fbpx
Wikipedia

Pulmonary fibrosis

Pulmonary fibrosis is a condition in which the lungs become scarred over time.[1] Symptoms include shortness of breath, a dry cough, feeling tired, weight loss, and nail clubbing.[1] Complications may include pulmonary hypertension, respiratory failure, pneumothorax, and lung cancer.[2]

Pulmonary fibrosis
Other namesInterstitial pulmonary fibrosis
Clubbing of the fingers in pulmonary fibrosis
SpecialtyPulmonology
SymptomsShortness of breath, dry cough, feeling tired, weight loss, nail clubbing[1]
ComplicationsPulmonary hypertension, respiratory failure, pneumothorax, lung cancer[2]
CausesTobacco smoking, environmental pollution, certain medications, connective tissue diseases, interstitial lung disease, unknown[1][3]
TreatmentOxygen therapy, pulmonary rehabilitation, lung transplantation[4]
MedicationPirfenidone, nintedanib[4]
PrognosisPoor[3]
Frequency>5 million people[5]

Causes include environmental pollution, certain medications, connective tissue diseases, infections, and interstitial lung diseases.[1][3][6] However, in most cases the cause is unknown, and termed idiopathic pulmonary fibrosis.[1][3] Diagnosis may be based on symptoms, medical imaging, lung biopsy, and lung function tests.[1]

No cure exists and only limited treatment options are available.[1] Treatment is directed towards efforts to improve symptoms and may include oxygen therapy and pulmonary rehabilitation.[1][4] Certain medications may be used to try to slow the worsening of scarring.[4] Lung transplantation may occasionally be an option.[3] At least 5 million people are affected globally.[5] Life expectancy is generally less than five years.[3]

Signs and symptoms edit

Symptoms of pulmonary fibrosis are mainly:[1]

  • Shortness of breath, particularly with exertion
  • Chronic dry, hacking coughing
  • Fatigue and weakness
  • Chest discomfort including chest pain
  • Loss of appetite and rapid weight loss

Pulmonary fibrosis is suggested by a history of progressive shortness of breath (dyspnea) with exertion. Sometimes fine inspiratory crackles can be heard at the lung bases on auscultation. A chest X-ray may or may not be abnormal, but high-resolution CT will frequently demonstrate abnormalities.[3]

Cause edit

Pulmonary fibrosis may be a secondary effect of other diseases. Most of these are classified as interstitial lung diseases. Examples include autoimmune disorders, viral infections and bacterial infection like tuberculosis which may cause fibrotic changes in both lung's upper or lower lobes and other microscopic injuries to the lung. However, pulmonary fibrosis can also appear without any known cause. In this case, it is termed "idiopathic".[7] Most idiopathic cases are diagnosed as idiopathic pulmonary fibrosis. This is a diagnosis of exclusion of a characteristic set of histologic/pathologic features known as usual interstitial pneumonia (UIP). In either case, there is a growing body of evidence which points to a genetic predisposition in a subset of patients. For example, a mutation in surfactant protein C (SP-C) has been found to exist in some families with a history of pulmonary fibrosis.[8] Autosomal dominant mutations in the TERC or TERT genes, which encode telomerase, have been identified in about 15 percent of pulmonary fibrosis patients.[9]

Diseases and conditions that may cause pulmonary fibrosis as a secondary effect include:[3][8]

Pathogenesis edit

Pulmonary fibrosis involves a gradual replacement of normal lung tissue with fibrotic tissue. Such scar tissue causes an irreversible decrease in oxygen diffusion capacity, and the resulting stiffness or decreased compliance makes pulmonary fibrosis a restrictive lung disease.[14] Pulmonary fibrosis is perpetuated by aberrant wound healing, rather than chronic inflammation.[15] It is the main cause of restrictive lung disease that is intrinsic to the lung parenchyma. In contrast, quadriplegia[16] and kyphosis[17] are examples of causes of restrictive lung disease that do not necessarily involve pulmonary fibrosis.

Common genes implicated in fibrosis are Transforming Growth Factor-Beta (TGF-β),[18] Connective Tissue Growth Factor (CTGF),[19] Epidermal Growth Factor Receptor (EGFR),[20] Interleukin-13 (IL-13),[21] Platelet-Derived Growth Factor (PDGF),[22] Wnt/β-catenin signaling pathway.[23]

  • TGF-β is a cytokine that plays a critical role in the regulation of extracellular matrix (ECM) production and cellular differentiation.[24] It is a potent stimulator of fibrosis, and increased TGF-β signaling is associated with the development of fibrosis in various organs.
  • CTGF is a matricellular protein that is involved in ECM production and remodeling.[24] It is up-regulated in response to TGF-β and has been implicated in the development of pulmonary fibrosis.[18]
  • EGFR is a transmembrane receptor that plays a role in cellular proliferation, differentiation, and survival. Dysregulated EGFR signaling has been implicated in the development of pulmonary fibrosis, and drugs that target EGFR have been shown to have therapeutic potential in the treatment of the disease.[20]
  • IL-13 is a cytokine that is involved in the regulation of immune responses.[21] It has been shown to promote fibrosis in the lungs by stimulating the production of ECM proteins and the recruitment of fibroblasts to sites of tissue injury.
  • PDGF is a cytokine that plays a key role in the regulation of cell proliferation and migration.[22] It is involved in the recruitment of fibroblasts to sites of tissue injury in the lungs, and increased PDGF signaling is associated with the development and progression of pulmonary fibrosis.
  • Wnt/β-catenin signaling plays a critical role in tissue repair and regeneration, and dysregulated Wnt/β-catenin signaling has been implicated in the development of pulmonary fibrosis.[23]

Diagnosis edit

 
HRCT of lung showing extensive fibrosis possibly from usual interstitial pneumonitis. There is also a large bulla.

