fbpx
Wikipedia

Primorial

In mathematics, and more particularly in number theory, primorial, denoted by "#", is a function from natural numbers to natural numbers similar to the factorial function, but rather than successively multiplying positive integers, the function only multiplies prime numbers.

The name "primorial", coined by Harvey Dubner, draws an analogy to primes similar to the way the name "factorial" relates to factors.

Definition for prime numbers edit

 
pn# as a function of n, plotted logarithmically.

For the nth prime number pn, the primorial pn# is defined as the product of the first n primes:[1][2]

 ,

where pk is the kth prime number. For instance, p5# signifies the product of the first 5 primes:

 

The first five primorials pn# are:

2, 6, 30, 210, 2310 (sequence A002110 in the OEIS).

The sequence also includes p0# = 1 as empty product. Asymptotically, primorials pn# grow according to:

 

where o( ) is Little O notation.[2]

Definition for natural numbers edit

 
n! (yellow) as a function of n, compared to n#(red), both plotted logarithmically.

In general, for a positive integer n, its primorial, n#, is the product of the primes that are not greater than n; that is,[1][3]

 ,

where π(n) is the prime-counting function (sequence A000720 in the OEIS), which gives the number of primes ≤ n. This is equivalent to:

 

For example, 12# represents the product of those primes ≤ 12:

 

Since π(12) = 5, this can be calculated as:

 

Consider the first 12 values of n#:

1, 2, 6, 6, 30, 30, 210, 210, 210, 210, 2310, 2310.

We see that for composite n every term n# simply duplicates the preceding term (n − 1)#, as given in the definition. In the above example we have 12# = p5# = 11# since 12 is a composite number.

Primorials are related to the first Chebyshev function, written ϑ(n) or θ(n) according to:

 [4]

Since ϑ(n) asymptotically approaches n for large values of n, primorials therefore grow according to:

 

The idea of multiplying all known primes occurs in some proofs of the infinitude of the prime numbers, where it is used to derive the existence of another prime.

Characteristics edit

  • Let p and q be two adjacent prime numbers. Given any  , where  :
 
  • For the Primorial, the following approximation is known:[5]
 .

Notes:

  1. Using elementary methods, mathematician Denis Hanson showed that  [6]
  2. Using more advanced methods, Rosser and Schoenfeld showed that  [7]
  3. Rosser and Schoenfeld in Theorem 4, formula 3.14, showed that for  ,  [7]
  • Furthermore:
 
For  , the values are smaller than e,[8] but for larger n, the values of the function exceed the limit e and oscillate infinitely around e later on.
  • Let   be the k-th prime, then   has exactly   divisors. For example,   has 2 divisors,   has 4 divisors,   has 8 divisors and   already has   divisors, as 97 is the 25th prime.
  • The sum of the reciprocal values of the primorial converges towards a constant
 
The Engel expansion of this number results in the sequence of the prime numbers (See (sequence A064648 in the OEIS))
  • According to Euclid's theorem,   is used to prove the infinitude of the prime numbers.

Applications and properties edit

Primorials play a role in the search for prime numbers in additive arithmetic progressions. For instance, 2236133941 + 23# results in a prime, beginning a sequence of thirteen primes found by repeatedly adding 23#, and ending with 5136341251. 23# is also the common difference in arithmetic progressions of fifteen and sixteen primes.

Every highly composite number is a product of primorials (e.g. 360 = 2 × 6 × 30).[9]

Primorials are all square-free integers, and each one has more distinct prime factors than any number smaller than it. For each primorial n, the fraction φ(n)/n is smaller than for any lesser integer, where φ is the Euler totient function.

Any completely multiplicative function is defined by its values at primorials, since it is defined by its values at primes, which can be recovered by division of adjacent values.

Base systems corresponding to primorials (such as base 30, not to be confused with the primorial number system) have a lower proportion of repeating fractions than any smaller base.

