fbpx
Wikipedia

Comet Shoemaker–Levy 9

Comet Shoemaker–Levy 9 (formally designated D/1993 F2) broke apart in July 1992 and collided with Jupiter in July 1994, providing the first direct observation of an extraterrestrial collision of Solar System objects.[5] This generated a large amount of coverage in the popular media, and the comet was closely observed by astronomers worldwide. The collision provided new information about Jupiter and highlighted its possible role in reducing space debris in the inner Solar System.

D/1993 F2 (Shoemaker–Levy)
Shoemaker–Levy 9, disrupted comet on a collision course[1][2]
(total of 21 fragments, taken in July 1994)
Discovery
Discovered byCarolyn Shoemaker
Eugene Shoemaker
David Levy
Discovery sitePalomar Observatory
Discovery dateMarch 24, 1993
Orbital characteristics
Inclination94.2°
Physical characteristics
Dimensions1.8 km (1.1 mi)[3][4]

The comet was discovered by astronomers Carolyn and Eugene M. Shoemaker, and David Levy in 1993.[6] Shoemaker–Levy 9 (SL9) had been captured by Jupiter and was orbiting the planet at the time. It was located on the night of March 24 in a photograph taken with the 46 cm (18 in) Schmidt telescope at the Palomar Observatory in California. It was the first active comet observed to be orbiting a planet, and had probably been captured by Jupiter around 20 to 30 years earlier.

Calculations showed that its unusual fragmented form was due to a previous closer approach to Jupiter in July 1992. At that time, the orbit of Shoemaker–Levy 9 passed within Jupiter's Roche limit, and Jupiter's tidal forces had acted to pull the comet apart. The comet was later observed as a series of fragments ranging up to 2 km (1.2 mi) in diameter. These fragments collided with Jupiter's southern hemisphere between July 16 and 22, 1994 at a speed of approximately 60 km/s (37 mi/s) (Jupiter's escape velocity) or 216,000 km/h (134,000 mph). The prominent scars from the impacts were more easily visible than the Great Red Spot and persisted for many months.

Discovery edit

While conducting a program of observations designed to uncover near-Earth objects, the Shoemakers and Levy discovered Comet Shoemaker–Levy 9 on the night of March 24, 1993, in a photograph taken with the 0.46 m (1.5 ft) Schmidt telescope at the Palomar Observatory in California. The comet was thus a serendipitous discovery, but one that quickly overshadowed the results from their main observing program.[7]

Comet Shoemaker–Levy 9 was the ninth periodic comet (a comet whose orbital period is 200 years or less) discovered by the Shoemakers and Levy, thence its name. It was their eleventh comet discovery overall including their discovery of two non-periodic comets, which use a different nomenclature. The discovery was announced in IAU Circular 5725 on March 26, 1993.[6]

The discovery image gave the first hint that comet Shoemaker–Levy 9 was an unusual comet, as it appeared to show multiple nuclei in an elongated region about 50 arcseconds long and 10 arcseconds wide. Brian G. Marsden of the Central Bureau for Astronomical Telegrams noted that the comet lay only about 4 degrees from Jupiter as seen from Earth, and that although this could be a line-of-sight effect, its apparent motion in the sky suggested that the comet was physically close to the planet.[6]

Comet with a Jovian orbit edit

Orbital studies of the new comet soon revealed that it was orbiting Jupiter rather than the Sun, unlike all other comets known at the time. Its orbit around Jupiter was very loosely bound, with a period of about 2 years and an apoapsis (the point in the orbit farthest from the planet) of 0.33 astronomical units (49 million kilometres; 31 million miles). Its orbit around the planet was highly eccentric (e = 0.9986).[8]

Tracing back the comet's orbital motion revealed that it had been orbiting Jupiter for some time. It is likely that it was captured from a solar orbit in the early 1970s, although the capture may have occurred as early as the mid-1960s.[9] Several other observers found images of the comet in precovery images obtained before March 24, including Kin Endate from a photograph exposed on March 15, S. Otomo on March 17, and a team led by Eleanor Helin from images on March 19.[10] An image of the comet on a Schmidt photographic plate taken on March 19 was identified on March 21 by M. Lindgren, in a project searching for comets near Jupiter.[11] However, as his team were expecting comets to be inactive or at best exhibit a weak dust coma, and SL9 had a peculiar morphology, its true nature was not recognised until the official announcement 5 days later. No precovery images dating back to earlier than March 1993 have been found. Before the comet was captured by Jupiter, it was probably a short-period comet with an aphelion just inside Jupiter's orbit, and a perihelion interior to the asteroid belt.[12]

The volume of space within which an object can be said to orbit Jupiter is defined by Jupiter's Hill sphere. When the comet passed Jupiter in the late 1960s or early 1970s, it happened to be near its aphelion, and found itself slightly within Jupiter's Hill sphere. Jupiter's gravity nudged the comet towards it. Because the comet's motion with respect to Jupiter was very small, it fell almost straight toward Jupiter, which is why it ended up on a Jove-centric orbit of very high eccentricity—that is to say, the ellipse was nearly flattened out.[13]

The comet had apparently passed extremely close to Jupiter on July 7, 1992, just over 40,000 km (25,000 mi) above its cloud tops—a smaller distance than Jupiter's radius of 70,000 km (43,000 mi), and well within the orbit of Jupiter's innermost moon Metis and the planet's Roche limit, inside which tidal forces are strong enough to disrupt a body held together only by gravity.[13] Although the comet had approached Jupiter closely before, the July 7 encounter seemed to be by far the closest, and the fragmentation of the comet is thought to have occurred at this time. Each fragment of the comet was denoted by a letter of the alphabet, from "fragment A" through to "fragment W", a practice already established from previously observed fragmented comets.[14]

More exciting for planetary astronomers was that the best orbital calculations suggested that the comet would pass within 45,000 km (28,000 mi) of the center of Jupiter, a distance smaller than the planet's radius, meaning that there was an extremely high probability that SL9 would collide with Jupiter in July 1994.[15] Studies suggested that the train of nuclei would plow into Jupiter's atmosphere over a period of about five days.[13]

Predictions for the collision edit

The discovery that the comet was likely to collide with Jupiter caused great excitement within the astronomical community and beyond, as astronomers had never before seen two significant Solar System bodies collide. Intense studies of the comet were undertaken, and as its orbit became more accurately established, the possibility of a collision became a certainty. The collision would provide a unique opportunity for scientists to look inside Jupiter's atmosphere, as the collisions were expected to cause eruptions of material from the layers normally hidden beneath the clouds.[8]

Astronomers estimated that the visible fragments of SL9 ranged in size from a few hundred metres (around 1,000 ft) to two kilometres (1.2 mi) across, suggesting that the original comet may have had a nucleus up to 5 km (3.1 mi) across—somewhat larger than Comet Hyakutake, which became very bright when it passed close to the Earth in 1996. One of the great debates in advance of the impact was whether the effects of the impact of such small bodies would be noticeable from Earth, apart from a flash as they disintegrated like giant meteors.[16] The most optimistic prediction was that large, asymmetric ballistic fireballs would rise above the limb of Jupiter and into sunlight to be visible from Earth.[17] Other suggested effects of the impacts were seismic waves travelling across the planet, an increase in stratospheric haze on the planet due to dust from the impacts, and an increase in the mass of the Jovian ring system. However, given that observing such a collision was completely unprecedented, astronomers were cautious with their predictions of what the event might reveal.[8]

Impacts edit

 
Jupiter in ultraviolet (about 2.5 hours after R's impact). The black dot near the top is Io transiting Jupiter.[18]

Anticipation grew as the predicted date for the collisions approached, and astronomers trained terrestrial telescopes on Jupiter. Several space observatories did the same, including the Hubble Space Telescope, the ROSAT X-ray-observing satellite, the W. M. Keck Observatory, and the Galileo spacecraft, then on its way to a rendezvous with Jupiter scheduled for 1995. Although the impacts took place on the side of Jupiter hidden from Earth, Galileo, then at a distance of 1.6 AU (240 million km; 150 million mi) from the planet, was able to see the impacts as they occurred. Jupiter's rapid rotation brought the impact sites into view for terrestrial observers a few minutes after the collisions.[19]

Two other space probes made observations at the time of the impact: the Ulysses spacecraft, primarily designed for solar observations, was pointed towards Jupiter from its location 2.6 AU (390 million km; 240 million mi) away, and the distant Voyager 2 probe, some 44 AU (6.6 billion km; 4.1 billion mi) from Jupiter and on its way out of the Solar System following its encounter with Neptune in 1989, was programmed to look for radio emission in the 1–390 kHz range and make observations with its ultraviolet spectrometer.[20]

