fbpx
Wikipedia

Multi-objective optimization

Multi-objective optimization or Pareto optimization (also known as multi-objective programming, vector optimization, multicriteria optimization, or multiattribute optimization) is an area of multiple-criteria decision making that is concerned with mathematical optimization problems involving more than one objective function to be optimized simultaneously. Multi-objective is a type of vector optimization that has been applied in many fields of science, including engineering, economics and logistics where optimal decisions need to be taken in the presence of trade-offs between two or more conflicting objectives. Minimizing cost while maximizing comfort while buying a car, and maximizing performance whilst minimizing fuel consumption and emission of pollutants of a vehicle are examples of multi-objective optimization problems involving two and three objectives, respectively. In practical problems, there can be more than three objectives.

For a multi-objective optimization problem, it is not guaranteed that a single solution simultaneously optimizes each objective. The objective functions are said to be conflicting. A solution is called nondominated, Pareto optimal, Pareto efficient or noninferior, if none of the objective functions can be improved in value without degrading some of the other objective values. Without additional subjective preference information, there may exist a (possibly infinite) number of Pareto optimal solutions, all of which are considered equally good. Researchers study multi-objective optimization problems from different viewpoints and, thus, there exist different solution philosophies and goals when setting and solving them. The goal may be to find a representative set of Pareto optimal solutions, and/or quantify the trade-offs in satisfying the different objectives, and/or finding a single solution that satisfies the subjective preferences of a human decision maker (DM).

Bicriteria optimization denotes the special case in which there are two objective functions.

There is a direct relationship between multitask optimization and multi-objective optimization.[1]

Introduction edit

A multi-objective optimization problem is an optimization problem that involves multiple objective functions.[2][3][4] In mathematical terms, a multi-objective optimization problem can be formulated as

 

where the integer   is the number of objectives and the set   is the feasible set of decision vectors, which is typically   but it depends on the  -dimensional application domain. The feasible set is typically defined by some constraint functions. In addition, the vector-valued objective function is often defined as

 
 
Example of a Pareto frontier (in red), the set of Pareto optimal solutions (those that are not dominated by any other feasible solutions). The boxed points represent feasible choices, and smaller values are preferred to larger ones. Point C is not on the Pareto frontier because it is dominated by both point A and point B. Points A and B are not strictly dominated by any other, and hence do lie on the frontier.

If some objective function is to be maximized, it is equivalent to minimize its negative or its inverse. We denote   the image of  ;   a feasible solution or feasible decision; and  an objective vector or an outcome.

In multi-objective optimization, there does not typically exist a feasible solution that minimizes all objective functions simultaneously. Therefore, attention is paid to Pareto optimal solutions; that is, solutions that cannot be improved in any of the objectives without degrading at least one of the other objectives. In mathematical terms, a feasible solution   is said to (Pareto) dominate another solution  , if

  1.  , and
  2.  .

A solution   (and the corresponding outcome  ) is called Pareto optimal if there does not exist another solution that dominates it. The set of Pareto optimal outcomes, denoted  , is often called the Pareto front, Pareto frontier, or Pareto boundary.

The Pareto front of a multi-objective optimization problem is bounded by a so-called nadir objective vector  and an ideal objective vector  , if these are finite. The nadir objective vector is defined as

 

and the ideal objective vector as

 

In other words, the components of the nadir and ideal objective vectors define the upper and lower bounds of the objective function of Pareto optimal solutions. In practice, the nadir objective vector can only be approximated as, typically, the whole Pareto optimal set is unknown. In addition, a utopian objective vector  , such that   where   is a small constant, is often defined because of numerical reasons.

Examples of applications edit

Economics edit

In economics, many problems involve multiple objectives along with constraints on what combinations of those objectives are attainable. For example, consumer's demand for various goods is determined by the process of maximization of the utilities derived from those goods, subject to a constraint based on how much income is available to spend on those goods and on the prices of those goods. This constraint allows more of one good to be purchased only at the sacrifice of consuming less of another good; therefore, the various objectives (more consumption of each good is preferred) are in conflict with each other. A common method for analyzing such a problem is to use a graph of indifference curves, representing preferences, and a budget constraint, representing the trade-offs that the consumer is faced with.

Another example involves the production possibilities frontier, which specifies what combinations of various types of goods can be produced by a society with certain amounts of various resources. The frontier specifies the trade-offs that the society is faced with — if the society is fully utilizing its resources, more of one good can be produced only at the expense of producing less of another good. A society must then use some process to choose among the possibilities on the frontier.

Macroeconomic policy-making is a context requiring multi-objective optimization. Typically a central bank must choose a stance for monetary policy that balances competing objectives — low inflation, low unemployment, low balance of trade deficit, etc. To do this, the central bank uses a model of the economy that quantitatively describes the various causal linkages in the economy; it simulates the model repeatedly under various possible stances of monetary policy, in order to obtain a menu of possible predicted outcomes for the various variables of interest. Then in principle it can use an aggregate objective function to rate the alternative sets of predicted outcomes, although in practice central banks use a non-quantitative, judgement-based, process for ranking the alternatives and making the policy choice.

Finance edit

In finance, a common problem is to choose a portfolio when there are two conflicting objectives — the desire to have the expected value of portfolio returns be as high as possible, and the desire to have risk, often measured by the standard deviation of portfolio returns, be as low as possible. This problem is often represented by a graph in which the efficient frontier shows the best combinations of risk and expected return that are available, and in which indifference curves show the investor's preferences for various risk-expected return combinations. The problem of optimizing a function of the expected value (first moment) and the standard deviation (square root of the second central moment) of portfolio return is called a two-moment decision model.

Optimal control edit

In engineering and economics, many problems involve multiple objectives which are not describable as the-more-the-better or the-less-the-better; instead, there is an ideal target value for each objective, and the desire is to get as close as possible to the desired value of each objective. For example, energy systems typically have a trade-off between performance and cost[5][6] or one might want to adjust a rocket's fuel usage and orientation so that it arrives both at a specified place and at a specified time; or one might want to conduct open market operations so that both the inflation rate and the unemployment rate are as close as possible to their desired values.

Often such problems are subject to linear equality constraints that prevent all objectives from being simultaneously perfectly met, especially when the number of controllable variables is less than the number of objectives and when the presence of random shocks generates uncertainty. Commonly a multi-objective quadratic objective function is used, with the cost associated with an objective rising quadratically with the distance of the objective from its ideal value. Since these problems typically involve adjusting the controlled variables at various points in time and/or evaluating the objectives at various points in time, intertemporal optimization techniques are employed.[7]

Optimal design edit

Product and process design can be largely improved using modern modeling, simulation, and optimization techniques.[citation needed] The key question in optimal design is measuring what is good or desirable about a design. Before looking for optimal designs, it is important to identify characteristics that contribute the most to the overall value of the design. A good design typically involves multiple criteria/objectives such as capital cost/investment, operating cost, profit, quality and/or product recovery, efficiency, process safety, operation time, etc. Therefore, in practical applications, the performance of process and product design is often measured with respect to multiple objectives. These objectives are typically conflicting, i.e., achieving the optimal value for one objective requires some compromise on one or more objectives.

For example, when designing a paper mill, one can seek to decrease the amount of capital invested in a paper mill and enhance the quality of paper simultaneously. If the design of a paper mill is defined by large storage volumes and paper quality is defined by quality parameters, then the problem of optimal design of a paper mill can include objectives such as i) minimization of expected variation of those quality parameters from their nominal values, ii) minimization of the expected time of breaks and iii) minimization of the investment cost of storage volumes. Here, the maximum volume of towers is a design variable. This example of optimal design of a paper mill is a simplification of the model used in.[8] Multi-objective design optimization has also been implemented in engineering systems in the circumstances such as control cabinet layout optimization,[9] airfoil shape optimization using scientific workflows,[10] design of nano-CMOS,[11] system on chip design, design of solar-powered irrigation systems,[12] optimization of sand mould systems,[13][14] engine design,[15][16] optimal sensor deployment[17] and optimal controller design.[18][19]

Process optimization edit

Multi-objective optimization has been increasingly employed in chemical engineering and manufacturing. In 2009, Fiandaca and Fraga used the multi-objective genetic algorithm (MOGA) to optimize the pressure swing adsorption process (cyclic separation process). The design problem involved the dual maximization of nitrogen recovery and nitrogen purity. The results approximated the Pareto frontier well with acceptable trade-offs between the objectives.[20]

In 2010, Sendín et al. solved a multi-objective problem for the thermal processing of food. They tackled two case studies (bi-objective and triple-objective problems) with nonlinear dynamic models. They used a hybrid approach consisting of the weighted Tchebycheff and the Normal Boundary Intersection approach. The novel hybrid approach was able to construct a Pareto optimal set for the thermal processing of foods.[21]

In 2013, Ganesan et al. carried out the multi-objective optimization of the combined carbon dioxide reforming and partial oxidation of methane. The objective functions were methane conversion, carbon monoxide selectivity, and hydrogen to carbon monoxide ratio. Ganesan used the Normal Boundary Intersection (NBI) method in conjunction with two swarm-based techniques (Gravitational Search Algorithm (GSA) and Particle Swarm Optimization (PSO)) to tackle the problem.[22] Applications involving chemical extraction[23] and bioethanol production processes[24] have posed similar multi-objective problems.

In 2013, Abakarov et al. proposed an alternative technique to solve multi-objective optimization problems arising in food engineering.[25] The Aggregating Functions Approach, the Adaptive Random Search Algorithm, and the Penalty Functions Approach were used to compute the initial set of the non-dominated or Pareto-optimal solutions. The Analytic Hierarchy Process and Tabular Method were used simultaneously for choosing the best alternative among the computed subset of non-dominated solutions for osmotic dehydration processes.[26]

In 2018, Pearce et al. formulated task allocation to human and robotic workers as a multi-objective optimization problem, considering production time and the ergonomic impact on the human worker as the two objectives considered in the formulation. Their approach used a Mixed-Integer Linear Program to solve the optimization problem for a weighted sum of the two objectives to calculate a set of Pareto optimal solutions. Applying the approach to several manufacturing tasks showed improvements in at least one objective in most tasks and in both objectives in some of the processes.[27]

Radio resource management edit

The purpose of radio resource management is to satisfy the data rates that are requested by the users of a cellular network.[28] The main resources are time intervals, frequency blocks, and transmit powers. Each user has its own objective function that, for example, can represent some combination of the data rate, latency, and energy efficiency. These objectives are conflicting since the frequency resources are very scarce, thus there is a need for tight spatial frequency reuse which causes immense inter-user interference if not properly controlled. Multi-user MIMO techniques are nowadays used to reduce the interference by adaptive precoding. The network operator would like to both bring great coverage and high data rates, thus the operator would like to find a Pareto optimal solution that balance the total network data throughput and the user fairness in an appropriate subjective manner.

Radio resource management is often solved by scalarization; that is, selection of a network utility function that tries to balance throughput and user fairness. The choice of utility function has a large impact on the computational complexity of the resulting single-objective optimization problem.[28] For example, the common utility of weighted sum rate gives an NP-hard problem with a complexity that scales exponentially with the number of users, while the weighted max-min fairness utility results in a quasi-convex optimization problem with only a polynomial scaling with the number of users.[29]

Electric power systems edit

Reconfiguration, by exchanging the functional links between the elements of the system, represents one of the most important measures which can improve the operational performance of a distribution system. The problem of optimization through the reconfiguration of a power distribution system, in terms of its definition, is a historical single objective problem with constraints. Since 1975, when Merlin and Back [30] introduced the idea of distribution system reconfiguration for active power loss reduction, until nowadays, a lot of researchers have proposed diverse methods and algorithms to solve the reconfiguration problem as a single objective problem. Some authors have proposed Pareto optimality based approaches (including active power losses and reliability indices as objectives). For this purpose, different artificial intelligence based methods have been used: microgenetic,[31] branch exchange,[32] particle swarm optimization [33] and non-dominated sorting genetic algorithm.[34]

Inspection of infrastructure edit

Autonomous inspection of infrastructure has the potential to reduce costs, risks and environmental impacts, as well as ensuring better periodic maintenance of inspected assets. Typically, planning such missions has been viewed as a single-objective optimization problem, where one aims to minimize the energy or time spent in inspecting an entire target structure.[35] For complex, real-world structures, however, covering 100% of an inspection target is not feasible, and generating an inspection plan may be better viewed as a multiobjective optimization problem, where one aims to both maximize inspection coverage and minimize time and costs. A recent study has indicated that multiobjective inspection planning indeed has the potential to outperform traditional methods on complex structures[36]

Solution edit

As multiple Pareto optimal solutions for multi-objective optimization problems usually exist, what it means to solve such a problem is not as straightforward as it is for a conventional single-objective optimization problem. Therefore, different researchers have defined the term "solving a multi-objective optimization problem" in various ways. This section summarizes some of them and the contexts in which they are used. Many methods convert the original problem with multiple objectives into a single-objective optimization problem. This is called a scalarized problem. If the Pareto optimality of the single-objective solutions obtained can be guaranteed, the scalarization is characterized as done neatly.

Solving a multi-objective optimization problem is sometimes understood as approximating or computing all or a representative set of Pareto optimal solutions.[37][38]

When decision making is emphasized, the objective of solving a multi-objective optimization problem is referred to as supporting a decision maker in finding the most preferred Pareto optimal solution according to their subjective preferences.[2][39] The underlying assumption is that one solution to the problem must be identified to be implemented in practice. Here, a human decision maker (DM) plays an important role. The DM is expected to be an expert in the problem domain.

