fbpx
Wikipedia

Wader

Waders or shorebirds are birds of the order Charadriiformes commonly found wading along shorelines and mudflats in order to forage for food crawling or burrowing in the mud and sand, usually small arthropods such as aquatic insects or crustaceans. The term "wader" is used in Europe, while "shorebird" is used in North America, where "wader" may be used instead to refer to long-legged wading birds such as storks and herons.

Waders
Temporal range: Late Oligocene to recent
Semipalmated sandpiper (Calidris pusilla)
Scientific classification
Kingdom: Animalia
Phylum: Chordata
Class: Aves
Clade: Gruimorphae
Order: Charadriiformes
Groups included
Waders roosting on the beach at high tide
Waders in flight
Common ringed plover wading on a shore
A flock of Dunlins and Red knots

There are about 210[1] species of wader, most of which live in wetland or coastal environments. Many species of Arctic and temperate regions are strongly migratory, but tropical birds are often resident, or move only in response to rainfall patterns. Some of the Arctic species, such as the little stint, are amongst the longest distance migrants, spending the non-breeding season in the southern hemisphere.

Many of the smaller species found in coastal habitats, particularly but not exclusively the calidrids, are often named as "sandpipers", but this term does not have a strict meaning, since the upland sandpiper is a grassland species.

The smallest member of this group is the least sandpiper, small adults of which can weigh as little as 15.5 grams (0.55 oz) and measure just over 13 centimetres (5 inches). The largest species is believed to be the Far Eastern curlew, at about 63 cm (25 in) and 860 grams (1 pound 14 ounces), although the beach thick-knee is the heaviest at about 1 kg (2 lb 3 oz).

Taxonomy

In the Sibley-Ahlquist taxonomy, waders and many other groups are subsumed into a greatly enlarged order Ciconiiformes. However, the classification of the Charadriiformes is one of the weakest points of the Sibley-Ahlquist taxonomy, as DNA–DNA hybridization has turned out to be incapable of properly resolving the interrelationships of the group. Formerly, the waders were united in a single suborder Charadrii, but this has turned out to be a "wastebasket taxon", uniting no fewer than four charadriiform lineages in a paraphyletic assemblage. However, it indicated that the plains wanderer actually belonged into one of them. Following recent studies (Ericson et al., 2003; Paton et al., 2003; Thomas et al., 2004a, b; van Tuinen et al., 2004; Paton & Baker, 2006), the waders may be more accurately subdivided.

The waders are a group of two Charadriiformes suborders which include 13 families. Species in the third Charadriiforme suborder, Lari, are not considered as waders.[2]

Characteristics

Shorebirds is a blanket term used to refer to multiple bird species that live in wet, coastal environments. Because most these species spend much of their time near bodies of water, many have long legs suitable for wading (hence the name ‘Waders’). Some species prefer locations with rocks or mud. Many shorebirds display migratory patterns and often migrate before breeding season. These behaviors explain the long wing lengths observed in species, and can also account for the efficient metabolisms that give the birds energy during long migrations.[3]

The majority of species eat small invertebrates picked out of mud or exposed soil. Different lengths of bills enable different species to feed in the same habitat, particularly on the coast, without direct competition for food. Many waders have sensitive nerve endings at the end of their bills which enable them to detect prey items hidden in mud or soft soil. Some larger species, particularly those adapted to drier habitats will take larger prey including insects and small reptiles.

Sexual dimorphism

Shorebirds, like many other animals, exhibit phenotypic differences between males and females, also known as sexual dimorphism. In shorebirds, various sexual dimorphisms are seen, including, but not limited to, size (e.g. body size, bill size), color, and agility. In polygynous species, where one male individual mates with multiple female partners over his lifetime, dimorphisms tend to be more diverse.[3] In monogamous species, where male individuals mate with a single female partner, males typically do not have distinctive dimorphic characteristics such as colored feathers, but they still tend to be larger in size compared to females. The suborder Charadrii displays the widest range of sexual dimorphisms seen in the order Charadriiformes.[4] However, cases of sexual monomorphism, where there are no distinguishing physical features besides external genitalia, are also seen in this order.[5]

