fbpx
Wikipedia

S100A1

Protein S100-A1, also known as S100 calcium-binding protein A1 is a protein which in humans is encoded by the S100A1 gene.[5][6] S100A1 is highly expressed in cardiac and skeletal muscle, and localizes to Z-discs and sarcoplasmic reticulum. S100A1 has shown promise as an effective candidate for gene therapy to treat post-myocardially infarcted cardiac tissue.

S100A1
Available structures
PDBOrtholog search: PDBe RCSB
Identifiers
AliasesS100A1, S100, S100-alpha, S100A, S100 calcium-binding protein A1, S100 calcium binding protein A1
External IDsOMIM: 176940 MGI: 1338917 HomoloGene: 4566 GeneCards: S100A1
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_006271

NM_011309

RefSeq (protein)

NP_006262

NP_035439

Location (UCSC)Chr 1: 153.63 – 153.63 MbChr 3: 90.42 – 90.42 Mb
PubMed search[3][4]
Wikidata
View/Edit HumanView/Edit Mouse

Structure edit

S100A1 is a member of the S100 family of proteins expressed in cardiac muscle, skeletal muscle and brain,[7] with highest density at Z-lines and sarcoplasmic reticulum.[8] S100A1 contains 4 EF-hand calcium-binding motifs in its dimerized form,[9] and can exist as either a hetero or homodimer. The S100A1 homodimer is high affinity (nanomolar range or tighter), and is formed through hydrophobic packing of an X-type 4-helix bundle created between helices 1, 1', 4, and 4'. Protein nuclear magnetic resonance spectroscopy structural information on the homodimeric form of this protein shows that each monomer is helical and contains two EF-hand calcium-binding loops; one in the N-terminus and a canonical EF hand in the C-terminus having higher calcium affinity (dissociation constant of roughly 20 micromolar). The two EF hand domains neighbor each other in three dimensional space, and are connected to each other through a short beta sheet region (residues 27–29 and 68–70).

Upon binding calcium, helix 3 of S100A1 re-orients from being relatively antiparallel to helix 4 to being roughly perpendicular. This conformational change is different from most EF hands, in that the entering helix, and not the exiting helix, moves. This conformational change exposes a large hydrophobic pocket between helix 3, 4, and the hinge region of S100A1 that is involved in virtually all calcium-dependent target protein interactions. These biophysical properties seem to be well conserved across the S100 family of proteins. Helix 3, 4, and the hinge region are the most divergent areas between individual S100 proteins, and so it is likely that the sequence of these regions is pivotal in fine-tuning calcium-dependent target binding by S100 proteins.[10] S-Nitrosylation of S100A1 at Cys85 reorganizes the conformation of S100A1 at the C-terminal helix and the linker connecting the two EF hand domains.[11]

The most accurate high-resolution solution structure of human apo-S100A1 protein (PDB accession code: 2L0P) has been determined by means of NMR spectroscopy in 2011.[12]

S100 genes include at least 19 members which are located as a cluster on chromosome 1q21.[13][14]

Function edit

S100 proteins are localized in the cytoplasm and/or nucleus of a wide range of cells, and involved in the regulation of a number of cellular processes such as cell cycle progression and differentiation. This protein may function in stimulation of Ca2+-induced Ca2+ release, inhibition of microtubule assembly, and inhibition of protein kinase C-mediated phosphorylation.

S100A1 is expressed during development in the primitive heart at embryonic day 8 in levels that are similar between atria and ventricles. As development progresses up to embryonic day 17.5, S100A1 expression shifts to a lower levels in atria and higher levels in ventricular myocardium.[15]

S100A1 has shown to be a regulator of myocardial contractility. S100A1 overexpression via adenoviral gene transfer in adult rabbit cardiomyocytes or a cardiac-restricted S100A1 murine transgenic enhanced cardiac contractile performance by increasing sarcoplasmic reticular calcium transients and uptake, altering the calcium sensitivity and cooperativity of myofibrils, enhancing SERCA2A activity and enhancing calcium-induced calcium release.[16][17][18] Specifically, S100A1 increases the gain of excitation-contraction coupling[19] and decreases calcium spark frequency[20] in cardiomyocytes. Enhancement of L-type calcium channel transsarcolemmal calcium influx by S100A has been shown to be dependent on protein kinase A.[21] Effects of S100A1 on myofilament proteins may be via Titin; S100A1 has been shown to interact with the PEVK region of Titin in a calcium-dependent manner, and its binding reduces the force in an in vitro motility assay, suggesting that S100A may modulate Titin-based passive tension prior to systole.[22][23] In mice with ablation of the S100A1 gene (S100A1-/-), cardiac reserve upon beta adrenergic stimulation was impaired, showing reduced contraction rate and relaxation rate, as well as reduced calcium sensitivity. However, S100A1-/- did not show the eventual cardiac hypertrophy or chamber dilation in aged mice.[24]

In animal models of disease, S100A1 protein levels has been shown to be altered in right ventricular hypertrophied tissue in a model of pulmonary hypertension;[25] several tissue types (brain, skeletal muscle and cardiac muscle) in a model of type I diabetes mellitus;[26] S100A1 has been demonstrated as a regulator of the genetic program underlying cardiac hypertrophy, in that S100A1 inhibits alpha1 adrenergic stimulation of hypertrophic genes, including MYH7, ACTA1 and S100B.[27] In a rat model of myocardial infarction, intracoronary S100A1 adenoviral gene transfer restored sarcoplasmic reticular calcium transients and load, normalized intracellular sodium concentrations, reversed the pathologic expression of the fetal gene program, restored energy supply, normalized contractile function, preserved inotropic reserve, and reduced cardiac hypertrophy 1 week post-myocardial infarction.[28][29] In support of the adenoviral experiments, S100A1 transgenic overexpressing mice subjected to myocardial infarction showed preserved contractile function, abrogated apoptosis, preserved sarcoplasmic reticulum calcium cycling and beta adrenergic signaling, prevention from cardiac hypertrophy and heart failure, as well as prolonged survival relative to non-transgenic controls.[30][31]

S100A1 has also been identified as a novel regulator of endothelial cell post-ischemic angiogenesis, as patients with limb ischemia exhibited downregulation of S100A1 expression in hypoxic tissue.[32][33]

In melanocytic cells, S100A1 gene expression may be regulated by MITF.[34]

Clinical Significance edit

S100A1 has shown efficacy in feasibility in treating heart failure symptoms in large, preclinical models and human cardiomyocytes,[35][36] and thus shows great promise for clinical trials.[37][38][39][40][41][42][43]

Reduced expression of this protein has been implicated in cardiomyopathies,[44] and left ventricular assist device-based therapy does not restore S100A1 levels in patients.[45] S100A1 has shown promise as an early diagnostic biomarker for acute myocardial ischemia, presenting with a distinct timecourse in human plasma following an ischemic event relative to traditional markers creatine kinase, CKMB and troponin I.[46][47] This injury-released, extracellular pool of S100A1 was investigated in neonatal murine cardiomyocytes and was shown to prevent apoptosis via an ERK1/2-dependent pathway, suggesting that the release of S100A1 from injured cells is an intrinsic survival mechanism for viable myocardium.[48] S100 has also shown promise as a biomarker for uncontrolled hyperoxic reoxygenation during cardiopulmonary bypass in infants with cyanotic heart disease[49] and in adults.[50] S100A1 gene transfer to engineered heart tissue was shown to augment contractile performance of the tissue implants, suggesting that S100A1 may be effective in facilitating cardiac tissue replacement therapy in heart failure patients.[51] However, the clinical efficacy of this strategy remains to be determined. In addition, multiple drugs, including Pentamidine,[10] Amlexanox, Olopatadine, Cromolyn, and Propanolol,[10] are known to bind to S100A1, although their affinities are often in the mid-micromolar range.