The diagnosis can be confirmed by lung biopsy.[3] A video-assisted thoracoscopic surgery (VATS) under general anesthesia may be needed to obtain enough tissue to make an accurate diagnosis. This kind of biopsy involves placement of several tubes through the chest wall, one of which is used to cut off a piece of lung to send for evaluation. The removed tissue is examined histopathologically by microscopy to confirm the presence and pattern of fibrosis as well as presence of other features that may indicate a specific cause e.g. specific types of mineral dust or possible response to therapy e.g. a pattern of so-called non-specific interstitial fibrosis.

Misdiagnosis is common because, while overall pulmonary fibrosis is not rare, each individual type of pulmonary fibrosis is uncommon and the evaluation of patients with these diseases is complex and requires a multidisciplinary approach. Terminology has been standardized but difficulties still exist in their application. Even experts may disagree with the classification of some cases.[25]

On spirometry, as a restrictive lung disease, both the FEV1 (forced expiratory volume in 1 second) and FVC (forced vital capacity) are reduced so the FEV1/FVC ratio is normal or even increased in contrast to obstructive lung disease where this ratio is reduced. The values for residual volume and total lung capacity are generally decreased in restrictive lung disease.[26]

Treatment edit

Pulmonary fibrosis creates scar tissue. The scarring is permanent once it has developed.[27] Slowing the progression and prevention depends on the underlying cause:

  • Treatment options for idiopathic pulmonary fibrosis are very limited, since no current treatment has stopped the progression of the disease. Because of this, there is no evidence that any medications can significantly help this condition, despite ongoing research trials. Lung transplantation is the only therapeutic option available in severe cases. Having a lung transplant can improve the individuals quality of life. [28]
  • Medications can also be considered in order to suppress the body's immune system. These types of drugs are sometimes prescribed in an attempt to slow the processes that lead to fibrosis. Some types of lung fibrosis can respond to corticosteroids, such as prednisone.[27]
  • Oxygen therapy is also a treatment option available. Their oxygen use is up to the patient on how much and how little they choose to use. The use of oxygen doesn't repair the lung damage, however it can:
    • Make breathing and exercise easier.
    • Prevent or lessen complication from low blood oxygen levels.
    • Reduce blood pressure in your heart.
    • Improve sleep and sense of well-being. [28]

The immune system is felt to play a central role in the development of many forms of pulmonary fibrosis. The goal of treatment with immune suppressive agents such as corticosteroids is to decrease lung inflammation and subsequent scarring. Responses to treatment are variable. Those whose conditions improve with immune suppressive treatment probably do not have idiopathic pulmonary fibrosis, for idiopathic pulmonary fibrosis has no significant treatment or cure. [28]

  • Two pharmacological agents intended to prevent scarring in mild idiopathic fibrosis are pirfenidone, which reduced reductions in the 1-year rate of decline in FVC. Pirfenidone also reduced the decline in distances on the 6-minute walk test, but had no effect on respiratory symptoms.[29] The second agent is nintedanib, which acts as an antifibrotic, mediated through the inhibition of a variety of tyrosine kinase receptors (including platelet-derived growth factor, fibroblast growth factor, and vascular endothelial growth factor).[30] A randomized clinical trial showed it reduced lung-function decline and acute exacerbations.[31]
  • Anti-inflammatory agents have only limited success in reducing the fibrotic process. Some of the other types of fibrosis, such as non-specific interstitial pneumonia, may respond to immunosuppressive therapy such as corticosteroids. However, only a minority of patients respond to corticosteroids alone, so additional immunosuppressants, such as cyclophosphamide, azathioprine, methotrexate, penicillamine, and cyclosporine may be used. Colchicine has also been used with limited success.[3] There are ongoing trials with newer drugs such as IFN-γ and mycophenolate mofetil.
  • Hypersensitivity pneumonitis, a less severe form of pulmonary fibrosis, is prevented from becoming aggravated by avoiding contact with the causative material.

Prognosis edit

 
Lung with end-stage pulmonary fibrosis at autopsy

Hypoxia caused by pulmonary fibrosis can lead to pulmonary hypertension, which, in turn, can lead to heart failure of the right ventricle. Hypoxia can be prevented with oxygen supplementation.[3]

Pulmonary fibrosis may also result in an increased risk for pulmonary emboli, which can be prevented by anticoagulants.[3]

Epidemiology edit

Globally, the prevalence and incidence of pulmonary fibrosis is studied from the United States, Norway, Czech Republic, Greece, United Kingdom, Finland, and Turkey, with only two studies from Japan, and Taiwan. The issues associated with tracking the epidemiology of pulmonary fibrosis are due to the majority of these studies having participants were diagnosed with pulmonary fibrosis prior to this study. This lowers the diagnosis sensitivity, so with that on mind the has ranged from 0.7 per 100,000 in Taiwan to 63.0 per 100,000 in the United States, and the published incidence has ranged from 0.6 per 100,000 person years to 17.4 per 100,000 person years. [32]

The mean age of all pulmonary fibrosis patients is between 65-70 years old, making age a criterion of its own. The rarity of a person under 50 being diagnosed is because of an aging respiratory system being much more vulnerable to fibrosis and stem cell depletion.

