fbpx
Wikipedia

Nav1.7

Nav1.7 is a sodium ion channel that in humans is encoded by the SCN9A gene.[5][6][7] It is usually expressed at high levels in two types of neurons: the nociceptive (pain) neurons at dorsal root ganglion (DRG) and trigeminal ganglion and sympathetic ganglion neurons, which are part of the autonomic (involuntary) nervous system.[8][9]

SCN9A
Available structures
PDBOrtholog search: PDBe RCSB
Identifiers
AliasesSCN9A, ETHA, FEB3B, GEFSP7, HSAN2D, NE-NA, NENA, Nav1.7, PN1, SFNP, sodium voltage-gated channel alpha subunit 9
External IDsOMIM: 603415 MGI: 107636 HomoloGene: 2237 GeneCards: SCN9A
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_002977
NM_001365536

NM_001290674
NM_001290675
NM_018852

RefSeq (protein)

NP_002968
NP_001352465

NP_001277603
NP_001277604

Location (UCSC)Chr 2: 166.2 – 166.38 MbChr 2: 66.31 – 66.47 Mb
PubMed search[3][4]
Wikidata
View/Edit HumanView/Edit Mouse

Function edit

 
Structure of human voltage-gated sodium channel Nav1.7 in complex with auxiliary beta subunits, ProTx-II and tetrodotoxin (Y1755 down) from the RCSB PDB (6J8J).

Nav1.7 is a voltage-gated sodium channel and plays a critical role in the generation and conduction of action potentials and is thus important for electrical signaling by most excitable cells. Nav1.7 is present at the endings of pain-sensing nerves, the nociceptors, close to the region where the impulse is initiated. Stimulation of the nociceptor nerve endings produces "generator potentials", which are small changes in the voltage across the neuronal membranes. The Nav1.7 channel amplifies these membrane depolarizations, and when the membrane potential difference reaches a specific threshold, the neuron fires. In sensory neurons, multiple voltage-dependent sodium currents can be differentiated by their voltage dependence and by sensitivity to the voltage-gated sodium-channel blocker tetrodotoxin. The Nav1.7 channel produces a rapidly activating and inactivating current which is sensitive to the level of tetrodotoxin.[10] Nav1.7 is important in the early phases of neuronal electrogenesis. Nav1.7 activity consists of a slow transition of the channel into an inactive state when it is depolarized, even to a minor degree.[11] This property allows these channels to remain available for activation with even small or slowly developing depolarizations. Stimulation of the nociceptor nerve endings produces "generator potentials", small changes in the voltage across the neuronal membranes.[11] This brings neurons to a voltage that stimulate Nav1.8, which has a more depolarized activation threshold that produces most of the transmembrane current responsible for the depolarizing phase of action potentials.[12]

Cell-Based Assays edit

Heteromultimeric ion channels such as Nav1.7 comprise multiple subunits including a pore forming subunits and accessory subunits. Creation of laboratory cells that comprise multiple subunits is challenging. Fluorogenic signaling probes and flow cytometry have been used to create laboratory cells that comprise heteromultimetic Nav1.7 including at least two of its accessory subunits.[13]

Clinical significance edit

Animal studies edit

The critical role of Nav1.7 in nociception and pain was originally shown using Cre-Lox recombination tissue specific knockout mice. These transgenic mice specifically lack Nav1.7 in Nav1.8 positive nociceptors and showed reduced behavioural responses, specifically to acute mechanical and inflammatory pain assays. At the same time, behavioural responses to acute thermal and neuropathic pain assays remained intact.[14] However, the expression of Nav1.7 is not restricted to Nav1.8 positive DRG neurons. Further work examining the behavioural response of two other transgenic mouse strains; one lacking Nav1.7 in all DRG neurons and the other lacking Nav1.7 in all DRG neurons as well as all sympathetic neurons, has revealed distinct sets of modality specific peripheral neurons.[15] Therefore, Nav1.7 expressed in Nav1.8 positive DRG neurons is critical for normal responses to acute mechanical and inflammatory pain assays. Whilst Nav1.7 expressed in Nav1.8 negative DRG neurons is critical for normal responses to acute thermal pain assays. Finally, Nav1.7 expressed in sympathetic neurons is critical for normal behavioural responses to neuropathic pain assays.

Primary erythromelalgia edit

Mutation in Nav1.7 may result in primary erythromelalgia (PE), an autosomal dominant, inherited disorder which is characterized by attacks or episodes of symmetrical burning pain of the feet, lower legs, and sometimes hands, elevated skin temperature of affected areas, and reddened extremities. The mutation causes excessive channel activity which suggests that Nav1.7 sets the gain on pain signaling in humans. It was observed that a missense mutation in the SCN9A gene affected conserved residues in the pore-forming α subunit of the Nav1.7 channel. Multiple studies have found a dozen SCN9A mutations in multiple families as causing erythromelagia.[16][17] All of the observed erythromelalgia mutations that are observed are missense mutations that change important and highly conserved amino acid residues of the Nav1.7 protein. The majority of mutations that cause PE are located in cytoplasmic linkers of the Nav1.7 channel, however some mutations are present in transmembrane domains of the channel. The PE mutations cause a hyperpolarizing shift in the voltage dependence of channel activation, which allows the channel to be activated by smaller than normal depolarizations, thus enhancing the activity of Nav1.7. Moreover, the majority of the PE mutations also slow deactivation, thus keeping the channel open longer once it is activated.[18] In addition, in response to a slow, depolarizing stimulus, most mutant channels will generate a larger than normal sodium current. Each of these alterations in activation and deactivation can contribute to the hyperexcitability of pain-signaling DRG neurons expressing these mutant channels, thus causing extreme sensitivity to pain (hyperalgesia). While the expression of PE Nav1.7 mutations produces hyperexcitability in DRG neurons, studies on cultured rat in sympathetic ganglion neurons indicate that expression of these same PE mutations results in reduction of excitability of these cells. This occurs because Nav1.8 channels, which are selectively expressed in addition to Nav1.7 in DRG neurons, are not present within sympathetic ganglion neurons. Thus lack of Nav1.7 results in inactivation of the sodium channels results in reduced excitability. Thus physiological interaction of Nav1.7 and Nav1.8 can explain the reason that PE presents with pain due to hyperexcitability of nociceptors and with sympathetic dysfunction that is most likely due to hypoexcitability of sympathetic ganglion neurons.[9] Recent studies have associated a defect in SCN9A with congenital insensitivity to pain.[19]