 
Hubble Space Telescope images of a fireball from the first impact appearing over the limb of the planet
 
Animation of Shoemaker-Levy 9's orbit around Jupiter
  Jupiter ·    Fragment A ·   Fragment D ·   Fragment G ·   Fragment N ·   Fragment W

Astronomer Ian Morison described the impacts as following:

The first impact occurred at 20:13 UTC on July 16, 1994, when fragment A of the [comet's] nucleus slammed into Jupiter's southern hemisphere at about 60 km/s (35 mi/s). Instruments on Galileo detected a fireball that reached a peak temperature of about 24,000 K (23,700 °C; 42,700 °F), compared to the typical Jovian cloud-top temperature of about 130 K (−143 °C; −226 °F). It then expanded and cooled rapidly to about 1,500 K (1,230 °C; 2,240 °F). The plume from the fireball quickly reached a height of over 3,000 km (1,900 mi) and was observed by the HST.[21][22]

A few minutes after the impact fireball was detected, Galileo measured renewed heating, probably due to ejected material falling back onto the planet. Earth-based observers detected the fireball rising over the limb of the planet shortly after the initial impact.[23]

Despite published predictions,[17] astronomers had not expected to see the fireballs from the impacts[24] and did not have any idea how visible the other atmospheric effects of the impacts would be from Earth. Observers soon saw a huge dark spot after the first impact; the spot was visible from Earth. This and subsequent dark spots were thought to have been caused by debris from the impacts, and were markedly asymmetric, forming crescent shapes in front of the direction of impact.[25]

Over the next six days, 21 distinct impacts were observed, with the largest coming on July 18 at 07:33 UTC when fragment G struck Jupiter. This impact created a giant dark spot over 12,000 km or 7,500 mi[26] (almost one Earth diameter) across, and was estimated to have released an energy equivalent to 6,000,000 megatons of TNT (600 times the world's nuclear arsenal).[27] Two impacts 12 hours apart on July 19 created impact marks of similar size to that caused by fragment G, and impacts continued until July 22, when fragment W struck the planet.[28]

Observations and discoveries edit

Chemical studies edit

 
Brown spots mark impact sites on Jupiter's southern hemisphere

Observers hoped that the impacts would give them a first glimpse of Jupiter beneath the cloud tops, as lower material was exposed by the comet fragments punching through the upper atmosphere. Spectroscopic studies revealed absorption lines in the Jovian spectrum due to diatomic sulfur (S2) and carbon disulfide (CS2), the first detection of either in Jupiter, and only the second detection of S2 in any astronomical object. Other molecules detected included ammonia (NH3) and hydrogen sulfide (H2S). The amount of sulfur implied by the quantities of these compounds was much greater than the amount that would be expected in a small cometary nucleus, showing that material from within Jupiter was being revealed. Oxygen-bearing molecules such as sulfur dioxide were not detected, to the surprise of astronomers.[29]

As well as these molecules, emission from heavy atoms such as iron, magnesium and silicon were detected, with abundances consistent with what would be found in a cometary nucleus. Although a substantial amount of water was detected spectroscopically, it was not as much as predicted, meaning that either the water layer thought to exist below the clouds was thinner than predicted, or that the cometary fragments did not penetrate deeply enough.[30]

Waves edit

As predicted, the collisions generated enormous waves that swept across Jupiter at speeds of 450 m/s (1,500 ft/s) and were observed for over two hours after the largest impacts. The waves were thought to be travelling within a stable layer acting as a waveguide, and some scientists thought the stable layer must lie within the hypothesised tropospheric water cloud. However, other evidence seemed to indicate that the cometary fragments had not reached the water layer, and the waves were instead propagating within the stratosphere.[31]

Other observations edit

 
A sequence of Galileo images, taken several seconds apart, showing the appearance of the fireball of fragment W on the dark side of Jupiter

Radio observations revealed a sharp increase in continuum emission at a wavelength of 21 cm (8.3 in) after the largest impacts, which peaked at 120% of the normal emission from the planet.[32] This was thought to be due to synchrotron radiation, caused by the injection of relativistic electrons—electrons with velocities near the speed of light—into the Jovian magnetosphere by the impacts.[33]

About an hour after fragment K entered Jupiter, observers recorded auroral emission near the impact region, as well as at the antipode of the impact site with respect to Jupiter's strong magnetic field. The cause of these emissions was difficult to establish due to a lack of knowledge of Jupiter's internal magnetic field and of the geometry of the impact sites. One possible explanation was that upwardly accelerating shock waves from the impact accelerated charged particles enough to cause auroral emission, a phenomenon more typically associated with fast-moving solar wind particles striking a planetary atmosphere near a magnetic pole.[34]

Some astronomers had suggested that the impacts might have a noticeable effect on the Io torus, a torus of high-energy particles connecting Jupiter with the highly volcanic moon Io. High resolution spectroscopic studies found that variations in the ion density, rotational velocity, and temperatures at the time of impact and afterwards were within the normal limits.[35]

Voyager 2 failed to detect anything with calculations showing that the fireballs were just below the craft's limit of detection; no abnormal levels of UV radiation or radio signals were registered after the blast.[20][36] Ulysses also failed to detect any abnormal radio frequencies.[20]

Post-impact analysis edit

 
A reddish, asymmetric ejecta pattern

Several models were devised to compute the density and size of Shoemaker–Levy 9. Its average density was calculated to be about 0.5 g/cm3 (0.018 lb/cu in); the breakup of a much less dense comet would not have resembled the observed string of objects. The size of the parent comet was calculated to be about 1.8 km (1.1 mi) in diameter.[3][4] These predictions were among the few that were actually confirmed by subsequent observation.[37]

One of the surprises of the impacts was the small amount of water revealed compared to prior predictions.[38] Before the impact, models of Jupiter's atmosphere had indicated that the break-up of the largest fragments would occur at atmospheric pressures of anywhere from 30 kilopascals to a few tens of megapascals (from 0.3 to a few hundred bar),[30] with some predictions that the comet would penetrate a layer of water and create a bluish shroud over that region of Jupiter.[16]

Astronomers did not observe large amounts of water following the collisions, and later impact studies found that fragmentation and destruction of the cometary fragments in a meteor air burst probably occurred at much higher altitudes than previously expected, with even the largest fragments being destroyed when the pressure reached 250 kPa (36 psi), well above the expected depth of the water layer. The smaller fragments were probably destroyed before they even reached the cloud layer.[30]

Longer-term effects edit

The visible scars from the impacts could be seen on Jupiter for many months. They were extremely prominent, and observers described them as more easily visible than the Great Red Spot. A search of historical observations revealed that the spots were probably the most prominent transient features ever seen on the planet, and that although the Great Red Spot is notable for its striking color, no spots of the size and darkness of those caused by the SL9 impacts had ever been recorded before, or since.[39]

Spectroscopic observers found that ammonia and carbon disulfide persisted in the atmosphere for at least fourteen months after the collisions, with a considerable amount of ammonia being present in the stratosphere as opposed to its normal location in the troposphere.[40]

Counterintuitively, the atmospheric temperature dropped to normal levels much more quickly at the larger impact sites than at the smaller sites: at the larger impact sites, temperatures were elevated over a region 15,000 to 20,000 km (9,300 to 12,400 mi) wide, but dropped back to normal levels within a week of the impact. At smaller sites, temperatures 10 K (10 °C; 18 °F) higher than the surroundings persisted for almost two weeks.[41] Global stratospheric temperatures rose immediately after the impacts, then fell to below pre-impact temperatures 2–3 weeks afterwards, before rising slowly to normal temperatures.[42]

Frequency of impacts edit

 
Enki Catena, a chain of craters on Ganymede, probably caused by a similar impact event. The picture covers an area approximately 190 km (120 mi) across

SL9 is not unique in having orbited Jupiter for a time; five comets, (including 82P/Gehrels, 147P/Kushida–Muramatsu, and 111P/Helin–Roman–Crockett) are known to have been temporarily captured by the planet.[43][44] Cometary orbits around Jupiter are unstable, as they will be highly elliptical and likely to be strongly perturbed by the Sun's gravity at apojove (the farthest point on the orbit from the planet).