The most preferred results can be found using different philosophies. Multi-objective optimization methods can be divided into four classes.[3]

  1. In so-called no-preference methods, no DM is expected to be available, but a neutral compromise solution is identified without preference information.[2] The other classes are so-called a priori, a posteriori, and interactive methods, and they all involve preference information from the DM in different ways.
  2. In a priori methods, preference information is first asked from the DM, and then a solution best satisfying these preferences is found.
  3. In a posteriori methods, a representative set of Pareto optimal solutions is first found, and then the DM must choose one of them.
  4. In interactive methods, the decision maker is allowed to search for the most preferred solution iteratively. In each iteration of the interactive method, the DM is shown Pareto optimal solution(s) and describes how the solution(s) could be improved. The information given by the DM is then taken into account while generating new Pareto optimal solution(s) for the DM to study in the next iteration. In this way, the DM learns about the feasibility of their wishes and can concentrate on solutions that are interesting to them. The DM may stop the search whenever they want to.

More information and examples of different methods in the four classes are given in the following sections.

No-preference methods edit

When a decision maker does not explicitly articulate any preference information, the multi-objective optimization method can be classified as a no-preference method.[3] A well-known example is the method of global criterion,[40] in which a scalarized problem of the form

 

is solved. In the above problem,   can be any   norm, with common choices including  ,  , and  .[2] The method of global criterion is sensitive to the scaling of the objective functions. Thus, it is recommended that the objectives be normalized into a uniform, dimensionless scale.[2][39]

A priori methods edit

A priori methods require that sufficient preference information is expressed before the solution process.[3] Well-known examples of a priori methods include the utility function method, lexicographic method, and goal programming.

Utility function method edit

The utility function method assumes the decision maker's utility function is available. A mapping   is a utility function if for all   it holds that   if the decision maker prefers   to  , and   if the decision maker is indifferent between   and  . The utility function specifies an ordering of the decision vectors (recall that vectors can be ordered in many different ways). Once   is obtained, it suffices to solve

 

but in practice, it is very difficult to construct a utility function that would accurately represent the decision maker's preferences,[2] particularly since the Pareto front is unknown before the optimization begins.

Lexicographic method edit

The lexicographic method assumes that the objectives can be ranked in the order of importance. We assume that the objective functions are in the order of importance so that   is the most important and   the least important to the decision maker. Subject to this assumption, various methods can be used to attain the lexicographically optimal solution. Note that a goal or target value is not specified for any objective here, which makes it different from the Lexicographic Goal Programming method.

Scalarizing edit

 
Linear scalarization approach is an easy method used to solve multi-objective optimization problem. It consists in aggregating the different optimization functions in a single function. However, this method only allows to find the supported solutions of the problem (i.e. points on the convex hull of the objective set). This animation shows that when the outcome set is not convex, not all efficient solutions can be found

Scalarizing a multi-objective optimization problem is an a priori method, which means formulating a single-objective optimization problem such that optimal solutions to the single-objective optimization problem are Pareto optimal solutions to the multi-objective optimization problem.[3] In addition, it is often required that every Pareto optimal solution can be reached with some parameters of the scalarization.[3] With different parameters for the scalarization, different Pareto optimal solutions are produced. A general formulation for a scalarization of a multi-objective optimization problem is

 

where   is a vector parameter, the set   is a set depending on the parameter  , and   is a function.

Very well-known examples are:

  • linear scalarization
 
where the weights of the objectives   are the parameters of the scalarization.
  •  -constraint method (see, e.g.[2])
 
where upper bounds   are parameters as above and   is the objective to be minimized.

Somewhat more advanced examples are the following:

  • achievement scalarizing problems of Wierzbicki[41]
One example of the achievement scalarizing problems can be formulated as
 
where the term   is called the augmentation term,   is a small constant, and   and   are the nadir and utopian vectors, respectively. In the above problem, the parameter is the so-called reference point   representing objective function values preferred by the decision maker.
  • Sen's multi-objective programming[42]
 
where   is individual optima (absolute) for objectives of maximization   and minimization   to  .
  • hypervolume/Chebyshev scalarization[43]
 
where the weights of the objectives   are the parameters of the scalarization. If the parameters/weights are drawn uniformly in the positive orthant, it is shown that this scalarization provably converges to the Pareto front,[43] even when the front is non-convex.

For example, portfolio optimization is often conducted in terms of mean-variance analysis. In this context, the efficient set is a subset of the portfolios parametrized by the portfolio mean return   in the problem of choosing portfolio shares to minimize the portfolio's variance of return   subject to a given value of  ; see Mutual fund separation theorem for details. Alternatively, the efficient set can be specified by choosing the portfolio shares to maximize the function  ; the set of efficient portfolios consists of the solutions as   ranges from zero to infinity.

A posteriori methods edit

A posteriori methods aim at producing all the Pareto optimal solutions or a representative subset of the Pareto optimal solutions. Most a posteriori methods fall into either one of the following three classes:

  • Mathematical programming-based a posteriori methods where an algorithm is repeated and each run of the algorithm produces one Pareto optimal solution;
  • Evolutionary algorithms where one run of the algorithm produces a set of Pareto optimal solutions;
  • Deep learning methods where a model is first trained on a subset of solutions and then queried to provide other solutions on the Pareto front.

Mathematical programming edit

Well-known examples of mathematical programming-based a posteriori methods are the Normal Boundary Intersection (NBI),[44] Modified Normal Boundary Intersection (NBIm),[45] Normal Constraint (NC),[46][47] Successive Pareto Optimization (SPO),[48] and Directed Search Domain (DSD)[citation needed] methods, which solve the multi-objective optimization problem by constructing several scalarizations. The solution to each scalarization yields a Pareto optimal solution, whether locally or globally. The scalarizations of the NBI, NBIm, NC, and DSD methods are constructed to obtain evenly distributed Pareto points that give a good approximation of the real set of Pareto points.

Evolutionary algorithms edit

Evolutionary algorithms are popular approaches to generating Pareto optimal solutions to a multi-objective optimization problem. Most evolutionary multi-objective optimization (EMO) algorithms apply Pareto-based ranking schemes. Evolutionary algorithms such as the Non-dominated Sorting Genetic Algorithm-II (NSGA-II),[49] its extended version NSGA-III,[50][51] Strength Pareto Evolutionary Algorithm 2 (SPEA-2)[52] and multiobjective differential evolution variants have become standard approaches, although some schemes based on particle swarm optimization and simulated annealing[53] are significant. The main advantage of evolutionary algorithms, when applied to solve multi-objective optimization problems, is the fact that they typically generate sets of solutions, allowing computation of an approximation of the entire Pareto front. The main disadvantage of evolutionary algorithms is their lower speed and the Pareto optimality of the solutions cannot be guaranteed; it is only known that none of the generated solutions is dominated by another.

Another paradigm for multi-objective optimization based on novelty using evolutionary algorithms was recently improved upon.[54] This paradigm searches for novel solutions in objective space (i.e., novelty search[55] on objective space) in addition to the search for non-dominated solutions. Novelty search is like stepping stones guiding the search to previously unexplored places. It is especially useful in overcoming bias and plateaus as well as guiding the search in many-objective optimization problems.

Deep learning methods edit

Deep learning conditional methods are new approaches to generating several Pareto optimal solutions. The idea is to use the generalization capacity of deep neural networks to learn a model of the entire Pareto front from a limited number of example trade-offs along that front, a task called Pareto Front Learning.[56] Several approaches address this setup, including using hypernetworks[56] and using Stein variational gradient descent.[57]

List of methods edit

Commonly known a posteriori methods are listed below:

Interactive methods edit

In interactive methods of optimizing multiple objective problems, the solution process is iterative and the decision maker continuously interacts with the method when searching for the most preferred solution (see e.g., Miettinen 1999,[2] Miettinen 2008[68]). In other words, the decision maker is expected to express preferences at each iteration to get Pareto optimal solutions that are of interest to the decision maker and learn what kind of solutions are attainable.

The following steps are commonly present in interactive methods of optimization:[68]

  1. initialize (e.g., calculate ideal and approximated nadir objective vectors and show them to the decision maker)
  2. generate a Pareto optimal starting point (by using e.g., some no-preference method or solution given by the decision maker)
  3. ask for preference information from the decision maker (e.g., aspiration levels or number of new solutions to be generated)
  4. generate new Pareto optimal solution(s) according to the preferences and show it/them and possibly some other information about the problem to the decision maker
  5. if several solutions were generated, ask the decision maker to select the best solution so far
  6. stop (if the decision maker wants to; otherwise, go to step 3).

The above aspiration levels refer to desirable objective function values forming a reference point. Instead of mathematical convergence, often used as a stopping criterion in mathematical optimization methods, psychological convergence is often emphasized in interactive methods. Generally speaking, a method is terminated when the decision maker is confident that he/she has found the most preferred solution available.

Types of preference information edit

There are different interactive methods involving different types of preference information. Three types can be identified based on

  1. trade-off information,
  2. reference points, and
  3. classification of objective functions.[68]

On the other hand, a fourth type of generating a small sample of solutions is included in:[69][70] An example of the interactive method utilizing trade-off information is the Zionts-Wallenius method,[71] where the decision maker is shown several objective trade-offs at each iteration, and (s)he is expected to say whether (s)he likes, dislikes, or is indifferent with respect to each trade-off. In reference point-based methods (see e.g.,[72][73]), the decision maker is expected at each iteration to specify a reference point consisting of desired values for each objective and a corresponding Pareto optimal solution(s) is then computed and shown to them for analysis. In classification-based interactive methods, the decision maker is assumed to give preferences in the form of classifying objectives at the current Pareto optimal solution into different classes, indicating how the values of the objectives should be changed to get a more preferred solution. Then, the classification information is considered when new (more preferred) Pareto optimal solution(s) are computed. In the satisficing trade-off method (STOM),[74] three classes are used: objectives whose values 1) should be improved, 2) can be relaxed, and 3) are acceptable as such. In the NIMBUS method,[75][76] two additional classes are also used: objectives whose values 4) should be improved until a given bound and 5) can be relaxed until a given bound.

Hybrid methods edit

Different hybrid methods exist, but here we consider hybridizing MCDM (multi-criteria decision-making) and EMO (evolutionary multi-objective optimization). A hybrid algorithm in multi-objective optimization combines algorithms/approaches from these two fields (see e.g.,[68]). Hybrid algorithms of EMO and MCDM are mainly used to overcome shortcomings by utilizing strengths. Several types of hybrid algorithms have been proposed in the literature, e.g., incorporating MCDM approaches into EMO algorithms as a local search operator, leading a DM to the most preferred solution(s), etc. A local search operator is mainly used to enhance the rate of convergence of EMO algorithms.

The roots for hybrid multi-objective optimization can be traced to the first Dagstuhl seminar organized in November 2004 (see here). Here, some of the best minds[citation needed] in EMO (Professor Kalyanmoy Deb, Professor Jürgen Branke, etc.) and MCDM (Professor Kaisa Miettinen, Professor Ralph E. Steuer, etc.) realized the potential in combining ideas and approaches of MCDM and EMO fields to prepare hybrids of them. Subsequently, many more Dagstuhl seminars have been arranged to foster collaboration. Recently, hybrid multi-objective optimization has become an important theme in several international conferences in the area of EMO and MCDM (see e.g.,[77][78]).

Visualization of the Pareto front edit

Visualization of the Pareto front is one of the a posteriori preference techniques of multi-objective optimization. The a posteriori preference techniques provide an important class of multi-objective optimization techniques.[2] Usually, the a posteriori preference techniques include four steps: (1) computer approximates the Pareto front, i.e., the Pareto optimal set in the objective space; (2) the decision maker studies the Pareto front approximation; (3) the decision maker identifies the preferred point at the Pareto front; (4) computer provides the Pareto optimal decision, whose output coincides with the objective point identified by the decision maker. From the point of view of the decision maker, the second step of the a posteriori preference techniques is the most complicated. There are two main approaches to informing the decision maker. First, a number of points of the Pareto front can be provided in the form of a list (interesting discussion and references are given in[79]) or using heatmaps.[80]

Visualization in bi-objective problems: tradeoff curve edit

In the case of bi-objective problems, informing the decision maker concerning the Pareto front is usually carried out by its visualization: the Pareto front, often named the tradeoff curve in this case, can be drawn at the objective plane. The tradeoff curve gives full information on objective values and on objective tradeoffs, which inform how improving one objective is related to deteriorating the second one while moving along the tradeoff curve. The decision maker takes this information into account while specifying the preferred Pareto optimal objective point. The idea to approximate and visualize the Pareto front was introduced for linear bi-objective decision problems by S. Gass and T. Saaty.[81] This idea was developed and applied in environmental problems by J.L. Cohon.[82] A review of methods for approximating the Pareto front for various decision problems with a small number of objectives (mainly, two) is provided in.[83]

Visualization in high-order multi-objective optimization problems edit

There are two generic ideas for visualizing the Pareto front in high-order multi-objective decision problems (problems with more than two objectives). One of them, which is applicable in the case of a relatively small number of objective points that represent the Pareto front, is based on using the visualization techniques developed in statistics (various diagrams, etc.; see the corresponding subsection below). The second idea proposes the display of bi-objective cross-sections (slices) of the Pareto front. It was introduced by W.S. Meisel in 1973[84] who argued that such slices inform the decision maker on objective tradeoffs. The figures that display a series of bi-objective slices of the Pareto front for three-objective problems are known as the decision maps. They give a clear picture of tradeoffs between the three criteria. The disadvantages of such an approach are related to the following two facts. First, the computational procedures for constructing the Pareto front's bi-objective slices are unstable since the Pareto front is usually not stable. Secondly, it is applicable in the case of only three objectives. In the 1980s, the idea of W.S. Meisel was implemented in a different form—in the form of the Interactive Decision Maps (IDM) technique.[85] More recently, N. Wesner[86] proposed using a combination of a Venn diagram and multiple scatterplots of the objective space to explore the Pareto frontier and select optimal solutions.