Interactions edit

S100 interacts with

References edit

  1. ^ a b c GRCh38: Ensembl release 89: ENSG00000160678 – Ensembl, May 2017
  2. ^ a b c GRCm38: Ensembl release 89: ENSMUSG00000044080 – Ensembl, May 2017
  3. ^ "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. ^ "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. ^ "Entrez Gene: S100A1 S100 calcium binding protein A1".
  6. ^ Morii K, Tanaka R, Takahashi Y, Minoshima S, Fukuyama R, Shimizu N, Kuwano R (February 1991). "Structure and chromosome assignment of human S100 alpha and beta subunit genes". Biochemical and Biophysical Research Communications. 175 (1): 185–91. doi:10.1016/S0006-291X(05)81218-5. PMID 1998503.
  7. ^ Engelkamp D, Schäfer BW, Erne P, Heizmann CW (October 1992). "S100 alpha, CAPL, and CACY: molecular cloning and expression analysis of three calcium-binding proteins from human heart". Biochemistry. 31 (42): 10258–64. doi:10.1021/bi00157a012. PMID 1384693.
  8. ^ Maco B, Mandinova A, Dürrenberger MB, Schäfer BW, Uhrík B, Heizmann CW (2001). "Ultrastructural distribution of the S100A1 Ca2+-binding protein in the human heart". Physiological Research. 50 (6): 567–74. PMID 11829317.
  9. ^ Marenholz I, Heizmann CW, Fritz G (October 2004). "S100 proteins in mouse and man: from evolution to function and pathology (including an update of the nomenclature)". Biochemical and Biophysical Research Communications. 322 (4): 1111–22. doi:10.1016/j.bbrc.2004.07.096. PMID 15336958.
  10. ^ a b c Wright NT, Cannon BR, Zimmer DB, Weber DJ (1 May 2009). "S100A1: Structure, Function, and Therapeutic Potential". Current Chemical Biology. 3 (2): 138–145. doi:10.2174/2212796810903020138. PMC 2771873. PMID 19890475.
  11. ^ Lenarčič Živković M, Zaręba-Kozioł M, Zhukova L, Poznański J, Zhukov I, Wysłouch-Cieszyńska A (23 November 2012). "Post-translational S-nitrosylation is an endogenous factor fine tuning the properties of human S100A1 protein". The Journal of Biological Chemistry. 287 (48): 40457–70. doi:10.1074/jbc.m112.418392. PMC 3504761. PMID 22989881.
  12. ^ Nowakowski M, Jaremko Ł, Jaremko M, Zhukov I, Belczyk A, Bierzyński A, Ejchart A (May 2011). "Solution NMR structure and dynamics of human apo-S100A1 protein". Journal of Structural Biology. 174 (2): 391–9. doi:10.1016/j.jsb.2011.01.011. PMID 21296671.
  13. ^ Donato R (July 1999). "Functional roles of S100 proteins, calcium-binding proteins of the EF-hand type". Biochimica et Biophysica Acta (BBA) - Molecular Cell Research. 1450 (3): 191–231. doi:10.1016/s0167-4889(99)00058-0. PMID 10395934.
  14. ^ Wicki R, Schäfer BW, Erne P, Heizmann CW (October 1996). "Characterization of the human and mouse cDNAs coding for S100A13, a new member of the S100 protein family". Biochemical and Biophysical Research Communications. 227 (2): 594–9. doi:10.1006/bbrc.1996.1551. PMID 8878558.
  15. ^ Kiewitz R, Lyons GE, Schäfer BW, Heizmann CW (December 2000). "Transcriptional regulation of S100A1 and expression during mouse heart development". Biochimica et Biophysica Acta (BBA) - Molecular Cell Research. 1498 (2–3): 207–19. doi:10.1016/s0167-4889(00)00097-5. PMID 11108964.
  16. ^ a b Most P, Remppis A, Pleger ST, Löffler E, Ehlermann P, Bernotat J, Kleuss C, Heierhorst J, Ruiz P, Witt H, Karczewski P, Mao L, Rockman HA, Duncan SJ, Katus HA, Koch WJ (September 2003). "Transgenic overexpression of the Ca2+-binding protein S100A1 in the heart leads to increased in vivo myocardial contractile performance". The Journal of Biological Chemistry. 278 (36): 33809–17. doi:10.1074/jbc.M301788200. PMID 12777394.
  17. ^ Remppis A, Most P, Löffler E, Ehlermann P, Bernotat J, Pleger S, Börries M, Reppel M, Fischer J, Koch WJ, Smith G, Katus HA (2002). "The small EF-hand Ca2+ binding protein S100A1 increases contractility and Ca2+ cycling in rat cardiac myocytes". Basic Research in Cardiology. 97 Suppl 1 (7): I56–62. doi:10.1007/s003950200031. PMID 12479236. S2CID 25461816.
  18. ^ Most P, Bernotat J, Ehlermann P, Pleger ST, Reppel M, Börries M, Niroomand F, Pieske B, Janssen PM, Eschenhagen T, Karczewski P, Smith GL, Koch WJ, Katus HA, Remppis A (November 2001). "S100A1: a regulator of myocardial contractility". Proceedings of the National Academy of Sciences of the United States of America. 98 (24): 13889–94. Bibcode:2001PNAS...9813889M. doi:10.1073/pnas.241393598. PMC 61137. PMID 11717446.
  19. ^ Kettlewell S, Most P, Currie S, Koch WJ, Smith GL (December 2005). "S100A1 increases the gain of excitation-contraction coupling in isolated rabbit ventricular cardiomyocytes". Journal of Molecular and Cellular Cardiology. 39 (6): 900–10. doi:10.1016/j.yjmcc.2005.06.018. PMID 16236309.
  20. ^ Völkers M, Loughrey CM, Macquaide N, Remppis A, DeGeorge BR, Wegner FV, Friedrich O, Fink RH, Koch WJ, Smith GL, Most P (February 2007). "S100A1 decreases calcium spark frequency and alters their spatial characteristics in permeabilized adult ventricular cardiomyocytes". Cell Calcium. 41 (2): 135–43. doi:10.1016/j.ceca.2006.06.001. PMID 16919727.
  21. ^ Reppel M, Sasse P, Piekorz R, Tang M, Roell W, Duan Y, Kletke A, Hescheler J, Nürnberg B, Fleischmann BK (October 2005). "S100A1 enhances the L-type Ca2+ current in embryonic mouse and neonatal rat ventricular cardiomyocytes". The Journal of Biological Chemistry. 280 (43): 36019–28. doi:10.1074/jbc.M504750200. PMID 16129693.
  22. ^ a b Yamasaki R, Berri M, Wu Y, Trombitás K, McNabb M, Kellermayer MS, Witt C, Labeit D, Labeit S, Greaser M, Granzier H (October 2001). "Titin-actin interaction in mouse myocardium: passive tension modulation and its regulation by calcium/S100A1". Biophysical Journal. 81 (4): 2297–313. Bibcode:2001BpJ....81.2297Y. doi:10.1016/S0006-3495(01)75876-6. PMC 1301700. PMID 11566799.
  23. ^ Fukushima H, Chung CS, Granzier H (2010). "Titin-isoform dependence of titin-actin interaction and its regulation by S100A1/Ca2+ in skinned myocardium". Journal of Biomedicine & Biotechnology. 2010: 727239. doi:10.1155/2010/727239. PMC 2855102. PMID 20414336.
  24. ^ Du XJ, Cole TJ, Tenis N, Gao XM, Köntgen F, Kemp BE, Heierhorst J (April 2002). "Impaired cardiac contractility response to hemodynamic stress in S100A1-deficient mice". Molecular and Cellular Biology. 22 (8): 2821–9. doi:10.1128/mcb.22.8.2821-2829.2002. PMC 133731. PMID 11909974.
  25. ^ Ehlermann P, Remppis A, Guddat O, Weimann J, Schnabel PA, Motsch J, Heizmann CW, Katus HA (February 2000). "Right ventricular upregulation of the Ca(2+) binding protein S100A1 in chronic pulmonary hypertension". Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease. 1500 (2): 249–55. doi:10.1016/s0925-4439(99)00106-4. PMID 10657594.
  26. ^ Zimmer DB, Chessher J, Wilson GL, Zimmer WE (December 1997). "S100A1 and S100B expression and target proteins in type I diabetes". Endocrinology. 138 (12): 5176–83. doi:10.1210/endo.138.12.5579. PMID 9389498.
  27. ^ Tsoporis JN, Marks A, Zimmer DB, McMahon C, Parker TG (January 2003). "The myocardial protein S100A1 plays a role in the maintenance of normal gene expression in the adult heart". Molecular and Cellular Biochemistry. 242 (1–2): 27–33. doi:10.1023/A:1021148503861. PMID 12619862. S2CID 12957638.
  28. ^ Most P, Pleger ST, Völkers M, Heidt B, Boerries M, Weichenhan D, Löffler E, Janssen PM, Eckhart AD, Martini J, Williams ML, Katus HA, Remppis A, Koch WJ (December 2004). "Cardiac adenoviral S100A1 gene delivery rescues failing myocardium". The Journal of Clinical Investigation. 114 (11): 1550–63. doi:10.1172/JCI21454. PMC 529280. PMID 15578088.
  29. ^ Pleger ST, Remppis A, Heidt B, Völkers M, Chuprun JK, Kuhn M, Zhou RH, Gao E, Szabo G, Weichenhan D, Müller OJ, Eckhart AD, Katus HA, Koch WJ, Most P (December 2005). "S100A1 gene therapy preserves in vivo cardiac function after myocardial infarction". Molecular Therapy. 12 (6): 1120–9. doi:10.1016/j.ymthe.2005.08.002. PMID 16168714.
  30. ^ Most P, Seifert H, Gao E, Funakoshi H, Völkers M, Heierhorst J, Remppis A, Pleger ST, DeGeorge BR, Eckhart AD, Feldman AM, Koch WJ (September 2006). "Cardiac S100A1 protein levels determine contractile performance and propensity toward heart failure after myocardial infarction". Circulation. 114 (12): 1258–68. doi:10.1161/CIRCULATIONAHA.106.622415. PMID 16952982.
  31. ^ Pleger ST, Most P, Boucher M, Soltys S, Chuprun JK, Pleger W, Gao E, Dasgupta A, Rengo G, Remppis A, Katus HA, Eckhart AD, Rabinowitz JE, Koch WJ (May 2007). "Stable myocardial-specific AAV6-S100A1 gene therapy results in chronic functional heart failure rescue". Circulation. 115 (19): 2506–15. doi:10.1161/CIRCULATIONAHA.106.671701. PMID 17470693.
  32. ^ Descamps B, Madeddu P, Emanueli C (4 January 2013). "S100A1: A novel and essential molecular component for postischemic angiogenesis". Circulation Research. 112 (1): 3–5. doi:10.1161/circresaha.112.281022. PMC 3616364. PMID 23287450.
  33. ^ Most P, Lerchenmüller C, Rengo G, Mahlmann A, Ritterhoff J, Rohde D, Goodman C, Busch CJ, Laube F, Heissenberg J, Pleger ST, Weiss N, Katus HA, Koch WJ, Peppel K (4 January 2013). "S100A1 deficiency impairs postischemic angiogenesis via compromised proangiogenic endothelial cell function and nitric oxide synthase regulation". Circulation Research. 112 (1): 66–78. doi:10.1161/circresaha.112.275156. PMC 3760372. PMID 23048072.