By far the most massive planet in the Solar System, Jupiter can capture objects relatively frequently, but the size of SL9 makes it a rarity: one post-impact study estimated that comets 0.3 km (0.19 mi) in diameter impact the planet once in approximately 500 years and those 1.6 km (1 mi) in diameter do so just once in every 6,000 years.[45]

There is very strong evidence that comets have previously been fragmented and collided with Jupiter and its satellites. During the Voyager missions to the planet, planetary scientists identified 13 crater chains on Callisto and three on Ganymede, the origin of which was initially a mystery.[46] Crater chains seen on the Moon often radiate from large craters, and are thought to be caused by secondary impacts of the original ejecta, but the chains on the Jovian moons did not lead back to a larger crater. The impact of SL9 strongly implied that the chains were due to trains of disrupted cometary fragments crashing into the satellites.[47]

Impact of July 19, 2009 edit

On July 19, 2009, exactly 15 years after the SL9 impacts, a new black spot about the size of the Pacific Ocean appeared in Jupiter's southern hemisphere. Thermal infrared measurements showed the impact site was warm and spectroscopic analysis detected the production of excess hot ammonia and silica-rich dust in the upper regions of Jupiter's atmosphere. Scientists have concluded that another impact event had occurred, but this time a more compact and stronger object, probably a small undiscovered asteroid, was the cause.[48]

Jupiter's role in protection of the inner Solar System edit

The events of SL9's interaction with Jupiter greatly highlighted Jupiter's role in protecting the inner planets from both interstellar and in-system debris by acting as a "cosmic vacuum cleaner" for the Solar System (Jupiter barrier). The planet's strong gravitational influence attracts many small comets and asteroids and the rate of cometary impacts on Jupiter is thought to be between 2,000 and 8,000 times higher than the rate on Earth.[49]

The extinction of the non-avian dinosaurs at the end of the Cretaceous period is generally thought to have been caused by the Cretaceous–Paleogene impact event, which created the Chicxulub crater,[50] demonstrating that cometary impacts are indeed a serious threat to life on Earth. Astronomers have speculated that without Jupiter's immense gravity, extinction events might have been more frequent on Earth and complex life might not have been able to develop.[51] This is part of the argument used in the Rare Earth hypothesis.

In 2009, it was shown that the presence of a smaller planet at Jupiter's position in the Solar System might increase the impact rate of comets on the Earth significantly. A planet of Jupiter's mass still seems to provide increased protection against asteroids, but the total effect on all orbital bodies within the Solar System is unclear. This and other recent models call into question the nature of Jupiter's influence on Earth impacts.[52][53][54]