See also edit

References edit

  1. ^ J. -Y. Li, Z. -H. Zhan, Y. Li and J. Zhang, "Multiple Tasks for Multiple Objectives: A New Multiobjective Optimization Method via Multitask Optimization," in IEEE Transactions on Evolutionary Computation, doi:10.1109/TEVC.2023.3294307
  2. ^ a b c d e f g h i Kaisa Miettinen (1999). Nonlinear Multiobjective Optimization. Springer. ISBN 978-0-7923-8278-2. Retrieved 29 May 2012.
  3. ^ a b c d e f Ching-Lai Hwang; Abu Syed Md Masud (1979). Multiple objective decision making, methods and applications: a state-of-the-art survey. Springer-Verlag. ISBN 978-0-387-09111-2. Retrieved 29 May 2012.
  4. ^ Hassanzadeh, Hamidreza; Rouhani, Modjtaba (2010). "A multi-objective gravitational search algorithm". In Computational Intelligence, Communication Systems and Networks (CICSyN): 7–12.
  5. ^ Shirazi, Ali; Najafi, Behzad; Aminyavari, Mehdi; Rinaldi, Fabio; Taylor, Robert A. (2014-05-01). "Thermal–economic–environmental analysis and multi-objective optimization of an ice thermal energy storage system for gas turbine cycle inlet air cooling". Energy. 69: 212–226. doi:10.1016/j.energy.2014.02.071. hdl:11311/845828.
  6. ^ Najafi, Behzad; Shirazi, Ali; Aminyavari, Mehdi; Rinaldi, Fabio; Taylor, Robert A. (2014-02-03). "Exergetic, economic and environmental analyses and multi-objective optimization of an SOFC-gas turbine hybrid cycle coupled with an MSF desalination system". Desalination. 334 (1): 46–59. doi:10.1016/j.desal.2013.11.039. hdl:11311/764704.
  7. ^ Rafiei, S. M. R.; Amirahmadi, A.; Griva, G. (2009). "Chaos rejection and optimal dynamic response for boost converter using SPEA multi-objective optimization approach". 2009 35th Annual Conference of IEEE Industrial Electronics. pp. 3315–3322. doi:10.1109/IECON.2009.5415056. ISBN 978-1-4244-4648-3. S2CID 2539380.
  8. ^ Ropponen, A.; Ritala, R.; Pistikopoulos, E. N. (2011). "Optimization issues of the broke management system in papermaking". Computers & Chemical Engineering. 35 (11): 2510. doi:10.1016/j.compchemeng.2010.12.012.
  9. ^ Pllana, Sabri; Memeti, Suejb; Kolodziej, Joanna (2019). "Customizing Pareto Simulated Annealing for Multi-objective Optimization of Control Cabinet Layout". arXiv:1906.04825 [cs.OH].
  10. ^ Nguyen, Hoang Anh; van Iperen, Zane; Raghunath, Sreekanth; Abramson, David; Kipouros, Timoleon; Somasekharan, Sandeep (2017). "Multi-objective optimisation in scientific workflow". Procedia Computer Science. 108: 1443–1452. doi:10.1016/j.procs.2017.05.213. hdl:1826/12173.
  11. ^ Ganesan, T.; Elamvazuthi, I.; Vasant, P. (2015-07-01). "Multiobjective design optimization of a nano-CMOS voltage-controlled oscillator using game theoretic-differential evolution". Applied Soft Computing. 32: 293–299. doi:10.1016/j.asoc.2015.03.016.
  12. ^ Ganesan, T.; Elamvazuthi, I.; Shaari, Ku Zilati Ku; Vasant, P. (2013-01-01). "Hypervolume-Driven Analytical Programming for Solar-Powered Irrigation System Optimization". In Zelinka, Ivan; Chen, Guanrong; Rössler, Otto E.; Snasel, Vaclav; Abraham, Ajith (eds.). Nostradamus 2013: Prediction, Modeling and Analysis of Complex Systems. Advances in Intelligent Systems and Computing. Vol. 210. Springer International Publishing. pp. 147–154. doi:10.1007/978-3-319-00542-3_15. ISBN 978-3-319-00541-6.
  13. ^ Ganesan, T.; Elamvazuthi, I.; Shaari, Ku Zilati Ku; Vasant, P. (2013-01-01). "Multiobjective Optimization of Green Sand Mould System Using Chaotic Differential Evolution". In Gavrilova, Marina L.; Tan, C. J. Kenneth; Abraham, Ajith (eds.). Transactions on Computational Science XXI. Lecture Notes in Computer Science. Vol. 8160. Springer Berlin Heidelberg. pp. 145–163. doi:10.1007/978-3-642-45318-2_6. ISBN 978-3-642-45317-5.
  14. ^ Surekha, B.; Kaushik, Lalith K.; Panduy, Abhishek K.; Vundavilli, Pandu R.; Parappagoudar, Mahesh B. (2011-05-07). "Multi-objective optimization of green sand mould system using evolutionary algorithms". The International Journal of Advanced Manufacturing Technology. 58 (1–4): 9–17. doi:10.1007/s00170-011-3365-8. ISSN 0268-3768. S2CID 110315544.
  15. ^ "MultiObjective Optimization in Engine Design Using Genetic Algorithms to Improve Engine Performance | ESTECO". www.esteco.com. Retrieved 2015-12-01.
  16. ^ Courteille, E.; Mortier, F.; Leotoing, L.; Ragneau, E. (2005-05-16). "Multi-Objective Robust Design Optimization of an Engine Mounting System". SAE Technical Paper Series (PDF). Vol. 1. Warrendale, PA. doi:10.4271/2005-01-2412. S2CID 20170456.{{cite book}}: CS1 maint: location missing publisher (link)
  17. ^ Domingo-Perez, Francisco; Lazaro-Galilea, Jose Luis; Wieser, Andreas; Martin-Gorostiza, Ernesto; Salido-Monzu, David; Llana, Alvaro de la (April 2016). "Sensor placement determination for range-difference positioning using evolutionary multi-objective optimization". Expert Systems with Applications. 47: 95–105. doi:10.1016/j.eswa.2015.11.008.
  18. ^ Bemporad, Alberto; Muñoz de la Peña, David (2009-12-01). "Multiobjective model predictive control". Automatica. 45 (12): 2823–2830. doi:10.1016/j.automatica.2009.09.032.
  19. ^ Panda, Sidhartha (2009-06-01). "Multi-objective evolutionary algorithm for SSSC-based controller design". Electric Power Systems Research. 79 (6): 937–944. doi:10.1016/j.epsr.2008.12.004.
  20. ^ Fiandaca, Giovanna; Fraga, Eric S.; Brandani, Stefano (2009). "A multi-objective genetic algorithm for the design of pressure swing adsorption". Engineering Optimization. 41 (9): 833–854. doi:10.1080/03052150903074189. S2CID 120201436. Retrieved 2015-12-01.
  21. ^ Sendín, José Oscar H.; Alonso, Antonio A.; Banga, Julio R. (2010-06-01). "Efficient and robust multi-objective optimization of food processing: A novel approach with application to thermal sterilization". Journal of Food Engineering. 98 (3): 317–324. doi:10.1016/j.jfoodeng.2010.01.007. hdl:10261/48082.
  22. ^ Ganesan, T.; Elamvazuthi, I.; Ku Shaari, Ku Zilati; Vasant, P. (2013-03-01). "Swarm intelligence and gravitational search algorithm for multi-objective optimization of synthesis gas production". Applied Energy. 103: 368–374. Bibcode:2013ApEn..103..368G. doi:10.1016/j.apenergy.2012.09.059.
  23. ^ Ganesan, Timothy; Elamvazuthi, Irraivan; Vasant, Pandian; Shaari, Ku Zilati Ku (2015-03-23). "Multiobjective Optimization of Bioactive Compound Extraction Process via Evolutionary Strategies". In Nguyen, Ngoc Thanh; Trawiński, Bogdan; Kosala, Raymond (eds.). Intelligent Information and Database Systems. Lecture Notes in Computer Science. Vol. 9012. Springer International Publishing. pp. 13–21. doi:10.1007/978-3-319-15705-4_2. ISBN 978-3-319-15704-7.
  24. ^ Mehdi, Khosrow-Pour (2014-06-30). Contemporary Advancements in Information Technology Development in Dynamic Environments. IGI Global. ISBN 9781466662537.
  25. ^ Abakarov. A., Sushkov. Yu., Mascheroni. R.H. (2012). "Multi-criteria optimization and decision-making approach for improving of food engineering processes" (PDF). International Journal of Food Studies. 2: 1–21. doi:10.7455/ijfs/2.1.2013.a1. S2CID 3708256.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  26. ^ Abakarov, A, Sushkov, Y, Almonacid, S, and Simpson, R. (2009). "Multiobjective Optimisation Approach: Thermal Food Processing". Journal of Food Science. 74 (9): E471–E487. doi:10.1111/j.1750-3841.2009.01348.x. hdl:10533/134983. PMID 20492109.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  27. ^ Pearce, Margaret; Mutlu, Bilge; Shah, Julie; Radwin, Robert (2018). "Optimizing Makespan and Ergonomics in Integrating Collaborative Robots Into Manufacturing Processes". IEEE Transactions on Automation Science and Engineering. 15 (4): 1772–1784. doi:10.1109/tase.2018.2789820. ISSN 1545-5955. S2CID 52927442.
  28. ^ a b E. Björnson and E. Jorswieck, Optimal Resource Allocation in Coordinated Multi-Cell Systems, Foundations and Trends in Communications and Information Theory, vol. 9, no. 2-3, pp. 113-381, 2013.
  29. ^ Z.-Q. Luo and S. Zhang, Dynamic spectrum management: Complexity and duality, IEEE Journal of Selected Topics in Signal Processing, vol. 2, no. 1, pp. 57–73, 2008.
  30. ^ Merlin, A.; Back, H. Search for a Minimal-Loss Operating Spanning Tree Configuration in an Urban Power Distribution System. In Proceedings of the 1975 Fifth Power Systems Computer Conference (PSCC), Cambridge, UK, 1–5 September 1975; pp. 1–18.
  31. ^ Mendoza, J.E.; Lopez, M.E.; Coello, C.A.; Lopez, E.A. Microgenetic multiobjective reconfiguration algorithm considering power losses and reliability indices for medium voltage distribution network. IET Gener. Transm. Distrib. 2009, 3, 825–840.
  32. ^ Bernardon, D.P.; Garcia, V.J.; Ferreira, A.S.Q.; Canha, L.N. Multicriteria distribution network reconfiguration considering subtransmission analysis. IEEE Trans. Power Deliv. 2010, 25, 2684–2691.
  33. ^ Amanulla, B.; Chakrabarti, S.; Singh, S.N. Reconfiguration of power distribution systems considering reliability and power loss. IEEE Trans. Power Deliv. 2012, 27, 918–926.
  34. ^ Tomoiagă, B.; Chindriş, M.; Sumper, A.; Sudria-Andreu, A.; Villafafila-Robles, R. Pareto Optimal Reconfiguration of Power Distribution Systems Using a Genetic Algorithm Based on NSGA-II. Energies 2013, 6, 1439-1455.
  35. ^ Galceran, Enric; Carreras, Marc (2013). "A survey on coverage path planning for robotics". Robotics and Autonomous Systems. 61 (12): 1258–1276. CiteSeerX 10.1.1.716.2556. doi:10.1016/j.robot.2013.09.004. ISSN 0921-8890. S2CID 1177069.
  36. ^ Ellefsen, K.O.; Lepikson, H.A.; Albiez, J.C. (2019). "Multiobjective coverage path planning: Enabling automated inspection of complex, real-world structures". Applied Soft Computing. 61: 264–282. arXiv:1901.07272. Bibcode:2019arXiv190107272O. doi:10.1016/j.asoc.2017.07.051. hdl:10852/58883. ISSN 1568-4946. S2CID 6183350.
  37. ^ Matthias Ehrgott (1 June 2005). Multicriteria Optimization. Birkhäuser. ISBN 978-3-540-21398-7. Retrieved 29 May 2012.
  38. ^ Carlos A. Coello Coello; Gary B. Lamont; David A. Van Veldhuisen (2007). Evolutionary Algorithms for Solving Multi-Objective Problems. Springer. ISBN 978-0-387-36797-2. Retrieved 1 November 2012.
  39. ^ a b Jürgen Branke; Kalyanmoy Deb; Kaisa Miettinen; Roman Slowinski (21 November 2008). Multiobjective Optimization: Interactive and Evolutionary Approaches. Springer. ISBN 978-3-540-88907-6. Retrieved 1 November 2012.
  40. ^ Zeleny, M. (1973), "Compromise Programming", in Cochrane, J.L.; Zeleny, M. (eds.), Multiple Criteria Decision Making, University of South Carolina Press, Columbia, pp. 262–301