Paroxysmal extreme pain disorder edit

Paroxysmal extreme pain disorder (PEPD) is another rare, extreme pain disorder.[20][21] Like primary erythromelalgia, PEPD is similarly the result of a gain-of-function mutation in the gene encoding the Nav1.7 channel.[20][21] The decreased inactivation caused by the mutation is cause of prolonged action potentials and repetitive firing. Such altered firing will cause increased pain sensation and increased sympathetic nervous system activity, producing the phenotype observed in patients with PEPD.[22]

Congenital insensitivity to pain edit

Individuals with congenital insensitivity to pain have painless injuries beginning in infancy but otherwise normal sensory responses upon examination. Patients frequently have bruises and cuts,[23] and are often only diagnosed because of limping or lack of use of a limb. Individuals have been reported to be able to walk over burning coals and to insert knives and drive spikes through their arms. It has been observed that the insensitivity to pain does not appear to be due to axonal degeneration.

A mutation that causes loss of Nav1.7 function has been detected in three consanguineous families from northern Pakistan. All mutations observed were nonsense mutation, with the majority of affected patients having a homozygous mutation in the SCN9A gene. This discovery linked loss of Nav1.7 function with the inability to experience pain. This is in contrast with the genetic basis of primary erythromelalgia in which the disorder results from gain-of-function mutations.[19]

Clinical analgesics edit

Local anesthetics such as lidocaine, but also the anticonvulsant phenytoin, mediate their analgesic effects by non-selectively blocking voltage-gated sodium channels.[24][25] Nav1.7, as well as Nav1.3, Nav1.8, and Nav1.9, are the specific channels that have been implicated in pain signaling.[24][26] Thus, the blockade of these specific channels is likely to underlie the analgesia of local anesthetics and anticonvulsants such as phenytoin.[24] In addition, inhibition of these channels is also likely responsible for the analgesic efficacy of certain tricyclic antidepressants, and of mexiletine.[27][28]

Itch edit

Mutations of Nav1.7 have been linked to itching (pruritus),[29][30] and genetic knockouts of Nav1.7[31] and an antibody that inhibits Nav1.7 also appear to inhibit itching.[32][33][34]

Future prospects edit

As the Nav1.7 channel appears to be a highly important component in nociception, with null activity conferring total analgesia,[21] there has been immense interest in developing selective Nav1.7 channel blockers as potential novel analgesics.[35] Since Nav1.7 is not present in heart tissue or the central nervous system, selective blockers of Nav1.7, unlike non-selective blockers such as local anesthetics, could be safely used systemically for pain relief. Moreover, selective Nav1.7 blockers may prove to be far more effective analgesics, and with fewer undesirable effects, relative to current pharmacotherapies.[35][36][37]

A number of selective Nav1.7 (and/or Nav1.8) blockers are in clinical development, including funapide (TV-45070, XEN402), PF-05089771, DSP-2230, NKTR-171, GDC-0276, and RG7893 (GDC-0287).[38][39][40] Ralfinamide (formerly NW-1029, FCE-26742A, PNU-0154339E) is a multimodal, non-selective Nav channel blocker which is under development for the treatment of pain.[41]

Surprisingly, many potent Nav1.7 blockers have been found to be clinically effective but only relatively weak analgesics.[42] Recently, it has been elucidated that congenital loss of Navv1.7 results in a dramatic increase in the levels of endogenous enkephalins, and it was found that blocking these opioids with the opioid antagonist naloxone allowed for pain sensitivity both in Navv1.7 null mice and in a woman with a defective Navv1.7 gene and associated congenital insensitivity to pain.[42] Development of the venom-derived peptide, JNJ63955 allowed for selective inhibition of Nav1.7 only while it was in the closed state, which produced results, in mice, much more similar to knock-out models.[43][unreliable medical source] It is possible that channel blockade is maximal only when the channel is inhibited in its closed state. It appears that complete inactivation of Nav1.7-mediated sodium efflux is necessary to upregulate enkephalin expression enough to achieve complete analgesia. Prior to the development of JNJ63955, the most potent [Nav 1.7] antagonists had failed in regards to achieving the same degree of analgesia as congenital Nav1.7 inactivity.[42] The proposed mechanism also suggests that the analgesic effects of Nav1.7 blockers may be greatly potentiated by the co-administration of exogenous opioids or enkephalinase inhibitors.[42] Supporting this idea, a strong analgesic synergy between local anesthetics and topical opioids has already been observed in clinical research.[42]

An additional implication of the aforementioned findings is that congenital insensitivity to pain may be clinically treatable with opioid antagonists.[42]

In 2021, researchers described a novel approach, developing a CRISPR-dCas9 epigenome editing method for a potential treatment of chronic pain by repressing Nav1.7 gene expression which showed therapeutic potential in three mouse models of chronic pain.[44][45]