See also edit

References edit

Notes edit

  1. ^ Howell, E. (February 19, 2013). "Shoemaker–Levy 9: Comet's Impact Left Its Mark on Jupiter". Space.com.
  2. ^ "Panoramic Picture of Comet P/Shoemaker-Levy 9". HubbleSite.org. Retrieved December 3, 2021.
  3. ^ a b Solem, J. C. (1995). "Cometary breakup calculations based on a gravitationally-bound agglomeration model: The density and size of Comet Shoemaker-Levy 9". Astronomy and Astrophysics. 302 (2): 596–608. Bibcode:1995A&A...302..596S.
  4. ^ a b Solem, J. C. (1994). "Density and size of Comet Shoemaker–Levy 9 deduced from a tidal breakup model". Nature. 370 (6488): 349–351. Bibcode:1994Natur.370..349S. doi:10.1038/370349a0. S2CID 4313295.
  5. ^ . National Space Science Data Center. February 2005. Archived from the original on February 19, 2013. Retrieved August 26, 2008.
  6. ^ a b c Marsden, B. G. (1993). "Comet Shoemaker-Levy (1993e)". IAU Circular. 5725.
  7. ^ Marsden, Brian G. (July 18, 1997). "Eugene Shoemaker (1928–1997)". Jet Propulsion Laboratory. Retrieved August 24, 2008.
  8. ^ a b c Burton, Dan (July 1994). . Frequently Asked Questions about the Collision of Comet Shoemaker–Levy 9 with Jupiter. Stephen F. Austin State University. Archived from the original on December 9, 2012. Retrieved August 20, 2008.
  9. ^ Landis, R. R. (1994). . Proceedings of the International Planetarium Society Conference held at the Astronaut Memorial Planetarium & Observatory, Cocoa, Florida, July 10–16, 1994. SEDS. Archived from the original on August 8, 2008. Retrieved August 8, 2008.
  10. ^ . Gary W. Kronk's Cometography. 1994. Archived from the original on May 9, 2008. Retrieved August 8, 2008.
  11. ^ Lindgren, Mats (August 1996). "Searching for comets encountering Jupiter. Second campaign observations and further constraints on the size of the Jupiter family population". Astronomy and Astrophysics Supplement Series. 118 (2): 293–301. Bibcode:1996A&AS..118..293L. doi:10.1051/aas:1996198.
  12. ^ Benner, L. A.; McKinnon, W. B. (March 1994). "Pre-Impact Orbital Evolution of P/Shoemaker–Levy 9". Abstracts of the 25th Lunar and Planetary Science Conference, Held in Houston, TX, March 14–18, 1994. 25: 93. Bibcode:1994LPI....25...93B.
  13. ^ a b c Chapman, C. R. (June 1993). "Comet on target for Jupiter". Nature. 363 (6429): 492–493. Bibcode:1993Natur.363..492C. doi:10.1038/363492a0. S2CID 27605268.
  14. ^ Boehnhardt, H. (November 2004). "Split comets". In M. C. Festou, H. U. Keller and H. A. Weaver (ed.). Comets II. University of Arizona Press. p. 301. ISBN 978-0-8165-2450-1.
  15. ^ Marsden, B. G. (1993). "Periodic Comet Shoemaker-Levy 9 (1993e)". IAU Circular. 5800.
  16. ^ a b Bruton, Dan (July 1994). . Frequently Asked Questions about the Collision of Comet Shoemaker–Levy 9 with Jupiter. Stephen F. Austin State University. Archived from the original on December 9, 2012. Retrieved August 20, 2008.
  17. ^ a b Boslough, Mark B.; Crawford, David A.; Robinson, Allen C.; Trucano, Timothy G. (July 5, 1994). "Watching for Fireballs on Jupiter". Eos, Transactions, American Geophysical Union. 75 (27): 305. Bibcode:1994EOSTr..75..305B. doi:10.1029/94eo00965.
  18. ^ . News Release Number: STScI-1994-35. Hubble Space Telescope Comet Team. July 23, 1994. Archived from the original on December 5, 2017. Retrieved November 12, 2014.
  19. ^ Yeomans, D.K. (December 1993). "Periodic comet Shoemaker–Levy 9 (1993e)". IAU Circular. 5909. Retrieved July 5, 2011.
  20. ^ a b c Williams, David R. "Ulysses and Voyager 2". Lunar and Planetary Science. National Space Science Data Center. Retrieved August 25, 2008.
  21. ^ Morison, Ian (September 25, 2014). A Journey through the Universe: Gresham Lectures on Astronomy. Cambridge University Press. p. 110. ISBN 978-1-316-12380-5. Retrieved January 12, 2022.
  22. ^ Martin, Terry Z. (September 1996). "Shoemaker–Levy 9: Temperature, Diameter and Energy of Fireballs". Bulletin of the American Astronomical Society. 28: 1085. Bibcode:1996DPS....28.0814M.
  23. ^ Weissman, P.R.; Carlson, R. W.; Hui, J.; Segura, M.; Smythe, W. D.; Baines, K. H.; Johnson, T. V.; Drossart, P.; Encrenaz, T.; et al. (March 1995). "Galileo NIMS Direct Observation of the Shoemaker–Levy 9 Fireballs and Fall Back". Abstracts of the Lunar and Planetary Science Conference. 26: 1483. Bibcode:1995LPI....26.1483W.
  24. ^ Weissman, Paul (July 14, 1994). "The Big Fizzle is coming". Nature. 370 (6485): 94–95. Bibcode:1994Natur.370...94W. doi:10.1038/370094a0. S2CID 4358549.
  25. ^ Hammel, H.B. (December 1994). The Spectacular Swan Song of Shoemaker–Levy 9. 185th AAS Meeting. Vol. 26. American Astronomical Society. p. 1425. Bibcode:1994AAS...185.7201H.
  26. ^ "Remembering Comet Shoemaker-Levy 9's Impact on Jupiter, 23 Years Ago This Week". AmericaSpace. July 17, 2017. Retrieved January 12, 2022.
  27. ^ Bruton, Dan (February 1996). . Frequently Asked Questions about the Collision of Comet Shoemaker–Levy 9 with Jupiter. Stephen F. Austin State University. Archived from the original on August 28, 2021. Retrieved January 27, 2014.
  28. ^ Yeomans, Don; Chodas, Paul (March 18, 1995). "Comet Crash Impact Times Request". Jet Propulsion Laboratory. Retrieved August 26, 2008.
  29. ^ Noll, K.S.; McGrath, MA; Trafton, LM; Atreya, SK; Caldwell, JJ; Weaver, HA; Yelle, RV; Barnet, C; Edgington, S (March 1995). "HST Spectroscopic Observations of Jupiter Following the Impact of Comet Shoemaker–Levy 9". Science. 267 (5202): 1307–1313. Bibcode:1995Sci...267.1307N. doi:10.1126/science.7871428. PMID 7871428. S2CID 37686143.
  30. ^ a b c Hu, Zhong-Wei; Chu, Yi; Zhang, Kai-Jun (May 1996). "On Penetration Depth of the Shoemaker–Levy 9 Fragments into the Jovian Atmosphere". Earth, Moon, and Planets. 73 (2): 147–155. Bibcode:1996EM&P...73..147H. doi:10.1007/BF00114146. S2CID 122382596.
  31. ^ Ingersoll, A. P.; Kanamori, H (April 1995). "Waves from the collisions of comet Shoemaker–Levy 9 with Jupiter". Nature. 374 (6524): 706–708. Bibcode:1995Natur.374..706I. doi:10.1038/374706a0. PMID 7715724. S2CID 4325357.
  32. ^ de Pater, I; Heiles, C; Wong, M; Maddalena, R.; Bird, M.; Funke, O; Neidhoefer, J; Price, R.; Kesteven, M; Calabretta, M; Klein, M. (June 30, 1995). "Outburst of Jupiter's synchrotron radiation after the impact of comet Shoemaker-Levy 9". Science. 268 (5219): 1879–1883. Bibcode:1995Sci...268.1879D. doi:10.1126/science.11536723. ISSN 0036-8075. PMID 11536723.
  33. ^ Olano, C. A. (August 1999). "Jupiter's Synchrotron Emission Induced by the Collision of Comet Shoemaker–Levy 9". Astrophysics and Space Science. 266 (3): 347–369. Bibcode:1999Ap&SS.266..347O. doi:10.1023/A:1002020013936. S2CID 118876167.
  34. ^ Bauske, Rainer; Combi, Michael R.; Clarke, John T. (November 1999). "Analysis of Midlatitude Auroral Emissions Observed during the Impact of Comet Shoemaker–Levy 9 with Jupiter". Icarus. 142 (1): 106–115. Bibcode:1999Icar..142..106B. doi:10.1006/icar.1999.6198.
  35. ^ Brown, Michael E.; Moyer, Elisabeth J.; Bouchez, Antonin H.; Spinrad, Hyron (1995). "Comet Shoemaker–Levy 9: No Effect on the Io Plasma Torus" (PDF). Geophysical Research Letters. 22 (3): 1833–1835. Bibcode:1995GeoRL..22.1833B. doi:10.1029/95GL00904. (PDF) from the original on July 18, 2018.
  36. ^ Ulivi, Paolo; Harland, David M (2007). Robotic Exploration of the Solar System Part I: The Golden Age 1957–1982. Springer. p. 449. ISBN 9780387493268.
  37. ^ Noll, Keith S.; Weaver, Harold A.; Feldman, Paul D . (2006). . Cambridge University Press. Archived from the original on November 24, 2015.
  38. ^ Loders, Katharina; Fegley, Bruce (1998). "Jupiter, Rings and Satellites". The Planetary Scientist's Companion. Oxford University Press. p. 200. ISBN 978-0-19-511694-6.
  39. ^ Hockey, T.A. (1994). "The Shoemaker–Levy 9 Spots on Jupiter: Their Place in History". Earth, Moon, and Planets. 66 (1): 1–9. Bibcode:1994EM&P...66....1H. doi:10.1007/BF00612878. S2CID 121034769.
  40. ^ McGrath, M.A.; Yelle, R. V.; Betremieux, Y. (September 1996). "Long-term Chemical Evolution of the Jupiter Stratosphere Following the SL9 Impacts". Bulletin of the American Astronomical Society. 28: 1149. Bibcode:1996DPS....28.2241M.
  41. ^ Bézard, B. (October 1997). "Long-term Response of Jupiter's Thermal Structure to the SL9 Impacts". Planetary and Space Science. 45 (10): 1251–1271. Bibcode:1997P&SS...45.1251B. doi:10.1016/S0032-0633(97)00068-8.
  42. ^ Moreno, R.; Marten, A; Biraud, Y; Bézard, B; Lellouch, E; Paubert, G; Wild, W (June 2001). "Jovian Stratospheric Temperature during the Two Months Following the Impacts of Comet Shoemaker–Levy 9". Planetary and Space Science. 49 (5): 473–486. Bibcode:2001P&SS...49..473M. doi:10.1016/S0032-0633(00)00139-2.
  43. ^ Ohtsuka, Katsuhito; Ito, T.; Yoshikawa, M.; Asher, D. J.; Arakida, H. (October 2008). "Quasi-Hilda comet 147P/Kushida–Muramatsu. Another long temporary satellite capture by Jupiter". Astronomy and Astrophysics. 489 (3): 1355–1362. arXiv:0808.2277. Bibcode:2008A&A...489.1355O. doi:10.1051/0004-6361:200810321. S2CID 14201751.
  44. ^ Tancredi, G.; Lindgren, M.; Rickman, H. (November 1990). "Temporary Satellite Capture and Orbital Evolution of Comet P/Helin–Roman–Crockett". Astronomy and Astrophysics. 239 (1–2): 375–380. Bibcode:1990A&A...239..375T.
  45. ^ Roulston, M.S.; Ahrens, T (March 1997). "Impact Mechanics and Frequency of SL9-Type Events on Jupiter". Icarus. 126 (1): 138–147. Bibcode:1997Icar..126..138R. doi:10.1006/icar.1996.5636.
  46. ^ Schenk, Paul M.; Asphaug, Erik; McKinnon, William B.; Melosh, H. J.; Weissman, Paul R. (June 1996). "Cometary Nuclei and Tidal Disruption: The Geologic Record of Crater Chains on Callisto and Ganymede". Icarus. 121 (2): 249–24. Bibcode:1996Icar..121..249S. doi:10.1006/icar.1996.0084. hdl:2060/19970022199.
  47. ^ Greeley, R.; Klemaszewski, J.E.; Wagner, R.; the Galileo Imaging Team (2000). "Galileo views of the geology of Callisto". Planetary and Space Science. 48 (9): 829–853. Bibcode:2000P&SS...48..829G. doi:10.1016/S0032-0633(00)00050-7.
  48. ^ "Mystery impact leaves Earth-size mark on Jupiter - CNN.com". www.cnn.com.
  49. ^ Nakamura, T.; Kurahashi, H. (February 1998). "Collisional Probability of Periodic Comets with the Terrestrial Planets – an Invalid Case of Analytic Formulation". Astronomical Journal. 115 (2): 848. Bibcode:1998AJ....115..848N. doi:10.1086/300206. For Jupiter-interacting comets of greater than 1 km diameter, a Jupiter impact takes place every 500–1000 yr, and an Earth impact every 2–4 Myr.
  50. ^ . NASA/JPL Near-Earth Object Program Office. August 22, 2005. Archived from the original on August 8, 2016. Retrieved July 21, 2009.
  51. ^ Wetherill, George W. (February 1994). "Possible consequences of absence of "Jupiters" in planetary systems". Astrophysics and Space Science. 212 (1–2): 23–32. Bibcode:1994Ap&SS.212...23W. doi:10.1007/BF00984505. PMID 11539457. S2CID 21928486.
  52. ^ Horner, J.; Jones, B. W. (2008). "Jupiter – friend or foe? I: The asteroids". International Journal of Astrobiology. 7 (3–4): 251–261. arXiv:0806.2795. Bibcode:2008IJAsB...7..251H. doi:10.1017/S1473550408004187. S2CID 8870726.
  53. ^ Horner, J.; Jones, B. W. (2009). "Jupiter – friend or foe? II: the Centaurs Jupiter". International Journal of Astrobiology. 8 (2): 75–80. arXiv:0903.3305. Bibcode:2009IJAsB...8...75H. doi:10.1017/S1473550408004357. S2CID 8032181.
  54. ^ Grazier, Kevin R. (January 2016). "Jupiter: Cosmic Jekyll and Hyde". Astrobiology. 16 (1): 23–38. Bibcode:2016AsBio..16...23G. doi:10.1089/ast.2015.1321. PMID 26701303. S2CID 23859604.