[33] [needs update]

Incidence rate Prevalence rate Population Years covered Reference
6.8–16.3 14.0–42.7 U.S. health care claims processing system 1996–2000 Raghu et al.[34]
8.8–17.4 27.9–63.0 Olmsted County, Minnesota 1997–2005 Fernandez Perez et al.[35]
27.5 30.3 Males in Bernalillo County, New Mexico 1988–1990 Coultas et al.[36]
11.5 14.5 Females

Based on these rates, pulmonary fibrosis prevalence in the United States could range from more than 29,000 to almost 132,000, based on the population in 2000 that was 18 years or older. The actual numbers may be significantly higher due to misdiagnosis. Typically, patients are in their forties and fifties when diagnosed while the incidence of idiopathic pulmonary fibrosis increases dramatically after the age of fifty. However, loss of pulmonary function is commonly ascribed to old age, heart disease or to more common lung diseases.[37]

Following the COVID-19 pandemic, the rise in deaths for people with pulmonary fibrosis increased due to the rapid loss of pulmonary function. The consequences of COVID-19 include a large cohort of patients with both fibrosis, and progressive lung impairment. Long term follow up studies are proving long-term impairment of lung function and radiographic abnormalities suggestive of pulmonary fibrosis for patients with lung co-morbidities. [38]

The most common, and long-term consequence in COVID-19 patients, is pulmonary fibrosis. The biggest concerns regarding pulmonary fibrosis and the increase of respiratory follow-up following COVID-19 are supposed to be solved in the near future. Along with the respiratory follow up increases, older age with decreased lung function and/or preexisting co-morbidities, such as diabetes, cardiovascular disease, hypertension, and obesity, increase the risk of later developing fibrotic lung alterations in the COVID-19 survivors with lower exercise tolerance. Following the patients of this study determined that 40% of patients will develop a form of fibrosis of the lungs following COVID-19, and 20% of those patients will be severe instances. [39]

