fbpx
Wikipedia

Normal mode

A normal mode of a dynamical system is a pattern of motion in which all parts of the system move sinusoidally with the same frequency and with a fixed phase relation. The free motion described by the normal modes takes place at fixed frequencies. These fixed frequencies of the normal modes of a system are known as its natural frequencies or resonant frequencies. A physical object, such as a building, bridge, or molecule, has a set of normal modes and their natural frequencies that depend on its structure, materials and boundary conditions.

The most general motion of a linear system is a superposition of its normal modes. The modes are normal in the sense that they can move independently, that is to say that an excitation of one mode will never cause motion of a different mode. In mathematical terms, normal modes are orthogonal to each other.

Vibration of a single normal mode of a circular disc with a pinned boundary condition along the entire outer edge. See other modes.
A flash photo of a cup of black coffee vibrating in normal modes
Excitation of normal modes in a drop of water during the Leidenfrost effect

General definitions edit

Mode edit

In the wave theory of physics and engineering, a mode in a dynamical system is a standing wave state of excitation, in which all the components of the system will be affected sinusoidally at a fixed frequency associated with that mode.

Because no real system can perfectly fit under the standing wave framework, the mode concept is taken as a general characterization of specific states of oscillation, thus treating the dynamic system in a linear fashion, in which linear superposition of states can be performed.

Typical examples include:

  • In a mechanical dynamical system, a vibrating rope is the most clear example of a mode, in which the rope is the medium, the stress on the rope is the excitation, and the displacement of the rope with respect to its static state is the modal variable.
  • In an acoustic dynamical system, a single sound pitch is a mode, in which the air is the medium, the sound pressure in the air is the excitation, and the displacement of the air molecules is the modal variable.
  • In a structural dynamical system, a high tall building oscillating under its most flexural axis is a mode, in which all the material of the building -under the proper numerical simplifications- is the medium, the seismic/wind/environmental solicitations are the excitations and the displacements are the modal variable.
  • In an electrical dynamical system, a resonant cavity made of thin metal walls, enclosing a hollow space, for a particle accelerator is a pure standing wave system, and thus an example of a mode, in which the hollow space of the cavity is the medium, the RF source (a Klystron or another RF source) is the excitation and the electromagnetic field is the modal variable.
  • When relating to music, normal modes of vibrating instruments (strings, air pipes, drums, etc.) are called "overtones".

The concept of normal modes also finds application in other dynamical systems, such as optics, quantum mechanics, atmospheric dynamics and molecular dynamics.

Most dynamical systems can be excited in several modes, possibly simultaneously. Each mode is characterized by one or several frequencies,[dubious ] according to the modal variable field. For example, a vibrating rope in 2D space is defined by a single-frequency (1D axial displacement), but a vibrating rope in 3D space is defined by two frequencies (2D axial displacement).

For a given amplitude on the modal variable, each mode will store a specific amount of energy because of the sinusoidal excitation.

The normal or dominant mode of a system with multiple modes will be the mode storing the minimum amount of energy for a given amplitude of the modal variable, or, equivalently, for a given stored amount of energy, the dominant mode will be the mode imposing the maximum amplitude of the modal variable.

Mode numbers edit

A mode of vibration is characterized by a modal frequency and a mode shape. It is numbered according to the number of half waves in the vibration. For example, if a vibrating beam with both ends pinned displayed a mode shape of half of a sine wave (one peak on the vibrating beam) it would be vibrating in mode 1. If it had a full sine wave (one peak and one trough) it would be vibrating in mode 2.

In a system with two or more dimensions, such as the pictured disk, each dimension is given a mode number. Using polar coordinates, we have a radial coordinate and an angular coordinate. If one measured from the center outward along the radial coordinate one would encounter a full wave, so the mode number in the radial direction is 2. The other direction is trickier, because only half of the disk is considered due to the anti-symmetric (also called skew-symmetry) nature of a disk's vibration in the angular direction. Thus, measuring 180° along the angular direction you would encounter a half wave, so the mode number in the angular direction is 1. So the mode number of the system is 2–1 or 1–2, depending on which coordinate is considered the "first" and which is considered the "second" coordinate (so it is important to always indicate which mode number matches with each coordinate direction).