Every primorial is a sparsely totient number.[10]

The n-compositorial of a composite number n is the product of all composite numbers up to and including n.[11] The n-compositorial is equal to the n-factorial divided by the primorial n#. The compositorials are

1, 4, 24, 192, 1728, 17280, 207360, 2903040, 43545600, 696729600, ...[12]

Appearance edit

The Riemann zeta function at positive integers greater than one can be expressed[13] by using the primorial function and Jordan's totient function Jk(n):

 

Table of primorials edit

n n# pn pn# Primorial prime?
pn# + 1[14] pn# − 1[15]
0 1 1 Yes No
1 1 2 2 Yes No
2 2 3 6 Yes Yes
3 6 5 30 Yes Yes
4 6 7 210 Yes No
5 30 11 2310 Yes Yes
6 30 13 30030 No Yes
7 210 17 510510 No No
8 210 19 9699690 No No
9 210 23 223092870 No No
10 210 29 6469693230 No No
11 2310 31 200560490130 Yes No
12 2310 37 7420738134810 No No
13 30030 41 304250263527210 No Yes
14 30030 43 13082761331670030 No No
15 30030 47 614889782588491410 No No
16 30030 53 32589158477190044730 No No
17 510510 59 1922760350154212639070 No No
18 510510 61 117288381359406970983270 No No
19 9699690 67 7858321551080267055879090 No No
20 9699690 71 557940830126698960967415390 No No
21 9699690 73 40729680599249024150621323470 No No
22 9699690 79 3217644767340672907899084554130 No No
23 223092870 83 267064515689275851355624017992790 No No
24 223092870 89 23768741896345550770650537601358310 No Yes
25 223092870 97 2305567963945518424753102147331756070 No No
26 223092870 101 232862364358497360900063316880507363070 No No
27 223092870 103 23984823528925228172706521638692258396210 No No
28 223092870 107 2566376117594999414479597815340071648394470 No No
29 6469693230 109 279734996817854936178276161872067809674997230 No No
30 6469693230 113 31610054640417607788145206291543662493274686990 No No
31 200560490130 127 4014476939333036189094441199026045136645885247730 No No
32 200560490130 131 525896479052627740771371797072411912900610967452630 No No
33 200560490130 137 72047817630210000485677936198920432067383702541010310 No No
34 200560490130 139 10014646650599190067509233131649940057366334653200433090 No No
35 200560490130 149 1492182350939279320058875736615841068547583863326864530410 No No
36 200560490130 151 225319534991831177328890236228992001350685163362356544091910 No No
37 7420738134810 157 35375166993717494840635767087951744212057570647889977422429870 No No
38 7420738134810 163 5766152219975951659023630035336134306565384015606066319856068810 No No
39 7420738134810 167 962947420735983927056946215901134429196419130606213075415963491270 No No
40 7420738134810 173 166589903787325219380851695350896256250980509594874862046961683989710 No No

See also edit

Notes edit

  1. ^ a b Weisstein, Eric W. "Primorial". MathWorld.
  2. ^ a b (sequence A002110 in the OEIS)
  3. ^ (sequence A034386 in the OEIS)
  4. ^ Weisstein, Eric W. "Chebyshev Functions". MathWorld.
  5. ^ G. H. Hardy, E. M. Wright: An Introduction to the Theory of Numbers. 4th Edition. Oxford University Press, Oxford 1975. ISBN 0-19-853310-1.
    Theorem 415, p. 341
  6. ^ Hanson, Denis (March 1972). "On the Product of the Primes". Canadian Mathematical Bulletin. 15 (1): 33–37. doi:10.4153/cmb-1972-007-7. ISSN 0008-4395.
  7. ^ a b Rosser, J. Barkley; Schoenfeld, Lowell (1962-03-01). "Approximate formulas for some functions of prime numbers". Illinois Journal of Mathematics. 6 (1). doi:10.1215/ijm/1255631807. ISSN 0019-2082.
  8. ^ L. Schoenfeld: Sharper bounds for the Chebyshev functions   and  . II. Math. Comp. Vol. 34, No. 134 (1976) 337–360; p. 359.
    Cited in: G. Robin: Estimation de la fonction de Tchebychef   sur le k-ieme nombre premier et grandes valeurs de la fonction  , nombre de diviseurs premiers de n. Acta Arithm. XLII (1983) 367–389 (PDF 731KB); p. 371
  9. ^ Sloane, N. J. A. (ed.). "Sequence A002182 (Highly composite numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  10. ^ Masser, D.W.; Shiu, P. (1986). "On sparsely totient numbers". Pacific Journal of Mathematics. 121 (2): 407–426. doi:10.2140/pjm.1986.121.407. ISSN 0030-8730. MR 0819198. Zbl 0538.10006.
  11. ^ Wells, David (2011). Prime Numbers: The Most Mysterious Figures in Math. John Wiley & Sons. p. 29. ISBN 9781118045718. Retrieved 16 March 2016.
  12. ^ Sloane, N. J. A. (ed.). "Sequence A036691 (Compositorial numbers: product of first n composite numbers.)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  13. ^ Mező, István (2013). "The Primorial and the Riemann zeta function". The American Mathematical Monthly. 120 (4): 321.
  14. ^ Sloane, N. J. A. (ed.). "Sequence A014545 (Primorial plus 1 prime indices)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  15. ^ Sloane, N. J. A. (ed.). "Sequence A057704 (Primorial - 1 prime indices)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.