References edit

  1. ^ a b c d e f g h i j "Pulmonary Fibrosis". medlineplus.gov. Retrieved 20 December 2019.
  2. ^ a b "Pulmonary fibrosis – Symptoms and causes". Mayo Clinic. Retrieved 20 December 2019.
  3. ^ a b c d e f g h i j k l "Pulmonary Fibrosis". MedicineNet, Inc. from the original on 19 July 2014. Retrieved 26 July 2014.
  4. ^ a b c d "Pulmonary fibrosis – Diagnosis and treatment – Mayo Clinic". mayoclinic.org. Retrieved 20 December 2019.
  5. ^ a b . thoracic.org. Archived from the original on 20 December 2019. Retrieved 20 December 2019.
  6. ^ Ahmad Alhiyari M, Ata F, Islam Alghizzawi M, Bint I Bilal A, Salih Abdulhadi A, Yousaf Z (31 December 2020). "Post COVID-19 fibrosis, an emerging complicationof SARS-CoV-2 infection". IDCases. 23: e01041. doi:10.1016/j.idcr.2020.e01041. ISSN 2214-2509. PMC 7785952. PMID 33425682.
  7. ^ a b c d MedlinePlus > Pulmonary Fibrosis 5 July 2016 at the Wayback Machine Date last updated: 9 February 2010
  8. ^ a b "Causes". Mayo Foundation for Medical Education and Research. from the original on 1 October 2014. Retrieved 26 July 2014.
  9. ^ "Idiopathic pulmonary fibrosis". Genetics Home Reference, United States National Library of Medicine.
  10. ^ Hubbard R, Cooper M, Antoniak M, et al. (2000). "Risk of cryptogenic fibrosing alveolitis in metal workers". Lancet. 355 (9202): 466–467. doi:10.1016/S0140-6736(00)82017-6. PMID 10841131. S2CID 10418808.
  11. ^ Vehar SJ, Yadav R, Mukhopadhyay S, Nathani A, Tolle LB (December 2022). "Smoking-Related Interstitial Fibrosis (SRIF) in Patients Presenting With Diffuse Parenchymal Lung Disease". Am J Clin Pathol. 159 (2): 146–157. doi:10.1093/ajcp/aqac144. PMC 9891418. PMID 36495281.
  12. ^ "Not Found – BIDMC". bidmc.org. from the original on 16 March 2014. Retrieved 29 April 2018.
  13. ^ Goemaere NN, Grijm K, van Hal PT, den Bakker MA (2008). "Nitrofurantoin-induced pulmonary fibrosis: a case report". J Med Case Rep. 2: 169. doi:10.1186/1752-1947-2-169. PMC 2408600. PMID 18495029.
  14. ^ "Complications". Mayo Foundation for Medical Education and Research. from the original on 4 July 2014. Retrieved 26 July 2014.
  15. ^ Gross TJ, Hunninghake GW (2001). "Idiopathic pulmonary fibrosis". N Engl J Med. 345 (7): 517–525. doi:10.1056/NEJMra003200. PMC 2231521. PMID 16928146.
  16. ^ Walker J, Cooney M, Norton S (August 1989). "Improved pulmonary function in chronic quadriplegics after pulmonary therapy and arm ergometry". Paraplegia. 27 (4): 278–83. doi:10.1038/sc.1989.42. PMID 2780083.
  17. ^ eMedicine Specialties > Pulmonology > Interstitial Lung Diseases > Restrictive Lung Disease 5 March 2010 at the Wayback Machine Author: Lalit K Kanaparthi, MD, Klaus-Dieter Lessnau, MD, Sat Sharma, MD. Updated: 27 July 2009
  18. ^ a b Saito A, Horie M, Nagase T (August 2018). "TGF-β Signaling in Lung Health and Disease". International Journal of Molecular Sciences. 19 (8): 2460. doi:10.3390/ijms19082460. ISSN 1422-0067. PMC 6121238. PMID 30127261.
  19. ^ Yang J, Velikoff M, Canalis E, Horowitz JC, Kim KK (15 April 2014). "Activated alveolar epithelial cells initiate fibrosis through autocrine and paracrine secretion of connective tissue growth factor". American Journal of Physiology. Lung Cellular and Molecular Physiology. 306 (8): L786–L796. doi:10.1152/ajplung.00243.2013. ISSN 1040-0605. PMC 3989723. PMID 24508728.
  20. ^ a b Schramm F, Schaefer L, Wygrecka M (January 2022). "EGFR Signaling in Lung Fibrosis". Cells. 11 (6): 986. doi:10.3390/cells11060986. ISSN 2073-4409. PMC 8947373. PMID 35326439.
  21. ^ a b Lee CG, Homer RJ, Zhu Z, Lanone S, Wang X, Koteliansky V, Shipley JM, Gotwals P, Noble P, Chen Q, Senior RM, Elias JA (17 September 2001). "Interleukin-13 Induces Tissue Fibrosis by Selectively Stimulating and Activating Transforming Growth Factor β1". Journal of Experimental Medicine. 194 (6): 809–822. doi:10.1084/jem.194.6.809. ISSN 0022-1007. PMC 2195954. PMID 11560996.
  22. ^ a b Andrae J, Gallini R, Betsholtz C (15 May 2008). "Role of platelet-derived growth factors in physiology and medicine". Genes & Development. 22 (10): 1276–1312. doi:10.1101/gad.1653708. ISSN 0890-9369. PMC 2732412. PMID 18483217.
  23. ^ a b Liu J, Xiao Q, Xiao J, Niu C, Li Y, Zhang X, Zhou Z, Shu G, Yin G (3 January 2022). "Wnt/β-catenin signalling: function, biological mechanisms, and therapeutic opportunities". Signal Transduction and Targeted Therapy. 7 (1): 3. doi:10.1038/s41392-021-00762-6. ISSN 2059-3635. PMC 8724284. PMID 34980884.
  24. ^ a b Todd NW, Luzina IG, Atamas SP (23 July 2012). "Molecular and cellular mechanisms of pulmonary fibrosis". Fibrogenesis & Tissue Repair. 5 (1): 11. doi:10.1186/1755-1536-5-11. ISSN 1755-1536. PMC 3443459. PMID 22824096.
  25. ^ "Tests and diagnosis". Mayo Foundation for Medical Education and Research. from the original on 4 July 2014. Retrieved 26 July 2014.
  26. ^ "spirXpert.com". from the original on 28 January 2010.
  27. ^ a b "Pulmonary Fibrosis". MedicineNet, Inc. from the original on 19 July 2014. Retrieved 26 July 2014.
  28. ^ a b c "Pulmonary fibrosis – Diagnosis and treatment – Mayo Clinic". mayoclinic.org. Retrieved 20 December 2019.
  29. ^ King TE Jr, Bradford WZ, Castro-Bernardini S, et al. (May 2014). "A phase 3 trial of pirfenidone in patients with idiopathic pulmonary fibrosis" (PDF). NEJM. 370 (22): 2083–2092. doi:10.1056/NEJMoa1402582. PMID 24836312.
  30. ^ Richeldi L, Costabel U, Selman M, et al. (2011). "Efficacy of a tyrosine kinase inhibitor in idiopathic pulmonary fibrosis". N Engl J Med. 365 (12): 1079–1087. doi:10.1056/nejmoa1103690. PMID 21992121.
  31. ^ Richeldi L, du Bois RM, Raghu G, et al. (May 2014). "Efficacy and Safety of Nintedanib in Idiopathic Pulmonary Fibrosis" (PDF). N Engl J Med. 370 (22): 2071–2082. doi:10.1056/NEJMoa1402584. hdl:11365/974374. PMID 24836310.
  32. ^ Ley B (2013). "Epidemiology of Idiopathic Pulmonary Fibrosis". Clinical Epidemiology. 5: 483–492. doi:10.2147/CLEP.S54815. PMC 3848422. PMID 24348069.
  33. ^ Vasarmidi E, Tsitoura E, Spandidos DA, Tzanakis N, Antoniou KM (September 2020). "Pulmonary fibrosis in the aftermath of the COVID-19 era (Review)". Experimental and Therapeutic Medicine. 20 (3): 2557–2560. doi:10.3892/etm.2020.8980. ISSN 1792-0981. PMC 7401793. PMID 32765748.
  34. ^ Raghu G, Weycker D, Edelsberg J, Bradford WZ, Oster G. Incidence and Prevalence of Idiopathic Pulmonary Fibrosis. Am J Respir Crit Care Med. 2006;174:810-6.
  35. ^ Fernandez Perez ER, Daniels CE, Schroeder DR, St Sauver J, Hartman TE, Bartholmai BJ, Yi ES, Ryu JH. Incidence, Prevalence, and Clinical Course of Idiopathic Pulmonary Fibrosis: A Population-Based Study. Chest. Jan 2010;137:129-37.
  36. ^ Coultas DB, Zumwalt RE, Black WC, Sobonya RE. The Epidemiology of Interstitial Lung Diseases. Am J Respir Crit Care Med. Oct 1994;150(4):967-72. cited by Michaelson JE, Aguayo SM, Roman J. Idiopathic Pulmonary Fibrosis: A Practical Approach for Diagnosis and Management. Chest. Sept 2000;118:788-94.
  37. ^ [39]
  38. ^ [40]
  39. ^ [41]