Sexual selection

One of the biggest factors that leads to the development of sexual dimorphism in shorebirds is sexual selection.[6] Males with ideal characteristics favored by females are more likely to reproduce and pass on their genetic information to their offspring better than the males who lack such characteristics. Mentioned earlier, male shorebirds are typically larger in size compared to their female counterparts. Competition between males tends to lead to sexual selection toward larger males and as a result, an increase in dimorphism. Bigger males tend to have greater access (and appeal) to female mates because their larger size aids them in defeating other competitors.[6] Likewise, if the species exhibits gender role reversal (where males take on roles traditionally done by females such as childcare and feeding), then males will select female mates based on traits that are the most appealing. In the Jacana species, females compete with each other for access to male mates, so females are larger in size. Males choose female mates based on who presents herself as the strongest and who 'owns' the most territory.[5]

Natural selection

Another factor that leads to the development of dimorphisms in species is natural selection. Natural selection focuses on traits and the environment's response to the traits in question; if the said trait increases the overall fitness of the individual possessing it, then it will be 'selected' and eventually become a permanent part of the population's gene pool. For example, depending on the food available in a shorebird specie's respective niche, bigger bill sizes may be favored in all individuals.[6] This would essentially lead to monomorphism within the species but is subject to change once sexual selection acts on the trait. Sexual selection could give rise to males with relatively larger bills than females if males used their bills to compete with other males. If larger bill size assisted the male in gathering resources, it would also make him more attractive to female mates.[3]

See also

References

  1. ^ G.C. Boere, C.A. Galbraith and D.A. Stroud (2006). "Waterbirds around the world" (PDF). Joint Nature Conservation Committee.
  2. ^ Gill, Frank; Donsker, David; Rasmussen, Pamela, eds. (July 2021). "IOC World Bird List Version 11.2". International Ornithologists' Union. Retrieved 19 December 2021.
  3. ^ a b c "Explore the World With Shorebirds." U.S. Fish and Wildlife Service, 1 Aug. 2004. Web.<http://www.fws.gov/alaska/external/education/pdf/Chap4.pdf>.
  4. ^ Székely, Tamás, John D. Reynolds, and Jordi Figuerola. 2000. Sexual Size Dimorphism In Shorebirds, Gulls, And Alcids: The Influence Of Sexual And Natural Selection. 54(4): 1404-413. [1]
  5. ^ a b Lindenfors, P., T. Szekely, and J. D. Reynolds. "Directional Changes in Sexual Size Dimorphism in Shorebirds, Gulls and Alcids." Journal of Evolutionary Biology J. Evolution Biol: 930-38. Print.
  6. ^ a b c Szekely, T., R. P. Freckleton, and J. D. Reynolds. "Sexual Selection Explains Rensch's Rule of Size Dimorphism in Shorebirds." Proceedings of the National Academy of Sciences (2004): 12224-2227. Print.