References edit

  1. ^ a b c GRCh38: Ensembl release 89: ENSG00000169432 - Ensembl, May 2017
  2. ^ a b c GRCm38: Ensembl release 89: ENSMUSG00000075316 - Ensembl, May 2017
  3. ^ "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. ^ "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. ^ Klugbauer N, Lacinova L, Flockerzi V, Hofmann F (March 1995). "Structure and functional expression of a new member of the tetrodotoxin-sensitive voltage-activated sodium channel family from human neuroendocrine cells". The EMBO Journal. 14 (6): 1084–90. doi:10.1002/j.1460-2075.1995.tb07091.x. PMC 398185. PMID 7720699.
  6. ^ Plummer NW, Meisler MH (April 1999). "Evolution and diversity of mammalian sodium channel genes". Genomics. 57 (2): 323–31. doi:10.1006/geno.1998.5735. PMID 10198179.
  7. ^ Catterall WA, Goldin AL, Waxman SG (December 2005). "International Union of Pharmacology. XLVII. Nomenclature and structure-function relationships of voltage-gated sodium channels". Pharmacological Reviews. 57 (4): 397–409. doi:10.1124/pr.57.4.4. PMID 16382098. S2CID 7332624.
  8. ^ Raymond CK, Castle J, Garrett-Engele P, Armour CD, Kan Z, Tsinoremas N, Johnson JM (October 2004). "Expression of alternatively spliced sodium channel alpha-subunit genes. Unique splicing patterns are observed in dorsal root ganglia". The Journal of Biological Chemistry. 279 (44): 46234–41. doi:10.1074/jbc.M406387200. PMID 15302875.
  9. ^ a b Rush AM, Dib-Hajj SD, Liu S, Cummins TR, Black JA, Waxman SG (May 2006). "A single sodium channel mutation produces hyper- or hypoexcitability in different types of neurons". Proceedings of the National Academy of Sciences of the United States of America. 103 (21): 8245–50. Bibcode:2006PNAS..103.8245R. doi:10.1073/pnas.0602813103. PMC 1472458. PMID 16702558.
  10. ^ Catterall WA (2000). "Structure and regulation of voltage-gated Ca2+ channels". Annual Review of Cell and Developmental Biology. 16: 521–55. doi:10.1146/annurev.cellbio.16.1.521. PMID 11031246.
  11. ^ a b Cummins TR, Howe JR, Waxman SG (December 1998). "Slow closed-state inactivation: a novel mechanism underlying ramp currents in cells expressing the hNE/PN1 sodium channel". The Journal of Neuroscience. 18 (23): 9607–19. doi:10.1523/JNEUROSCI.18-23-09607.1998. PMC 6793269. PMID 9822722.
  12. ^ Renganathan M, Cummins TR, Waxman SG (August 2001). "Contribution of Na(v)1.8 sodium channels to action potential electrogenesis in DRG neurons". Journal of Neurophysiology. 86 (2): 629–40. doi:10.1152/jn.2001.86.2.629. PMID 11495938. S2CID 11579149.
  13. ^ Shekdar K, Langer J, Venkatachalan S, Schmid L, Anobile J, Shah P, et al. (March 2021). "Cell engineering method using fluorogenic oligonucleotide signaling probes and flow cytometry". Biotechnology Letters. 43 (5): 949–958. doi:10.1007/s10529-021-03101-5. PMC 7937778. PMID 33683511.
  14. ^ Nassar MA, Stirling LC, Forlani G, Baker MD, Matthews EA, Dickenson AH, Wood JN (August 2004). "Nociceptor-specific gene deletion reveals a major role for Nav1.7 (PN1) in acute and inflammatory pain". Proceedings of the National Academy of Sciences of the United States of America. 101 (34): 12706–11. Bibcode:2004PNAS..10112706N. doi:10.1073/pnas.0404915101. PMC 515119. PMID 15314237.
  15. ^ Minett MS, Nassar MA, Clark AK, Passmore G, Dickenson AH, Wang F, Malcangio M, Wood JN (April 2012). "Distinct Nav1.7-dependent pain sensations require different sets of sensory and sympathetic neurons". Nature Communications. 3 (4): 791–799. Bibcode:2012NatCo...3..791M. doi:10.1038/ncomms1795. PMC 3337979. PMID 22531176.
  16. ^ Dib-Hajj SD, Yang Y, Black JA, Waxman SG (January 2013). "The Na(V)1.7 sodium channel: from molecule to man". Nature Reviews. Neuroscience. 14 (1): 49–62. doi:10.1038/nrn3404. PMID 23232607. S2CID 5489010.
  17. ^ Tang Z, Chen Z, Tang B, Jiang H (September 2015). "Primary erythromelalgia: a review". Orphanet Journal of Rare Diseases. 10: 127. doi:10.1186/s13023-015-0347-1. PMC 4589109. PMID 26419464.
  18. ^ Drenth JP, Michiels JJ (June 1994). "Erythromelalgia and erythermalgia: diagnostic differentiation". International Journal of Dermatology. 33 (6): 393–7. doi:10.1111/j.1365-4362.1994.tb04037.x. PMID 8056469. S2CID 3033396.
  19. ^ a b Golshani AE, Kamdar AA, Spence SC, Beckmann NM (August 2014). "Congenital indifference to pain: an illustrated case report and literature review". Journal of Radiology Case Reports. 8 (8): 16–23. doi:10.3941/jrcr.v8i8.2194. PMC 4242143. PMID 25426241.
  20. ^ a b Allerton C, Fox D (2013). Pain Therapeutics: Current and Future Treatment Paradigms. Royal Society of Chemistry. pp. 146–148. ISBN 978-1-84973-645-9.
  21. ^ a b c Kew JN, Davies CH (2010). Ion Channels: From Structure to Function. Oxford University Press. pp. 153–154. ISBN 978-0-19-929675-0.
  22. ^ Fertleman CR, Baker MD, Parker KA, Moffatt S, Elmslie FV, Abrahamsen B, et al. (December 2006). "SCN9A mutations in paroxysmal extreme pain disorder: allelic variants underlie distinct channel defects and phenotypes". Neuron. 52 (5): 767–74. doi:10.1016/j.neuron.2006.10.006. PMID 17145499. S2CID 11715780.
