015zndo 21703B doi 10 5281 zenodo 21703 retrieved 2022 03 30 Retrieved from https en wikipedia org w index php title Smoothed particle hydrodynamics amp oldid 1222759403, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.