Sources

  • Ericson, P. G. P.; Envall, I.; Irestedt, M.; & Norman, J. A. (2003). Inter-familial relationships of the shorebirds (Aves: Charadriiformes) based on nuclear DNA sequence data. BMC Evol. Biol. 3: 16. doi:10.1186/1471-2148-3-16 PDF fulltext
  • Pandiyan, J. and S. Asokan. 2015. Habitat use of pattern of tidal mud and sandflats by shorebirds (charadriiformes) Wintering in southern India. Coastal Conservation https://doi.org/10.1007/s11852-015-0413-9.
  • Paton, Tara A.; & Baker, Allan J. (2006). Sequences from 14 mitochondrial genes provide a well-supported phylogeny of the Charadriiform birds congruent with the nuclear RAG-1 tree. Molecular Phylogenetics and Evolution 39(3): 657–667. doi:10.1016/j.ympev.2006.01.011 PMID 16531074 (HTML abstract)
  • Paton, T. A.; Baker, A. J.; Groth, J. G.; & Barrowclough, G. F. (2003). RAG-1 sequences resolve phylogenetic relationships within charadriiform birds. Molecular Phylogenetics and Evolution 29: 268–278. doi:10.1016/S1055-7903(03)00098-8 PMID 13678682 (HTML abstract)
  • Thomas, Gavin H.; Wills, Matthew A. & Székely, Tamás (2004a). Phylogeny of shorebirds, gulls, and alcids (Aves: Charadrii) from the cytochrome-b gene: parsimony, Bayesian inference, minimum evolution, and quartet puzzling. Molecular Phylogenetics and Evolution 30(3): 516–526. doi:10.1016/S1055-7903(03)00222-7 (HTML abstract)
  • Thomas, Gavin H.; Wills, Matthew A.; & Székely, Tamás (2004b). A supertree approach to shorebird phylogeny. BMC Evol. Biol. 4: 28. doi:10.1186/1471-2148-4-28 PMID 15329156 PDF fulltext Supplementary Material
  • van Tuinen, Marcel; Waterhouse, David; & Dyke, Gareth J. (2004). Avian molecular systematics on the rebound: a fresh look at modern shorebird phylogenetic relationships. Journal of Avian Biology 35(3): 191–194. PDF fulltext
  • Explore the World With Shorebirds. (2004). U.S. Fish and Wildlife Service. Web. http://digitalmedia.fws.gov/cdm/ref/collection/document/id/1598
  • Lindenfors, P.; Szekely, T.; and Reynolds, J. D. (2003). Directional Changes in Sexual Size Dimorphism in Shorebirds, Gulls and Alcids. Journal of Evolutionary Biology J Evolution Biol: 930–38. Print.
  • Szekely, T.; Freckleton, R.; & Reynolds, J. (2004). Sexual selection explains Rensch's rule of size dimorphism in shorebirds. Proceedings of the National Academy of Sciences. 101(33): 12224–12227.
  • Szekely, Tamas; John D. Reynolds; and Jordi Figuerola. (2000) Sexual Size Dimorphism in Shorebirds, Gulls, and Alcids: The Influence of Sexual and Natural Selection. Evolution 54(4): 1404–413.