  23. ^ Peddareddygari LR, Oberoi K, Grewal RP (2014-09-18). "Congenital insensitivity to pain: a case report and review of the literature". Case Reports in Neurological Medicine. 2014: 141953. doi:10.1155/2014/141953. PMC 4182687. PMID 25309764.
  24. ^ a b c Mashour GA, Lydic R (7 September 2011). Neuroscientific Foundations of Anesthesiology. Oxford University Press. p. 154. ISBN 978-0-19-987546-7.
  25. ^ Mohamed Chahine. Recent advances in voltage-gated sodium channels, their pharmacology and related diseases. Frontiers E-books. p. 90. ISBN 978-2-88919-128-4.
  26. ^ Lamberth C, Dinges J (9 August 2012). Bioactive Heterocyclic Compound Classes: Pharmaceuticals. John Wiley & Sons. p. 127. ISBN 978-3-527-66448-1.
  27. ^ Cairns BE (1 September 2009). Peripheral Receptor Targets for Analgesia: Novel Approaches to Pain Management. John Wiley & Sons. pp. 66–68. ISBN 978-0-470-52221-9.
  28. ^ James WD, Berger T, Elston D (12 April 2015). Andrews' Diseases of the Skin: Clinical Dermatology. Elsevier Health Sciences. pp. 810–. ISBN 978-0-323-31969-0.
  29. ^ Devigili G, Eleopra R, Pierro T, Lombardi R, Rinaldo S, Lettieri C, et al. (September 2014). "Paroxysmal itch caused by gain-of-function Nav1.7 mutation". Pain. 155 (9): 1702–7. doi:10.1016/j.pain.2014.05.006. PMID 24820863. S2CID 24462006.
  30. ^ "An SCN9A variant, known to cause pain, is now found to cause itch" (PDF). Pain.
  31. ^ Gingras J, Smith S, Matson DJ, Johnson D, Nye K, Couture L, et al. (2014). "Global Nav1.7 knockout mice recapitulate the phenotype of human congenital indifference to pain". PLOS ONE. 9 (9): e105895. Bibcode:2014PLoSO...9j5895G. doi:10.1371/journal.pone.0105895. PMC 4154897. PMID 25188265.
  32. ^ Lee JH, Park CK, Chen G, Han Q, Xie RG, Liu T, et al. (June 2014). "A monoclonal antibody that targets a NaV1.7 channel voltage sensor for pain and itch relief". Cell. 157 (6): 1393–404. doi:10.1016/j.cell.2014.03.064. PMC 4098795. PMID 24856969.
  33. ^ Martz L. "Nav-i-gating antibodies for pain". SciBX.
  34. ^ Sheila Yong (May 22, 2014). "One Molecule To Block Both Pain And Itch".
  35. ^ a b Altman RB, Flockhart D, Goldstein DB (23 January 2012). Principles of Pharmacogenetics and Pharmacogenomics. Cambridge University Press. p. 224. ISBN 978-1-107-37747-9.
  36. ^ Waxman SG (December 2006). "Neurobiology: a channel sets the gain on pain". Nature. 444 (7121): 831–2. Bibcode:2006Natur.444..831W. doi:10.1038/444831a. PMID 17167466. S2CID 4300362.
  37. ^ Dib-Hajj SD, Cummins TR, Black JA, Waxman SG (November 2007). "From genes to pain: Na v 1.7 and human pain disorders". Trends in Neurosciences. 30 (11): 555–63. doi:10.1016/j.tins.2007.08.004. PMID 17950472. S2CID 15131517.
  38. ^ Bagal SK, Chapman ML, Marron BE, Prime R, Storer RI, Swain NA (August 2014). "Recent progress in sodium channel modulators for pain". Bioorganic & Medicinal Chemistry Letters. 24 (16): 3690–9. doi:10.1016/j.bmcl.2014.06.038. PMID 25060923.
  39. ^ Martz L (2014). "Nav-i-gating antibodies for pain". Science-Business EXchange. 7 (23): 662. doi:10.1038/scibx.2014.662. ISSN 1945-3477.
  40. ^ Stephen McMahon; Martin Koltzenburg; Irene Tracey; Dennis C. Turk (2013). Wall & Melzack's Textbook of Pain (6 ed.). Elsevier Health Sciences. p. 508. ISBN 978-0-7020-4059-7. OCLC 1008841684.
  41. ^ Simpson DM, McArthur JC, Dworkin RH (21 June 2012). Neuropathic Pain: Mechanisms, Diagnosis and Treatment. Oxford University Press. pp. 40–. ISBN 978-0-19-539470-2.
  42. ^ a b c d e f Minett MS, Pereira V, Sikandar S, Matsuyama A, Lolignier S, Kanellopoulos AH, Mancini F, Iannetti GD, Bogdanov YD, Santana-Varela S, Millet Q, Baskozos G, MacAllister R, Cox JJ, Zhao J, Wood JN (December 2015). "Endogenous opioids contribute to insensitivity to pain in humans and mice lacking sodium channel Nav1.7". Nature Communications. 6: 8967. Bibcode:2015NatCo...6.8967M. doi:10.1038/ncomms9967. PMC 4686868. PMID 26634308.
  43. ^ Flinspach M, Xu Q, Piekarz AD, Fellows R, Hagan R, Gibbs A, Liu Y, Neff RA, Freedman J, Eckert WA, Zhou M, Bonesteel R, Pennington MW, Eddinger KA, Yaksh TL, Hunter M, Swanson RV, Wickenden AD (January 2017). "Insensitivity to pain induced by a potent selective closed-state Nav1.7 inhibitor". Scientific Reports. 7: 39662. Bibcode:2017NatSR...739662F. doi:10.1038/srep39662. PMC 5206724. PMID 28045073.
  44. ^ "Unique CRISPR gene therapy offers opioid-free chronic pain treatment". New Atlas. 11 March 2021. Retrieved 18 April 2021.
  45. ^ Moreno, Ana M.; Alemán, Fernando; Catroli, Glaucilene F.; Hunt, Matthew; Hu, Michael; Dailamy, Amir; Pla, Andrew; Woller, Sarah A.; Palmer, Nathan; Parekh, Udit; McDonald, Daniella; Roberts, Amanda J.; Goodwill, Vanessa; Dryden, Ian; Hevner, Robert F.; Delay, Lauriane; Santos, Gilson Gonçalves dos; Yaksh, Tony L.; Mali, Prashant (10 March 2021). "Long-lasting analgesia via targeted in situ repression of NaV1.7 in mice". Science Translational Medicine. 13 (584): eaay9056. doi:10.1126/scitranslmed.aay9056. ISSN 1946-6234. PMC 8830379. PMID 33692134. S2CID 232170826.