pulmonary, fibrosis, condition, which, lungs, become, scarred, over, time, symptoms, include, shortness, breath, cough, feeling, tired, weight, loss, nail, clubbing, complications, include, pulmonary, hypertension, respiratory, failure, pneumothorax, lung, can. Pulmonary fibrosis is a condition in which the lungs become scarred over time 1 Symptoms include shortness of breath a dry cough feeling tired weight loss and nail clubbing 1 Complications may include pulmonary hypertension respiratory failure pneumothorax and lung cancer 2 Pulmonary fibrosisOther namesInterstitial pulmonary fibrosisClubbing of the fingers in pulmonary fibrosisSpecialtyPulmonologySymptomsShortness of breath dry cough feeling tired weight loss nail clubbing 1 ComplicationsPulmonary hypertension respiratory failure pneumothorax lung cancer 2 CausesTobacco smoking environmental pollution certain medications connective tissue diseases interstitial lung disease unknown 1 3 TreatmentOxygen therapy pulmonary rehabilitation lung transplantation 4 MedicationPirfenidone nintedanib 4 PrognosisPoor 3 Frequency gt 5 million people 5 Causes include environmental pollution certain medications connective tissue diseases infections and interstitial lung diseases 1 3 6 However in most cases the cause is unknown and termed idiopathic pulmonary fibrosis 1 3 Diagnosis may be based on symptoms medical imaging lung biopsy and lung function tests 1 No cure exists and only limited treatment options are available 1 Treatment is directed towards efforts to improve symptoms and may include oxygen therapy and pulmonary rehabilitation 1 4 Certain medications may be used to try to slow the worsening of scarring 4 Lung transplantation may occasionally be an option 3 At least 5 million people are affected globally 5 Life expectancy is generally less than five years 3 Contents 1 Signs and symptoms 2 Cause 3 Pathogenesis 4 Diagnosis 5 Treatment 6 Prognosis 7 Epidemiology 8 ReferencesSigns and symptoms edit nbsp Lung sound in idiopathic pulmonary fibrosis source source velcro crackles on auscultation in a person with idiopathic pulmonary fibrosis Problems playing this file See media help Symptoms of pulmonary fibrosis are mainly 1 Shortness of breath particularly with exertion Chronic dry hacking coughing Fatigue and weakness Chest discomfort including chest pain Loss of appetite and rapid weight lossPulmonary fibrosis is suggested by a history of progressive shortness of breath dyspnea with exertion Sometimes fine inspiratory crackles can be heard at the lung bases on auscultation A chest X ray may or may not be abnormal but high resolution CT will frequently demonstrate abnormalities 3 Cause editFurther information Interstitial lung disease Pulmonary fibrosis may be a secondary effect of other diseases Most of these are classified as interstitial lung diseases Examples include autoimmune disorders viral infections and bacterial infection like tuberculosis which may cause fibrotic changes in both lung s upper or lower lobes and other microscopic injuries to the lung However pulmonary fibrosis can also appear without any known cause In this case it is termed idiopathic 7 Most idiopathic cases are diagnosed as idiopathic pulmonary fibrosis This is a diagnosis of exclusion of a characteristic set of histologic pathologic features known as usual interstitial pneumonia UIP In either case there is a growing body of evidence which points to a genetic predisposition in a subset of patients For example a mutation in surfactant protein C SP C has been found to exist in some families with a history of pulmonary fibrosis 8 Autosomal dominant mutations in the TERC or TERT genes which encode telomerase have been identified in about 15 percent of pulmonary fibrosis patients 9 Diseases and conditions that may cause pulmonary fibrosis as a secondary effect include 3 8 Inhalation of environmental and occupational pollutants such as metals 10 in asbestosis silicosis and exposure to certain gases Coal miners ship workers and sand blasters among others are at higher risk 7 Hypersensitivity pneumonitis most often resulting from inhaling dust contaminated with bacterial fungal or animal products Cigarette smoking can increase the risk or make the illness worse 7 Smoking is a known cause of some types of lung fibrosis such as the entity smoking related interstitial fibrosis SRIF 11 Some typical connective tissue diseases 7 such as rheumatoid arthritis ankylosing spondylitis SLE and scleroderma Other diseases that involve connective tissue such as sarcoidosis and granulomatosis with polyangiitis Infections including COVID 19 Certain medications e g amiodarone bleomycin pingyangmycin busulfan apomorphine 12 and nitrofurantoin 13 Radiation therapy to the chestPathogenesis editFurther information Fibrosis Pulmonary fibrosis involves a gradual replacement of normal lung tissue with fibrotic tissue Such scar tissue causes an irreversible decrease in oxygen diffusion capacity and the resulting stiffness or decreased compliance makes pulmonary fibrosis a restrictive lung disease 14 Pulmonary fibrosis is perpetuated by aberrant wound healing rather than chronic inflammation 15 It is the main cause of restrictive lung disease that is intrinsic to the lung parenchyma In contrast quadriplegia 16 and kyphosis 17 are examples of causes of restrictive lung disease that do not necessarily involve pulmonary