  34. ^ Hoek KS, Schlegel NC, Eichhoff OM, Widmer DS, Praetorius C, Einarsson SO, Valgeirsdottir S, Bergsteinsdottir K, Schepsky A, Dummer R, Steingrimsson E (December 2008). "Novel MITF targets identified using a two-step DNA microarray strategy". Pigment Cell & Melanoma Research. 21 (6): 665–76. doi:10.1111/j.1755-148X.2008.00505.x. PMID 19067971. S2CID 24698373.
  35. ^ Brinks H, Rohde D, Voelkers M, Qiu G, Pleger ST, Herzog N, Rabinowitz J, Ruhparwar A, Silvestry S, Lerchenmüller C, Mather PJ, Eckhart AD, Katus HA, Carrel T, Koch WJ, Most P (23 August 2011). "S100A1 genetically targeted therapy reverses dysfunction of human failing cardiomyocytes". Journal of the American College of Cardiology. 58 (9): 966–73. doi:10.1016/j.jacc.2011.03.054. PMC 3919460. PMID 21851887.
  36. ^ Pleger ST, Shan C, Ksienzyk J, Bekeredjian R, Boekstegers P, Hinkel R, Schinkel S, Leuchs B, Ludwig J, Qiu G, Weber C, Raake P, Koch WJ, Katus HA, Müller OJ, Most P (20 July 2011). "Cardiac AAV9-S100A1 gene therapy rescues post-ischemic heart failure in a preclinical large animal model". Science Translational Medicine. 3 (92): 92ra64. doi:10.1126/scitranslmed.3002097. PMC 4095769. PMID 21775667.
  37. ^ Belmonte SL, Margulies KB, Blaxall BC (23 August 2011). "S100A1: Another Step Toward Therapeutic Development for Heart Failure". Journal of the American College of Cardiology. 58 (9): 974–6. doi:10.1016/j.jacc.2011.04.032. PMID 21851888.
  38. ^ Rohde D, Brinks H, Ritterhoff J, Qui G, Ren S, Most P (May 2011). "S100A1 gene therapy for heart failure: a novel strategy on the verge of clinical trials". Journal of Molecular and Cellular Cardiology. 50 (5): 777–84. doi:10.1016/j.yjmcc.2010.08.012. PMID 20732326.
  39. ^ Rohde D, Ritterhoff J, Voelkers M, Katus HA, Parker TG, Most P (October 2010). "S100A1: a multifaceted therapeutic target in cardiovascular disease". Journal of Cardiovascular Translational Research. 3 (5): 525–37. doi:10.1007/s12265-010-9211-9. PMC 2933808. PMID 20645037.
  40. ^ Kraus C, Rohde D, Weidenhammer C, Qiu G, Pleger ST, Voelkers M, Boerries M, Remppis A, Katus HA, Most P (October 2009). "S100A1 in cardiovascular health and disease: closing the gap between basic science and clinical therapy". Journal of Molecular and Cellular Cardiology. 47 (4): 445–55. doi:10.1016/j.yjmcc.2009.06.003. PMC 2739260. PMID 19538970.
  41. ^ Ritterhoff J, Most P (June 2012). "Targeting S100A1 in heart failure". Gene Therapy. 19 (6): 613–21. doi:10.1038/gt.2012.8. PMID 22336719. S2CID 22951165.
  42. ^ Kairouz V, Lipskaia L, Hajjar RJ, Chemaly ER (April 2012). "Molecular targets in heart failure gene therapy: current controversies and translational perspectives". Annals of the New York Academy of Sciences. 1254 (1): 42–50. Bibcode:2012NYASA1254...42K. doi:10.1111/j.1749-6632.2012.06520.x. PMC 3470446. PMID 22548568.
  43. ^ Zouein FA, Booz GW (2013). "AAV-mediated gene therapy for heart failure: enhancing contractility and calcium handling". F1000Prime Reports. 5: 27. doi:10.12703/p5-27. PMC 3732072. PMID 23967378.
  44. ^ Remppis A, Greten T, Schäfer BW, Hunziker P, Erne P, Katus HA, Heizmann CW (11 October 1996). "Altered expression of the Ca(2+)-binding protein S100A1 in human cardiomyopathy". Biochimica et Biophysica Acta (BBA) - Molecular Cell Research. 1313 (3): 253–7. doi:10.1016/0167-4889(96)00097-3. PMID 8898862.
  45. ^ Bennett MK, Sweet WE, Baicker-McKee S, Looney E, Karohl K, Mountis M, Tang WH, Starling RC, Moravec CS (July 2014). "S100A1 in human heart failure: lack of recovery following left ventricular assist device support". Circulation: Heart Failure. 7 (4): 612–8. doi:10.1161/circheartfailure.113.000849. PMC 4102621. PMID 24842913.
  46. ^ Kiewitz R, Acklin C, Minder E, Huber PR, Schäfer BW, Heizmann CW (11 August 2000). "S100A1, a new marker for acute myocardial ischemia". Biochemical and Biophysical Research Communications. 274 (3): 865–71. doi:10.1006/bbrc.2000.3229. PMID 10924368.
  47. ^ Rohde D, Schön C, Boerries M, Didrihsone I, Ritterhoff J, Kubatzky KF, Völkers M, Herzog N, Mähler M, Tsoporis JN, Parker TG, Linke B, Giannitsis E, Gao E, Peppel K, Katus HA, Most P (15 May 2014). "S100A1 is released from ischemic cardiomyocytes and signals myocardial damage via Toll-like receptor 4". EMBO Molecular Medicine. 6 (6): 778–94. doi:10.15252/emmm.201303498. PMC 4203355. PMID 24833748.
  48. ^ Most P, Boerries M, Eicher C, Schweda C, Ehlermann P, Pleger ST, Loeffler E, Koch WJ, Katus HA, Schoenenberger CA, Remppis A (28 November 2003). "Extracellular S100A1 protein inhibits apoptosis in ventricular cardiomyocytes via activation of the extracellular signal-regulated protein kinase 1/2 (ERK1/2)". The Journal of Biological Chemistry. 278 (48): 48404–12. doi:10.1074/jbc.m308587200. PMID 12960148.
  49. ^ Matheis G, Abdel-Rahman U, Braun S, Wimmer-Greinecker G, Esmaili A, Seitz U, Bastanier CK, Moritz A, Hofstetter R (October 2000). "Uncontrolled reoxygenation by initiating cardiopulmonary bypass is associated with higher protein S100 in cyanotic versus acyanotic patients". The Thoracic and Cardiovascular Surgeon. 48 (5): 263–8. doi:10.1055/s-2000-7879. PMID 11100757. S2CID 260335126.
  50. ^ Brett W, Mandinova A, Remppis A, Sauder U, Rüter F, Heizmann CW, Aebi U, Zerkowski HR (15 June 2001). "Translocation of S100A1(1) calcium binding protein during heart surgery". Biochemical and Biophysical Research Communications. 284 (3): 698–703. doi:10.1006/bbrc.2001.4996. PMID 11396958.
  51. ^ Remppis A, Pleger ST, Most P, Lindenkamp J, Ehlermann P, Schweda C, Löffler E, Weichenhan D, Zimmermann W, Eschenhagen T, Koch WJ, Katus HA (April 2004). "S100A1 gene transfer: a strategy to strengthen engineered cardiac grafts". The Journal of Gene Medicine. 6 (4): 387–94. doi:10.1002/jgm.513. PMID 15079813. S2CID 30629576.
  52. ^ Landar A, Caddell G, Chessher J, Zimmer DB (September 1996). "Identification of an S100A1/S100B target protein: phosphoglucomutase". Cell Calcium. 20 (3): 279–85. doi:10.1016/S0143-4160(96)90033-0. PMID 8894274.
  53. ^ a b Rual JF, Venkatesan K, Hao T, Hirozane-Kishikawa T, Dricot A, Li N, Berriz GF, Gibbons FD, Dreze M, Ayivi-Guedehoussou N, Klitgord N, Simon C, Boxem M, Milstein S, Rosenberg J, Goldberg DS, Zhang LV, Wong SL, Franklin G, Li S, Albala JS, Lim J, Fraughton C, Llamosas E, Cevik S, Bex C, Lamesch P, Sikorski RS, Vandenhaute J, Zoghbi HY, Smolyar A, Bosak S, Sequerra R, Doucette-Stamm L, Cusick ME, Hill DE, Roth FP, Vidal M (October 2005). "Towards a proteome-scale map of the human protein-protein interaction network". Nature. 437 (7062): 1173–8. Bibcode:2005Natur.437.1173R. doi:10.1038/nature04209. PMID 16189514. S2CID 4427026.
  54. ^ Deloulme JC, Assard N, Mbele GO, Mangin C, Kuwano R, Baudier J (November 2000). "S100A6 and S100A11 are specific targets of the calcium- and zinc-binding S100B protein in vivo". The Journal of Biological Chemistry. 275 (45): 35302–10. doi:10.1074/jbc.M003943200. PMID 10913138.
  55. ^ Yang Q, O'Hanlon D, Heizmann CW, Marks A (February 1999). "Demonstration of heterodimer formation between S100B and S100A6 in the yeast two-hybrid system and human melanoma". Experimental Cell Research. 246 (2): 501–9. doi:10.1006/excr.1998.4314. PMID 9925766.
  56. ^ Wang G, Rudland PS, White MR, Barraclough R (April 2000). "Interaction in vivo and in vitro of the metastasis-inducing S100 protein, S100A4 (p9Ka) with S100A1". The Journal of Biological Chemistry. 275 (15): 11141–6. doi:10.1074/jbc.275.15.11141. PMID 10753920.
  57. ^ Holakovska B, Grycova L, Jirku M, Sulc M, Bumba L, Teisinger J (May 2012). "Calmodulin and S100A1 protein interact with N terminus of TRPM3 channel". The Journal of Biological Chemistry. 287 (20): 16645–55. doi:10.1074/jbc.M112.350686. PMC 3351314. PMID 22451665.
  58. ^ Wright NT, Prosser BL, Varney KM, Zimmer DB, Schneider MF, Weber DJ (26 September 2008). "S100A1 and calmodulin compete for the same binding site on ryanodine receptor". The Journal of Biological Chemistry. 283 (39): 26676–83. doi:10.1074/jbc.m804432200. PMC 2546546. PMID 18650434.
  59. ^ Prosser BL, Hernández-Ochoa EO, Schneider MF (October 2011). "S100A1 and calmodulin regulation of ryanodine receptor in striated muscle". Cell Calcium. 50 (4): 323–31. doi:10.1016/j.ceca.2011.06.001. PMC 3185186. PMID 21784520.
  60. ^ a b Kiewitz R, Acklin C, Schäfer BW, Maco B, Uhrík B, Wuytack F, Erne P, Heizmann CW (June 2003). "Ca2+ -dependent interaction of S100A1 with the sarcoplasmic reticulum Ca2+ -ATPase2a and phospholamban in the human heart". Biochemical and Biophysical Research Communications. 306 (2): 550–7. doi:10.1016/s0006-291x(03)00987-2. PMID 12804600.
  61. ^ Most P, Boerries M, Eicher C, Schweda C, Völkers M, Wedel T, Söllner S, Katus HA, Remppis A, Aebi U, Koch WJ, Schoenenberger CA (January 2005). "Distinct subcellular location of the Ca2+-binding protein S100A1 differentially modulates Ca2+-cycling in ventricular rat cardiomyocytes". Journal of Cell Science. 118 (Pt 2): 421–31. doi:10.1242/jcs.01614. PMID 15654019. S2CID 33063596.
  62. ^ Prosser BL, Wright NT, Hernãndez-Ochoa EO, Varney KM, Liu Y, Olojo RO, Zimmer DB, Weber DJ, Schneider MF (22 February 2008). "S100A1 binds to the calmodulin-binding site of ryanodine receptor and modulates skeletal muscle excitation-contraction coupling". The Journal of Biological Chemistry. 283 (8): 5046–57. doi:10.1074/jbc.m709231200. PMC 4821168. PMID 18089560.