  41. ^ Wierzbicki, A. P. (1982). "A mathematical basis for satisficing decision making". Mathematical Modelling. 3 (5): 391–405. doi:10.1016/0270-0255(82)90038-0.
  42. ^ Sen, Chandra, (1983) A new approach for multi-objective rural development planning, The Indian Economic Journal, Vol.30, (4), 91-96.
  43. ^ a b Daniel Golovin and Qiuyi Zhang. Random Hypervolume Scalarizations for Provable Multi-Objective Black Box Optimization. ICML 2021. https://arxiv.org/abs/2006.04655
  44. ^ a b Das, I.; Dennis, J. E. (1998). "Normal-Boundary Intersection: A New Method for Generating the Pareto Surface in Nonlinear Multicriteria Optimization Problems". SIAM Journal on Optimization. 8 (3): 631. doi:10.1137/S1052623496307510. hdl:1911/101880. S2CID 207081991.
  45. ^ a b S. Motta, Renato; Afonso, Silvana M. B.; Lyra, Paulo R. M. (8 January 2012). "A modified NBI and NC method for the solution of N-multiobjective optimization problems". Structural and Multidisciplinary Optimization. 46 (2): 239–259. doi:10.1007/s00158-011-0729-5. S2CID 121122414.
  46. ^ a b Messac, A.; Ismail-Yahaya, A.; Mattson, C.A. (2003). "The normalized normal constraint method for generating the Pareto frontier". Structural and Multidisciplinary Optimization. 25 (2): 86–98. doi:10.1007/s00158-002-0276-1. S2CID 58945431.
  47. ^ a b Messac, A.; Mattson, C. A. (2004). "Normal constraint method with guarantee of even representation of complete Pareto frontier". AIAA Journal. 42 (10): 2101–2111. Bibcode:2004AIAAJ..42.2101M. doi:10.2514/1.8977.
  48. ^ a b Mueller-Gritschneder, Daniel; Graeb, Helmut; Schlichtmann, Ulf (2009). "A Successive Approach to Compute the Bounded Pareto Front of Practical Multiobjective Optimization Problems". SIAM Journal on Optimization. 20 (2): 915–934. doi:10.1137/080729013.
  49. ^ a b Deb, K.; Pratap, A.; Agarwal, S.; Meyarivan, T. (2002). "A fast and elitist multiobjective genetic algorithm: NSGA-II". IEEE Transactions on Evolutionary Computation. 6 (2): 182. CiteSeerX 10.1.1.17.7771. doi:10.1109/4235.996017. S2CID 9914171.
  50. ^ Deb, Kalyanmoy; Jain, Himanshu (2014). "An Evolutionary Many-Objective Optimization Algorithm Using Reference-Point-Based Nondominated Sorting Approach, Part I: Solving Problems With Box Constraints". IEEE Transactions on Evolutionary Computation. 18 (4): 577–601. doi:10.1109/TEVC.2013.2281535. ISSN 1089-778X. S2CID 206682597.
  51. ^ Jain, Himanshu; Deb, Kalyanmoy (2014). "An Evolutionary Many-Objective Optimization Algorithm Using Reference-Point Based Nondominated Sorting Approach, Part II: Handling Constraints and Extending to an Adaptive Approach". IEEE Transactions on Evolutionary Computation. 18 (4): 602–622. doi:10.1109/TEVC.2013.2281534. ISSN 1089-778X. S2CID 16426862.
  52. ^ Zitzler, E., Laumanns, M., Thiele, L.: SPEA2: Improving the Performance of the Strength Pareto Evolutionary Algorithm, Technical Report 103, Computer Engineering and Communication Networks Lab (TIK), Swiss Federal Institute of Technology (ETH) Zurich (2001) [1]
  53. ^ Suman, B.; Kumar, P. (2006). "A survey of simulated annealing as a tool for single and multiobjective optimization". Journal of the Operational Research Society. 57 (10): 1143–1160. doi:10.1057/palgrave.jors.2602068. S2CID 18916703.
  54. ^ a b Danilo Vasconcellos Vargas, Junichi Murata, Hirotaka Takano, Alexandre Claudio Botazzo Delbem (2015), "General Subpopulation Framework and Taming the Conflict Inside Populations", Evolutionary computation 23 (1), 1-36.
  55. ^ Lehman, Joel, and Kenneth O. Stanley. "Abandoning objectives: Evolution through the search for novelty alone." Evolutionary computation 19.2 (2011): 189-223.
  56. ^ a b c Navon, Aviv; Shamsian, Aviv; Chechik, Gal; Fetaya, Ethan (2021-04-26). "Learning the Pareto Front with Hypernetworks". Proceedings of International Conference on Learning Representations (ICLR). arXiv:2010.04104.
  57. ^ Xingchao, Liu; Xin, Tong; Qiang, Liu (2021-12-06). "Profiling Pareto Front With Multi-Objective Stein Variational Gradient Descent". Advances in Neural Information Processing Systems. 34.
  58. ^ Mavrotas, George (2009). "Effective implementation of the ε-constraint method in Multi-Objective Mathematical Programming problems". Applied Mathematics and Computation. 213 (2): 455–465. doi:10.1016/j.amc.2009.03.037. ISSN 0096-3003.
  59. ^ Carvalho, Iago A.; Ribeiro, Marco A. (2020). "An exact approach for the Minimum-Cost Bounded-Error Calibration Tree problem". Annals of Operations Research. 287 (1): 109–126. doi:10.1007/s10479-019-03443-4. ISSN 0254-5330. S2CID 209959109.
  60. ^ Mavrotas, G.; Diakoulaki, D. (2005). "Multi-criteria branch and bound: A vector maximization algorithm for Mixed 0-1 Multiple Objective Linear Programming". Applied Mathematics and Computation. 171 (1): 53–71. doi:10.1016/j.amc.2005.01.038. ISSN 0096-3003.
  61. ^ Vincent, Thomas; Seipp, Florian; Ruzika, Stefan; Przybylski, Anthony; Gandibleux, Xavier (2013). "Multiple objective branch and bound for mixed 0-1 linear programming: Corrections and improvements for the biobjective case". Computers & Operations Research. 40 (1): 498–509. doi:10.1016/j.cor.2012.08.003. ISSN 0305-0548.
  62. ^ Przybylski, Anthony; Gandibleux, Xavier (2017). "Multi-objective branch and bound". European Journal of Operational Research. 260 (3): 856–872. doi:10.1016/j.ejor.2017.01.032. ISSN 0377-2217.
  63. ^ Craft, D.; Halabi, T.; Shih, H.; Bortfeld, T. (2006). "Approximating convex Pareto surfaces in multiobjective radiotherapy planning". Medical Physics. 33 (9): 3399–3407. Bibcode:2006MedPh..33.3399C. doi:10.1118/1.2335486. PMID 17022236.
  64. ^ Beume, N.; Naujoks, B.; Emmerich, M. (2007). "SMS-EMOA: Multiobjective selection based on dominated hypervolume". European Journal of Operational Research. 181 (3): 1653. doi:10.1016/j.ejor.2006.08.008.
  65. ^ Bringmann, Karl; Friedrich, Tobias; Neumann, Frank; Wagner, Markus (2011). "Approximation-Guided Evolutionary Multi-Objective Optimization". IJCAI. doi:10.5591/978-1-57735-516-8/IJCAI11-204.
  66. ^ Battiti, Roberto; Mauro Brunato; Franco Mascia (2008). Reactive Search and Intelligent Optimization. Springer Verlag. ISBN 978-0-387-09623-0.
  67. ^ Battiti, Roberto; Mauro Brunato (2011). Reactive Business Intelligence. From Data to Models to Insight. Trento, Italy: Reactive Search Srl. ISBN 978-88-905795-0-9.
  68. ^ a b c d Miettinen, K.; Ruiz, F.; Wierzbicki, A. P. (2008). "Introduction to Multiobjective Optimization: Interactive Approaches". Multiobjective Optimization. Lecture Notes in Computer Science. Vol. 5252. pp. 27–57. CiteSeerX 10.1.1.475.465. doi:10.1007/978-3-540-88908-3_2. ISBN 978-3-540-88907-6.
  69. ^ Luque, M.; Ruiz, F.; Miettinen, K. (2008). "Global formulation for interactive multiobjective optimization". OR Spectrum. 33: 27–48. doi:10.1007/s00291-008-0154-3. S2CID 15050545.
  70. ^ Ruiz, F.; Luque, M.; Miettinen, K. (2011). "Improving the computational efficiency in a global formulation (GLIDE) for interactive multiobjective optimization". Annals of Operations Research. 197: 47–70. doi:10.1007/s10479-010-0831-x. S2CID 14947919.
  71. ^ Zionts, S.; Wallenius, J. (1976). "An Interactive Programming Method for Solving the Multiple Criteria Problem". Management Science. 22 (6): 652. doi:10.1287/mnsc.22.6.652.
  72. ^ Wierzbicki, A. P. (1986). "On the completeness and constructiveness of parametric characterizations to vector optimization problems". OR Spektrum. 8 (2): 73–78. doi:10.1007/BF01719738. S2CID 121771992.
  73. ^ Andrzej P. Wierzbicki; Marek Makowski; Jaap Wessels (31 May 2000). Model-Based Decision Support Methodology with Environmental Applications. Springer. ISBN 978-0-7923-6327-9. Retrieved 17 September 2012.
  74. ^ Nakayama, H.; Sawaragi, Y. (1984), "Satisficing Trade-Off Method for Multiobjective Programming", in Grauer, M.; Wierzbicki, A. P. (eds.), Interactive Decision Analysis, Springer-Verlag Berlin, Heidelberg, pp. 113–122
  75. ^ Miettinen, K.; Mäkelä, M. M. (1995). "Interactive bundle-based method for nondifferentiable multiobjeective optimization: Nimbus§". Optimization. 34 (3): 231. doi:10.1080/02331939508844109.
  76. ^ Miettinen, K.; Mäkelä, M. M. (2006). "Synchronous approach in interactive multiobjective optimization". European Journal of Operational Research. 170 (3): 909. doi:10.1016/j.ejor.2004.07.052.
  77. ^ Sindhya, K.; Ruiz, A. B.; Miettinen, K. (2011). "A Preference Based Interactive Evolutionary Algorithm for Multi-objective Optimization: PIE". Evolutionary Multi-Criterion Optimization. Lecture Notes in Computer Science. Vol. 6576. pp. 212–225. doi:10.1007/978-3-642-19893-9_15. ISBN 978-3-642-19892-2.
  78. ^ Sindhya, K.; Deb, K.; Miettinen, K. (2008). "A Local Search Based Evolutionary Multi-objective Optimization Approach for Fast and Accurate Convergence". Parallel Problem Solving from Nature – PPSN X. Lecture Notes in Computer Science. Vol. 5199. pp. 815–824. doi:10.1007/978-3-540-87700-4_81. ISBN 978-3-540-87699-1.
  79. ^ Benson, Harold P.; Sayin, Serpil (1997). "Towards finding global representations of the efficient set in multiple objective mathematical programming" (PDF). Naval Research Logistics. 44 (1): 47–67. doi:10.1002/(SICI)1520-6750(199702)44:1<47::AID-NAV3>3.0.CO;2-M. hdl:11693/25666. ISSN 0894-069X.
  80. ^ Pryke, Andy; Sanaz Mostaghim; Alireza Nazemi (2007). "Heatmap Visualization of Population Based Multi Objective Algorithms". Evolutionary Multi-Criterion Optimization. Lecture Notes in Computer Science. Vol. 4403. pp. 361–375. doi:10.1007/978-3-540-70928-2_29. ISBN 978-3-540-70927-5. S2CID 2502459.
  81. ^ Gass, Saul; Saaty, Thomas (1955). "The computational algorithm for the parametric objective function". Naval Research Logistics Quarterly. 2 (1–2): 39–45. doi:10.1002/nav.3800020106. ISSN 0028-1441.
  82. ^ Jared L. Cohon (13 January 2004). Multiobjective Programming and Planning. Courier Dover Publications. ISBN 978-0-486-43263-2. Retrieved 29 May 2012.
  83. ^ Ruzika, S.; Wiecek, M. M. (2005). "Approximation Methods in Multiobjective Programming". Journal of Optimization Theory and Applications. 126 (3): 473–501. doi:10.1007/s10957-005-5494-4. ISSN 0022-3239. S2CID 122221156.
  84. ^ Meisel, W. L. (1973), J. L. Cochrane; M. Zeleny (eds.), "Tradeoff decision in multiple criteria decision making", Multiple Criteria Decision Making: 461–476
  85. ^ A. V. Lotov; V. A. Bushenkov; G. K. Kamenev (29 February 2004). Interactive Decision Maps: Approximation and Visualization of Pareto Frontier. Springer. ISBN 978-1-4020-7631-2. Retrieved 29 May 2012.
  86. ^ Wesner, N. (2017), "Multiobjective Optimization via Visualization", Economics Bulletin, 37 (2): 1226–1233