fibrosis Common genes implicated in fibrosis are Transforming Growth Factor Beta TGF b 18 Connective Tissue Growth Factor CTGF 19 Epidermal Growth Factor Receptor EGFR 20 Interleukin 13 IL 13 21 Platelet Derived Growth Factor PDGF 22 Wnt b catenin signaling pathway 23 TGF b is a cytokine that plays a critical role in the regulation of extracellular matrix ECM production and cellular differentiation 24 It is a potent stimulator of fibrosis and increased TGF b signaling is associated with the development of fibrosis in various organs CTGF is a matricellular protein that is involved in ECM production and remodeling 24 It is up regulated in response to TGF b and has been implicated in the development of pulmonary fibrosis 18 EGFR is a transmembrane receptor that plays a role in cellular proliferation differentiation and survival Dysregulated EGFR signaling has been implicated in the development of pulmonary fibrosis and drugs that target EGFR have been shown to have therapeutic potential in the treatment of the disease 20 IL 13 is a cytokine that is involved in the regulation of immune responses 21 It has been shown to promote fibrosis in the lungs by stimulating the production of ECM proteins and the recruitment of fibroblasts to sites of tissue injury PDGF is a cytokine that plays a key role in the regulation of cell proliferation and migration 22 It is involved in the recruitment of fibroblasts to sites of tissue injury in the lungs and increased PDGF signaling is associated with the development and progression of pulmonary fibrosis Wnt b catenin signaling plays a critical role in tissue repair and regeneration and dysregulated Wnt b catenin signaling has been implicated in the development of pulmonary fibrosis 23 Diagnosis edit nbsp HRCT of lung showing extensive fibrosis possibly from usual interstitial pneumonitis There is also a large bulla The diagnosis can be confirmed by lung biopsy 3 A video assisted thoracoscopic surgery VATS under general anesthesia may be needed to obtain enough tissue to make an accurate diagnosis This kind of biopsy involves placement of several tubes through the chest wall one of which is used to cut off a piece of lung to send for evaluation The removed tissue is examined histopathologically by microscopy to confirm the presence and pattern of fibrosis as well as presence of other features that may indicate a specific cause e g specific types of mineral dust or possible response to therapy e g a pattern of so called non specific interstitial fibrosis Misdiagnosis is common because while overall pulmonary fibrosis is not rare each individual type of pulmonary fibrosis is uncommon and the evaluation of patients with these diseases is complex and requires a multidisciplinary approach Terminology has been standardized but difficulties still exist in their application Even experts may disagree with the classification of some cases 25 On spirometry as a restrictive lung disease both the FEV1 forced expiratory volume in 1 second and FVC forced vital capacity are reduced so the FEV1 FVC ratio is normal or even increased in contrast to obstructive lung disease where this ratio is reduced The values for residual volume and total lung capacity are generally decreased in restrictive lung disease 26 Treatment editPulmonary fibrosis creates scar tissue The scarring is permanent once it has developed 27 Slowing the progression and prevention depends on the underlying cause Treatment options for idiopathic pulmonary fibrosis are very limited since no current treatment has stopped the progression of the disease Because of this there is no evidence that any medications can significantly help this condition despite ongoing research trials Lung transplantation is the only therapeutic option available in severe cases Having a lung transplant can improve the individuals quality of life 28 Medications can also be considered in order to suppress the body s immune system These types of drugs are sometimes prescribed in an attempt to slow the processes that lead to fibrosis Some types of lung fibrosis can respond to corticosteroids such as prednisone 27 Oxygen therapy is also a treatment option available Their oxygen use is up to the patient on how much and how little they choose to use The use of oxygen doesn t repair the lung damage however it can Make breathing and exercise easier Prevent or lessen complication from low blood oxygen levels Reduce blood pressure in your heart Improve sleep and sense of well being 28 The immune system is felt to play a central role in the development of many forms of pulmonary fibrosis The goal of treatment with immune suppressive agents such as corticosteroids is to decrease lung inflammation and subsequent scarring Responses to treatment are variable Those whose conditions improve with immune suppressive treatment probably do not have idiopathic pulmonary fibrosis for idiopathic pulmonary fibrosis has no significant treatment or cure 28 Two pharmacological agents intended to prevent scarring in mild idiopathic fibrosis are pirfenidone which reduced reductions in the 1 year rate of decline in FVC Pirfenidone also reduced the decline in distances on the 6 minute walk test but had no effect on respiratory symptoms 29 The second agent is nintedanib which acts as an antifibrotic mediated through the inhibition of a variety of tyrosine kinase receptors including