Bibliography edit

  • Chodas P. W., and Yeomans D. K. (1996), The Orbital Motion and Impact Circumstances of Comet Shoemaker–Levy 9, in The Collision of Comet Shoemaker–Levy 9 and Jupiter, edited by K. S. Noll, P. D. Feldman, and H. A. Weaver, Cambridge University Press, pp. 1–30
  • Chodas P. W. (2002), Communication of Orbital Elements to Selden E. Ball, Jr. Accessed February 21, 2006

External links edit

Listen to this article (23 minutes)
 
This audio file was created from a revision of this article dated 14 April 2006 (2006-04-14), and does not reflect subsequent edits.
  • First Comet Shoemaker-Levy 9 website that collected photos submitted from observatories around the world and from Galileo spacecraft, curated by Ron Baalke, Jet Propulsion Laboratory software engineer
  • Comet Shoemaker–Levy 9 FAQ
  • Comet Shoemaker-Levy 9 Dan Bruton, Texas A&M University
  • APOD: November 5, 2000
  • Comet Shoemaker–Levy Collision with Jupiter
  • Simulation of the orbit of SL-9 showing the passage that fragmented the comet and the collision 2 years later
  • Interactive space simulator that includes accurate 3D simulation of the Shoemaker Levy 9 collision
  • Shoemaker-Levy 9 Jupiter Impact Observing Campaign Archive at the NASA Planetary Data System, Small Bodies Node