Further reading edit

  • Zimmer DB, Cornwall EH, Landar A, Song W (1995). "The S100 protein family: history, function, and expression". Brain Research Bulletin. 37 (4): 417–29. doi:10.1016/0361-9230(95)00040-2. PMID 7620916. S2CID 34720854.
  • Schäfer BW, Heizmann CW (April 1996). "The S100 family of EF-hand calcium-binding proteins: functions and pathology". Trends in Biochemical Sciences. 21 (4): 134–40. doi:10.1016/S0968-0004(96)80167-8. PMID 8701470.
  • Garbuglia M, Verzini M, Sorci G, Bianchi R, Giambanco I, Agneletti AL, Donato R (October 1999). "The calcium-modulated proteins, S100A1 and S100B, as potential regulators of the dynamics of type III intermediate filaments". Brazilian Journal of Medical and Biological Research. 32 (10): 1177–85. doi:10.1590/s0100-879x1999001000001. PMID 10510252.
  • Engelkamp D, Schäfer BW, Erne P, Heizmann CW (October 1992). "S100 alpha, CAPL, and CACY: molecular cloning and expression analysis of three calcium-binding proteins from human heart". Biochemistry. 31 (42): 10258–64. doi:10.1021/bi00157a012. PMID 1384693.
  • Morii K, Tanaka R, Takahashi Y, Minoshima S, Fukuyama R, Shimizu N, Kuwano R (February 1991). "Structure and chromosome assignment of human S100 alpha and beta subunit genes". Biochemical and Biophysical Research Communications. 175 (1): 185–91. doi:10.1016/S0006-291X(05)81218-5. PMID 1998503.
  • Baudier J, Glasser N, Gerard D (June 1986). "Ions binding to S100 proteins. I. Calcium- and zinc-binding properties of bovine brain S100 alpha alpha, S100a (alpha beta), and S100b (beta beta) protein: Zn2+ regulates Ca2+ binding on S100b protein". The Journal of Biological Chemistry. 261 (18): 8192–203. doi:10.1016/S0021-9258(19)83895-4. PMID 3722149.
  • Kato K, Kimura S (October 1985). "S100ao (alpha alpha) protein is mainly located in the heart and striated muscles". Biochimica et Biophysica Acta (BBA) - General Subjects. 842 (2–3): 146–50. doi:10.1016/0304-4165(85)90196-5. PMID 4052452.
  • Schäfer BW, Wicki R, Engelkamp D, Mattei MG, Heizmann CW (February 1995). "Isolation of a YAC clone covering a cluster of nine S100 genes on human chromosome 1q21: rationale for a new nomenclature of the S100 calcium-binding protein family". Genomics. 25 (3): 638–43. doi:10.1016/0888-7543(95)80005-7. PMID 7759097.
  • Engelkamp D, Schäfer BW, Mattei MG, Erne P, Heizmann CW (July 1993). "Six S100 genes are clustered on human chromosome 1q21: identification of two genes coding for the two previously unreported calcium-binding proteins S100D and S100E". Proceedings of the National Academy of Sciences of the United States of America. 90 (14): 6547–51. Bibcode:1993PNAS...90.6547E. doi:10.1073/pnas.90.14.6547. PMC 46969. PMID 8341667.
  • Garbuglia M, Verzini M, Giambanco I, Spreca A, Donato R (February 1996). "Effects of calcium-binding proteins (S-100a(o), S-100a, S-100b) on desmin assembly in vitro". FASEB Journal. 10 (2): 317–24. doi:10.1096/fasebj.10.2.8641565. PMID 8641565. S2CID 9718288.
  • Landar A, Caddell G, Chessher J, Zimmer DB (September 1996). "Identification of an S100A1/S100B target protein: phosphoglucomutase". Cell Calcium. 20 (3): 279–85. doi:10.1016/S0143-4160(96)90033-0. PMID 8894274.
  • Remppis A, Greten T, Schäfer BW, Hunziker P, Erne P, Katus HA, Heizmann CW (October 1996). "Altered expression of the Ca(2+)-binding protein S100A1 in human cardiomyopathy". Biochimica et Biophysica Acta (BBA) - Molecular Cell Research. 1313 (3): 253–7. doi:10.1016/0167-4889(96)00097-3. PMID 8898862.
  • Treves S, Scutari E, Robert M, Groh S, Ottolia M, Prestipino G, Ronjat M, Zorzato F (September 1997). "Interaction of S100A1 with the Ca2+ release channel (ryanodine receptor) of skeletal muscle". Biochemistry. 36 (38): 11496–503. doi:10.1021/bi970160w. PMID 9298970.
  • Groves P, Finn BE, Kuźnicki J, Forsén S (January 1998). "A model for target protein binding to calcium-activated S100 dimers". FEBS Letters. 421 (3): 175–9. doi:10.1016/S0014-5793(97)01535-4. PMID 9468301. S2CID 7749285.
  • Mandinova A, Atar D, Schäfer BW, Spiess M, Aebi U, Heizmann CW (July 1998). "Distinct subcellular localization of calcium binding S100 proteins in human smooth muscle cells and their relocation in response to rises in intracellular calcium". Journal of Cell Science. 111 (14): 2043–54. doi:10.1242/jcs.111.14.2043. PMID 9645951.
  • Osterloh D, Ivanenkov VV, Gerke V (August 1998). "Hydrophobic residues in the C-terminal region of S100A1 are essential for target protein binding but not for dimerization". Cell Calcium. 24 (2): 137–51. doi:10.1016/S0143-4160(98)90081-1. PMID 9803314.
  • Garbuglia M, Verzini M, Donato R (September 1998). "Annexin VI binds S100A1 and S100B and blocks the ability of S100A1 and S100B to inhibit desmin and GFAP assemblies into intermediate filaments". Cell Calcium. 24 (3): 177–91. doi:10.1016/S0143-4160(98)90127-0. PMID 9883272.
  • Ridinger K, Ilg EC, Niggli FK, Heizmann CW, Schäfer BW (December 1998). "Clustered organization of S100 genes in human and mouse". Biochimica et Biophysica Acta (BBA) - Molecular Cell Research. 1448 (2): 254–63. doi:10.1016/S0167-4889(98)00137-2. PMID 9920416.