platelet derived growth factor fibroblast growth factor and vascular endothelial growth factor 30 A randomized clinical trial showed it reduced lung function decline and acute exacerbations 31 Anti inflammatory agents have only limited success in reducing the fibrotic process Some of the other types of fibrosis such as non specific interstitial pneumonia may respond to immunosuppressive therapy such as corticosteroids However only a minority of patients respond to corticosteroids alone so additional immunosuppressants such as cyclophosphamide azathioprine methotrexate penicillamine and cyclosporine may be used Colchicine has also been used with limited success 3 There are ongoing trials with newer drugs such as IFN g and mycophenolate mofetil Hypersensitivity pneumonitis a less severe form of pulmonary fibrosis is prevented from becoming aggravated by avoiding contact with the causative material Prognosis edit nbsp Lung with end stage pulmonary fibrosis at autopsyHypoxia caused by pulmonary fibrosis can lead to pulmonary hypertension which in turn can lead to heart failure of the right ventricle Hypoxia can be prevented with oxygen supplementation 3 Pulmonary fibrosis may also result in an increased risk for pulmonary emboli which can be prevented by anticoagulants 3 Epidemiology editGlobally the prevalence and incidence of pulmonary fibrosis is studied from the United States Norway Czech Republic Greece United Kingdom Finland and Turkey with only two studies from Japan and Taiwan The issues associated with tracking the epidemiology of pulmonary fibrosis are due to the majority of these studies having participants were diagnosed with pulmonary fibrosis prior to this study This lowers the diagnosis sensitivity so with that on mind the has ranged from 0 7 per 100 000 in Taiwan to 63 0 per 100 000 in the United States and the published incidence has ranged from 0 6 per 100 000 person years to 17 4 per 100 000 person years 32 The mean age of all pulmonary fibrosis patients is between 65 70 years old making age a criterion of its own The rarity of a person under 50 being diagnosed is because of an aging respiratory system being much more vulnerable to fibrosis and stem cell depletion 33 needs update Incidence rate Prevalence rate Population Years covered Reference6 8 16 3 14 0 42 7 U S health care claims processing system 1996 2000 Raghu et al 34 8 8 17 4 27 9 63 0 Olmsted County Minnesota 1997 2005 Fernandez Perez et al 35 27 5 30 3 Males in Bernalillo County New Mexico 1988 1990 Coultas et al 36 11 5 14 5 FemalesBased on these rates pulmonary fibrosis prevalence in the United States could range from more than 29 000 to almost 132 000 based on the population in 2000 that was 18 years or older The actual numbers may be significantly higher due to misdiagnosis Typically patients are in their forties and fifties when diagnosed while the incidence of idiopathic pulmonary fibrosis increases dramatically after the age of fifty However loss of pulmonary function is commonly ascribed to old age heart disease or to more common lung diseases 37 Following the COVID 19 pandemic the rise in deaths for people with pulmonary fibrosis increased due to the rapid loss of pulmonary function The consequences of COVID 19 include a large cohort of patients with both fibrosis and progressive lung impairment Long term follow up studies are proving long term impairment of lung function and radiographic abnormalities suggestive of pulmonary fibrosis for patients with lung co morbidities 38 The most common and long term consequence in COVID 19 patients is pulmonary fibrosis The biggest concerns regarding pulmonary fibrosis and the increase of respiratory follow up following COVID 19 are supposed to be solved in the near future Along with the respiratory follow up increases older age with decreased lung function and or preexisting co morbidities such as diabetes cardiovascular disease hypertension and obesity increase the risk of later developing fibrotic lung alterations in the COVID 19 survivors with lower exercise tolerance Following the patients of this study determined that 40 of patients will develop a form of fibrosis of the lungs following COVID 19 and 20 of those patients will be severe instances 39 References edit a b c d e f g h i j Pulmonary Fibrosis medlineplus gov Retrieved 20 December 2019 a b Pulmonary fibrosis Symptoms and causes Mayo Clinic Retrieved 20 December 2019 a b c d e f g h i j k l Pulmonary Fibrosis MedicineNet Inc Archived from the original on 19 July 2014 Retrieved 26 July 2014 a b c d Pulmonary fibrosis Diagnosis and treatment Mayo Clinic mayoclinic org Retrieved 20 December 2019 a b American Thoracic Society General Information about Pulmonary Fibrosis thoracic org Archived from the original on 20 December 2019 Retrieved 20 December 2019 Ahmad Alhiyari M Ata F Islam Alghizzawi M Bint I Bilal A Salih Abdulhadi A Yousaf Z 31 December 2020 Post COVID 19 fibrosis an emerging complicationof SARS CoV 2 infection IDCases 23 e01041 doi 10 1016 j idcr 2020 e01041 ISSN 2214 2509 PMC 7785952 PMID 33425682 a b c d MedlinePlus gt Pulmonary Fibrosis Archived 5 July 2016 at the Wayback Machine Date last updated 9 February 2010 a b Causes Mayo Foundation for Medical Education and Research Archived from the original on 1 October 2014 Retrieved 26 July 2014 Idiopathic pulmonary fibrosis Genetics Home Reference United States