comet, shoemaker, levy, shoemaker, levy, redirects, here, other, shoemaker, levy, comets, list, periodic, comets, redirects, here, german, airship, list, schütte, lanz, airships, formally, designated, 1993, broke, apart, july, 1992, collided, with, jupiter, ju. Shoemaker Levy redirects here For other Shoemaker Levy comets see List of periodic comets SL9 redirects here For the German airship see List of Schutte Lanz airships Comet Shoemaker Levy 9 formally designated D 1993 F2 broke apart in July 1992 and collided with Jupiter in July 1994 providing the first direct observation of an extraterrestrial collision of Solar System objects 5 This generated a large amount of coverage in the popular media and the comet was closely observed by astronomers worldwide The collision provided new information about Jupiter and highlighted its possible role in reducing space debris in the inner Solar System D 1993 F2 Shoemaker Levy Shoemaker Levy 9 disrupted comet on a collision course 1 2 total of 21 fragments taken in July 1994 DiscoveryDiscovered byCarolyn ShoemakerEugene ShoemakerDavid LevyDiscovery sitePalomar ObservatoryDiscovery dateMarch 24 1993Orbital characteristicsInclination94 2 Physical characteristicsDimensions1 8 km 1 1 mi 3 4 The comet was discovered by astronomers Carolyn and Eugene M Shoemaker and David Levy in 1993 6 Shoemaker Levy 9 SL9 had been captured by Jupiter and was orbiting the planet at the time It was located on the night of March 24 in a photograph taken with the 46 cm 18 in Schmidt telescope at the Palomar Observatory in California It was the first active comet observed to be orbiting a planet and had probably been captured by Jupiter around 20 to 30 years earlier Calculations showed that its unusual fragmented form was due to a previous closer approach to Jupiter in July 1992 At that time the orbit of Shoemaker Levy 9 passed within Jupiter s Roche limit and Jupiter s tidal forces had acted to pull the comet apart The comet was later observed as a series of fragments ranging up to 2 km 1 2 mi in diameter These fragments collided with Jupiter s southern hemisphere between July 16 and 22 1994 at a speed of approximately 60 km s 37 mi s Jupiter s escape velocity or 216 000 km h 134 000 mph The prominent scars from the impacts were more easily visible than the Great Red Spot and persisted for many months Contents 1 Discovery 2 Comet with a Jovian orbit 3 Predictions for the collision 4 Impacts 5 Observations and discoveries 5 1 Chemical studies 5 2 Waves 5 3 Other observations 6 Post impact analysis 7 Longer term effects 8 Frequency of impacts 8 1 Impact of July 19 2009 9 Jupiter s role in protection of the inner Solar System 10 See also 11 References 11 1 Notes 11 2 Bibliography 12 External linksDiscovery editWhile conducting a program of observations designed to uncover near Earth objects the Shoemakers and Levy discovered Comet Shoemaker Levy 9 on the night of March 24 1993 in a photograph taken with the 0 46 m 1 5 ft Schmidt telescope at the Palomar Observatory in California The comet was thus a serendipitous discovery but one that quickly overshadowed the results from their main observing program 7 Comet Shoemaker Levy 9 was the ninth periodic comet a comet whose orbital period is 200 years or less discovered by the Shoemakers and Levy thence its name It was their eleventh comet discovery overall including their discovery of two non periodic comets which use a different nomenclature The discovery was announced in IAU Circular 5725 on March 26 1993 6 The discovery image gave the first hint that comet Shoemaker Levy 9 was an unusual comet as it appeared to show multiple nuclei in an elongated region about 50 arcseconds long and 10 arcseconds wide Brian G Marsden of the Central Bureau for Astronomical Telegrams noted that the comet lay only about 4 degrees from Jupiter as seen from Earth and that although this could be a line of sight effect its apparent motion in the sky suggested that the comet was physically close to the planet 6 Comet with a Jovian orbit editOrbital studies of the new comet soon revealed that it was orbiting Jupiter rather than the Sun unlike all other comets known at the time Its orbit around Jupiter was very loosely bound with a period of about 2 years and an apoapsis the point in the orbit farthest from the planet of 0 33 astronomical units 49 million kilometres 31 million miles Its orbit around the planet was highly eccentric e 0 9986 8 Tracing back the comet s orbital motion revealed that it had been orbiting Jupiter for some time It is likely that it was captured from a solar orbit in the early 1970s although the capture may have occurred as early as the mid 1960s 9 Several other observers found images of the comet in precovery images obtained before March 24 including Kin Endate from a photograph exposed on March 15 S Otomo on March 17 and a team led by Eleanor Helin from images on March 19 10 An image of the comet on a Schmidt photographic plate taken on March 19 was identified on March 21 by M Lindgren in a project searching for comets near Jupiter 11 However as his team were expecting comets to be inactive or at best exhibit a weak dust coma and SL9 had a peculiar morphology its true nature was not recognised until the official announcement 5 days later No precovery images dating back to earlier than March 1993 have been found Before the comet was captured by Jupiter it was probably a short period comet with an aphelion just inside Jupiter s orbit and a perihelion interior to the asteroid belt 12 The volume of space within which an object can be said to orbit Jupiter is defined by Jupiter s Hill sphere When the comet passed Jupiter in the late 1960s or early 1970s it happened to be near its aphelion and found itself slightly within Jupiter s Hill sphere Jupiter s gravity nudged the comet towards it Because the comet s motion with respect to Jupiter was very small it fell almost straight toward Jupiter which is why it ended up on a Jove centric orbit of very high eccentricity that is to say the ellipse was nearly flattened out 13 The comet had apparently passed extremely close to Jupiter on July 7 1992 just over 40 000 km 25 000 mi above its cloud tops a smaller distance than Jupiter s radius of 70 000 km 43 000 mi and well within the orbit of Jupiter s innermost moon Metis and the planet s Roche limit inside which tidal forces are strong enough to disrupt a body held together only by gravity 13 Although the comet had approached Jupiter closely before the July 7 encounter seemed to be by far the closest and the fragmentation of the comet is thought to have occurred at this time Each fragment of the comet was denoted by a letter of the alphabet from fragment A through to fragment W a practice already established from previously observed fragmented comets 14 More exciting for planetary astronomers was that the best orbital calculations suggested that the comet would pass within 45 000 km 28 000 mi of the center of Jupiter a distance smaller than the planet s radius meaning that there was an extremely high probability that SL9 would collide with Jupiter in July 1994 15 Studies suggested that the train of nuclei would plow into Jupiter s atmosphere over a period of about five days 13 Predictions for the collision editThe discovery that the comet was likely to collide with Jupiter caused great excitement within the astronomical community and beyond as astronomers had never before seen two significant Solar System bodies collide Intense studies of the comet were undertaken and as its orbit became more accurately established the possibility of a collision became a certainty The collision would provide a unique opportunity for scientists to look inside Jupiter s atmosphere as the collisions were expected to cause eruptions of material from the layers normally hidden beneath the clouds 8 Astronomers estimated that the visible fragments of SL9 ranged in size from a few hundred metres around 1 000 ft to two kilometres 1 2 mi across suggesting that the original comet may have had a nucleus up to 5 km 3 1 mi across somewhat larger than Comet Hyakutake which became very bright when it passed close to the Earth in 1996 One of the great debates in advance of the impact was whether the effects of the impact of such small bodies would be noticeable from Earth apart from a flash as they disintegrated like giant meteors 16 The most optimistic prediction was that large asymmetric ballistic fireballs would rise above the limb of Jupiter and into sunlight to be visible from Earth 17 Other suggested effects of the impacts were seismic waves travelling across the planet an increase in stratospheric haze on the planet due to dust from the impacts and an increase in the mass of the Jovian ring system However given that observing such a collision was completely unprecedented astronomers were cautious with their predictions of what the event might reveal 8 Impacts edit nbsp Jupiter in ultraviolet about 2 5 hours after R s impact The black dot near the top is Io transiting Jupiter 18 Anticipation grew as the predicted date for the collisions approached and astronomers trained terrestrial telescopes on Jupiter Several space observatories did the same including the Hubble Space Telescope the ROSAT X ray observing satellite the W M Keck Observatory and the Galileo spacecraft then on its way to a rendezvous with Jupiter scheduled for 1995 Although the impacts took place on the side of Jupiter hidden from Earth Galileo then at a distance of 1 6 AU 240 million km 150 million mi from the planet was able to see the impacts as they occurred Jupiter s rapid rotation brought the impact sites into view for terrestrial observers a few minutes after the collisions 19 Two other space probes made observations at the time of the impact the Ulysses spacecraft primarily designed for solar observations was pointed towards Jupiter from its location 2 6 AU 390 million km 240 million mi away and the distant Voyager 2 probe some 44 AU 6 6 billion km 4 1 billion mi from Jupiter and on its way out of the Solar System following its encounter with Neptune in 1989 was programmed to look for radio emission in the 1 390 kHz range and make observations with its ultraviolet spectrometer 20 nbsp Hubble Space Telescope images of a fireball from the first impact appearing over the limb of the planet nbsp Animation of Shoemaker Levy 9 s orbit around Jupiter Jupiter Fragment A Fragment D Fragment G Fragment N Fragment W Astronomer Ian Morison described the impacts as following The first impact occurred at 20 13 UTC on July 16 1994 when fragment A of the comet s nucleus slammed into Jupiter s southern hemisphere at about 60 km s 35 mi s Instruments on Galileo detected a fireball that reached a peak temperature of about 24 000 K 23 700 C 42 700 F compared to the typical Jovian cloud top temperature of about 130 K 143 C 226 F It then expanded and cooled rapidly to about 1 500 K 1 230 C 2 240 F The plume from the fireball quickly reached a height of over 3 000 km 1 900 mi and was observed by the HST 21 22 A few minutes after the impact fireball was detected Galileo measured renewed heating probably due to ejected material falling back onto the planet Earth based observers detected the fireball rising over the limb of the planet shortly after the initial impact 23 Despite published predictions 17 astronomers had not expected to see the fireballs from the impacts 24 and did not have any idea how visible the other atmospheric effects of the impacts would be from Earth Observers soon saw a huge dark spot after the first impact the spot was visible from Earth This and subsequent dark spots were thought to have been caused by debris from the impacts and were markedly