External links edit

  • Overview of all the structural information available in the PDB for UniProt: P23297 (Protein S100-A1) at the PDBe-KB.

s100a1, protein, s100, also, known, s100, calcium, binding, protein, protein, which, humans, encoded, gene, highly, expressed, cardiac, skeletal, muscle, localizes, discs, sarcoplasmic, reticulum, shown, promise, effective, candidate, gene, therapy, treat, pos. Protein S100 A1 also known as S100 calcium binding protein A1 is a protein which in humans is encoded by the S100A1 gene 5 6 S100A1 is highly expressed in cardiac and skeletal muscle and localizes to Z discs and sarcoplasmic reticulum S100A1 has shown promise as an effective candidate for gene therapy to treat post myocardially infarcted cardiac tissue S100A1Available structuresPDBOrtholog search PDBe RCSBList of PDB id codes2L0P 2LHL 2LLS 2LLT 2LLU 2LP2 2LP3 2LUX 2M3WIdentifiersAliasesS100A1 S100 S100 alpha S100A S100 calcium binding protein A1 S100 calcium binding protein A1External IDsOMIM 176940 MGI 1338917 HomoloGene 4566 GeneCards S100A1Gene location Human Chr Chromosome 1 human 1 Band1q21 3Start153 627 926 bp 1 End153 632 039 bp 1 Gene location Mouse Chr Chromosome 3 mouse 2 Band3 F1 3 39 24 cMStart90 418 341 bp 2 End90 421 699 bp 2 RNA expression patternBgeeHumanMouse ortholog Top expressed ingastrocnemius muscleleft ventriclethoracic diaphragmamygdalanucleus accumbenshypothalamusputamencingulate gyrustriceps brachii muscleprefrontal cortexTop expressed inutriclesubmandibular glandinterventricular septummyocardium of ventricleright ventriclebrown adipose tissueirisextraocular muscledigastric muscleoptic nerveMore reference expression dataBioGPSMore reference expression dataGene ontologyMolecular functioncalcium ion binding S100 protein binding protein homodimerization activity ATPase binding calcium dependent protein binding metal ion binding protein binding identical protein bindingCellular componentcytoplasm M band I band sarcoplasmic reticulum Z disc neuron projection A band nucleus extracellular region protein containing complexBiological processintracellular signal transduction regulation of heart contraction substantia nigra development positive regulation of voltage gated calcium channel activity negative regulation of transcription by RNA polymerase II toll like receptor signaling pathway positive regulation of nitric oxide synthase activity positive regulation of sprouting angiogenesisSources Amigo QuickGOOrthologsSpeciesHumanMouseEntrez627120193EnsemblENSG00000160678ENSMUSG00000044080UniProtP23297P56565RefSeq mRNA NM 006271NM 011309RefSeq protein NP 006262NP 035439Location UCSC Chr 1 153 63 153 63 MbChr 3 90 42 90 42 MbPubMed search 3 4 WikidataView Edit HumanView Edit Mouse Contents 1 Structure 2 Function 3 Clinical Significance 4 Interactions 5 References 6 Further reading 7 External linksStructure editS100A1 is a member of the S100 family of proteins expressed in cardiac muscle skeletal muscle and brain 7 with highest density at Z lines and sarcoplasmic reticulum 8 S100A1 contains 4 EF hand calcium binding motifs in its dimerized form 9 and can exist as either a hetero or homodimer The S100A1 homodimer is high affinity nanomolar range or tighter and is formed through hydrophobic packing of an X type 4 helix bundle created between helices 1 1 4 and 4 Protein nuclear magnetic resonance spectroscopy structural information on the homodimeric form of this protein shows that each monomer is helical and contains two EF hand calcium binding loops one in the N terminus and a canonical EF hand in the C terminus having higher calcium affinity dissociation constant of roughly 20 micromolar The two EF hand domains neighbor each other in three dimensional space and are connected to each other through a short beta sheet region residues 27 29 and 68 70 Upon binding calcium helix 3 of S100A1 re orients from being relatively antiparallel to helix 4 to being roughly perpendicular This conformational change is different from most EF hands in that the entering helix and not the exiting helix moves This conformational change exposes a large hydrophobic pocket between helix 3 4 and the hinge region of S100A1 that is involved in virtually all calcium dependent target protein interactions These biophysical properties seem to be well conserved across the S100 family of proteins Helix 3 4 and the hinge region are the most divergent areas between individual S100 proteins and so it is likely that the sequence of these regions is pivotal in fine tuning calcium dependent target binding by S100 proteins 10 S Nitrosylation of S100A1 at Cys85 reorganizes the conformation of S100A1 at the C terminal helix and the linker connecting the two EF hand domains 11 The most accurate high resolution solution structure of human apo S100A1 protein PDB accession code 2L0P has been determined by means of NMR spectroscopy in 2011 12 S100 genes include at least 19 members which are located as a cluster on chromosome 1q21 13 14 Function editS100 proteins are localized in the cytoplasm and or nucleus of a wide range of cells and involved in the regulation of a number of cellular processes such as cell cycle progression and differentiation This protein may function in stimulation of Ca2 induced Ca2 release inhibition of microtubule assembly and inhibition of protein kinase C mediated phosphorylation S100A1 is expressed during development in the primitive heart at embryonic day 8 in levels that are similar between atria and ventricles As development progresses up to embryonic day 17 5 S100A1 expression shifts to a lower levels in atria and higher levels in ventricular myocardium 15 S100A1 has shown to be a regulator of myocardial contractility S100A1 overexpression via adenoviral gene transfer in adult rabbit cardiomyocytes or a cardiac restricted S100A1 murine transgenic enhanced cardiac contractile performance by increasing sarcoplasmic reticular calcium transients and uptake altering the calcium sensitivity and cooperativity of myofibrils enhancing SERCA2A activity and enhancing calcium induced calcium release 16 17 18 Specifically S100A1 increases the gain of excitation contraction coupling 19 and decreases calcium spark frequency 20 in cardiomyocytes Enhancement of L type calcium channel transsarcolemmal calcium influx by S100A has been shown to be dependent on protein kinase A 21 Effects of S100A1 on myofilament proteins may be via Titin S100A1 has been shown to interact with the PEVK region of Titin in a calcium dependent manner and its binding reduces the force in an in vitro motility assay suggesting that S100A may modulate Titin based passive tension prior to systole 22 23 In mice with ablation of the S100A1 gene S100A1 cardiac reserve upon beta adrenergic stimulation was impaired showing reduced contraction rate and relaxation rate as well as reduced calcium sensitivity However S100A1 did not show the eventual cardiac hypertrophy or chamber dilation in aged mice 24 In animal models of disease S100A1 protein levels has been shown to be altered in right ventricular hypertrophied tissue in a model of pulmonary hypertension 25 several tissue types brain skeletal muscle and cardiac muscle in a model of type I diabetes mellitus 26 S100A1 has been demonstrated as a regulator of the genetic program underlying cardiac hypertrophy in that S100A1 inhibits alpha1 adrenergic stimulation of hypertrophic genes including MYH7 ACTA1 and S100B 27 In a rat model of myocardial infarction intracoronary S100A1 adenoviral gene transfer restored sarcoplasmic reticular calcium transients and load normalized intracellular sodium concentrations reversed the pathologic expression of the fetal gene program restored energy supply normalized contractile function preserved inotropic reserve and reduced cardiac hypertrophy 1 week post myocardial infarction 28 29 In support of the adenoviral experiments S100A1 transgenic overexpressing mice subjected to myocardial infarction showed preserved contractile function abrogated apoptosis preserved sarcoplasmic