External links

  •   Media related to Wading birds at Wikimedia Commons

wader, this, article, about, group, charadriiform, birds, waterproof, boots, fishing, trousers, footwear, group, that, refers, storks, ibises, herons, north, american, birders, american, shorebirds, redirects, here, punk, rock, music, band, shorebirds, band, s. This article is about a group of charadriiform birds For the waterproof hip boots or fishing trousers see Waders footwear For the group that refers to storks ibises and herons by North American birders see Wader American Shorebirds redirects here For the punk rock music band see Shorebirds band Waders or shorebirds are birds of the order Charadriiformes commonly found wading along shorelines and mudflats in order to forage for food crawling or burrowing in the mud and sand usually small arthropods such as aquatic insects or crustaceans The term wader is used in Europe while shorebird is used in North America where wader may be used instead to refer to long legged wading birds such as storks and herons WadersTemporal range Late Oligocene to recentSemipalmated sandpiper Calidris pusilla Scientific classificationKingdom AnimaliaPhylum ChordataClass AvesClade GruimorphaeOrder CharadriiformesGroups includedCharadrii Scolopaci Lari in part Waders roosting on the beach at high tideWaders in flightCommon ringed plover wading on a shoreCommon greenshank and Common redshank A flock of Dunlins and Red knots There are about 210 1 species of wader most of which live in wetland or coastal environments Many species of Arctic and temperate regions are strongly migratory but tropical birds are often resident or move only in response to rainfall patterns Some of the Arctic species such as the little stint are amongst the longest distance migrants spending the non breeding season in the southern hemisphere Many of the smaller species found in coastal habitats particularly but not exclusively the calidrids are often named as sandpipers but this term does not have a strict meaning since the upland sandpiper is a grassland species The smallest member of this group is the least sandpiper small adults of which can weigh as little as 15 5 grams 0 55 oz and measure just over 13 centimetres 5 inches The largest species is believed to be the Far Eastern curlew at about 63 cm 25 in and 860 grams 1 pound 14 ounces although the beach thick knee is the heaviest at about 1 kg 2 lb 3 oz Contents 1 Taxonomy 2 Characteristics 2 1 Sexual dimorphism 2 2 Sexual selection 2 3 Natural selection 3 See also 4 References 5 Sources 6 External linksTaxonomy EditIn the Sibley Ahlquist taxonomy waders and many other groups are subsumed into a greatly enlarged order Ciconiiformes However the classification of the Charadriiformes is one of the weakest points of the Sibley Ahlquist taxonomy as DNA DNA hybridization has turned out to be incapable of properly resolving the interrelationships of the group Formerly the waders were united in a single suborder Charadrii but this has turned out to be a wastebasket taxon uniting no fewer than four charadriiform lineages in a paraphyletic assemblage However it indicated that the plains wanderer actually belonged into one of them Following recent studies Ericson et al 2003 Paton et al 2003 Thomas et al 2004a b van Tuinen et al 2004 Paton amp Baker 2006 the waders may be more accurately subdivided The waders are a group of two Charadriiformes suborders which include 13 families Species in the third Charadriiforme suborder Lari are not considered as waders 2 Suborder Charadrii Family Burhinidae stone curlews thick knees 10 species Family Pluvianellidae Magellanic plover Family Chionidae sheathbills 2 species Family Pluvianidae Egyptian plover Family Charadriidae plovers 68 species Family Recurvirostridae stilts avocets 10 species Family Ibidorhynchidae ibisbill Family Haematopodidae oystercatchers 12 species Suborder Scolopaci Family Rostratulidae painted snipes 3 species Family Jacanidae jacanas 8 species Family Pedionomidae plains wanderer Family Thinocoridae seedsnipes 4 species Family Scolopacidae sandpipers snipes 98 species Suborder Lari Family Turnicidae Family Dromadidae Family GlareolidaeCharacteristics EditShorebirds is a blanket term used to refer to multiple bird species that live in wet coastal environments Because most these species spend much of their time near bodies of water many have long legs suitable for wading hence the name Waders Some species prefer locations with rocks or mud Many shorebirds display migratory patterns and often migrate before breeding season These behaviors explain the long wing lengths observed in species and can also account for the efficient metabolisms that give the birds energy during long migrations 3 The majority of species eat small invertebrates picked out of mud or exposed soil Different lengths of bills enable different species to feed in the same habitat particularly on the coast without direct competition for food Many waders have sensitive nerve endings at the end of their bills which enable them to detect prey items hidden in mud or soft soil Some larger species particularly those adapted to drier habitats will take larger prey including insects and small reptiles Sexual dimorphism Edit Shorebirds like many other animals exhibit phenotypic differences between males and females also known as sexual dimorphism In shorebirds various sexual dimorphisms are seen including but not limited to size e g body size bill size color and agility In polygynous species where one male individual mates with multiple female partners over his lifetime dimorphisms tend to be more diverse 3 In monogamous species where male individuals mate with a single female partner males typically do not have distinctive dimorphic characteristics such as colored feathers but they still tend to be larger in size compared to females The