asymmetric forming crescent shapes in front of the direction of impact 25 Over the next six days 21 distinct impacts were observed with the largest coming on July 18 at 07 33 UTC when fragment G struck Jupiter This impact created a giant dark spot over 12 000 km or 7 500 mi 26 almost one Earth diameter across and was estimated to have released an energy equivalent to 6 000 000 megatons of TNT 600 times the world s nuclear arsenal 27 Two impacts 12 hours apart on July 19 created impact marks of similar size to that caused by fragment G and impacts continued until July 22 when fragment W struck the planet 28 Observations and discoveries editChemical studies edit nbsp Brown spots mark impact sites on Jupiter s southern hemisphere Observers hoped that the impacts would give them a first glimpse of Jupiter beneath the cloud tops as lower material was exposed by the comet fragments punching through the upper atmosphere Spectroscopic studies revealed absorption lines in the Jovian spectrum due to diatomic sulfur S2 and carbon disulfide CS2 the first detection of either in Jupiter and only the second detection of S2 in any astronomical object Other molecules detected included ammonia NH3 and hydrogen sulfide H2S The amount of sulfur implied by the quantities of these compounds was much greater than the amount that would be expected in a small cometary nucleus showing that material from within Jupiter was being revealed Oxygen bearing molecules such as sulfur dioxide were not detected to the surprise of astronomers 29 As well as these molecules emission from heavy atoms such as iron magnesium and silicon were detected with abundances consistent with what would be found in a cometary nucleus Although a substantial amount of water was detected spectroscopically it was not as much as predicted meaning that either the water layer thought to exist below the clouds was thinner than predicted or that the cometary fragments did not penetrate deeply enough 30 Waves edit As predicted the collisions generated enormous waves that swept across Jupiter at speeds of 450 m s 1 500 ft s and were observed for over two hours after the largest impacts The waves were thought to be travelling within a stable layer acting as a waveguide and some scientists thought the stable layer must lie within the hypothesised tropospheric water cloud However other evidence seemed to indicate that the cometary fragments had not reached the water layer and the waves were instead propagating within the stratosphere 31 Other observations edit nbsp A sequence of Galileo images taken several seconds apart showing the appearance of the fireball of fragment W on the dark side of Jupiter Radio observations revealed a sharp increase in continuum emission at a wavelength of 21 cm 8 3 in after the largest impacts which peaked at 120 of the normal emission from the planet 32 This was thought to be due to synchrotron radiation caused by the injection of relativistic electrons electrons with velocities near the speed of light into the Jovian magnetosphere by the impacts 33 About an hour after fragment K entered Jupiter observers recorded auroral emission near the impact region as well as at the antipode of the impact site with respect to Jupiter s strong magnetic field The cause of these emissions was difficult to establish due to a lack of knowledge of Jupiter s internal magnetic field and of the geometry of the impact sites One possible explanation was that upwardly accelerating shock waves from the impact accelerated charged particles enough to cause auroral emission a phenomenon more typically associated with fast moving solar wind particles striking a planetary atmosphere near a magnetic pole 34 Some astronomers had suggested that the impacts might have a noticeable effect on the Io torus a torus of high energy particles connecting Jupiter with the highly volcanic moon Io High resolution spectroscopic studies found that variations in the ion density rotational velocity and temperatures at the time of impact and afterwards were within the normal limits 35 Voyager 2 failed to detect anything with calculations showing that the fireballs were just below the craft s limit of detection no abnormal levels of UV radiation or radio signals were registered after the blast 20 36 Ulysses also failed to detect any abnormal radio frequencies 20 Post impact analysis edit nbsp A reddish asymmetric ejecta pattern Several models were devised to compute the density and size of Shoemaker Levy 9 Its average density was calculated to be about 0 5 g cm3 0 018 lb cu in the breakup of a much less dense comet would not have resembled the observed string of objects The size of the parent comet was calculated to be about 1 8 km 1 1 mi in diameter 3 4 These predictions were among the few that were actually confirmed by subsequent observation 37 One of the surprises of the impacts was the small amount of water revealed compared to prior predictions 38 Before the impact models of Jupiter s atmosphere had indicated that the break up of the largest fragments would occur at atmospheric pressures of anywhere from 30 kilopascals to a few tens of megapascals from 0 3 to a few hundred bar 30 with some predictions that the comet would penetrate a layer of water and create a bluish shroud over that region of Jupiter 16 Astronomers did not observe large amounts of water following the collisions and later impact studies found that fragmentation and destruction of the cometary fragments in a meteor air burst probably occurred at much higher altitudes than previously expected with even the largest fragments being destroyed when the pressure reached 250 kPa 36 psi well above the expected depth of the water layer The smaller fragments were probably destroyed before they even reached the cloud layer 30 Longer term effects editThe visible scars from the impacts could be seen on Jupiter for many months They were extremely prominent and observers described them as more easily visible than the Great Red Spot A search of historical observations revealed that the spots were probably the most prominent transient features ever seen on the planet and that although the Great Red Spot is notable for its striking color no spots of the size and darkness of those caused by the SL9 impacts had ever been recorded before or since 39 Spectroscopic observers found that ammonia and carbon disulfide persisted in the atmosphere for at least fourteen months after the collisions with a considerable amount of ammonia being present in the stratosphere as opposed to its normal location in the troposphere 40 Counterintuitively the atmospheric temperature dropped to normal levels much more quickly at the larger impact sites than at the smaller sites at the larger impact sites temperatures were elevated over a region 15 000 to 20 000 km 9 300 to 12 400 mi wide but dropped back to normal levels within a week of the impact At smaller sites temperatures 10 K 10 C 18 F higher than the surroundings persisted for almost two weeks 41 Global stratospheric temperatures rose immediately after the impacts then fell to below pre impact temperatures 2 3 weeks afterwards before rising slowly to normal temperatures 42 Frequency of impacts editMain article Impact events on Jupiter nbsp Enki Catena a chain of craters on Ganymede probably caused by a similar impact event The picture covers an area approximately 190 km 120 mi across SL9 is not unique in having orbited Jupiter for a time five comets including 82P Gehrels 147P Kushida Muramatsu and 111P Helin Roman Crockett are known to have been temporarily captured by the planet 43 44 Cometary orbits around Jupiter are unstable as they will be highly elliptical and likely to be strongly perturbed by the Sun s gravity at apojove the farthest point on the orbit from the planet By far the most massive planet in the Solar System Jupiter can capture objects relatively frequently but the size of SL9 makes it a rarity one post impact study estimated that comets 0 3 km 0 19 mi in diameter impact the planet once in approximately 500 years and those 1 6 km 1 mi in diameter do so just once in every 6 000 years 45 There is very strong evidence that comets have previously been fragmented and collided with Jupiter and its satellites During the Voyager missions to the planet planetary scientists identified 13 crater chains on Callisto and three on Ganymede the origin of which was initially a mystery 46 Crater chains seen on the Moon often radiate from large craters and are thought to be caused by secondary impacts of the original ejecta but the chains on the Jovian moons did not lead back to a larger crater The impact of SL9 strongly implied that the chains were due to trains of disrupted cometary fragments crashing into the satellites 47 Impact of July 19 2009 edit Main article 2009 Jupiter impact event On July 19 2009 exactly 15 years after the SL9 impacts a new black spot about the size of the Pacific Ocean appeared in Jupiter s southern hemisphere Thermal infrared measurements showed the impact site was warm and spectroscopic analysis detected the production of excess hot ammonia and silica rich dust in the upper regions of Jupiter s atmosphere Scientists have concluded that another impact event had occurred but this time a more compact and stronger object probably a small undiscovered asteroid was the cause 48 Jupiter s role in protection of the inner Solar System editSee also Asteroid impact avoidance The events of SL9 s interaction with Jupiter greatly highlighted Jupiter s role in protecting the inner planets from both interstellar and in system debris by acting as a cosmic vacuum cleaner for the Solar System Jupiter barrier The planet s strong gravitational influence attracts many small comets and asteroids and the rate of cometary impacts on Jupiter is thought to be between 2 000 and 8 000 times higher than the rate on Earth 49 The extinction of the non avian dinosaurs at the end of the Cretaceous period is generally thought to have been caused by the Cretaceous Paleogene impact event which created the Chicxulub crater 50 demonstrating that cometary impacts are indeed a serious threat to life on Earth Astronomers have speculated that without Jupiter s immense gravity extinction events might have been more frequent on Earth and complex life might not have been able to develop 51 This is part of the argument used in the Rare Earth hypothesis In 2009 it was shown that the presence of a smaller planet at Jupiter s position in the Solar System might increase the impact rate of comets on the Earth significantly A planet of Jupiter s mass still seems to provide increased protection against asteroids but the total effect on all orbital bodies within the Solar System is unclear This and other recent models call into question the nature of Jupiter s influence on Earth impacts 52 53 54 See also editList of Jupiter events Impact events on Jupiter Atmosphere of Jupiter 73P Schwassmann Wachmann a near Earth comet in the process of disintegratingReferences editNotes edit Howell E February 19 2013 Shoemaker Levy 9 Comet s Impact Left Its Mark on Jupiter Space com Panoramic Picture of Comet P Shoemaker Levy 9 HubbleSite org Retrieved December 3 2021 a b Solem J C 1995 Cometary breakup calculations based on a gravitationally bound agglomeration model The density and size of Comet Shoemaker Levy 9 Astronomy and Astrophysics 302 2 596 608 Bibcode 1995A amp A 302 596S a b Solem J C 1994 Density and size of Comet Shoemaker Levy 9 deduced from a tidal breakup model Nature 370 6488 349 351 Bibcode 1994Natur 370 349S doi 10 1038 370349a0 S2CID 4313295 Comet Shoemaker Levy 9 Collision with Jupiter National Space Science Data Center February 2005 Archived