reticulum calcium cycling and beta adrenergic signaling prevention from cardiac hypertrophy and heart failure as well as prolonged survival relative to non transgenic controls 30 31 S100A1 has also been identified as a novel regulator of endothelial cell post ischemic angiogenesis as patients with limb ischemia exhibited downregulation of S100A1 expression in hypoxic tissue 32 33 In melanocytic cells S100A1 gene expression may be regulated by MITF 34 Clinical Significance editS100A1 has shown efficacy in feasibility in treating heart failure symptoms in large preclinical models and human cardiomyocytes 35 36 and thus shows great promise for clinical trials 37 38 39 40 41 42 43 Reduced expression of this protein has been implicated in cardiomyopathies 44 and left ventricular assist device based therapy does not restore S100A1 levels in patients 45 S100A1 has shown promise as an early diagnostic biomarker for acute myocardial ischemia presenting with a distinct timecourse in human plasma following an ischemic event relative to traditional markers creatine kinase CKMB and troponin I 46 47 This injury released extracellular pool of S100A1 was investigated in neonatal murine cardiomyocytes and was shown to prevent apoptosis via an ERK1 2 dependent pathway suggesting that the release of S100A1 from injured cells is an intrinsic survival mechanism for viable myocardium 48 S100 has also shown promise as a biomarker for uncontrolled hyperoxic reoxygenation during cardiopulmonary bypass in infants with cyanotic heart disease 49 and in adults 50 S100A1 gene transfer to engineered heart tissue was shown to augment contractile performance of the tissue implants suggesting that S100A1 may be effective in facilitating cardiac tissue replacement therapy in heart failure patients 51 However the clinical efficacy of this strategy remains to be determined In addition multiple drugs including Pentamidine 10 Amlexanox Olopatadine Cromolyn and Propanolol 10 are known to bind to S100A1 although their affinities are often in the mid micromolar range Interactions editS100 interacts with PGM1 52 S100B 53 54 55 S100A4 53 56 TRPM3 57 Titin 22 RYR2 16 58 59 SERCA2A 60 61 PLB 60 RYR1 62 References edit a b c GRCh38 Ensembl release 89 ENSG00000160678 Ensembl May 2017 a b c GRCm38 Ensembl release 89 ENSMUSG00000044080 Ensembl May 2017 Human PubMed Reference National Center for Biotechnology Information U S National Library of Medicine Mouse PubMed Reference National Center for Biotechnology Information U S National Library of Medicine Entrez Gene S100A1 S100 calcium binding protein A1 Morii K Tanaka R Takahashi Y Minoshima S Fukuyama R Shimizu N Kuwano R February 1991 Structure and chromosome assignment of human S100 alpha and beta subunit genes Biochemical and Biophysical Research Communications 175 1 185 91 doi 10 1016 S0006 291X 05 81218 5 PMID 1998503 Engelkamp D Schafer BW Erne P Heizmann CW October 1992 S100 alpha CAPL and CACY molecular cloning and expression analysis of three calcium binding proteins from human heart Biochemistry 31 42 10258 64 doi 10 1021 bi00157a012 PMID 1384693 Maco B Mandinova A Durrenberger MB Schafer BW Uhrik B Heizmann CW 2001 Ultrastructural distribution of the S100A1 Ca2 binding protein in the human heart Physiological Research 50 6 567 74 PMID 11829317 Marenholz I Heizmann CW Fritz G October 2004 S100 proteins in mouse and man from evolution to function and pathology including an update of the nomenclature Biochemical and Biophysical Research Communications 322 4 1111 22 doi 10 1016 j bbrc 2004 07 096 PMID 15336958 a b c Wright NT Cannon BR Zimmer DB Weber DJ 1 May 2009 S100A1 Structure Function and Therapeutic Potential Current Chemical Biology 3 2 138 145 doi 10 2174 2212796810903020138 PMC 2771873 PMID 19890475 Lenarcic Zivkovic M Zareba Koziol M Zhukova L Poznanski J Zhukov I Wyslouch Cieszynska A 23 November 2012 Post translational S nitrosylation is an endogenous factor fine tuning the properties of human S100A1 protein The Journal of Biological Chemistry 287 48 40457 70 doi 10 1074 jbc m112 418392 PMC 3504761 PMID 22989881 Nowakowski M Jaremko L Jaremko M Zhukov I Belczyk A Bierzynski A Ejchart A May 2011 Solution NMR structure and dynamics of human apo S100A1 protein Journal of Structural Biology 174 2 391 9 doi 10 1016 j jsb 2011 01 011 PMID 21296671 Donato R July 1999 Functional roles of S100 proteins calcium binding proteins of the EF hand type Biochimica et Biophysica Acta BBA Molecular Cell Research 1450 3 191 231 doi 10 1016 s0167 4889 99 00058 0 PMID 10395934 Wicki R Schafer BW Erne P Heizmann CW October 1996 Characterization of the human and mouse cDNAs coding for S100A13 a new member of the S100 protein family Biochemical and Biophysical Research Communications 227 2 594 9 doi 10 1006 bbrc 1996 1551 PMID 8878558 Kiewitz R Lyons GE Schafer BW Heizmann CW December 2000 Transcriptional regulation of S100A1 and expression during mouse heart development Biochimica et Biophysica Acta BBA Molecular Cell Research 1498 2 3 207 19 doi 10 1016 s0167 4889 00 00097 5 PMID 11108964 a b Most P Remppis A Pleger ST Loffler E Ehlermann P Bernotat J Kleuss C Heierhorst J Ruiz P Witt H Karczewski P Mao L Rockman HA Duncan SJ Katus HA Koch WJ September 2003 Transgenic overexpression of the Ca2 binding protein S100A1 in the heart leads to increased in vivo myocardial contractile performance The Journal of Biological Chemistry 278 36 33809 17 doi 10 1074 jbc M301788200 PMID 12777394 Remppis A Most P Loffler E Ehlermann P Bernotat J Pleger S Borries M Reppel M Fischer J Koch WJ Smith G Katus HA 2002 The small EF hand Ca2 binding protein S100A1 increases contractility and Ca2 cycling in rat cardiac myocytes Basic Research in Cardiology 97 Suppl 1 7 I56 62 doi 10 1007 s003950200031 PMID 12479236 S2CID 25461816 Most P Bernotat J Ehlermann P Pleger ST Reppel M Borries M Niroomand F Pieske B Janssen PM Eschenhagen T Karczewski P Smith GL Koch WJ Katus HA Remppis A November 2001 S100A1 a regulator of myocardial contractility Proceedings of the National Academy of Sciences of the United States of America 98 24 13889 94 Bibcode 2001PNAS 9813889M doi 10 1073 pnas 241393598 PMC 61137 PMID 11717446 Kettlewell S Most P Currie S Koch WJ Smith GL December 2005 S100A1 increases the gain of excitation contraction coupling in isolated rabbit ventricular cardiomyocytes Journal of Molecular and Cellular Cardiology 39 6 900 10 doi 10 1016 j yjmcc 2005 06 018 PMID 16236309 Volkers M Loughrey CM Macquaide N Remppis A DeGeorge BR Wegner FV Friedrich O Fink RH Koch WJ Smith GL Most P February 2007 S100A1 decreases calcium spark frequency and alters their spatial characteristics in permeabilized adult ventricular cardiomyocytes Cell Calcium 41 2 135 43 doi 10 1016 j ceca 2006 06 001 PMID 16919727 Reppel M Sasse P Piekorz R Tang M Roell W Duan Y Kletke A Hescheler J Nurnberg B Fleischmann BK October 2005 S100A1 enhances the L type Ca2 current in embryonic mouse and neonatal rat ventricular cardiomyocytes The Journal of Biological Chemistry 280 43 36019 28 doi 10 1074 jbc M504750200 PMID 16129693 a b Yamasaki R Berri M Wu Y Trombitas K McNabb M Kellermayer MS Witt C Labeit D Labeit S Greaser M Granzier H October 2001 Titin actin interaction in mouse myocardium passive tension modulation and its regulation by calcium S100A1 Biophysical Journal 81 4 2297 313 Bibcode 2001BpJ 81 2297Y doi 10 1016 S0006 3495 01 75876 6 PMC 1301700 PMID 11566799 Fukushima H Chung CS Granzier H 2010 Titin isoform dependence of titin actin interaction and its regulation by S100A1 Ca2 in skinned myocardium Journal of Biomedicine amp Biotechnology 2010 727239 doi 10 1155 2010 727239 PMC 2855102 PMID 20414336 Du XJ Cole TJ Tenis N Gao XM Kontgen F Kemp BE Heierhorst J April 2002 Impaired cardiac contractility response to hemodynamic stress in S100A1 deficient mice Molecular and Cellular Biology 22 8 2821 9 doi 10 1128 mcb 22 8 2821 2829 2002 PMC 133731 PMID 11909974 Ehlermann P Remppis A Guddat O Weimann J Schnabel PA Motsch J Heizmann CW Katus HA February 2000 