suborder Charadrii displays the widest range of sexual dimorphisms seen in the order Charadriiformes 4 However cases of sexual monomorphism where there are no distinguishing physical features besides external genitalia are also seen in this order 5 Sexual selection Edit One of the biggest factors that leads to the development of sexual dimorphism in shorebirds is sexual selection 6 Males with ideal characteristics favored by females are more likely to reproduce and pass on their genetic information to their offspring better than the males who lack such characteristics Mentioned earlier male shorebirds are typically larger in size compared to their female counterparts Competition between males tends to lead to sexual selection toward larger males and as a result an increase in dimorphism Bigger males tend to have greater access and appeal to female mates because their larger size aids them in defeating other competitors 6 Likewise if the species exhibits gender role reversal where males take on roles traditionally done by females such as childcare and feeding then males will select female mates based on traits that are the most appealing In the Jacana species females compete with each other for access to male mates so females are larger in size Males choose female mates based on who presents herself as the strongest and who owns the most territory 5 Natural selection Edit Another factor that leads to the development of dimorphisms in species is natural selection Natural selection focuses on traits and the environment s response to the traits in question if the said trait increases the overall fitness of the individual possessing it then it will be selected and eventually become a permanent part of the population s gene pool For example depending on the food available in a shorebird specie s respective niche bigger bill sizes may be favored in all individuals 6 This would essentially lead to monomorphism within the species but is subject to change once sexual selection acts on the trait Sexual selection could give rise to males with relatively larger bills than females if males used their bills to compete with other males If larger bill size assisted the male in gathering resources it would also make him more attractive to female mates 3 See also EditHybridisation in shorebirds List of Charadriiformes by populationReferences Edit G C Boere C A Galbraith and D A Stroud 2006 Waterbirds around the world PDF Joint Nature Conservation Committee Gill Frank Donsker David Rasmussen Pamela eds July 2021 IOC World Bird List Version 11 2 International Ornithologists Union Retrieved 19 December 2021 a b c Explore the World With Shorebirds U S Fish and Wildlife Service 1 Aug 2004 Web lt http www fws gov alaska external education pdf Chap4 pdf gt Szekely Tamas John D Reynolds and Jordi Figuerola 2000 Sexual Size Dimorphism In Shorebirds Gulls And Alcids The Influence Of Sexual And Natural Selection 54 4 1404 413 1 a b Lindenfors P T Szekely and J D Reynolds Directional Changes in Sexual Size Dimorphism in Shorebirds Gulls and Alcids Journal of Evolutionary Biology J Evolution Biol 930 38 Print a b c Szekely T R P Freckleton and J D Reynolds Sexual Selection Explains Rensch s Rule of Size Dimorphism in Shorebirds Proceedings of the National Academy of Sciences 2004 12224 2227 Print Sources EditEricson P G P Envall I Irestedt M amp Norman J A 2003 Inter familial relationships of the shorebirds Aves Charadriiformes based on nuclear DNA sequence data BMC Evol Biol 3 16 doi 10 1186 1471 2148 3 16 PDF fulltext Pandiyan J and S Asokan 2015 Habitat use of pattern of tidal mud and sandflats by shorebirds charadriiformes Wintering in southern India Coastal Conservation https doi org 10 1007 s11852 015 0413 9 Paton Tara A amp Baker Allan J 2006 Sequences from 14 mitochondrial genes provide a well supported phylogeny of the Charadriiform birds congruent with the nuclear RAG 1 tree Molecular Phylogenetics and Evolution 39 3 657 667 doi 10 1016 j ympev 2006 01 011 PMID 16531074 HTML abstract Paton T A Baker A J Groth J G amp Barrowclough G F 2003 RAG 1 sequences resolve phylogenetic relationships within charadriiform birds Molecular Phylogenetics and Evolution 29 268 278 doi 10 1016 S1055 7903 03 00098 8 PMID 13678682 HTML abstract Thomas Gavin H Wills Matthew A amp Szekely Tamas 2004a Phylogeny of shorebirds gulls and alcids Aves Charadrii from the cytochrome b gene parsimony Bayesian inference minimum evolution and quartet puzzling Molecular Phylogenetics and Evolution 30 3 516 526 doi 10 1016 S1055 7903 03 00222 7 HTML abstract Thomas Gavin H Wills Matthew A amp Szekely Tamas 2004b A supertree approach to shorebird phylogeny BMC Evol Biol 4 28 doi 10 1186 1471 2148 4 28 PMID 15329156 PDF fulltext Supplementary Material van Tuinen Marcel Waterhouse David amp Dyke Gareth J 2004 Avian molecular systematics on the rebound a fresh look at modern shorebird phylogenetic relationships Journal of Avian Biology 35 3 191 194 PDF fulltext Explore the World With Shorebirds 2004 U S Fish and Wildlife Service Web http digitalmedia fws gov cdm ref collection document id 1598 Lindenfors P Szekely T and Reynolds J D 2003 Directional Changes in Sexual Size Dimorphism in Shorebirds Gulls and Alcids Journal of Evolutionary Biology J Evolution Biol 930 38 Print Szekely T Freckleton R amp Reynolds J 2004 Sexual selection explains Rensch s rule of size dimorphism in shorebirds Proceedings of the National Academy of Sciences 101 33 12224 12227 Szekely Tamas John D Reynolds and Jordi Figuerola 2000 Sexual Size Dimorphism in Shorebirds Gulls and Alcids The Influence of Sexual and Natural Selection Evolution 54 4 1404 413 External links Edit Media related to Wading birds at Wikimedia Commons Retrieved from https en wikipedia org w index php title Wader amp oldid 1147517231, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.