In linear systems each mode is entirely independent of all other modes. In general all modes have different frequencies (with lower modes having lower frequencies) and different mode shapes.

Nodes edit

 
A mode shape of a drum membrane, with nodal lines shown in pale green

In a one-dimensional system at a given mode the vibration will have nodes, or places where the displacement is always zero. These nodes correspond to points in the mode shape where the mode shape is zero. Since the vibration of a system is given by the mode shape multiplied by a time function, the displacement of the node points remain zero at all times.

When expanded to a two dimensional system, these nodes become lines where the displacement is always zero. If you watch the animation above you will see two circles (one about halfway between the edge and center, and the other on the edge itself) and a straight line bisecting the disk, where the displacement is close to zero. In an idealized system these lines equal zero exactly, as shown to the right.

In mechanical systems edit

Coupled oscillators edit

Consider two equal bodies (not affected by gravity), each of mass m, attached to three springs, each with spring constant k. They are attached in the following manner, forming a system that is physically symmetric:

 

where the edge points are fixed and cannot move. We'll use x1(t) to denote the horizontal displacement of the left mass, and x2(t) to denote the displacement of the right mass.

If one denotes acceleration (the second derivative of x(t) with respect to time) as  , the equations of motion are:

 

Since we expect oscillatory motion of a normal mode (where ω is the same for both masses), we try:

 

Substituting these into the equations of motion gives us:

 

Since the exponential factor is common to all terms, we omit it and simplify:

 

And in matrix representation:

 

If the matrix on the left is invertible, the unique solution is the trivial solution (A1A2) = (x1x2) = (0,0). The non trivial solutions are to be found for those values of ω whereby the matrix on the left is singular i.e. is not invertible. It follows that the determinant of the matrix must be equal to 0, so:

 

Solving for  , we have two positive solutions:

 

If we substitute ω1 into the matrix and solve for (A1A2), we get (1, 1). If we substitute ω2, we get (1, −1). (These vectors are eigenvectors, and the frequencies are eigenvalues.)

The first normal mode is:

 

Which corresponds to both masses moving in the same direction at the same time. This mode is called antisymmetric.

The second normal mode is:

 

This corresponds to the masses moving in the opposite directions, while the center of mass remains stationary. This mode is called symmetric.

The general solution is a superposition of the normal modes where c1, c2, φ1, and φ2, are determined by the initial conditions of the problem.

The process demonstrated here can be generalized and formulated using the formalism of Lagrangian mechanics or Hamiltonian mechanics.

Standing waves edit

A standing wave is a continuous form of normal mode. In a standing wave, all the space elements (i.e. (xyz) coordinates) are oscillating in the same frequency and in phase (reaching the equilibrium point together), but each has a different amplitude.

 

The general form of a standing wave is:

 

where ƒ(xyz) represents the dependence of amplitude on location and the cosine\sine are the oscillations in time.

Physically, standing waves are formed by the interference (superposition) of waves and their reflections (although one may also say the opposite; that a moving wave is a superposition of standing waves). The geometric shape of the medium determines what would be the interference pattern, thus determines the ƒ(x, yz) form of the standing wave. This space-dependence is called a normal mode.

Usually, for problems with continuous dependence on (xyz) there is no single or finite number of normal modes, but there are infinitely many normal modes. If the problem is bounded (i.e. it is defined on a finite section of space) there are countably many normal modes (usually numbered n = 1, 2, 3, ...). If the problem is not bounded, there is a continuous spectrum of normal modes.

Elastic solids edit

In any solid at any temperature, the primary particles (e.g. atoms or molecules) are not stationary, but rather vibrate about mean positions. In insulators the capacity of the solid to store thermal energy is due almost entirely to these vibrations. Many physical properties of the solid (e.g. modulus of elasticity) can be predicted given knowledge of the frequencies with which the particles vibrate. The simplest assumption (by Einstein) is that all the particles oscillate about their mean positions with the same natural frequency ν. This is equivalent to the assumption that all atoms vibrate independently with a frequency ν. Einstein also assumed that the allowed energy states of these oscillations are harmonics, or integral multiples of . The spectrum of waveforms can be described mathematically using a Fourier series of sinusoidal density fluctuations (or thermal phonons).