Further reading edit

  • Emery EC, Luiz AP, Wood JN (August 2016). "Nav1.7 and other voltage-gated sodium channels as drug targets for pain relief". Expert Opinion on Therapeutic Targets. 20 (8): 975–83. doi:10.1517/14728222.2016.1162295. PMC 4950419. PMID 26941184.

External links edit

  • SCN9A+protein,+human at the U.S. National Library of Medicine Medical Subject Headings (MeSH)
  • GeneReviews/NCBI/NIH/UW entry on SCN9A-Related Inherited Erythromelalgia
  • Overview of all the structural information available in the PDB for UniProt: Q15858 (Sodium channel protein type 9 subunit alpha) at the PDBe-KB.

nav1, sodium, channel, that, humans, encoded, scn9a, gene, usually, expressed, high, levels, types, neurons, nociceptive, pain, neurons, dorsal, root, ganglion, trigeminal, ganglion, sympathetic, ganglion, neurons, which, part, autonomic, involuntary, nervous,. Nav1 7 is a sodium ion channel that in humans is encoded by the SCN9A gene 5 6 7 It is usually expressed at high levels in two types of neurons the nociceptive pain neurons at dorsal root ganglion DRG and trigeminal ganglion and sympathetic ganglion neurons which are part of the autonomic involuntary nervous system 8 9 SCN9AAvailable structuresPDBOrtholog search PDBe RCSBList of PDB id codes5EK0IdentifiersAliasesSCN9A ETHA FEB3B GEFSP7 HSAN2D NE NA NENA Nav1 7 PN1 SFNP sodium voltage gated channel alpha subunit 9External IDsOMIM 603415 MGI 107636 HomoloGene 2237 GeneCards SCN9AGene location Human Chr Chromosome 2 human 1 Band2q24 3Start166 195 185 bp 1 End166 376 001 bp 1 Gene location Mouse Chr Chromosome 2 mouse 2 Band2 C1 3 2 39 13 cMStart66 310 424 bp 2 End66 465 306 bp 2 RNA expression patternBgeeHumanMouse ortholog Top expressed insural nervespinal gangliastromal cell of endometriumtrigeminal ganglionAchilles tendonright lobe of liverrectumhypothalamustransverse colonislet of LangerhansTop expressed inolfactory epitheliumtrigeminal ganglionsuperior cervical ganglionmedian eminencearcuate nucleussupraoptic nucleusparaventricular nucleus of hypothalamusdorsomedial hypothalamic nucleusventromedial nucleusislet of LangerhansMore reference expression dataBioGPSn aGene ontologyMolecular functionsodium ion binding sodium channel activity voltage gated ion channel activity ion channel activity voltage gated sodium channel activityCellular componentvoltage gated sodium channel complex integral component of membrane membrane integral component of plasma membrane cell projection plasma membrane axonBiological processmembrane depolarization during action potential sodium ion transport regulation of ion transmembrane transport post embryonic development ion transport behavioral response to pain transmembrane transport sensory perception of pain inflammatory response response to toxic substance neuronal action potential sodium ion transmembrane transportSources Amigo QuickGOOrthologsSpeciesHumanMouseEntrez633520274EnsemblENSG00000169432ENSMUSG00000075316UniProtQ15858Q62205RefSeq mRNA NM 002977NM 001365536NM 001290674NM 001290675NM 018852RefSeq protein NP 002968NP 001352465NP 001277603NP 001277604Location UCSC Chr 2 166 2 166 38 MbChr 2 66 31 66 47 MbPubMed search 3 4 WikidataView Edit HumanView Edit Mouse Contents 1 Function 2 Cell Based Assays 3 Clinical significance 3 1 Animal studies 3 2 Primary erythromelalgia 3 3 Paroxysmal extreme pain disorder 3 4 Congenital insensitivity to pain 3 5 Clinical analgesics 3 6 Itch 3 7 Future prospects 4 References 5 Further reading 6 External linksFunction edit nbsp Structure of human voltage gated sodium channel Nav1 7 in complex with auxiliary beta subunits ProTx II and tetrodotoxin Y1755 down from the RCSB PDB 6J8J Nav1 7 is a voltage gated sodium channel and plays a critical role in the generation and conduction of action potentials and is thus important for electrical signaling by most excitable cells Nav1 7 is present at the endings of pain sensing nerves the nociceptors close to the region where the impulse is initiated Stimulation of the nociceptor nerve endings produces generator potentials which are small changes in the voltage across the neuronal membranes The Nav1 7 channel amplifies these membrane depolarizations and when the membrane potential difference reaches a specific threshold the neuron fires In sensory neurons multiple voltage dependent sodium currents can be differentiated by their voltage dependence and by sensitivity to the voltage gated sodium channel blocker tetrodotoxin The Nav1 7 channel produces a rapidly activating and inactivating current which is sensitive to the level of tetrodotoxin 10 Nav1 7 is important in the early phases of neuronal electrogenesis Nav1 7 activity consists of a slow transition of the channel into an inactive state when it is depolarized even to a minor degree 11 This property allows these channels to remain available for activation with even small or slowly developing depolarizations Stimulation of the nociceptor nerve endings produces generator potentials small changes in the voltage across the neuronal membranes 11 This brings neurons to a voltage that stimulate Nav1 8 which has a more depolarized activation threshold that produces most of the transmembrane current responsible for the depolarizing phase of action potentials 12 Cell Based Assays editHeteromultimeric ion channels such as Nav1 7 comprise multiple subunits including a pore forming subunits and accessory subunits Creation of laboratory cells that comprise multiple subunits is challenging Fluorogenic signaling probes and flow cytometry have been used to create laboratory cells that comprise heteromultimetic Nav1 7 including at least two of its accessory subunits 13 Clinical significance editAnimal studies edit The critical role of Nav1 7 in nociception and pain was originally shown using Cre Lox recombination tissue specific knockout mice These transgenic mice specifically lack Nav1 7 in Nav1 8 positive nociceptors and showed reduced behavioural responses specifically to acute mechanical and inflammatory pain assays At the same time behavioural responses to acute thermal and neuropathic pain assays remained