External links edit

  • Emmerich, M.T.M., Deutz, A.H. A tutorial on multiobjective optimization: fundamentals and evolutionary methods. Nat Comput 17, 585–609 (2018). https://doi.org/10.1007/s11047-018-9685-y
  • International Society on Multiple Criteria Decision Making
  • Evolutionary Multiobjective Optimization, The Wolfram Demonstrations Project
  • A Tutorial on Multiobjective Optimization and Genetic Algorithms, Scilab Professional Partner
  • Tomoiagă, Bogdan; Chindriş, Mircea; Sumper, Andreas; Sudria-Andreu, Antoni; Villafafila-Robles, Roberto. 2013. "Pareto Optimal Reconfiguration of Power Distribution Systems Using a Genetic Algorithm Based on NSGA-II." Energies 6, no. 3: 1439-1455.

multi, objective, optimization, pareto, optimization, also, known, multi, objective, programming, vector, optimization, multicriteria, optimization, multiattribute, optimization, area, multiple, criteria, decision, making, that, concerned, with, mathematical, . Multi objective optimization or Pareto optimization also known as multi objective programming vector optimization multicriteria optimization or multiattribute optimization is an area of multiple criteria decision making that is concerned with mathematical optimization problems involving more than one objective function to be optimized simultaneously Multi objective is a type of vector optimization that has been applied in many fields of science including engineering economics and logistics where optimal decisions need to be taken in the presence of trade offs between two or more conflicting objectives Minimizing cost while maximizing comfort while buying a car and maximizing performance whilst minimizing fuel consumption and emission of pollutants of a vehicle are examples of multi objective optimization problems involving two and three objectives respectively In practical problems there can be more than three objectives For a multi objective optimization problem it is not guaranteed that a single solution simultaneously optimizes each objective The objective functions are said to be conflicting A solution is called nondominated Pareto optimal Pareto efficient or noninferior if none of the objective functions can be improved in value without degrading some of the other objective values Without additional subjective preference information there may exist a possibly infinite number of Pareto optimal solutions all of which are considered equally good Researchers study multi objective optimization problems from different viewpoints and thus there exist different solution philosophies and goals when setting and solving them The goal may be to find a representative set of Pareto optimal solutions and or quantify the trade offs in satisfying the different objectives and or finding a single solution that satisfies the subjective preferences of a human decision maker DM Bicriteria optimization denotes the special case in which there are two objective functions There is a direct relationship between multitask optimization and multi objective optimization 1 Contents 1 Introduction 2 Examples of applications 2 1 Economics 2 2 Finance 2 3 Optimal control 2 4 Optimal design 2 5 Process optimization 2 6 Radio resource management 2 7 Electric power systems 2 8 Inspection of infrastructure 3 Solution 4 No preference methods 5 A priori methods 5 1 Utility function method 5 2 Lexicographic method 5 3 Scalarizing 6 A posteriori methods 6 1 Mathematical programming 6 2 Evolutionary algorithms 6 3 Deep learning methods 6 4 List of methods 7 Interactive methods 7 1 Types of preference information 8 Hybrid methods 9 Visualization of the Pareto front 9 1 Visualization in bi objective problems tradeoff curve 9 2 Visualization in high order multi objective optimization problems 10 See also 11 References 12 External linksIntroduction editSee also Pareto order A multi objective optimization problem is an optimization problem that involves multiple objective functions 2 3 4 In mathematical terms a multi objective optimization problem can be formulated as minx X f1 x f2 x fk x displaystyle min x in X f 1 x f 2 x ldots f k x nbsp where the integer k 2 displaystyle k geq 2 nbsp is the number of objectives and the set X displaystyle X nbsp is the feasible set of decision vectors which is typically X Rn displaystyle X subseteq mathbb R n nbsp but it depends on the n displaystyle n nbsp dimensional application domain The feasible set is typically defined by some constraint functions In addition the vector valued objective function is often defined as f X Rkx f1 x fk x displaystyle begin aligned f X amp to mathbb R k x amp mapsto begin pmatrix f 1 x vdots f k x end pmatrix end aligned nbsp nbsp Example of a Pareto frontier in red the set of Pareto optimal solutions those that are not dominated by any other feasible solutions The boxed points represent feasible choices and smaller values are preferred to larger ones Point C is not on the Pareto frontier because it is dominated by both point A and point B Points A and B are not strictly dominated by any other and hence do lie on the frontier If some objective function is to be maximized it is equivalent to minimize its negative or its inverse We denote Y Rk displaystyle Y subseteq mathbb R k nbsp the image of X displaystyle X nbsp x X displaystyle x in X nbsp a feasible solution or feasible decision and z f x Rk displaystyle z f x in mathbb R k nbsp an objective vector or an outcome In multi objective optimization there does not typically exist a feasible solution that minimizes all objective functions simultaneously Therefore attention is paid to Pareto optimal solutions that is solutions that cannot be improved in any of the objectives without degrading at least one of the other objectives In mathematical terms a feasible solution x1 X displaystyle x 1 in X nbsp is said to Pareto dominate another solution x2 X displaystyle x 2 in X nbsp if i 1 k fi x1 fi x2 displaystyle forall i in 1 dots k f i x 1 leq f i x 2 nbsp and i 1 k fi x1 lt fi x2 displaystyle exists i in 1 dots k f i x 1 lt f i x 2 nbsp A solution x X displaystyle x in X nbsp and the corresponding outcome f x displaystyle f x nbsp is called Pareto optimal if there does not exist another solution that dominates it The set of Pareto optimal outcomes denoted X displaystyle X nbsp is often called the Pareto front Pareto frontier or Pareto boundary The Pareto front of a multi objective optimization problem is bounded by a so called nadir objective vector znadir displaystyle z nadir nbsp and an ideal objective vector zideal displaystyle z ideal nbsp if these are finite The nadir objective vector is defined as znadir supx X f1 x supx X fk x displaystyle z nadir begin pmatrix sup x in X f 1 x vdots sup x in X f k x end pmatrix nbsp and the ideal objective vector as zideal infx X f1 x infx X fk x displaystyle z ideal begin pmatrix inf x in X f 1 x vdots inf x in X f k x end pmatrix nbsp In other words the components of the nadir and ideal objective vectors define the upper and lower bounds of the objective function of Pareto optimal solutions In practice the nadir objective vector can only be approximated as typically the whole Pareto optimal set is unknown In addition a utopian objective vector zutop displaystyle z utop nbsp such that ziutop ziideal ϵ i 1 k displaystyle z i utop z i ideal epsilon forall i in 1 dots k nbsp where ϵ gt 0 displaystyle epsilon gt 0 nbsp is a small constant is often defined because of numerical reasons Examples of applications editEconomics edit In economics many problems involve multiple objectives along with constraints on what combinations of those objectives are attainable For example consumer s demand for various goods is determined by the process of maximization of the utilities derived from those goods subject to a constraint based on how much income is available to spend on those goods and on the prices of those goods This constraint allows more of one good to be purchased only at the sacrifice of consuming less of another good therefore the various objectives more consumption of each good is preferred are in conflict with each other A common method for analyzing such a problem is to use a graph of indifference curves representing preferences and a budget constraint representing the trade offs that the consumer is faced with Another example involves the production possibilities frontier which specifies what combinations of various types of goods can be produced by a society with certain amounts of various resources The frontier specifies the trade offs that the society is faced with if the society is fully utilizing its resources more of one good can be produced only at the expense of producing less of another good A society must then use some process to choose among the possibilities on the frontier Macroeconomic policy making is a context requiring multi objective optimization Typically a central bank must choose a stance for monetary policy that balances competing objectives low inflation low unemployment low balance of trade deficit etc To do this the central bank uses a model of the economy that quantitatively describes the various causal linkages in the economy it simulates the model repeatedly under various possible stances of monetary policy in order to obtain a menu of possible predicted outcomes for the various variables of interest Then in principle it can use an aggregate objective function to rate the alternative sets of predicted outcomes although in practice central banks use a non quantitative judgement based process for ranking the alternatives and making the policy choice Finance edit In finance a common problem is to choose a portfolio when there are two conflicting objectives the desire to have the expected value of portfolio returns be as high as possible and the desire to have risk often measured by the standard deviation of portfolio returns be as low as possible This problem is often represented by a graph in which the efficient frontier shows the best combinations of risk and expected return that are available and in which indifference curves show the investor s preferences for various risk expected return combinations The problem of optimizing a function of the expected value first moment and the standard deviation square root of the second central moment of portfolio return is called a two moment decision model Optimal control edit Main articles Optimal control Dynamic programming and Linear quadratic regulator In engineering and economics many problems involve multiple objectives which are not describable as the more the better or the less the better instead there is an ideal target value for each objective and the desire is to get as close as possible to the desired value of each objective For example energy systems typically have a trade off between performance and cost 5 6 or one might want to adjust a rocket s fuel usage and orientation so that it arrives both at a specified place and at a specified time or one might want to conduct open market operations so that both the inflation rate and the unemployment rate are as close as possible to their desired values Often such problems are subject to linear equality constraints that prevent all objectives from being simultaneously perfectly met especially when the number of controllable variables is less than the number of objectives and when the presence of random shocks generates uncertainty Commonly a multi objective quadratic objective function is used with the cost associated with an objective rising quadratically with the distance of the objective from its ideal value Since these problems typically involve adjusting the controlled variables at various points in time and or evaluating the objectives at various points in time intertemporal optimization techniques are employed 7 Optimal design edit Product and process design can be largely improved using modern modeling simulation and optimization techniques citation needed The key question in optimal design is measuring what is good or desirable about a design Before looking for optimal designs it is important to identify characteristics that contribute the most to the overall value of the design A good design typically involves multiple criteria objectives such as capital cost investment operating cost profit quality and or product recovery efficiency process safety operation time etc Therefore in practical applications the performance of process and product design is often measured with respect to multiple objectives These objectives are typically conflicting i e achieving the optimal value for one objective requires some compromise on one or more objectives For example when designing a paper mill one can seek to decrease the amount of capital invested in a paper mill and enhance the quality of paper simultaneously If the design of a paper mill is defined by large storage volumes and paper quality is defined by quality parameters then the problem of optimal design of a paper mill can include objectives such as i minimization of expected variation of those quality parameters from their nominal values ii minimization of the expected time of breaks and iii minimization of the investment cost of storage volumes Here the maximum volume of towers is a design variable This example of optimal design of a paper mill is a simplification of the model used in 8 Multi objective design optimization has also been implemented in engineering systems in the circumstances such as control cabinet layout optimization 9 airfoil shape optimization using scientific workflows 10 design of nano CMOS 11 system on chip design design of solar powered irrigation systems 12 optimization of sand mould systems 13 14 engine design 15 16 optimal sensor deployment 17 and optimal controller design 18 19 Process optimization edit Multi objective optimization has been increasingly employed in chemical engineering and manufacturing In 2009 Fiandaca and Fraga used the multi objective genetic algorithm MOGA to optimize the pressure swing adsorption process cyclic separation process The design problem involved the dual maximization of nitrogen recovery and nitrogen purity The results approximated the Pareto frontier well with acceptable trade offs between the objectives 20 In 2010 Sendin et al solved a multi objective problem for the thermal processing of food They tackled two case studies bi objective and triple objective problems with nonlinear dynamic models They used a hybrid approach consisting of the weighted Tchebycheff and the Normal Boundary Intersection approach The novel hybrid approach was able to construct a Pareto optimal set for the thermal processing of foods 21 In 2013 Ganesan et al carried out the multi objective optimization of the combined carbon dioxide reforming and partial oxidation of methane The objective functions were methane conversion carbon monoxide selectivity and hydrogen to carbon monoxide ratio Ganesan used the Normal Boundary Intersection NBI method in conjunction with two swarm based techniques Gravitational Search Algorithm GSA and Particle Swarm Optimization PSO to tackle the problem 22 Applications involving chemical extraction 23 and bioethanol production processes 24 have posed similar multi objective problems In 2013 Abakarov et al proposed an alternative technique to solve multi objective optimization problems arising in food engineering 25 The Aggregating Functions Approach the Adaptive Random Search Algorithm and the Penalty Functions Approach were used to compute the initial set of the non dominated or