National Library of Medicine Hubbard R Cooper M Antoniak M et al 2000 Risk of cryptogenic fibrosing alveolitis in metal workers Lancet 355 9202 466 467 doi 10 1016 S0140 6736 00 82017 6 PMID 10841131 S2CID 10418808 Vehar SJ Yadav R Mukhopadhyay S Nathani A Tolle LB December 2022 Smoking Related Interstitial Fibrosis SRIF in Patients Presenting With Diffuse Parenchymal Lung Disease Am J Clin Pathol 159 2 146 157 doi 10 1093 ajcp aqac144 PMC 9891418 PMID 36495281 Not Found BIDMC bidmc org Archived from the original on 16 March 2014 Retrieved 29 April 2018 Goemaere NN Grijm K van Hal PT den Bakker MA 2008 Nitrofurantoin induced pulmonary fibrosis a case report J Med Case Rep 2 169 doi 10 1186 1752 1947 2 169 PMC 2408600 PMID 18495029 Complications Mayo Foundation for Medical Education and Research Archived from the original on 4 July 2014 Retrieved 26 July 2014 Gross TJ Hunninghake GW 2001 Idiopathic pulmonary fibrosis N Engl J Med 345 7 517 525 doi 10 1056 NEJMra003200 PMC 2231521 PMID 16928146 Walker J Cooney M Norton S August 1989 Improved pulmonary function in chronic quadriplegics after pulmonary therapy and arm ergometry Paraplegia 27 4 278 83 doi 10 1038 sc 1989 42 PMID 2780083 eMedicine Specialties gt Pulmonology gt Interstitial Lung Diseases gt Restrictive Lung Disease Archived 5 March 2010 at the Wayback Machine Author Lalit K Kanaparthi MD Klaus Dieter Lessnau MD Sat Sharma MD Updated 27 July 2009 a b Saito A Horie M Nagase T August 2018 TGF b Signaling in Lung Health and Disease International Journal of Molecular Sciences 19 8 2460 doi 10 3390 ijms19082460 ISSN 1422 0067 PMC 6121238 PMID 30127261 Yang J Velikoff M Canalis E Horowitz JC Kim KK 15 April 2014 Activated alveolar epithelial cells initiate fibrosis through autocrine and paracrine secretion of connective tissue growth factor American Journal of Physiology Lung Cellular and Molecular Physiology 306 8 L786 L796 doi 10 1152 ajplung 00243 2013 ISSN 1040 0605 PMC 3989723 PMID 24508728 a b Schramm F Schaefer L Wygrecka M January 2022 EGFR Signaling in Lung Fibrosis Cells 11 6 986 doi 10 3390 cells11060986 ISSN 2073 4409 PMC 8947373 PMID 35326439 a b Lee CG Homer RJ Zhu Z Lanone S Wang X Koteliansky V Shipley JM Gotwals P Noble P Chen Q Senior RM Elias JA 17 September 2001 Interleukin 13 Induces Tissue Fibrosis by Selectively Stimulating and Activating Transforming Growth Factor b1 Journal of Experimental Medicine 194 6 809 822 doi 10 1084 jem 194 6 809 ISSN 0022 1007 PMC 2195954 PMID 11560996 a b Andrae J Gallini R Betsholtz C 15 May 2008 Role of platelet derived growth factors in physiology and medicine Genes amp Development 22 10 1276 1312 doi 10 1101 gad 1653708 ISSN 0890 9369 PMC 2732412 PMID 18483217 a b Liu J Xiao Q Xiao J Niu C Li Y Zhang X Zhou Z Shu G Yin G 3 January 2022 Wnt b catenin signalling function biological mechanisms and therapeutic opportunities Signal Transduction and Targeted Therapy 7 1 3 doi 10 1038 s41392 021 00762 6 ISSN 2059 3635 PMC 8724284 PMID 34980884 a b Todd NW Luzina IG Atamas SP 23 July 2012 Molecular and cellular mechanisms of pulmonary fibrosis Fibrogenesis amp Tissue Repair 5 1 11 doi 10 1186 1755 1536 5 11 ISSN 1755 1536 PMC 3443459 PMID 22824096 Tests and diagnosis Mayo Foundation for Medical Education and Research Archived from the original on 4 July 2014 Retrieved 26 July 2014 spirXpert com Archived from the original on 28 January 2010 a b Pulmonary Fibrosis MedicineNet Inc Archived from the original on 19 July 2014 Retrieved 26 July 2014 a b c Pulmonary fibrosis Diagnosis and treatment Mayo Clinic mayoclinic org Retrieved 20 December 2019 King TE Jr Bradford WZ Castro Bernardini S et al May 2014 A phase 3 trial of pirfenidone in patients with idiopathic pulmonary fibrosis PDF NEJM 370 22 2083 2092 doi 10 1056 NEJMoa1402582 PMID 24836312 Richeldi L Costabel U Selman M et al 2011 Efficacy of a tyrosine kinase inhibitor in idiopathic pulmonary fibrosis N Engl J Med 365 12 1079 1087 doi 10 1056 nejmoa1103690 PMID 21992121 Richeldi L du Bois RM Raghu G et al May 2014 Efficacy and Safety of Nintedanib in Idiopathic Pulmonary Fibrosis PDF N Engl J Med 370 22 2071 2082 doi 10 1056 NEJMoa1402584 hdl 11365 974374 PMID 24836310 Ley B 2013 Epidemiology of Idiopathic Pulmonary Fibrosis Clinical Epidemiology 5 483 492 doi 10 2147 CLEP S54815 PMC 3848422 PMID 24348069 Vasarmidi E Tsitoura E Spandidos DA Tzanakis N Antoniou KM September 2020 Pulmonary fibrosis in the aftermath of the COVID 19 era Review Experimental and Therapeutic Medicine 20 3 2557 2560 doi 10 3892 etm 2020 8980 ISSN 1792 0981 PMC 7401793 PMID 32765748 Raghu G Weycker D Edelsberg J Bradford WZ Oster G Incidence and Prevalence of Idiopathic Pulmonary Fibrosis Am J Respir Crit Care Med 2006 174 810 6 Fernandez Perez ER Daniels CE Schroeder DR St Sauver J Hartman TE Bartholmai BJ Yi ES Ryu JH Incidence Prevalence and Clinical Course of Idiopathic Pulmonary Fibrosis A Population Based Study Chest Jan 2010 137 129 37 Coultas DB Zumwalt RE Black WC Sobonya RE The Epidemiology of Interstitial Lung Diseases Am J Respir Crit Care Med Oct 1994 150 4 967 72 cited by Michaelson JE Aguayo SM Roman J Idiopathic Pulmonary Fibrosis A Practical Approach for Diagnosis and Management Chest Sept 2000 118 788 94 39 40 41 Retrieved from https en wikipedia org w index php title Pulmonary fibrosis amp oldid 1201956794, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.