intact 14 However the expression of Nav1 7 is not restricted to Nav1 8 positive DRG neurons Further work examining the behavioural response of two other transgenic mouse strains one lacking Nav1 7 in all DRG neurons and the other lacking Nav1 7 in all DRG neurons as well as all sympathetic neurons has revealed distinct sets of modality specific peripheral neurons 15 Therefore Nav1 7 expressed in Nav1 8 positive DRG neurons is critical for normal responses to acute mechanical and inflammatory pain assays Whilst Nav1 7 expressed in Nav1 8 negative DRG neurons is critical for normal responses to acute thermal pain assays Finally Nav1 7 expressed in sympathetic neurons is critical for normal behavioural responses to neuropathic pain assays Primary erythromelalgia edit Mutation in Nav1 7 may result in primary erythromelalgia PE an autosomal dominant inherited disorder which is characterized by attacks or episodes of symmetrical burning pain of the feet lower legs and sometimes hands elevated skin temperature of affected areas and reddened extremities The mutation causes excessive channel activity which suggests that Nav1 7 sets the gain on pain signaling in humans It was observed that a missense mutation in the SCN9A gene affected conserved residues in the pore forming a subunit of the Nav1 7 channel Multiple studies have found a dozen SCN9A mutations in multiple families as causing erythromelagia 16 17 All of the observed erythromelalgia mutations that are observed are missense mutations that change important and highly conserved amino acid residues of the Nav1 7 protein The majority of mutations that cause PE are located in cytoplasmic linkers of the Nav1 7 channel however some mutations are present in transmembrane domains of the channel The PE mutations cause a hyperpolarizing shift in the voltage dependence of channel activation which allows the channel to be activated by smaller than normal depolarizations thus enhancing the activity of Nav1 7 Moreover the majority of the PE mutations also slow deactivation thus keeping the channel open longer once it is activated 18 In addition in response to a slow depolarizing stimulus most mutant channels will generate a larger than normal sodium current Each of these alterations in activation and deactivation can contribute to the hyperexcitability of pain signaling DRG neurons expressing these mutant channels thus causing extreme sensitivity to pain hyperalgesia While the expression of PE Nav1 7 mutations produces hyperexcitability in DRG neurons studies on cultured rat in sympathetic ganglion neurons indicate that expression of these same PE mutations results in reduction of excitability of these cells This occurs because Nav1 8 channels which are selectively expressed in addition to Nav1 7 in DRG neurons are not present within sympathetic ganglion neurons Thus lack of Nav1 7 results in inactivation of the sodium channels results in reduced excitability Thus physiological interaction of Nav1 7 and Nav1 8 can explain the reason that PE presents with pain due to hyperexcitability of nociceptors and with sympathetic dysfunction that is most likely due to hypoexcitability of sympathetic ganglion neurons 9 Recent studies have associated a defect in SCN9A with congenital insensitivity to pain 19 Paroxysmal extreme pain disorder edit Paroxysmal extreme pain disorder PEPD is another rare extreme pain disorder 20 21 Like primary erythromelalgia PEPD is similarly the result of a gain of function mutation in the gene encoding the Nav1 7 channel 20 21 The decreased inactivation caused by the mutation is cause of prolonged action potentials and repetitive firing Such altered firing will cause increased pain sensation and increased sympathetic nervous system activity producing the phenotype observed in patients with PEPD 22 Congenital insensitivity to pain edit Individuals with congenital insensitivity to pain have painless injuries beginning in infancy but otherwise normal sensory responses upon examination Patients frequently have bruises and cuts 23 and are often only diagnosed because of limping or lack of use of a limb Individuals have been reported to be able to walk over burning coals and to insert knives and drive spikes through their arms It has been observed that the insensitivity to pain does not appear to be due to axonal degeneration A mutation that causes loss of Nav1 7 function has been detected in three consanguineous families from northern Pakistan All mutations observed were nonsense mutation with the majority of affected patients having a homozygous mutation in the SCN9A gene This discovery linked loss of Nav1 7 function with the inability to experience pain This is in contrast with the genetic basis of primary erythromelalgia in which the disorder results from gain of function mutations 19 Clinical analgesics edit Local anesthetics such as lidocaine but also the anticonvulsant phenytoin mediate their analgesic effects by non selectively blocking voltage gated sodium channels 24 25 Nav1 7 as well as Nav1 3 Nav1 8 and Nav1 9 are the specific channels that have been implicated in pain signaling 24 26 Thus the blockade of these specific channels is likely to underlie the analgesia of local anesthetics and anticonvulsants such as phenytoin 24 In addition inhibition of these channels is also likely responsible for the analgesic efficacy of certain tricyclic antidepressants and of mexiletine 27 28 Itch edit Mutations of Nav1 7 have been linked to itching pruritus 29 30 and genetic knockouts of Nav1 7 31 and an antibody that inhibits Nav1 7 also appear to inhibit itching 32 33 34 Future prospects edit As the Nav1 7 channel appears to be a highly important component in nociception with null activity conferring total analgesia 21 there has been immense interest in developing selective Nav1 7 channel blockers as potential novel analgesics 35 Since Nav1 7 is not present in heart tissue or the central nervous system selective blockers of Nav1 7 unlike non selective blockers such as local anesthetics could be safely used systemically for pain relief Moreover selective Nav1 7 