References edit

  • Dubner, Harvey (1987). "Factorial and primorial primes". J. Recr. Math. 19: 197–203.
  • Spencer, Adam "Top 100" Number 59 part 4.

primorial, confused, with, primordial, look, wiktionary, free, dictionary, mathematics, more, particularly, number, theory, primorial, denoted, function, from, natural, numbers, natural, numbers, similar, factorial, function, rather, than, successively, multip. Not to be confused with primordial Look up ial in Wiktionary the free dictionary In mathematics and more particularly in number theory primorial denoted by is a function from natural numbers to natural numbers similar to the factorial function but rather than successively multiplying positive integers the function only multiplies prime numbers The name primorial coined by Harvey Dubner draws an analogy to primes similar to the way the name factorial relates to factors Contents 1 Definition for prime numbers 2 Definition for natural numbers 3 Characteristics 4 Applications and properties 5 Appearance 6 Table of primorials 7 See also 8 Notes 9 ReferencesDefinition for prime numbers edit nbsp pn as a function of n plotted logarithmically For the n th prime number pn the primorial pn is defined as the product of the first n primes 1 2 pn k 1npk displaystyle p n prod k 1 n p k nbsp where pk is the k th prime number For instance p5 signifies the product of the first 5 primes p5 2 3 5 7 11 2310 displaystyle p 5 2 times 3 times 5 times 7 times 11 2310 nbsp The first five primorials pn are 2 6 30 210 2310 sequence A002110 in the OEIS The sequence also includes p0 1 as empty product Asymptotically primorials pn grow according to pn e 1 o 1 nlog n displaystyle p n e 1 o 1 n log n nbsp where o is Little O notation 2 Definition for natural numbers edit nbsp n yellow as a function of n compared to n red both plotted logarithmically In general for a positive integer n its primorial n is the product of the primes that are not greater than n that is 1 3 n p np primep i 1p n pi pp n displaystyle n prod p leq n atop p text prime p prod i 1 pi n p i p pi n nbsp where p n is the prime counting function sequence A000720 in the OEIS which gives the number of primes n This is equivalent to n 1if n 0 1 n 1 nif n is prime n 1 if n is composite displaystyle n begin cases 1 amp text if n 0 1 n 1 times n amp text if n text is prime n 1 amp text if n text is composite end cases nbsp For example 12 represents the product of those primes 12 12 2 3 5 7 11 2310 displaystyle 12 2 times 3 times 5 times 7 times 11 2310 nbsp Since p 12 5 this can be calculated as 12 pp 12 p5 2310 displaystyle 12 p pi 12 p 5 2310 nbsp Consider the first 12 values of n 1 2 6 6 30 30 210 210 210 210 2310 2310 We see that for composite n every term n simply duplicates the preceding term n 1 as given in the definition In the above example we have 12 p5 11 since 12 is a composite number Primorials are related to the first Chebyshev function written ϑ n or 8 n according to ln n ϑ n displaystyle ln n vartheta n nbsp 4 Since ϑ n asymptotically approaches n for large values of n primorials therefore grow according to n e 1 o 1 n displaystyle n e 1 o 1 n nbsp The idea of multiplying all known primes occurs in some proofs of the infinitude of the prime numbers where it is used to derive the existence of another prime Characteristics editLet p and q be two adjacent prime numbers Given any n N displaystyle n in mathbb N nbsp where p n lt q displaystyle p leq n lt q nbsp n p displaystyle n p nbsp For the Primorial the following approximation is known 5 n 4n displaystyle n leq 4 n nbsp Notes Using elementary methods mathematician Denis Hanson showed that n 3n displaystyle n leq 3 n nbsp 6 Using more advanced methods Rosser and Schoenfeld showed that n 2 763 n displaystyle n leq 2 763 n nbsp 7 Rosser