Right ventricular upregulation of the Ca 2 binding protein S100A1 in chronic pulmonary hypertension Biochimica et Biophysica Acta BBA Molecular Basis of Disease 1500 2 249 55 doi 10 1016 s0925 4439 99 00106 4 PMID 10657594 Zimmer DB Chessher J Wilson GL Zimmer WE December 1997 S100A1 and S100B expression and target proteins in type I diabetes Endocrinology 138 12 5176 83 doi 10 1210 endo 138 12 5579 PMID 9389498 Tsoporis JN Marks A Zimmer DB McMahon C Parker TG January 2003 The myocardial protein S100A1 plays a role in the maintenance of normal gene expression in the adult heart Molecular and Cellular Biochemistry 242 1 2 27 33 doi 10 1023 A 1021148503861 PMID 12619862 S2CID 12957638 Most P Pleger ST Volkers M Heidt B Boerries M Weichenhan D Loffler E Janssen PM Eckhart AD Martini J Williams ML Katus HA Remppis A Koch WJ December 2004 Cardiac adenoviral S100A1 gene delivery rescues failing myocardium The Journal of Clinical Investigation 114 11 1550 63 doi 10 1172 JCI21454 PMC 529280 PMID 15578088 Pleger ST Remppis A Heidt B Volkers M Chuprun JK Kuhn M Zhou RH Gao E Szabo G Weichenhan D Muller OJ Eckhart AD Katus HA Koch WJ Most P December 2005 S100A1 gene therapy preserves in vivo cardiac function after myocardial infarction Molecular Therapy 12 6 1120 9 doi 10 1016 j ymthe 2005 08 002 PMID 16168714 Most P Seifert H Gao E Funakoshi H Volkers M Heierhorst J Remppis A Pleger ST DeGeorge BR Eckhart AD Feldman AM Koch WJ September 2006 Cardiac S100A1 protein levels determine contractile performance and propensity toward heart failure after myocardial infarction Circulation 114 12 1258 68 doi 10 1161 CIRCULATIONAHA 106 622415 PMID 16952982 Pleger ST Most P Boucher M Soltys S Chuprun JK Pleger W Gao E Dasgupta A Rengo G Remppis A Katus HA Eckhart AD Rabinowitz JE Koch WJ May 2007 Stable myocardial specific AAV6 S100A1 gene therapy results in chronic functional heart failure rescue Circulation 115 19 2506 15 doi 10 1161 CIRCULATIONAHA 106 671701 PMID 17470693 Descamps B Madeddu P Emanueli C 4 January 2013 S100A1 A novel and essential molecular component for postischemic angiogenesis Circulation Research 112 1 3 5 doi 10 1161 circresaha 112 281022 PMC 3616364 PMID 23287450 Most P Lerchenmuller C Rengo G Mahlmann A Ritterhoff J Rohde D Goodman C Busch CJ Laube F Heissenberg J Pleger ST Weiss N Katus HA Koch WJ Peppel K 4 January 2013 S100A1 deficiency impairs postischemic angiogenesis via compromised proangiogenic endothelial cell function and nitric oxide synthase regulation Circulation Research 112 1 66 78 doi 10 1161 circresaha 112 275156 PMC 3760372 PMID 23048072 Hoek KS Schlegel NC Eichhoff OM Widmer DS Praetorius C Einarsson SO Valgeirsdottir S Bergsteinsdottir K Schepsky A Dummer R Steingrimsson E December 2008 Novel MITF targets identified using a two step DNA microarray strategy Pigment Cell amp Melanoma Research 21 6 665 76 doi 10 1111 j 1755 148X 2008 00505 x PMID 19067971 S2CID 24698373 Brinks H Rohde D Voelkers M Qiu G Pleger ST Herzog N Rabinowitz J Ruhparwar A Silvestry S Lerchenmuller C Mather PJ Eckhart AD Katus HA Carrel T Koch WJ Most P 23 August 2011 S100A1 genetically targeted therapy reverses dysfunction of human failing cardiomyocytes Journal of the American College of Cardiology 58 9 966 73 doi 10 1016 j jacc 2011 03 054 PMC 3919460 PMID 21851887 Pleger ST Shan C Ksienzyk J Bekeredjian R Boekstegers P Hinkel R Schinkel S Leuchs B Ludwig J Qiu G Weber C Raake P Koch WJ Katus HA Muller OJ Most P 20 July 2011 Cardiac AAV9 S100A1 gene therapy rescues post ischemic heart failure in a preclinical large animal model Science Translational Medicine 3 92 92ra64 doi 10 1126 scitranslmed 3002097 PMC 4095769 PMID 21775667 Belmonte SL Margulies KB Blaxall BC 23 August 2011 S100A1 Another Step Toward Therapeutic Development for Heart Failure Journal of the American College of Cardiology 58 9 974 6 doi 10 1016 j jacc 2011 04 032 PMID 21851888 Rohde D Brinks H Ritterhoff J Qui G Ren S Most P May 2011 S100A1 gene therapy for heart failure a novel strategy on the verge of clinical trials Journal of Molecular and Cellular Cardiology 50 5 777 84 doi 10 1016 j yjmcc 2010 08 012 PMID 20732326 Rohde D Ritterhoff J Voelkers M Katus HA Parker TG Most P October 2010 S100A1 a multifaceted therapeutic target in cardiovascular disease Journal of Cardiovascular Translational Research 3 5 525 37 doi 10 1007 s12265 010 9211 9 PMC 2933808 PMID 20645037 Kraus C Rohde D Weidenhammer C Qiu G Pleger ST Voelkers M Boerries M Remppis A Katus HA Most P October 2009 S100A1 in cardiovascular health and disease closing the gap between basic science and clinical therapy Journal of Molecular and Cellular Cardiology 47 4 445 55 doi 10 1016 j yjmcc 2009 06 003 PMC 2739260 PMID 19538970 Ritterhoff J Most P June 2012 Targeting S100A1 in heart failure Gene Therapy 19 6 613 21 doi 10 1038 gt 2012 8 PMID 22336719 S2CID 22951165 Kairouz V Lipskaia L Hajjar RJ Chemaly ER April 2012 Molecular targets in heart failure gene therapy current controversies and translational perspectives Annals of the New York Academy of Sciences 1254 1 42 50 Bibcode 2012NYASA1254 42K doi 10 1111 j 1749 6632 2012 06520 x PMC 3470446 PMID 22548568 Zouein FA Booz GW 2013 AAV mediated gene therapy for heart failure enhancing contractility and calcium handling F1000Prime Reports 5 27 doi 10 12703 p5 27 PMC 3732072 PMID 23967378 Remppis A Greten T Schafer BW Hunziker P Erne P Katus HA Heizmann CW 11 October 1996 Altered expression of the Ca 2 binding protein S100A1 in human cardiomyopathy Biochimica et Biophysica Acta BBA Molecular Cell Research 1313 3 253 7 doi 10 1016 0167 4889 96 00097 3 PMID 8898862 Bennett MK Sweet WE Baicker McKee S Looney E Karohl K Mountis M Tang WH Starling RC Moravec CS July 2014 S100A1 in human heart failure lack of recovery following left ventricular assist device support Circulation Heart Failure 7 4 612 8 doi 10 1161 circheartfailure 113 000849 PMC 4102621 PMID 24842913 Kiewitz R Acklin C Minder E Huber PR Schafer BW Heizmann CW 11 August 2000 S100A1 a new marker for acute myocardial ischemia Biochemical and Biophysical Research Communications 274 3 865 71 doi 10 1006 bbrc 2000 3229 PMID 10924368 Rohde D Schon C Boerries M Didrihsone I Ritterhoff J Kubatzky KF Volkers M Herzog N Mahler M Tsoporis JN Parker TG Linke B Giannitsis E Gao E Peppel K Katus HA Most P 15 May 2014 S100A1 is released from ischemic cardiomyocytes and signals myocardial damage via Toll like receptor 4 EMBO Molecular Medicine 6 6 778 94 doi 10 15252 emmm 201303498 PMC 4203355 PMID 24833748 Most P Boerries M Eicher C Schweda C Ehlermann P Pleger ST Loeffler E Koch WJ Katus HA Schoenenberger CA Remppis A 28 November 2003 Extracellular S100A1 protein inhibits apoptosis in ventricular cardiomyocytes via activation of the extracellular signal regulated protein kinase 1 2 ERK1 2 The Journal of Biological Chemistry 278 48 48404 12 doi 10 1074 jbc m308587200 PMID 12960148 Matheis G Abdel Rahman U Braun S Wimmer Greinecker G Esmaili A Seitz U Bastanier CK Moritz A Hofstetter R October 2000 Uncontrolled reoxygenation by initiating cardiopulmonary bypass is associated with higher protein S100 in cyanotic versus acyanotic patients The Thoracic and Cardiovascular Surgeon 48 5 263 8 doi 10 1055 s 2000 7879 PMID 11100757 S2CID 260335126 Brett W Mandinova A Remppis A Sauder U Ruter F Heizmann CW Aebi U Zerkowski HR 15 June 2001 Translocation of S100A1 1 calcium binding protein during heart surgery Biochemical and Biophysical Research Communications 284 3 698 703 doi 10 1006 bbrc 2001 4996 PMID 11396958 Remppis A Pleger ST Most P Lindenkamp J Ehlermann P Schweda C Loffler E Weichenhan D Zimmermann W Eschenhagen T Koch WJ Katus HA April 2004 S100A1 gene transfer a strategy to strengthen engineered cardiac grafts The Journal of Gene Medicine 6 4 387 94 doi 10 1002 jgm 513 PMID 15079813 S2CID 30629576 Landar A Caddell G Chessher J Zimmer DB September 1996 Identification of an S100A1 S100B target protein phosphoglucomutase Cell Calcium 20 3 279 85 doi 10 1016 S0143 4160 96 90033 0 PMID 