Pareto optimal solutions The Analytic Hierarchy Process and Tabular Method were used simultaneously for choosing the best alternative among the computed subset of non dominated solutions for osmotic dehydration processes 26 In 2018 Pearce et al formulated task allocation to human and robotic workers as a multi objective optimization problem considering production time and the ergonomic impact on the human worker as the two objectives considered in the formulation Their approach used a Mixed Integer Linear Program to solve the optimization problem for a weighted sum of the two objectives to calculate a set of Pareto optimal solutions Applying the approach to several manufacturing tasks showed improvements in at least one objective in most tasks and in both objectives in some of the processes 27 Radio resource management edit The purpose of radio resource management is to satisfy the data rates that are requested by the users of a cellular network 28 The main resources are time intervals frequency blocks and transmit powers Each user has its own objective function that for example can represent some combination of the data rate latency and energy efficiency These objectives are conflicting since the frequency resources are very scarce thus there is a need for tight spatial frequency reuse which causes immense inter user interference if not properly controlled Multi user MIMO techniques are nowadays used to reduce the interference by adaptive precoding The network operator would like to both bring great coverage and high data rates thus the operator would like to find a Pareto optimal solution that balance the total network data throughput and the user fairness in an appropriate subjective manner Radio resource management is often solved by scalarization that is selection of a network utility function that tries to balance throughput and user fairness The choice of utility function has a large impact on the computational complexity of the resulting single objective optimization problem 28 For example the common utility of weighted sum rate gives an NP hard problem with a complexity that scales exponentially with the number of users while the weighted max min fairness utility results in a quasi convex optimization problem with only a polynomial scaling with the number of users 29 Electric power systems edit Reconfiguration by exchanging the functional links between the elements of the system represents one of the most important measures which can improve the operational performance of a distribution system The problem of optimization through the reconfiguration of a power distribution system in terms of its definition is a historical single objective problem with constraints Since 1975 when Merlin and Back 30 introduced the idea of distribution system reconfiguration for active power loss reduction until nowadays a lot of researchers have proposed diverse methods and algorithms to solve the reconfiguration problem as a single objective problem Some authors have proposed Pareto optimality based approaches including active power losses and reliability indices as objectives For this purpose different artificial intelligence based methods have been used microgenetic 31 branch exchange 32 particle swarm optimization 33 and non dominated sorting genetic algorithm 34 Inspection of infrastructure edit Autonomous inspection of infrastructure has the potential to reduce costs risks and environmental impacts as well as ensuring better periodic maintenance of inspected assets Typically planning such missions has been viewed as a single objective optimization problem where one aims to minimize the energy or time spent in inspecting an entire target structure 35 For complex real world structures however covering 100 of an inspection target is not feasible and generating an inspection plan may be better viewed as a multiobjective optimization problem where one aims to both maximize inspection coverage and minimize time and costs A recent study has indicated that multiobjective inspection planning indeed has the potential to outperform traditional methods on complex structures 36 Solution editAs multiple Pareto optimal solutions for multi objective optimization problems usually exist what it means to solve such a problem is not as straightforward as it is for a conventional single objective optimization problem Therefore different researchers have defined the term solving a multi objective optimization problem in various ways This section summarizes some of them and the contexts in which they are used Many methods convert the original problem with multiple objectives into a single objective optimization problem This is called a scalarized problem If the Pareto optimality of the single objective solutions obtained can be guaranteed the scalarization is characterized as done neatly Solving a multi objective optimization problem is sometimes understood as approximating or computing all or a representative set of Pareto optimal solutions 37 38 When decision making is emphasized the objective of solving a multi objective optimization problem is referred to as supporting a decision maker in finding the most preferred Pareto optimal solution according to their subjective preferences 2 39 The underlying assumption is that one solution to the problem must be identified to be implemented in practice Here a human decision maker DM plays an important role The DM is expected to be an expert in the problem domain The most preferred results can be found using different philosophies Multi objective optimization methods can be divided into four classes 3 In so called no preference methods no DM is expected to be available but a neutral compromise solution is identified without preference information 2 The other classes are so called a priori a posteriori and interactive methods and they all involve preference information from the DM in different ways In a priori methods preference information is first asked from the DM and then a solution best satisfying these preferences is found In a posteriori methods a representative set of Pareto optimal solutions is first found and then the DM must choose one of them In interactive methods the decision maker is allowed to search for the most preferred solution iteratively In each iteration of the interactive method the DM is shown Pareto optimal solution s and describes how the solution s could be improved The information given by the DM is then taken into account while generating new Pareto optimal solution s for the DM to study in the next iteration In this way the DM learns about the feasibility of their wishes and can concentrate on solutions that are interesting to them The DM may stop the search whenever they want to More information and examples of different methods in the four classes are given in the following sections No preference methods editWhen a decision maker does not explicitly articulate any preference information the multi objective optimization method can be classified as a no preference method 3 A well known example is the method of global criterion 40 in which a scalarized problem of the form min f x zideal s t x X displaystyle begin aligned min amp f x z ideal text s t amp x in X end aligned nbsp is solved In the above problem displaystyle cdot nbsp can be any Lp displaystyle L p nbsp norm with common choices including L1 displaystyle L 1 nbsp L2 displaystyle L 2 nbsp and L displaystyle L infty nbsp 2 The method of global criterion is sensitive to the scaling of the objective functions Thus it is recommended that the objectives be normalized into a uniform dimensionless scale 2 39 A priori methods editA priori methods require that sufficient preference information is expressed before the solution process 3 Well known examples of a priori methods include the utility function method lexicographic method and goal programming Utility function method edit The utility function method assumes the decision maker s utility function is available A mapping u Y R displaystyle u colon Y rightarrow mathbb R nbsp is a utility function if for all y1 y2 Y displaystyle mathbf y 1 mathbf y 2 in Y nbsp it holds that u y1 gt u y2 displaystyle u mathbf y 1 gt u mathbf y 2 nbsp if the decision maker prefers y1 displaystyle mathbf y 1 nbsp to y2 displaystyle mathbf y 2 nbsp and u y1 u y2 displaystyle u mathbf y 1 u mathbf y 2 nbsp if the decision maker is indifferent between y1 displaystyle mathbf y 1 nbsp and y2 displaystyle mathbf y 2 nbsp The utility function specifies an ordering of the decision vectors recall that vectors can be ordered in many different ways Once u displaystyle u nbsp is obtained it suffices to solve maxu f x subject to x X displaystyle max u mathbf f mathbf x text subject to mathbf x in X nbsp but in practice it is very difficult to construct a utility function that would accurately represent the decision maker s preferences 2 particularly since the Pareto front is unknown before the optimization begins Lexicographic method edit Main article Lexicographic optimization The lexicographic method assumes that the objectives can be ranked in the order of importance We assume that the objective functions are in the order of importance so that f1 displaystyle f 1 nbsp is the most important and fk displaystyle f k nbsp the least important to the decision maker Subject to this assumption various methods can be used to attain the lexicographically optimal solution Note that a goal or target value is not specified for any objective here which makes it different from the Lexicographic Goal Programming method Scalarizing edit nbsp Linear scalarization approach is an easy method used to solve multi objective optimization problem It consists in aggregating the different optimization functions in a single function However this method only allows to find the supported solutions of the problem i e points on the convex hull of the objective set This animation shows that when the outcome set is not convex not all efficient solutions can be foundScalarizing a multi objective optimization problem is an a priori method which means formulating a single objective optimization problem such that optimal solutions to the single objective optimization problem are Pareto optimal solutions to the multi objective optimization problem 3 In addition it is often required that every Pareto optimal solution can be reached with some parameters of the scalarization 3 With different parameters for the scalarization different Pareto optimal solutions are produced A general formulation for a scalarization of a multi objective optimization problem is ming f1 x fk x 8 s t x X8 displaystyle begin array ll min amp g f 1 x ldots f k x theta text s t amp x in X theta end array nbsp where 8 displaystyle theta nbsp is a vector parameter the set X8 X displaystyle X theta subseteq X nbsp is a set depending on the parameter 8 displaystyle theta nbsp and g Rk 1 R displaystyle g mathbb R k 1 rightarrow mathbb R nbsp is a function Very well known examples are linear scalarizationminx X i 1kwifi x displaystyle min x in X sum i 1 k w i f i x nbsp dd where the weights of the objectives wi gt 0 displaystyle w i gt 0 nbsp are the parameters of the scalarization ϵ displaystyle epsilon nbsp constraint method see e g 2 minfj x s t x Xfi x ϵi for i 1 k j displaystyle begin array ll min amp f j x text s t amp x in X amp f i x leq epsilon i text for i in 1 ldots k setminus j end array nbsp dd where upper bounds ϵj displaystyle epsilon j nbsp are parameters as above and fj displaystyle f j nbsp is the objective to be minimized Somewhat more advanced examples are the following achievement scalarizing problems of Wierzbicki 41 One example of the achievement scalarizing problems can be formulated asminmaxi 1 k fi x z izinadir ziutop r i 1kfi x zinadir ziutops t x S displaystyle begin aligned min amp max i 1 ldots k left frac f i x bar z i z i nadir z i utop right rho sum i 1 k frac f i x z i nadir z i utop text s t amp x in S end aligned nbsp dd where the term r i 1kfi x zinadir ziutop displaystyle rho sum i 1 k frac f i x z i nadir z i utop nbsp is called the augmentation term r gt 0 displaystyle rho gt 0 nbsp is a small constant and znadir displaystyle z nadir nbsp and zutop displaystyle z utop nbsp are the nadir and utopian vectors respectively In the above problem the parameter is the so called reference point z displaystyle bar z nbsp representing objective function values preferred by the decision maker Sen s multi objective programming 42 max j 1rZjWj j r 1sZjWr 1s t AX bX 0 displaystyle begin array ll max amp frac sum j 1 r Z j W j frac sum j r 1 s Z j W r 1 text s t amp AX b amp X geq 0 end array nbsp dd where Wj displaystyle W j nbsp is individual optima absolute for objectives of maximization r displaystyle r nbsp and minimization r 1 displaystyle r 1 nbsp to s displaystyle s nbsp hypervolume Chebyshev scalarization 43 minx Xmaxifi x wi displaystyle min x in X max i frac f i x w i nbsp dd where the weights of the objectives wi gt 0 displaystyle w i gt 0 nbsp are the parameters of the scalarization If the parameters weights are drawn uniformly in the positive orthant it is shown that this scalarization provably converges to the Pareto front 43 even when the front is non convex For example portfolio optimization is often conducted in terms of mean variance analysis In this context the efficient set is a subset of the portfolios parametrized by the portfolio mean return mP displaystyle mu P nbsp in the problem of choosing portfolio shares to minimize the portfolio s variance of return sP displaystyle sigma P nbsp subject to a given value of mP displaystyle mu P nbsp see Mutual fund separation theorem for details Alternatively the efficient set can be specified by choosing the portfolio shares to maximize the function mP bsP displaystyle mu P b sigma P nbsp the set of efficient portfolios consists of the solutions as b displaystyle b nbsp ranges from zero to infinity A posteriori methods editA posteriori methods aim at producing all the Pareto optimal solutions or a representative subset of the Pareto optimal solutions Most a posteriori methods fall into either one of the following three classes Mathematical programming based a posteriori methods where an algorithm is repeated and each run of the algorithm produces one Pareto optimal solution Evolutionary algorithms where one run of the algorithm produces a set of Pareto optimal solutions Deep learning methods where a model is first trained on a subset of solutions and then queried to provide other solutions on the Pareto front Mathematical programming edit Well known examples of mathematical programming based a posteriori methods are the Normal Boundary Intersection NBI 44 Modified Normal Boundary Intersection NBIm 45 Normal Constraint NC 46 47 Successive Pareto Optimization SPO 48 and Directed Search Domain DSD citation needed methods which solve the multi objective optimization problem by constructing several scalarizations The solution to each scalarization yields a Pareto optimal solution whether locally or globally The scalarizations of the NBI NBIm NC and DSD methods are constructed to obtain evenly distributed Pareto points that give a good approximation of the real set of Pareto points Evolutionary algorithms edit Evolutionary algorithms are popular approaches to generating Pareto optimal solutions to a multi objective optimization problem Most evolutionary multi objective optimization EMO algorithms apply Pareto based ranking schemes Evolutionary algorithms such as