and Schoenfeld in Theorem 4 formula 3 14 showed that for n 563 displaystyle n geq 563 nbsp n 2 22 n displaystyle n geq 2 22 n nbsp 7 Furthermore limn n n e displaystyle lim n to infty sqrt n n e nbsp For n lt 1011 displaystyle n lt 10 11 nbsp the values are smaller than e 8 but for larger n the values of the function exceed the limit e and oscillate infinitely around e later on Let pk displaystyle p k nbsp be the k th prime then pk displaystyle p k nbsp has exactly 2k displaystyle 2 k nbsp divisors For example 2 displaystyle 2 nbsp has 2 divisors 3 displaystyle 3 nbsp has 4 divisors 5 displaystyle 5 nbsp has 8 divisors and 97 displaystyle 97 nbsp already has 225 displaystyle 2 25 nbsp divisors as 97 is the 25th prime The sum of the reciprocal values of the primorial converges towards a constant p P1p 12 16 130 0 7052301717918 displaystyle sum p in mathbb P 1 over p 1 over 2 1 over 6 1 over 30 ldots 0 7052301717918 ldots nbsp The Engel expansion of this number results in the sequence of the prime numbers See sequence A064648 in the OEIS According to Euclid s theorem p 1 displaystyle p 1 nbsp is used to prove the infinitude of the prime numbers Applications and properties editPrimorials play a role in the search for prime numbers in additive arithmetic progressions For instance 2236 133 941 23 results in a prime beginning a sequence of thirteen primes found by repeatedly adding 23 and ending with 5136 341 251 23 is also the common difference in arithmetic progressions of fifteen and sixteen primes Every highly composite number is a product of primorials e g 360 2 6 30 9 Primorials are all square free integers and each one has more distinct prime factors than any number smaller than it For each primorial n the fraction f n n is smaller than for any lesser integer where f is the Euler totient function Any completely multiplicative function is defined by its values at primorials since it is defined by its values at primes which can be recovered by division of adjacent values Base systems corresponding to primorials such as base 30 not to be confused with the primorial number system have a lower proportion of repeating fractions than any smaller base Every primorial is a sparsely totient number 10 The n compositorial of a composite number n is the product of all composite numbers up to and including n 11 The n compositorial is equal to the n factorial divided by the primorial n The compositorials are 1 4 24 192 1728 17280 207360 2903 040 43545 600 696729 600 12 Appearance editThe Riemann zeta function at positive integers greater than one can be expressed 13 by using the primorial function and Jordan s totient function Jk n z k 2k2k 1 r 2 pr 1 kJk pr k 2 3 displaystyle zeta k frac 2 k 2 k 1 sum r 2 infty frac p r 1 k J k p r quad k 2 3 dots nbsp Table of primorials editn n pn pn Primorial prime pn 1 14 pn 1 15 0 1 1 Yes No1 1 2 2 Yes No2 2 3 6 Yes Yes3 6 5 30 Yes Yes4 6 7 210 Yes No5 30 11 2310 Yes Yes6 30 13 30030 No Yes7 210 17 510510 No No8 210 19 9699 690 No No9 210 23 223092 870 No No10 210 29 6469 693 230 No No11 2310 31 200560 490 130 Yes No12 2310 37 7420 738 134 810 No No13 30030 41 304250 263 527 210 No Yes14 30030 43 13082 761 331 670 030 No No15 30030 47 614889 782 588 491 410 No No16 30030 53 32589 158 477 190 044 730 No No17 510510 59 1922 760 350 154 212 639 070 No No18 510510 61 117288 381 359 406 970 983 270 No No19 9699 690 67 7858 321 551 080 267 055 879 090 No No20 9699 690 71 557940 830 126 698 960 967 415 390 No No21 9699 690 73 40729 680 599 249 024 150 621 323 470 No No22 9699 690 79 3217 644 767 340 672 907 899 084 554 130 No No23 223092 870 83 267064 515 689 275 851 355 624 017 992 790 No No24 223092 870 89 23768 741 896 345 550 770 650 537 601 358 310 No Yes25 223092 870 97 2305 567 963 945 518 424 753 102 147 331 