8894274 a b Rual JF Venkatesan K Hao T Hirozane Kishikawa T Dricot A Li N Berriz GF Gibbons FD Dreze M Ayivi Guedehoussou N Klitgord N Simon C Boxem M Milstein S Rosenberg J Goldberg DS Zhang LV Wong SL Franklin G Li S Albala JS Lim J Fraughton C Llamosas E Cevik S Bex C Lamesch P Sikorski RS Vandenhaute J Zoghbi HY Smolyar A Bosak S Sequerra R Doucette Stamm L Cusick ME Hill DE Roth FP Vidal M October 2005 Towards a proteome scale map of the human protein protein interaction network Nature 437 7062 1173 8 Bibcode 2005Natur 437 1173R doi 10 1038 nature04209 PMID 16189514 S2CID 4427026 Deloulme JC Assard N Mbele GO Mangin C Kuwano R Baudier J November 2000 S100A6 and S100A11 are specific targets of the calcium and zinc binding S100B protein in vivo The Journal of Biological Chemistry 275 45 35302 10 doi 10 1074 jbc M003943200 PMID 10913138 Yang Q O Hanlon D Heizmann CW Marks A February 1999 Demonstration of heterodimer formation between S100B and S100A6 in the yeast two hybrid system and human melanoma Experimental Cell Research 246 2 501 9 doi 10 1006 excr 1998 4314 PMID 9925766 Wang G Rudland PS White MR Barraclough R April 2000 Interaction in vivo and in vitro of the metastasis inducing S100 protein S100A4 p9Ka with S100A1 The Journal of Biological Chemistry 275 15 11141 6 doi 10 1074 jbc 275 15 11141 PMID 10753920 Holakovska B Grycova L Jirku M Sulc M Bumba L Teisinger J May 2012 Calmodulin and S100A1 protein interact with N terminus of TRPM3 channel The Journal of Biological Chemistry 287 20 16645 55 doi 10 1074 jbc M112 350686 PMC 3351314 PMID 22451665 Wright NT Prosser BL Varney KM Zimmer DB Schneider MF Weber DJ 26 September 2008 S100A1 and calmodulin compete for the same binding site on ryanodine receptor The Journal of Biological Chemistry 283 39 26676 83 doi 10 1074 jbc m804432200 PMC 2546546 PMID 18650434 Prosser BL Hernandez Ochoa EO Schneider MF October 2011 S100A1 and calmodulin regulation of ryanodine receptor in striated muscle Cell Calcium 50 4 323 31 doi 10 1016 j ceca 2011 06 001 PMC 3185186 PMID 21784520 a b Kiewitz R Acklin C Schafer BW Maco B Uhrik B Wuytack F Erne P Heizmann CW June 2003 Ca2 dependent interaction of S100A1 with the sarcoplasmic reticulum Ca2 ATPase2a and phospholamban in the human heart Biochemical and Biophysical Research Communications 306 2 550 7 doi 10 1016 s0006 291x 03 00987 2 PMID 12804600 Most P Boerries M Eicher C Schweda C Volkers M Wedel T Sollner S Katus HA Remppis A Aebi U Koch WJ Schoenenberger CA January 2005 Distinct subcellular location of the Ca2 binding protein S100A1 differentially modulates Ca2 cycling in ventricular rat cardiomyocytes Journal of Cell Science 118 Pt 2 421 31 doi 10 1242 jcs 01614 PMID 15654019 S2CID 33063596 Prosser BL Wright NT Hernandez Ochoa EO Varney KM Liu Y Olojo RO Zimmer DB Weber DJ Schneider MF 22 February 2008 S100A1 binds to the calmodulin binding site of ryanodine receptor and modulates skeletal muscle excitation contraction coupling The Journal of Biological Chemistry 283 8 5046 57 doi 10 1074 jbc m709231200 PMC 4821168 PMID 18089560 Further reading editZimmer DB Cornwall EH Landar A Song W 1995 The S100 protein family history function and expression Brain Research Bulletin 37 4 417 29 doi 10 1016 0361 9230 95 00040 2 PMID 7620916 S2CID 34720854 Schafer BW Heizmann CW April 1996 The S100 family of EF hand calcium binding proteins functions and pathology Trends in Biochemical Sciences 21 4 134 40 doi 10 1016 S0968 0004 96 80167 8 PMID 8701470 Garbuglia M Verzini M Sorci G Bianchi R Giambanco I Agneletti AL Donato R October 1999 The calcium modulated proteins S100A1 and S100B as potential regulators of the dynamics of type III intermediate filaments Brazilian Journal of Medical and Biological Research 32 10 1177 85 doi 10 1590 s0100 879x1999001000001 PMID 10510252 Engelkamp D Schafer BW Erne P Heizmann CW October 1992 S100 alpha CAPL and CACY molecular cloning and expression analysis of three calcium binding proteins from human heart Biochemistry 31 42 10258 64 doi 10 1021 bi00157a012 PMID 1384693 Morii K Tanaka R Takahashi Y Minoshima S Fukuyama R Shimizu N Kuwano R February 1991 Structure and chromosome assignment of human S100 alpha and beta subunit genes Biochemical and Biophysical Research Communications 175 1 185 91 doi 10 1016 S0006 291X 05 81218 5 PMID 1998503 Baudier J Glasser N Gerard D June 1986 Ions binding to S100 proteins I Calcium and zinc binding properties of bovine brain S100 alpha alpha S100a alpha beta and S100b beta beta protein Zn2 regulates Ca2 binding on S100b protein The Journal of Biological Chemistry 261 18 8192 203 doi 10 1016 S0021 9258 19 83895 4 PMID 3722149 Kato K Kimura S October 1985 S100ao alpha alpha protein is mainly located in the heart and striated muscles Biochimica et Biophysica Acta BBA General Subjects 842 2 3 146 50 doi 10 1016 0304 4165 85 90196 5 PMID 4052452 Schafer BW Wicki R Engelkamp D Mattei MG Heizmann CW February 1995 Isolation of a YAC clone covering a cluster of nine S100 genes on human chromosome 1q21 rationale for a new nomenclature of the S100 calcium binding protein family Genomics 25 3 638 43 doi 10 1016 0888 7543 95 80005 7 PMID 7759097 Engelkamp D Schafer BW Mattei MG Erne P Heizmann CW July 1993 Six S100 genes are clustered on human chromosome 1q21 identification of two genes coding for the two previously unreported calcium binding proteins S100D and S100E Proceedings of the National Academy of Sciences of the United States of America 90 14 6547 51 Bibcode 1993PNAS 90 6547E doi 10 1073 pnas 90 14 6547 PMC 46969 PMID 8341667 Garbuglia M Verzini M Giambanco I Spreca A Donato R February 1996 Effects of calcium binding proteins S 100a o S 100a S 100b on desmin assembly in vitro FASEB Journal 10 2 317 24 doi 10 1096 fasebj 10 2 8641565 PMID 8641565 S2CID 9718288 Landar A Caddell G Chessher J Zimmer DB September 1996 Identification of an S100A1 S100B target protein phosphoglucomutase Cell Calcium 20 3 279 85 doi 10 1016 S0143 4160 96 90033 0 PMID 8894274 Remppis A Greten T Schafer BW Hunziker P Erne P Katus HA Heizmann CW October 1996 Altered expression of the Ca 2 binding protein S100A1 in human cardiomyopathy Biochimica et Biophysica Acta BBA Molecular Cell Research 1313 3 253 7 doi 10 1016 0167 4889 96 00097 3 PMID 8898862 Treves S Scutari E Robert M Groh S Ottolia M Prestipino G Ronjat M Zorzato F September 1997 Interaction of S100A1 with the Ca2 release channel ryanodine receptor of skeletal muscle Biochemistry 36 38 11496 503 doi 10 1021 bi970160w PMID 9298970 Groves P Finn BE Kuznicki J Forsen S January 1998 A model for target protein binding to calcium activated S100 dimers FEBS Letters 421 3 175 9 doi 10 1016 S0014 5793 97 01535 4 PMID 9468301 S2CID 7749285 Mandinova A Atar D Schafer BW Spiess M Aebi U Heizmann CW July 1998 Distinct subcellular localization of calcium binding S100 proteins in human smooth muscle cells and their relocation in response to rises in intracellular calcium Journal of Cell Science 111 14 2043 54 doi 10 1242 jcs 111 14 2043 PMID 9645951 Osterloh D Ivanenkov VV Gerke V August 1998 Hydrophobic residues in the C terminal region of S100A1 are essential for target protein binding but not for dimerization Cell Calcium 24 2 137 51 doi 10 1016 S0143 4160 98 90081 1 PMID 9803314 Garbuglia M Verzini M Donato R September 1998 Annexin VI binds S100A1 and S100B and blocks the ability of S100A1 and S100B to inhibit desmin and GFAP assemblies into intermediate filaments Cell Calcium 24 3 177 91 doi 10 1016 S0143 4160 98 90127 0 PMID 9883272 Ridinger K Ilg EC Niggli FK Heizmann CW Schafer BW December 1998 Clustered organization of S100 genes in human and mouse Biochimica et Biophysica Acta BBA Molecular Cell Research 1448 2 254 63 doi 10 1016 S0167 4889 98 00137 2 PMID 9920416 External links editOverview of all the structural information available in the PDB for UniProt P23297 Protein S100 A1 at the PDBe KB Retrieved from https en wikipedia org w index php title S100A1 amp oldid 1218939912, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.