from the original on February 19 2013 Retrieved August 26 2008 a b c Marsden B G 1993 Comet Shoemaker Levy 1993e IAU Circular 5725 Marsden Brian G July 18 1997 Eugene Shoemaker 1928 1997 Jet Propulsion Laboratory Retrieved August 24 2008 a b c Burton Dan July 1994 What will be the effect of the collision Frequently Asked Questions about the Collision of Comet Shoemaker Levy 9 with Jupiter Stephen F Austin State University Archived from the original on December 9 2012 Retrieved August 20 2008 Landis R R 1994 Comet P Shoemaker Levy s Collision with Jupiter Covering HST s Planned Observations from Your Planetarium Proceedings of the International Planetarium Society Conference held at the Astronaut Memorial Planetarium amp Observatory Cocoa Florida July 10 16 1994 SEDS Archived from the original on August 8 2008 Retrieved August 8 2008 D 1993 F2 Shoemaker Levy 9 Gary W Kronk s Cometography 1994 Archived from the original on May 9 2008 Retrieved August 8 2008 Lindgren Mats August 1996 Searching for comets encountering Jupiter Second campaign observations and further constraints on the size of the Jupiter family population Astronomy and Astrophysics Supplement Series 118 2 293 301 Bibcode 1996A amp AS 118 293L doi 10 1051 aas 1996198 Benner L A McKinnon W B March 1994 Pre Impact Orbital Evolution of P Shoemaker Levy 9 Abstracts of the 25th Lunar and Planetary Science Conference Held in Houston TX March 14 18 1994 25 93 Bibcode 1994LPI 25 93B a b c Chapman C R June 1993 Comet on target for Jupiter Nature 363 6429 492 493 Bibcode 1993Natur 363 492C doi 10 1038 363492a0 S2CID 27605268 Boehnhardt H November 2004 Split comets In M C Festou H U Keller and H A Weaver ed Comets II University of Arizona Press p 301 ISBN 978 0 8165 2450 1 Marsden B G 1993 Periodic Comet Shoemaker Levy 9 1993e IAU Circular 5800 a b Bruton Dan July 1994 Can I see the effects with my telescope Frequently Asked Questions about the Collision of Comet Shoemaker Levy 9 with Jupiter Stephen F Austin State University Archived from the original on December 9 2012 Retrieved August 20 2008 a b Boslough Mark B Crawford David A Robinson Allen C Trucano Timothy G July 5 1994 Watching for Fireballs on Jupiter Eos Transactions American Geophysical Union 75 27 305 Bibcode 1994EOSTr 75 305B doi 10 1029 94eo00965 Hubble Ultraviolet Image of Multiple Comet Impacts on Jupiter News Release Number STScI 1994 35 Hubble Space Telescope Comet Team July 23 1994 Archived from the original on December 5 2017 Retrieved November 12 2014 Yeomans D K December 1993 Periodic comet Shoemaker Levy 9 1993e IAU Circular 5909 Retrieved July 5 2011 a b c Williams David R Ulysses and Voyager 2 Lunar and Planetary Science National Space Science Data Center Retrieved August 25 2008 Morison Ian September 25 2014 A Journey through the Universe Gresham Lectures on Astronomy Cambridge University Press p 110 ISBN 978 1 316 12380 5 Retrieved January 12 2022 Martin Terry Z September 1996 Shoemaker Levy 9 Temperature Diameter and Energy of Fireballs Bulletin of the American Astronomical Society 28 1085 Bibcode 1996DPS 28 0814M Weissman P R Carlson R W Hui J Segura M Smythe W D Baines K H Johnson T V Drossart P Encrenaz T et al March 1995 Galileo NIMS Direct Observation of the Shoemaker Levy 9 Fireballs and Fall Back Abstracts of the Lunar and Planetary Science Conference 26 1483 Bibcode 1995LPI 26 1483W Weissman Paul July 14 1994 The Big Fizzle is coming Nature 370 6485 94 95 Bibcode 1994Natur 370 94W doi 10 1038 370094a0 S2CID 4358549 Hammel H B December 1994 The Spectacular Swan Song of Shoemaker Levy 9 185th AAS Meeting Vol 26 American Astronomical Society p 1425 Bibcode 1994AAS 185 7201H Remembering Comet Shoemaker Levy 9 s Impact on Jupiter 23 Years Ago This Week AmericaSpace July 17 2017 Retrieved January 12 2022 Bruton Dan February 1996 What were some of the effects of the collisions Frequently Asked Questions about the Collision of Comet Shoemaker Levy 9 with Jupiter Stephen F Austin State University Archived from the original on August 28 2021 Retrieved January 27 2014 Yeomans Don Chodas Paul March 18 1995 Comet Crash Impact Times Request Jet Propulsion Laboratory Retrieved August 26 2008 Noll K S McGrath MA Trafton LM Atreya SK Caldwell JJ Weaver HA Yelle RV Barnet C Edgington S March 1995 HST Spectroscopic Observations of Jupiter Following the Impact of Comet Shoemaker Levy 9 Science 267 5202 1307 1313 Bibcode 1995Sci 267 1307N doi 10 1126 science 7871428 PMID 7871428 S2CID 37686143 a b c Hu Zhong Wei Chu Yi Zhang Kai Jun May 1996 On Penetration Depth of the Shoemaker Levy 9 Fragments into the Jovian Atmosphere Earth Moon and Planets 73 2 147 155 Bibcode 1996EM amp P 73 147H doi 10 1007 BF00114146 S2CID 122382596 Ingersoll A P Kanamori H April 1995 Waves from the collisions of comet Shoemaker Levy 9 with Jupiter Nature 374 6524 706 708 Bibcode 1995Natur 374 706I doi 10 1038 374706a0 PMID 7715724 S2CID 4325357 de Pater I Heiles C Wong M Maddalena R Bird M Funke O Neidhoefer J Price R Kesteven M Calabretta M Klein M June 30 1995 Outburst of Jupiter s synchrotron radiation after the impact of comet Shoemaker Levy 9 Science 268 5219 1879 1883 Bibcode 1995Sci 268 1879D doi 10 1126 science 11536723 ISSN 0036 8075 PMID 11536723 Olano C A August 1999 Jupiter s Synchrotron Emission Induced by the Collision of Comet Shoemaker Levy 9 Astrophysics and Space Science 266 3 347 369 Bibcode 1999Ap amp SS 266 347O doi 10 1023 A 1002020013936 S2CID 118876167 Bauske Rainer Combi Michael R Clarke John T November 1999 Analysis of Midlatitude Auroral Emissions Observed during the Impact of Comet Shoemaker Levy 9 with Jupiter Icarus 142 1 106 115 Bibcode 1999Icar 142 106B doi 10 1006 icar 1999 6198 Brown Michael E Moyer Elisabeth J Bouchez Antonin H Spinrad Hyron 1995 Comet Shoemaker Levy 9 No Effect on the Io Plasma Torus PDF Geophysical Research Letters 22 3 1833 1835 Bibcode 1995GeoRL 22 1833B doi 10 1029 95GL00904 Archived PDF from the original on July 18 2018 Ulivi Paolo Harland David M 2007 Robotic Exploration of the Solar System Part I The Golden Age 1957 1982 Springer p 449 ISBN 9780387493268 Noll Keith S Weaver Harold A Feldman Paul D 2006 Proceedings of Space Telescope Science Institute Workshop Baltimore MD May 9 12 1995 IAU Colloquium 156 The Collision of Comet Shoemaker Levy 9 and Jupiter Cambridge University Press Archived from the original on November 24 2015 Loders Katharina Fegley Bruce 1998 Jupiter Rings and Satellites The Planetary Scientist s Companion Oxford University Press p 200 ISBN 978 0 19 511694 6 Hockey T A 1994 The Shoemaker Levy 9 Spots on Jupiter Their Place in History Earth Moon and Planets 66 1 1 9 Bibcode 1994EM amp P 66 1H doi 10 1007 BF00612878 S2CID 121034769 McGrath M A Yelle R V Betremieux Y September 1996 Long term Chemical Evolution of the Jupiter Stratosphere Following the SL9 Impacts Bulletin of the American Astronomical Society 28 1149 Bibcode 1996DPS 28 2241M Bezard B October 1997 Long term Response of Jupiter s Thermal Structure to the SL9 Impacts Planetary and Space Science 45 10 1251 1271 Bibcode 1997P amp SS 45 1251B doi 10 1016 S0032 0633 97 00068 8 Moreno R Marten A Biraud Y Bezard B Lellouch E Paubert G Wild W June 2001 Jovian Stratospheric Temperature during the Two Months Following the Impacts of Comet Shoemaker Levy 9 Planetary and Space Science 49 5 473 486 Bibcode 2001P amp SS 49 473M doi 10 1016 S0032 0633 00 00139 2 Ohtsuka Katsuhito Ito T Yoshikawa M Asher D J Arakida H October 2008 Quasi Hilda comet 147P Kushida Muramatsu Another long temporary satellite capture by Jupiter Astronomy and Astrophysics 489 3 1355 1362 arXiv 0808 2277 Bibcode 2008A amp A 489 1355O doi 10 1051 0004 6361 200810321 S2CID 14201751 Tancredi G Lindgren M Rickman H November 1990 Temporary Satellite Capture and Orbital Evolution of Comet P Helin Roman Crockett Astronomy and Astrophysics 239 1 2 375 380 Bibcode 1990A amp A 239 375T Roulston M S Ahrens T March 1997 Impact Mechanics and Frequency of SL9 Type Events on Jupiter Icarus 126 1 138 147 Bibcode 1997Icar 126 138R doi 10 1006 icar 1996 5636 Schenk Paul M Asphaug Erik McKinnon William B Melosh H J Weissman Paul R June 1996 Cometary Nuclei and Tidal Disruption The Geologic Record of Crater Chains on Callisto and Ganymede Icarus 121 2 249 24 Bibcode 1996Icar 121 249S doi 10 1006 icar 1996 0084 hdl 2060 19970022199 Greeley R Klemaszewski J E Wagner R the Galileo Imaging Team 2000 Galileo views of the geology of Callisto Planetary and Space Science 48 9 829 853 Bibcode 2000P amp SS 48 829G doi 10 1016 S0032 0633 00 00050 7 Mystery impact leaves Earth size mark on Jupiter CNN com www cnn com Nakamura T Kurahashi H February 1998 Collisional Probability of Periodic Comets with the Terrestrial Planets an Invalid Case of Analytic Formulation Astronomical Journal 115 2 848 Bibcode 1998AJ 115 848N doi 10 1086 300206 For Jupiter interacting comets of greater than 1 km diameter a Jupiter impact takes place every 500 1000 yr and an Earth impact every 2 4 Myr PIA01723 Space Radar Image of the Yucatan Impact Crater Site NASA JPL Near Earth Object Program Office August 22 2005 Archived from the original on August 8 2016 Retrieved July 21 2009 Wetherill George W February 1994 Possible consequences of absence of Jupiters in planetary systems Astrophysics and Space Science 212 1 2 23 32 Bibcode 1994Ap amp SS 212 23W doi 10 1007 BF00984505 PMID 11539457 S2CID 21928486 Horner J Jones B W 2008 Jupiter friend or foe I The asteroids International Journal of Astrobiology 7 3 4 251 261 arXiv 0806 2795 Bibcode 2008IJAsB 7 251H doi 10 1017 S1473550408004187 S2CID 8870726 Horner J Jones B W 2009 Jupiter friend or foe II the Centaurs Jupiter International Journal of Astrobiology 8 2 75 80 arXiv 0903 3305 Bibcode 2009IJAsB 8 75H doi 10 1017 S1473550408004357 S2CID 8032181 Grazier Kevin R January 2016 Jupiter Cosmic Jekyll and Hyde Astrobiology 16 1 23 38 Bibcode 2016AsBio 16 23G doi 10 1089 ast 2015 1321 PMID 26701303 S2CID 23859604 Bibliography edit Chodas P W and Yeomans D K 1996 The Orbital Motion and Impact Circumstances of Comet Shoemaker Levy 9 in The Collision of Comet Shoemaker Levy 9 and Jupiter edited by K S Noll P D Feldman and H A Weaver Cambridge University Press pp 1 30 Chodas P W 2002 Communication of Orbital Elements to Selden E Ball Jr Accessed February 21 2006External links edit nbsp Wikimedia Commons has media related to Comet Shoemaker Levy 9 Listen to this article 23 minutes source source nbsp This audio file was created from a revision of this article dated 14 April 2006 2006 04 14 and does not reflect subsequent edits Audio help More spoken articles First Comet Shoemaker Levy 9 website that collected photos submitted from observatories around the world and from Galileo spacecraft curated by Ron Baalke Jet Propulsion Laboratory software engineer Comet Shoemaker Levy 9 FAQ Comet Shoemaker Levy 9 Photo Gallery Downloadable gif Animation showing time course of impact and size relative to earthsize Comet Shoemaker Levy 9 Dan Bruton Texas A amp M University Jupiter Swallows Comet Shoemaker Levy 9 APOD November 5 2000 Comet Shoemaker Levy Collision with Jupiter National Space Science Data Center information Simulation of the orbit of SL 9 showing the passage that fragmented the comet and the collision 2 years later Interactive space simulator that includes accurate 3D simulation of the Shoemaker Levy 9 collision Shoemaker Levy 9 Jupiter Impact Observing Campaign Archive at the NASA Planetary Data System Small Bodies Node Portals nbsp Astronomy nbsp Stars nbsp Spaceflight nbsp Outer space nbsp Solar System Retrieved from https en wikipedia org w index php title Comet Shoemaker Levy 9 amp oldid 1219980110, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.