the Non dominated Sorting Genetic Algorithm II NSGA II 49 its extended version NSGA III 50 51 Strength Pareto Evolutionary Algorithm 2 SPEA 2 52 and multiobjective differential evolution variants have become standard approaches although some schemes based on particle swarm optimization and simulated annealing 53 are significant The main advantage of evolutionary algorithms when applied to solve multi objective optimization problems is the fact that they typically generate sets of solutions allowing computation of an approximation of the entire Pareto front The main disadvantage of evolutionary algorithms is their lower speed and the Pareto optimality of the solutions cannot be guaranteed it is only known that none of the generated solutions is dominated by another Another paradigm for multi objective optimization based on novelty using evolutionary algorithms was recently improved upon 54 This paradigm searches for novel solutions in objective space i e novelty search 55 on objective space in addition to the search for non dominated solutions Novelty search is like stepping stones guiding the search to previously unexplored places It is especially useful in overcoming bias and plateaus as well as guiding the search in many objective optimization problems Deep learning methods edit Deep learning conditional methods are new approaches to generating several Pareto optimal solutions The idea is to use the generalization capacity of deep neural networks to learn a model of the entire Pareto front from a limited number of example trade offs along that front a task called Pareto Front Learning 56 Several approaches address this setup including using hypernetworks 56 and using Stein variational gradient descent 57 List of methods edit Commonly known a posteriori methods are listed below e constraint method 58 59 Pareto Hypernetworks 56 Multi objective Branch and Bound 60 61 62 Normal Boundary Intersection NBI 44 Modified Normal Boundary Intersection NBIm 45 Normal Constraint NC 46 47 Successive Pareto Optimization SPO 48 Directed Search Domain DSD citation needed NSGA II 49 PGEN Pareto surface generation for convex multi objective instances 63 IOSO Indirect Optimization on the basis of Self Organization SMS EMOA S metric selection evolutionary multi objective algorithm 64 Approximation Guided Evolution first algorithm to directly implement and optimize the formal concept of approximation from theoretical computer science 65 Reactive Search Optimization using machine learning for adapting strategies and objectives 66 67 implemented in LIONsolver Benson s algorithm for multi objective linear programs and for multi objective convex programs Multi objective particle swarm optimization Subpopulation Algorithm based on Novelty 54 MOEA D Multi Objective Evolutionary Algorithm based on Decomposition Interactive methods editIn interactive methods of optimizing multiple objective problems the solution process is iterative and the decision maker continuously interacts with the method when searching for the most preferred solution see e g Miettinen 1999 2 Miettinen 2008 68 In other words the decision maker is expected to express preferences at each iteration to get Pareto optimal solutions that are of interest to the decision maker and learn what kind of solutions are attainable The following steps are commonly present in interactive methods of optimization 68 initialize e g calculate ideal and approximated nadir objective vectors and show them to the decision maker generate a Pareto optimal starting point by using e g some no preference method or solution given by the decision maker ask for preference information from the decision maker e g aspiration levels or number of new solutions to be generated generate new Pareto optimal solution s according to the preferences and show it them and possibly some other information about the problem to the decision maker if several solutions were generated ask the decision maker to select the best solution so far stop if the decision maker wants to otherwise go to step 3 The above aspiration levels refer to desirable objective function values forming a reference point Instead of mathematical convergence often used as a stopping criterion in mathematical optimization methods psychological convergence is often emphasized in interactive methods Generally speaking a method is terminated when the decision maker is confident that he she has found the most preferred solution available Types of preference information edit There are different interactive methods involving different types of preference information Three types can be identified based on trade off information reference points and classification of objective functions 68 On the other hand a fourth type of generating a small sample of solutions is included in 69 70 An example of the interactive method utilizing trade off information is the Zionts Wallenius method 71 where the decision maker is shown several objective trade offs at each iteration and s he is expected to say whether s he likes dislikes or is indifferent with respect to each trade off In reference point based methods see e g 72 73 the decision maker is expected at each iteration to specify a reference point consisting of desired values for each objective and a corresponding Pareto optimal solution s is then computed and shown to them for analysis In classification based interactive methods the decision maker is assumed to give preferences in the form of classifying objectives at the current Pareto optimal solution into different classes indicating how the values of the objectives should be changed to get a more preferred solution Then the classification information is considered when new more preferred Pareto optimal solution s are computed In the satisficing trade off method STOM 74 three classes are used objectives whose values 1 should be improved 2 can be relaxed and 3 are acceptable as such In the NIMBUS method 75 76 two additional classes are also used objectives whose values 4 should be improved until a given bound and 5 can be relaxed until a given bound Hybrid methods editDifferent hybrid methods exist but here we consider hybridizing MCDM multi criteria decision making and EMO evolutionary multi objective optimization A hybrid algorithm in multi objective optimization combines algorithms approaches from these two fields see e g 68 Hybrid algorithms of EMO and MCDM are mainly used to overcome shortcomings by utilizing strengths Several types of hybrid algorithms have been proposed in the literature e g incorporating MCDM approaches into EMO algorithms as a local search operator leading a DM to the most preferred solution s etc A local search operator is mainly used to enhance the rate of convergence of EMO algorithms The roots for hybrid multi objective optimization can be traced to the first Dagstuhl seminar organized in November 2004 see here Here some of the best minds citation needed in EMO Professor Kalyanmoy Deb Professor Jurgen Branke etc and MCDM Professor Kaisa Miettinen Professor Ralph E Steuer etc realized the potential in combining ideas and approaches of MCDM and EMO fields to prepare hybrids of them Subsequently many more Dagstuhl seminars have been arranged to foster collaboration Recently hybrid multi objective optimization has become an important theme in several international conferences in the area of EMO and MCDM see e g 77 78 Visualization of the Pareto front editVisualization of the Pareto front is one of the a posteriori preference techniques of multi objective optimization The a posteriori preference techniques provide an important class of multi objective optimization techniques 2 Usually the a posteriori preference techniques include four steps 1 computer approximates the Pareto front i e the Pareto optimal set in the objective space 2 the decision maker studies the Pareto front approximation 3 the decision maker identifies the preferred point at the Pareto front 4 computer provides the Pareto optimal decision whose output coincides with the objective point identified by the decision maker From the point of view of the decision maker the second step of the a posteriori preference techniques is the most complicated There are two main approaches to informing the decision maker First a number of points of the Pareto front can be provided in the form of a list interesting discussion and references are given in 79 or using heatmaps 80 Visualization in bi objective problems tradeoff curve edit In the case of bi objective problems informing the decision maker concerning the Pareto front is usually carried out by its visualization the Pareto front often named the tradeoff curve in this case can be drawn at the objective plane The tradeoff curve gives full information on objective values and on objective tradeoffs which inform how improving one objective is related to deteriorating the second one while moving along the tradeoff curve The decision maker takes this information into account while specifying the preferred Pareto optimal objective point The idea to approximate and visualize the Pareto front was introduced for linear bi objective decision problems by S Gass and T Saaty 81 This idea was developed and applied in environmental problems by J L Cohon 82 A review of methods for approximating the Pareto front for various decision problems with a small number of objectives mainly two is provided in 83 Visualization in high order multi objective optimization problems edit There are two generic ideas for visualizing the Pareto front in high order multi objective decision problems problems with more than two objectives One of them which is applicable in the case of a relatively small number of objective points that represent the Pareto front is based on using the visualization techniques developed in statistics various diagrams etc see the corresponding subsection below The second idea proposes the display of bi objective cross sections slices of the Pareto front It was introduced by W S Meisel in 1973 84 who argued that such slices inform the decision maker on objective tradeoffs The figures that display a series of bi objective slices of the Pareto front for three objective problems are known as the decision maps They give a clear picture of tradeoffs between the three criteria The disadvantages of such an approach are related to the following two facts First the computational procedures for constructing the Pareto front s bi objective slices are unstable since the Pareto front is usually not stable Secondly it is applicable in the case of only three objectives In the 1980s the idea of W S Meisel was implemented in a different form in the form of the Interactive Decision Maps IDM technique 85 More recently N Wesner 86 proposed using a combination of a Venn diagram and multiple scatterplots of the objective space to explore the Pareto frontier and select optimal solutions See also editConcurrent programming Decision making software Goal programming Interactive Decision Maps Multiple criteria decision making Multi objective linear programming Multi disciplinary design optimization Pareto efficiency Utility function Vector optimizationReferences edit J Y Li Z H Zhan Y Li and J Zhang Multiple Tasks for Multiple Objectives A New Multiobjective Optimization Method via Multitask Optimization in IEEE Transactions on Evolutionary Computation doi 10 1109 TEVC 2023 3294307 a b c d e f g h i Kaisa Miettinen 1999 Nonlinear Multiobjective Optimization Springer ISBN 978 0 7923 8278 2 Retrieved 29 May 2012 a b c d e f Ching Lai Hwang Abu Syed Md Masud 1979 Multiple objective decision making methods and applications a state of the art survey Springer Verlag ISBN 978 0 387 09111 2 Retrieved 29 May 2012 Hassanzadeh Hamidreza Rouhani Modjtaba 2010 A multi objective gravitational search algorithm In Computational Intelligence Communication Systems and Networks CICSyN 7 12 Shirazi Ali Najafi Behzad Aminyavari Mehdi Rinaldi Fabio Taylor Robert A 2014 05 01 Thermal economic environmental analysis and multi objective optimization of an ice thermal energy storage system for gas turbine cycle inlet air cooling Energy 69 212 226 doi 10 1016 j energy 2014 02 071 hdl 11311 845828 Najafi Behzad Shirazi Ali Aminyavari Mehdi Rinaldi Fabio Taylor Robert A 2014 02 03 Exergetic economic and environmental analyses and multi objective optimization of an SOFC gas turbine hybrid cycle coupled with an MSF desalination system Desalination 334 1 46 59 doi 10 1016 j desal 2013 11 039 hdl 11311 764704 Rafiei S M R Amirahmadi A Griva G 2009 Chaos rejection and optimal dynamic response for boost converter using SPEA multi objective optimization approach 2009 35th Annual Conference of IEEE Industrial Electronics pp 3315 3322 doi 10 1109 IECON 2009 5415056 ISBN 978 1 4244 4648 3 S2CID 2539380 Ropponen A Ritala R Pistikopoulos E N 2011 Optimization issues of the broke management system in papermaking Computers amp Chemical Engineering 35 11 2510 doi 10 1016 j compchemeng 2010 12 012 Pllana Sabri Memeti Suejb Kolodziej Joanna 2019 Customizing Pareto Simulated Annealing for Multi objective Optimization of Control Cabinet Layout arXiv 1906 04825 cs OH Nguyen Hoang Anh van Iperen Zane Raghunath Sreekanth Abramson David Kipouros Timoleon Somasekharan Sandeep 2017 Multi objective optimisation in scientific workflow Procedia Computer Science 108 1443 1452 doi 10 1016 j procs 2017 05 213 hdl 1826 12173 Ganesan T Elamvazuthi I Vasant P 2015 07 01 Multiobjective design optimization of a nano CMOS voltage controlled oscillator using game theoretic differential evolution Applied Soft Computing 32 293 299 doi 10 1016 j asoc 2015 03 016 Ganesan T Elamvazuthi I Shaari Ku Zilati Ku Vasant P 2013 01 01 Hypervolume Driven Analytical Programming for Solar Powered Irrigation System Optimization In Zelinka Ivan Chen Guanrong Rossler Otto E Snasel Vaclav Abraham Ajith eds Nostradamus 2013 Prediction Modeling and Analysis of Complex Systems Advances in Intelligent Systems and Computing Vol 210 Springer International Publishing pp 147 154 doi 10 1007 978 3 319 00542 3 15 ISBN 978 3 319 00541 6 Ganesan T Elamvazuthi I Shaari Ku Zilati Ku Vasant P 2013 01 01 Multiobjective Optimization of Green Sand Mould System Using Chaotic Differential Evolution In Gavrilova Marina L Tan C J Kenneth Abraham Ajith eds Transactions on Computational Science XXI Lecture Notes in Computer Science Vol 8160 Springer Berlin Heidelberg pp 145 163 doi 10 1007 978 3 642 45318 2 6 ISBN 978 3 642 45317 5 Surekha B Kaushik Lalith K Panduy Abhishek K Vundavilli Pandu R Parappagoudar Mahesh B 2011 05 07 Multi objective optimization of green sand mould system using evolutionary algorithms The International Journal of Advanced Manufacturing Technology 58 1 4 9 17 doi 10 1007 s00170 011 3365 8 ISSN 0268 3768 S2CID 110315544 MultiObjective Optimization in Engine Design Using Genetic Algorithms to Improve Engine Performance ESTECO www esteco com Retrieved 2015 12 01 Courteille E Mortier F Leotoing L Ragneau E 2005 05 16 Multi Objective Robust Design Optimization of an Engine Mounting System SAE Technical Paper Series PDF Vol 1 Warrendale PA doi 10 4271 2005 01 2412 S2CID 20170456 a href Template Cite book html title Template Cite book cite book a CS1 maint location missing publisher link Domingo Perez Francisco Lazaro Galilea Jose Luis Wieser Andreas Martin Gorostiza Ernesto Salido Monzu David Llana Alvaro de la April 2016 Sensor placement determination for range difference positioning using evolutionary multi objective optimization