756 070 No No26 223092 870 101 232862 364 358 497 360 900 063 316 880 507 363 070 No No27 223092 870 103 23984 823 528 925 228 172 706 521 638 692 258 396 210 No No28 223092 870 107 2566 376 117 594 999 414 479 597 815 340 071 648 394 470 No No29 6469 693 230 109 279734 996 817 854 936 178 276 161 872 067 809 674 997 230 No No30 6469 693 230 113 31610 054 640 417 607 788 145 206 291 543 662 493 274 686 990 No No31 200560 490 130 127 4014 476 939 333 036 189 094 441 199 026 045 136 645 885 247 730 No No32 200560 490 130 131 525896 479 052 627 740 771 371 797 072 411 912 900 610 967 452 630 No No33 200560 490 130 137 72047 817 630 210 000 485 677 936 198 920 432 067 383 702 541 010 310 No No34 200560 490 130 139 10014 646 650 599 190 067 509 233 131 649 940 057 366 334 653 200 433 090 No No35 200560 490 130 149 1492 182 350 939 279 320 058 875 736 615 841 068 547 583 863 326 864 530 410 No No36 200560 490 130 151 225319 534 991 831 177 328 890 236 228 992 001 350 685 163 362 356 544 091 910 No No37 7420 738 134 810 157 35375 166 993 717 494 840 635 767 087 951 744 212 057 570 647 889 977 422 429 870 No No38 7420 738 134 810 163 5766 152 219 975 951 659 023 630 035 336 134 306 565 384 015 606 066 319 856 068 810 No No39 7420 738 134 810 167 962947 420 735 983 927 056 946 215 901 134 429 196 419 130 606 213 075 415 963 491 270 No No40 7420 738 134 810 173 166589 903 787 325 219 380 851 695 350 896 256 250 980 509 594 874 862 046 961 683 989 710 No NoSee also editBonse s inequality Chebyshev function Primorial number system Primorial primeNotes edit a b Weisstein Eric W Primorial MathWorld a b sequence A002110 in the OEIS sequence A034386 in the OEIS Weisstein Eric W Chebyshev Functions MathWorld G H Hardy E M Wright An Introduction to the Theory of Numbers 4th Edition Oxford University Press Oxford 1975 ISBN 0 19 853310 1 Theorem 415 p 341 Hanson Denis March 1972 On the Product of the Primes Canadian Mathematical Bulletin 15 1 33 37 doi 10 4153 cmb 1972 007 7 ISSN 0008 4395 a b Rosser J Barkley Schoenfeld Lowell 1962 03 01 Approximate formulas for some functions of prime numbers Illinois Journal of Mathematics 6 1 doi 10 1215 ijm 1255631807 ISSN 0019 2082 L Schoenfeld Sharper bounds for the Chebyshev functions 8 x displaystyle theta x nbsp and ps x displaystyle psi x nbsp II Math Comp Vol 34 No 134 1976 337 360 p 359 Cited in G Robin Estimation de la fonction de Tchebychef 8 displaystyle theta nbsp sur le k ieme nombre premier et grandes valeurs de la fonction w n displaystyle omega n nbsp nombre de diviseurs premiers de n Acta Arithm XLII 1983 367 389 PDF 731KB p 371 Sloane N J A ed Sequence A002182 Highly composite numbers The On Line Encyclopedia of Integer Sequences OEIS Foundation Masser D W Shiu P 1986 On sparsely totient numbers Pacific Journal of Mathematics 121 2 407 426 doi 10 2140 pjm 1986 121 407 ISSN 0030 8730 MR 0819198 Zbl 0538 10006 Wells David 2011 Prime Numbers The Most Mysterious Figures in Math John Wiley amp Sons p 29 ISBN 9781118045718 Retrieved 16 March 2016 Sloane N J A ed Sequence A036691 Compositorial numbers product of first n composite numbers The On Line Encyclopedia of Integer Sequences OEIS Foundation Mezo Istvan 2013 The Primorial and the Riemann zeta function The American Mathematical Monthly 120 4 321 Sloane N J A ed Sequence A014545 Primorial plus 1 prime indices The On Line Encyclopedia of Integer Sequences OEIS Foundation Sloane N J A ed Sequence A057704 Primorial 1 prime indices The On Line Encyclopedia of Integer Sequences OEIS Foundation References editDubner Harvey 1987 Factorial and primorial primes J Recr Math 19 197 203 Spencer Adam Top 100 Number 59 part 4 Retrieved from https en wikipedia org w index php title Primorial amp oldid 1208100975, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.