blockers may prove to be far more effective analgesics and with fewer undesirable effects relative to current pharmacotherapies 35 36 37 A number of selective Nav1 7 and or Nav1 8 blockers are in clinical development including funapide TV 45070 XEN402 PF 05089771 DSP 2230 NKTR 171 GDC 0276 and RG7893 GDC 0287 38 39 40 Ralfinamide formerly NW 1029 FCE 26742A PNU 0154339E is a multimodal non selective Nav channel blocker which is under development for the treatment of pain 41 Surprisingly many potent Nav1 7 blockers have been found to be clinically effective but only relatively weak analgesics 42 Recently it has been elucidated that congenital loss of Navv1 7 results in a dramatic increase in the levels of endogenous enkephalins and it was found that blocking these opioids with the opioid antagonist naloxone allowed for pain sensitivity both in Navv1 7 null mice and in a woman with a defective Navv1 7 gene and associated congenital insensitivity to pain 42 Development of the venom derived peptide JNJ63955 allowed for selective inhibition of Nav1 7 only while it was in the closed state which produced results in mice much more similar to knock out models 43 unreliable medical source It is possible that channel blockade is maximal only when the channel is inhibited in its closed state It appears that complete inactivation of Nav1 7 mediated sodium efflux is necessary to upregulate enkephalin expression enough to achieve complete analgesia Prior to the development of JNJ63955 the most potent Nav 1 7 antagonists had failed in regards to achieving the same degree of analgesia as congenital Nav1 7 inactivity 42 The proposed mechanism also suggests that the analgesic effects of Nav1 7 blockers may be greatly potentiated by the co administration of exogenous opioids or enkephalinase inhibitors 42 Supporting this idea a strong analgesic synergy between local anesthetics and topical opioids has already been observed in clinical research 42 An additional implication of the aforementioned findings is that congenital insensitivity to pain may be clinically treatable with opioid antagonists 42 In 2021 researchers described a novel approach developing a CRISPR dCas9 epigenome editing method for a potential treatment of chronic pain by repressing Nav1 7 gene expression which showed therapeutic potential in three mouse models of chronic pain 44 45 References edit a b c GRCh38 Ensembl release 89 ENSG00000169432 Ensembl May 2017 a b c GRCm38 Ensembl release 89 ENSMUSG00000075316 Ensembl May 2017 Human PubMed Reference National Center for Biotechnology Information U S National Library of Medicine Mouse PubMed Reference National Center for Biotechnology Information U S National Library of Medicine Klugbauer N Lacinova L Flockerzi V Hofmann F March 1995 Structure and functional expression of a new member of the tetrodotoxin sensitive voltage activated sodium channel family from human neuroendocrine cells The EMBO Journal 14 6 1084 90 doi 10 1002 j 1460 2075 1995 tb07091 x PMC 398185 PMID 7720699 Plummer NW Meisler MH April 1999 Evolution and diversity of mammalian sodium channel genes Genomics 57 2 323 31 doi 10 1006 geno 1998 5735 PMID 10198179 Catterall WA Goldin AL Waxman SG December 2005 International Union of Pharmacology XLVII Nomenclature and structure function relationships of voltage gated sodium channels Pharmacological Reviews 57 4 397 409 doi 10 1124 pr 57 4 4 PMID 16382098 S2CID 7332624 Raymond CK Castle J Garrett Engele P Armour CD Kan Z Tsinoremas N Johnson JM October 2004 Expression of alternatively spliced sodium channel alpha subunit genes Unique splicing patterns are observed in dorsal root ganglia The Journal of Biological Chemistry 279 44 46234 41 doi 10 1074 jbc M406387200 PMID 15302875 a b Rush AM Dib Hajj SD Liu S Cummins TR Black JA Waxman SG May 2006 A single sodium channel mutation produces hyper or hypoexcitability in different types of neurons Proceedings of the National Academy of Sciences of the United States of America 103 21 8245 50 Bibcode 2006PNAS 103 8245R doi 10 1073 pnas 0602813103 PMC 1472458 PMID 16702558 Catterall WA 2000 Structure and regulation of voltage gated Ca2 channels Annual Review of Cell and Developmental Biology 16 521 55 doi 10 1146 annurev cellbio 16 1 521 PMID 11031246 a b Cummins TR Howe JR Waxman SG December 1998 Slow closed state inactivation a novel mechanism underlying ramp currents in cells expressing the hNE PN1 sodium channel The Journal of Neuroscience 18 23 9607 19 doi 10 1523 JNEUROSCI 18 23 09607 1998 PMC 6793269 PMID 9822722 Renganathan M Cummins TR Waxman SG August 2001 Contribution of Na v 1 8 sodium channels to action potential electrogenesis in DRG neurons Journal of Neurophysiology 86 2 629 40 doi 10 1152 jn 2001 86 2 629 PMID 11495938 S2CID 11579149 Shekdar K Langer J Venkatachalan S Schmid L Anobile J Shah P et al March 2021 Cell engineering method using fluorogenic oligonucleotide signaling probes and flow cytometry Biotechnology Letters 43 5 949 958 doi 10 1007 s10529 021 03101 5 PMC 7937778 PMID 33683511 Nassar MA Stirling LC Forlani G Baker MD Matthews EA Dickenson AH Wood JN August 2004 Nociceptor specific gene deletion reveals a major role for Nav1 7 PN1 in acute and inflammatory pain Proceedings of the National Academy of Sciences of the United States of America 101 34 12706 11 Bibcode 2004PNAS 10112706N doi 10 1073 pnas 0404915101 PMC 515119 PMID 15314237 Minett MS Nassar MA Clark AK Passmore G Dickenson AH Wang F Malcangio M Wood JN April 2012 Distinct Nav1 7 dependent pain sensations require different sets of sensory and sympathetic neurons Nature Communications 3 4 791 799 Bibcode 2012NatCo 3 791M doi 10 1038 ncomms1795 PMC 3337979 PMID 22531176 Dib Hajj SD Yang Y Black JA Waxman SG January 2013 The Na V 1 7 sodium channel from molecule to man Nature Reviews Neuroscience 14 1 49 62 doi 10 1038 nrn3404 PMID 23232607 S2CID 5489010 Tang Z Chen Z Tang B Jiang H September 2015 Primary erythromelalgia a review Orphanet Journal of Rare Diseases 10 127 doi 10 1186 s13023 015 0347 1 PMC 4589109 PMID 26419464 Drenth JP Michiels JJ June 1994 Erythromelalgia and erythermalgia