Expert Systems with Applications 47 95 105 doi 10 1016 j eswa 2015 11 008 Bemporad Alberto Munoz de la Pena David 2009 12 01 Multiobjective model predictive control Automatica 45 12 2823 2830 doi 10 1016 j automatica 2009 09 032 Panda Sidhartha 2009 06 01 Multi objective evolutionary algorithm for SSSC based controller design Electric Power Systems Research 79 6 937 944 doi 10 1016 j epsr 2008 12 004 Fiandaca Giovanna Fraga Eric S Brandani Stefano 2009 A multi objective genetic algorithm for the design of pressure swing adsorption Engineering Optimization 41 9 833 854 doi 10 1080 03052150903074189 S2CID 120201436 Retrieved 2015 12 01 Sendin Jose Oscar H Alonso Antonio A Banga Julio R 2010 06 01 Efficient and robust multi objective optimization of food processing A novel approach with application to thermal sterilization Journal of Food Engineering 98 3 317 324 doi 10 1016 j jfoodeng 2010 01 007 hdl 10261 48082 Ganesan T Elamvazuthi I Ku Shaari Ku Zilati Vasant P 2013 03 01 Swarm intelligence and gravitational search algorithm for multi objective optimization of synthesis gas production Applied Energy 103 368 374 Bibcode 2013ApEn 103 368G doi 10 1016 j apenergy 2012 09 059 Ganesan Timothy Elamvazuthi Irraivan Vasant Pandian Shaari Ku Zilati Ku 2015 03 23 Multiobjective Optimization of Bioactive Compound Extraction Process via Evolutionary Strategies In Nguyen Ngoc Thanh Trawinski Bogdan Kosala Raymond eds Intelligent Information and Database Systems Lecture Notes in Computer Science Vol 9012 Springer International Publishing pp 13 21 doi 10 1007 978 3 319 15705 4 2 ISBN 978 3 319 15704 7 Mehdi Khosrow Pour 2014 06 30 Contemporary Advancements in Information Technology Development in Dynamic Environments IGI Global ISBN 9781466662537 Abakarov A Sushkov Yu Mascheroni R H 2012 Multi criteria optimization and decision making approach for improving of food engineering processes PDF International Journal of Food Studies 2 1 21 doi 10 7455 ijfs 2 1 2013 a1 S2CID 3708256 a href Template Cite journal html title Template Cite journal cite journal a CS1 maint multiple names authors list link Abakarov A Sushkov Y Almonacid S and Simpson R 2009 Multiobjective Optimisation Approach Thermal Food Processing Journal of Food Science 74 9 E471 E487 doi 10 1111 j 1750 3841 2009 01348 x hdl 10533 134983 PMID 20492109 a href Template Cite journal html title Template Cite journal cite journal a CS1 maint multiple names authors list link Pearce Margaret Mutlu Bilge Shah Julie Radwin Robert 2018 Optimizing Makespan and Ergonomics in Integrating Collaborative Robots Into Manufacturing Processes IEEE Transactions on Automation Science and Engineering 15 4 1772 1784 doi 10 1109 tase 2018 2789820 ISSN 1545 5955 S2CID 52927442 a b E Bjornson and E Jorswieck Optimal Resource Allocation in Coordinated Multi Cell Systems Foundations and Trends in Communications and Information Theory vol 9 no 2 3 pp 113 381 2013 Z Q Luo and S Zhang Dynamic spectrum management Complexity and duality IEEE Journal of Selected Topics in Signal Processing vol 2 no 1 pp 57 73 2008 Merlin A Back H Search for a Minimal Loss Operating Spanning Tree Configuration in an Urban Power Distribution System In Proceedings of the 1975 Fifth Power Systems Computer Conference PSCC Cambridge UK 1 5 September 1975 pp 1 18 Mendoza J E Lopez M E Coello C A Lopez E A Microgenetic multiobjective reconfiguration algorithm considering power losses and reliability indices for medium voltage distribution network IET Gener Transm Distrib 2009 3 825 840 Bernardon D P Garcia V J Ferreira A S Q Canha L N Multicriteria distribution network reconfiguration considering subtransmission analysis IEEE Trans Power Deliv 2010 25 2684 2691 Amanulla B Chakrabarti S Singh S N Reconfiguration of power distribution systems considering reliability and power loss IEEE Trans Power Deliv 2012 27 918 926 Tomoiagă B Chindris M Sumper A Sudria Andreu A Villafafila Robles R Pareto Optimal Reconfiguration of Power Distribution Systems Using a Genetic Algorithm Based on NSGA II Energies 2013 6 1439 1455 Galceran Enric Carreras Marc 2013 A survey on coverage path planning for robotics Robotics and Autonomous Systems 61 12 1258 1276 CiteSeerX 10 1 1 716 2556 doi 10 1016 j robot 2013 09 004 ISSN 0921 8890 S2CID 1177069 Ellefsen K O Lepikson H A Albiez J C 2019 Multiobjective coverage path planning Enabling automated inspection of complex real world structures Applied Soft Computing 61 264 282 arXiv 1901 07272 Bibcode 2019arXiv190107272O doi 10 1016 j asoc 2017 07 051 hdl 10852 58883 ISSN 1568 4946 S2CID 6183350 Matthias Ehrgott 1 June 2005 Multicriteria Optimization Birkhauser ISBN 978 3 540 21398 7 Retrieved 29 May 2012 Carlos A Coello Coello Gary B Lamont David A Van Veldhuisen 2007 Evolutionary Algorithms for Solving Multi Objective Problems Springer ISBN 978 0 387 36797 2 Retrieved 1 November 2012 a b Jurgen Branke Kalyanmoy Deb Kaisa Miettinen Roman Slowinski 21 November 2008 Multiobjective Optimization Interactive and Evolutionary Approaches Springer ISBN 978 3 540 88907 6 Retrieved 1 November 2012 Zeleny M 1973 Compromise Programming in Cochrane J L Zeleny M eds Multiple Criteria Decision Making University of South Carolina Press Columbia pp 262 301 Wierzbicki A P 1982 A mathematical basis for satisficing decision making Mathematical Modelling 3 5 391 405 doi 10 1016 0270 0255 82 90038 0 Sen Chandra 1983 A new approach for multi objective rural development planning The Indian Economic Journal Vol 30 4 91 96 a b Daniel Golovin and Qiuyi Zhang Random Hypervolume Scalarizations for Provable Multi Objective Black Box Optimization ICML 2021 https arxiv org abs 2006 04655 a b Das I Dennis J E 1998 Normal Boundary Intersection A New Method for Generating the Pareto Surface in Nonlinear Multicriteria Optimization Problems SIAM Journal on Optimization 8 3 631 doi 10 1137 S1052623496307510 hdl 1911 101880 S2CID 207081991 a b S Motta Renato Afonso Silvana M B Lyra Paulo R M 8 January 2012 A modified NBI and NC method for the solution of N multiobjective optimization problems Structural and Multidisciplinary Optimization 46 2 239 259 doi 10 1007 s00158 011 0729 5 S2CID 121122414 a b Messac A Ismail Yahaya A Mattson C A 2003 The normalized normal constraint method for generating the Pareto frontier Structural and Multidisciplinary Optimization 25 2 86 98 doi 10 1007 s00158 002 0276 1 S2CID 58945431 a b Messac A Mattson C A 2004 Normal constraint method with guarantee of even representation of complete Pareto frontier AIAA Journal 42 10 2101 2111 Bibcode 2004AIAAJ 42 2101M doi 10 2514 1 8977 a b Mueller Gritschneder Daniel Graeb Helmut Schlichtmann Ulf 2009 A Successive Approach to Compute the Bounded Pareto Front of Practical Multiobjective Optimization Problems SIAM Journal on Optimization 20 2 915 934 doi 10 1137 080729013 a b Deb K Pratap A Agarwal S Meyarivan T 2002 A fast and elitist multiobjective genetic algorithm NSGA II IEEE Transactions on Evolutionary Computation 6 2 182 CiteSeerX 10 1 1 17 7771 doi 10 1109 4235 996017 S2CID 9914171 Deb Kalyanmoy Jain Himanshu 2014 An Evolutionary Many Objective Optimization Algorithm Using Reference Point Based Nondominated Sorting Approach Part I Solving Problems With Box Constraints IEEE Transactions on Evolutionary Computation 18 4 577 601 doi 10 1109 TEVC 2013 2281535 ISSN 1089 778X S2CID 206682597 Jain Himanshu Deb Kalyanmoy 2014 An Evolutionary Many Objective Optimization Algorithm Using Reference Point Based Nondominated Sorting Approach Part II Handling Constraints and Extending to an Adaptive Approach IEEE Transactions on Evolutionary Computation 18 4 602 622 doi 10 1109 TEVC 2013 2281534 ISSN 1089 778X S2CID 16426862 Zitzler E Laumanns M Thiele L SPEA2 Improving the Performance of the Strength Pareto Evolutionary Algorithm Technical Report 103 Computer Engineering and Communication Networks Lab TIK Swiss Federal Institute of Technology ETH Zurich 2001 1 Suman B Kumar P 2006 A survey of simulated annealing as a tool for single and multiobjective optimization Journal of the Operational Research Society 57 10 1143 1160 doi 10 1057 palgrave jors 2602068 S2CID 18916703 a b Danilo Vasconcellos Vargas Junichi Murata Hirotaka Takano Alexandre Claudio Botazzo Delbem 2015 General Subpopulation Framework and Taming the Conflict Inside Populations Evolutionary computation 23 1 1 36 Lehman Joel and Kenneth O Stanley Abandoning objectives Evolution through the search for novelty alone Evolutionary computation 19 2 2011 189 223 a b c Navon Aviv Shamsian Aviv Chechik Gal Fetaya Ethan 2021 04 26 Learning the Pareto Front with Hypernetworks Proceedings of International Conference on Learning Representations ICLR arXiv 2010 04104 Xingchao Liu Xin Tong Qiang Liu 2021 12 06 Profiling Pareto Front With Multi Objective Stein Variational Gradient Descent Advances in Neural Information Processing Systems 34 Mavrotas George 2009 Effective implementation of the e constraint method in Multi Objective Mathematical Programming problems Applied Mathematics and Computation 213 2 455 465 doi 10 1016 j amc 2009 03 037 ISSN 0096 3003 Carvalho Iago A Ribeiro Marco A 2020 An exact approach for the Minimum Cost Bounded Error Calibration Tree problem Annals of Operations Research 287 1 109 126 doi 10 1007 s10479 019 03443 4 ISSN 0254 5330 S2CID 209959109 Mavrotas G Diakoulaki D 2005 Multi criteria branch and bound A vector maximization algorithm for Mixed 0 1 Multiple Objective Linear Programming Applied Mathematics and Computation 171 1 53 71 doi 10 1016 j amc 2005 01 038 ISSN 0096 3003 Vincent Thomas Seipp Florian Ruzika Stefan Przybylski Anthony Gandibleux Xavier 2013 Multiple objective branch and bound for mixed 0 1 linear programming Corrections and improvements for the biobjective case Computers amp Operations Research 40 1 498 509 doi 10 1016 j cor 2012 08 003 ISSN 0305 0548 Przybylski Anthony Gandibleux Xavier 2017 Multi objective branch and bound European Journal of Operational Research 260 3 856 872 doi 10 1016 j ejor 2017 01 032 ISSN 0377 2217 Craft D Halabi T Shih H Bortfeld T 2006 Approximating convex Pareto surfaces in multiobjective radiotherapy planning Medical Physics 33 9 3399 3407 Bibcode 2006MedPh 33 3399C doi 10 1118 1 2335486 PMID 17022236 Beume N Naujoks B Emmerich M 2007 SMS EMOA Multiobjective selection based on dominated hypervolume European Journal of Operational Research 181 3 1653 doi 10 1016 j ejor 2006 08 008 Bringmann Karl Friedrich Tobias Neumann Frank Wagner Markus 2011 Approximation Guided Evolutionary Multi Objective Optimization IJCAI doi 10 5591 978 1 57735 516 8 IJCAI11 204 Battiti Roberto Mauro Brunato Franco Mascia 2008 Reactive Search and Intelligent Optimization Springer Verlag ISBN 978 0 387 09623 0 Battiti Roberto Mauro Brunato 2011 Reactive Business Intelligence From Data to Models to Insight Trento Italy Reactive Search Srl ISBN 978 88 905795 0 9 a b c d Miettinen K Ruiz F Wierzbicki A P 2008 Introduction to Multiobjective Optimization Interactive Approaches Multiobjective Optimization Lecture Notes in Computer Science Vol 5252 pp 27 57 CiteSeerX 10 1 1 475 465 doi 10 1007 978 3 540 88908 3 2 ISBN 978 3 540 88907 6 Luque M Ruiz F Miettinen K 2008 Global formulation for interactive multiobjective optimization OR Spectrum 33 27 48 doi 10 1007 s00291 008 0154 3 S2CID 15050545 Ruiz F Luque M Miettinen K 2011 Improving the computational efficiency in a global formulation GLIDE for interactive multiobjective optimization Annals of Operations Research 197 47 70 doi 10 1007 s10479 010 0831 x S2CID 14947919 Zionts S Wallenius J 1976 An Interactive Programming Method for Solving the Multiple Criteria Problem Management Science 22 6 652 doi 10 1287 mnsc 22 6 652 Wierzbicki A P 1986 On the completeness and constructiveness of parametric characterizations to vector optimization problems OR Spektrum 8 2 73 78 doi 10 1007 BF01719738 S2CID 121771992 Andrzej P Wierzbicki Marek Makowski Jaap Wessels 31 May 2000 Model Based Decision Support Methodology with Environmental Applications Springer ISBN 978 0 7923 6327 9 Retrieved 17 September 2012 Nakayama H Sawaragi Y 1984 Satisficing Trade Off Method for Multiobjective Programming in Grauer M Wierzbicki A P eds Interactive Decision Analysis Springer Verlag Berlin Heidelberg pp 113 122 Miettinen K Makela M M 1995 Interactive bundle based method for nondifferentiable multiobjeective optimization Nimbus Optimization 34 3 231 doi 10 1080 02331939508844109 Miettinen K Makela M M 2006 Synchronous approach in interactive multiobjective optimization European Journal of Operational Research 170 3 909 doi 10 1016 j ejor 2004 07 052 Sindhya K Ruiz A B Miettinen K 2011 A Preference Based Interactive Evolutionary Algorithm for Multi objective Optimization PIE Evolutionary Multi Criterion Optimization Lecture Notes in Computer Science Vol 6576 pp 212 225 doi 10 1007 978 3 642 19893 9 15 ISBN 978 3 642 19892 2 Sindhya K Deb K Miettinen K 2008 A Local Search Based Evolutionary Multi objective Optimization Approach for Fast and Accurate Convergence Parallel Problem Solving from Nature PPSN X Lecture Notes in Computer Science Vol 5199 pp 815 824 doi 10 1007 978 3 540 87700 4 81 ISBN 978 3 540 87699 1 Benson Harold P Sayin Serpil 1997 Towards finding global representations of the efficient set in multiple objective mathematical programming PDF Naval Research Logistics 44 1 47 67 doi 10 1002 SICI 1520 6750 199702 44 1 lt 47 AID NAV3 gt 3 0 CO 2 M hdl 11693 25666 ISSN 0894 069X Pryke Andy Sanaz Mostaghim Alireza Nazemi 2007 Heatmap Visualization of Population Based Multi Objective Algorithms Evolutionary Multi Criterion Optimization Lecture Notes in Computer Science Vol 4403 pp 361 375 doi 10 1007 978 3 540 70928 2 29 ISBN 978 3 540 70927 5 S2CID 2502459 Gass Saul Saaty Thomas 1955 The computational algorithm for the parametric objective function Naval Research Logistics Quarterly 2 1 2 39 45 doi 10 1002 nav 3800020106 ISSN 0028 1441 Jared L Cohon 13 January 2004 Multiobjective Programming and Planning Courier Dover Publications ISBN 978 0 486 43263 2 Retrieved 29 May 2012 Ruzika S Wiecek M M 2005 Approximation Methods in Multiobjective Programming Journal of Optimization Theory and Applications 126 3 473 501 doi 10 1007 s10957 005 5494 4 ISSN 0022 3239 S2CID 122221156 Meisel W L 1973 J L Cochrane M Zeleny eds Tradeoff decision in multiple criteria decision making Multiple Criteria Decision Making 461 476 A V Lotov V A Bushenkov G K Kamenev 29 February 2004 Interactive Decision Maps Approximation and Visualization of Pareto Frontier Springer ISBN 978 1 4020 7631 2 Retrieved 29 May 2012 Wesner N 2017 Multiobjective Optimization via Visualization Economics Bulletin 37 2 1226 1233External links editEmmerich M T M Deutz A H A tutorial on multiobjective optimization fundamentals and evolutionary methods Nat Comput 17 585 609 2018 https doi org 10 1007 s11047 018 9685 y International Society on Multiple Criteria Decision Making Evolutionary Multiobjective Optimization The Wolfram Demonstrations Project A Tutorial on Multiobjective Optimization and Genetic Algorithms Scilab Professional Partner Tomoiagă Bogdan Chindris Mircea Sumper Andreas Sudria Andreu Antoni Villafafila Robles Roberto 2013 Pareto Optimal Reconfiguration of Power Distribution Systems Using a Genetic Algorithm Based on NSGA II Energies 6 no 3 1439 1455 List of References on Evolutionary Multiobjective Optimization Retrieved from https en wikipedia org w index php title Multi objective optimization amp oldid 1196614138, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.