diagnostic differentiation International Journal of Dermatology 33 6 393 7 doi 10 1111 j 1365 4362 1994 tb04037 x PMID 8056469 S2CID 3033396 a b Golshani AE Kamdar AA Spence SC Beckmann NM August 2014 Congenital indifference to pain an illustrated case report and literature review Journal of Radiology Case Reports 8 8 16 23 doi 10 3941 jrcr v8i8 2194 PMC 4242143 PMID 25426241 a b Allerton C Fox D 2013 Pain Therapeutics Current and Future Treatment Paradigms Royal Society of Chemistry pp 146 148 ISBN 978 1 84973 645 9 a b c Kew JN Davies CH 2010 Ion Channels From Structure to Function Oxford University Press pp 153 154 ISBN 978 0 19 929675 0 Fertleman CR Baker MD Parker KA Moffatt S Elmslie FV Abrahamsen B et al December 2006 SCN9A mutations in paroxysmal extreme pain disorder allelic variants underlie distinct channel defects and phenotypes Neuron 52 5 767 74 doi 10 1016 j neuron 2006 10 006 PMID 17145499 S2CID 11715780 Peddareddygari LR Oberoi K Grewal RP 2014 09 18 Congenital insensitivity to pain a case report and review of the literature Case Reports in Neurological Medicine 2014 141953 doi 10 1155 2014 141953 PMC 4182687 PMID 25309764 a b c Mashour GA Lydic R 7 September 2011 Neuroscientific Foundations of Anesthesiology Oxford University Press p 154 ISBN 978 0 19 987546 7 Mohamed Chahine Recent advances in voltage gated sodium channels their pharmacology and related diseases Frontiers E books p 90 ISBN 978 2 88919 128 4 Lamberth C Dinges J 9 August 2012 Bioactive Heterocyclic Compound Classes Pharmaceuticals John Wiley amp Sons p 127 ISBN 978 3 527 66448 1 Cairns BE 1 September 2009 Peripheral Receptor Targets for Analgesia Novel Approaches to Pain Management John Wiley amp Sons pp 66 68 ISBN 978 0 470 52221 9 James WD Berger T Elston D 12 April 2015 Andrews Diseases of the Skin Clinical Dermatology Elsevier Health Sciences pp 810 ISBN 978 0 323 31969 0 Devigili G Eleopra R Pierro T Lombardi R Rinaldo S Lettieri C et al September 2014 Paroxysmal itch caused by gain of function Nav1 7 mutation Pain 155 9 1702 7 doi 10 1016 j pain 2014 05 006 PMID 24820863 S2CID 24462006 An SCN9A variant known to cause pain is now found to cause itch PDF Pain Gingras J Smith S Matson DJ Johnson D Nye K Couture L et al 2014 Global Nav1 7 knockout mice recapitulate the phenotype of human congenital indifference to pain PLOS ONE 9 9 e105895 Bibcode 2014PLoSO 9j5895G doi 10 1371 journal pone 0105895 PMC 4154897 PMID 25188265 Lee JH Park CK Chen G Han Q Xie RG Liu T et al June 2014 A monoclonal antibody that targets a NaV1 7 channel voltage sensor for pain and itch relief Cell 157 6 1393 404 doi 10 1016 j cell 2014 03 064 PMC 4098795 PMID 24856969 Martz L Nav i gating antibodies for pain SciBX Sheila Yong May 22 2014 One Molecule To Block Both Pain And Itch a b Altman RB Flockhart D Goldstein DB 23 January 2012 Principles of Pharmacogenetics and Pharmacogenomics Cambridge University Press p 224 ISBN 978 1 107 37747 9 Waxman SG December 2006 Neurobiology a channel sets the gain on pain Nature 444 7121 831 2 Bibcode 2006Natur 444 831W doi 10 1038 444831a PMID 17167466 S2CID 4300362 Dib Hajj SD Cummins TR Black JA Waxman SG November 2007 From genes to pain Na v 1 7 and human pain disorders Trends in Neurosciences 30 11 555 63 doi 10 1016 j tins 2007 08 004 PMID 17950472 S2CID 15131517 Bagal SK Chapman ML Marron BE Prime R Storer RI Swain NA August 2014 Recent progress in sodium channel modulators for pain Bioorganic amp Medicinal Chemistry Letters 24 16 3690 9 doi 10 1016 j bmcl 2014 06 038 PMID 25060923 Martz L 2014 Nav i gating antibodies for pain Science Business EXchange 7 23 662 doi 10 1038 scibx 2014 662 ISSN 1945 3477 Stephen McMahon Martin Koltzenburg Irene Tracey Dennis C Turk 2013 Wall amp Melzack s Textbook of Pain 6 ed Elsevier Health Sciences p 508 ISBN 978 0 7020 4059 7 OCLC 1008841684 Simpson DM McArthur JC Dworkin RH 21 June 2012 Neuropathic Pain Mechanisms Diagnosis and Treatment Oxford University Press pp 40 ISBN 978 0 19 539470 2 a b c d e f Minett MS Pereira V Sikandar S Matsuyama A Lolignier S Kanellopoulos AH Mancini F Iannetti GD Bogdanov YD Santana Varela S Millet Q Baskozos G MacAllister R Cox JJ Zhao J Wood JN December 2015 Endogenous opioids contribute to insensitivity to pain in humans and mice lacking sodium channel Nav1 7 Nature Communications 6 8967 Bibcode 2015NatCo 6 8967M doi 10 1038 ncomms9967 PMC 4686868 PMID 26634308 Flinspach M Xu Q Piekarz AD Fellows R Hagan R Gibbs A Liu Y Neff RA Freedman J Eckert WA Zhou M Bonesteel R Pennington MW Eddinger KA Yaksh TL Hunter M Swanson RV Wickenden AD January 2017 Insensitivity to pain induced by a potent selective closed state Nav1 7 inhibitor Scientific Reports 7 39662 Bibcode 2017NatSR 739662F doi 10 1038 srep39662 PMC 5206724 PMID 28045073 Unique CRISPR gene therapy offers opioid free chronic pain treatment New Atlas 11 March 2021 Retrieved 18 April 2021 Moreno Ana M Aleman Fernando Catroli Glaucilene F Hunt Matthew Hu Michael Dailamy Amir Pla Andrew Woller Sarah A Palmer Nathan Parekh Udit McDonald Daniella Roberts Amanda J Goodwill Vanessa Dryden Ian Hevner Robert F Delay Lauriane Santos Gilson Goncalves dos Yaksh Tony L Mali Prashant 10 March 2021 Long lasting analgesia via targeted in situ repression of NaV1 7 in mice Science Translational Medicine 13 584 eaay9056 doi 10 1126 scitranslmed aay9056 ISSN 1946 6234 PMC 8830379 PMID 33692134 S2CID 232170826 Further reading editEmery EC Luiz AP Wood JN August 2016 Nav1 7 and other voltage gated sodium channels as drug targets for pain relief Expert Opinion on Therapeutic Targets 20 8 975 83 doi 10 1517 14728222 2016 1162295 PMC 4950419 PMID 26941184 External links editSCN9A protein human at the U S National Library of Medicine Medical Subject Headings MeSH GeneReviews NCBI NIH UW entry on SCN9A Related Inherited Erythromelalgia Overview of all the structural information available in the PDB for UniProt Q15858 Sodium channel protein type 9 subunit alpha at the PDBe KB Retrieved from https en wikipedia org w index php title Nav1 7 amp oldid 1171839443, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.