 
The fundamental and the first six overtones of a vibrating string. The mathematics of wave propagation in crystalline solids consists of treating the harmonics as an ideal Fourier series of sinusoidal density fluctuations (or atomic displacement waves).

Debye subsequently recognized that each oscillator is intimately coupled to its neighboring oscillators at all times. Thus, by replacing Einstein's identical uncoupled oscillators with the same number of coupled oscillators, Debye correlated the elastic vibrations of a one-dimensional solid with the number of mathematically special modes of vibration of a stretched string (see figure). The pure tone of lowest pitch or frequency is referred to as the fundamental and the multiples of that frequency are called its harmonic overtones. He assigned to one of the oscillators the frequency of the fundamental vibration of the whole block of solid. He assigned to the remaining oscillators the frequencies of the harmonics of that fundamental, with the highest of all these frequencies being limited by the motion of the smallest primary unit.

The normal modes of vibration of a crystal are in general superpositions of many overtones, each with an appropriate amplitude and phase. Longer wavelength (low frequency) phonons are exactly those acoustical vibrations which are considered in the theory of sound. Both longitudinal and transverse waves can be propagated through a solid, while, in general, only longitudinal waves are supported by fluids.

In the longitudinal mode, the displacement of particles from their positions of equilibrium coincides with the propagation direction of the wave. Mechanical longitudinal waves have been also referred to as compression waves. For transverse modes, individual particles move perpendicular to the propagation of the wave.

According to quantum theory, the mean energy of a normal vibrational mode of a crystalline solid with characteristic frequency ν is:

 

The term (1/2) represents the "zero-point energy", or the energy which an oscillator will have at absolute zero. E(ν) tends to the classic value kT at high temperatures

 

By knowing the thermodynamic formula,

 

the entropy per normal mode is:

 

The free energy is:

 

which, for kT >> , tends to:

 

In order to calculate the internal energy and the specific heat, we must know the number of normal vibrational modes a frequency between the values ν and ν + . Allow this number to be f(ν)dν. Since the total number of normal modes is 3N, the function f(ν) is given by:

 

The integration is performed over all frequencies of the crystal. Then the internal energy U will be given by:

 

In quantum mechanics edit

In quantum mechanics, a state   of a system is described by a wavefunction   which solves the Schrödinger equation. The square of the absolute value of  , i.e.

 

is the probability density to measure the particle in place x at time t.

Usually, when involving some sort of potential, the wavefunction is decomposed into a superposition of energy eigenstates, each oscillating with frequency of  . Thus, one may write

 

The eigenstates have a physical meaning further than an orthonormal basis. When the energy of the system is measured, the wavefunction collapses into one of its eigenstates and so the particle wavefunction is described by the pure eigenstate corresponding to the measured energy.

In seismology edit

Normal modes are generated in the Earth from long wavelength seismic waves from large earthquakes interfering to form standing waves.

For an elastic, isotropic, homogeneous sphere, spheroidal, toroidal and radial (or breathing) modes arise. Spheroidal modes only involve P and SV waves (like Rayleigh waves) and depend on overtone number n and angular order l but have degeneracy of azimuthal order m. Increasing l concentrates fundamental branch closer to surface and at large l this tends to Rayleigh waves. Toroidal modes only involve SH waves (like Love waves) and do not exist in fluid outer core. Radial modes are just a subset of spheroidal modes with l=0. The degeneracy does not exist on Earth as it is broken by rotation, ellipticity and 3D heterogeneous velocity and density structure.

It may be assumed that each mode can be isolated, the self-coupling approximation, or that many modes close in frequency resonate, the cross-coupling approximation. Self-coupling will solely change the phase velocity and not the number of waves around a great circle, resulting in a stretching or shrinking of standing wave pattern. Modal cross-coupling occurs due to the rotation of the Earth, from aspherical elastic structure, or due to Earth's ellipticity and leads to a mixing of fundamental spheroidal and toroidal modes.

See also edit

Sources edit

  • Blevins, Robert D. (2001). Formulas for natural frequency and mode shape (Reprint ed.). Malabar, Florida: Krieger Pub. ISBN 978-1575241845.
  • Tzou, H.S.; Bergman, L.A., eds. (2008). Dynamics and Control of Distributed Systems. Cambridge [England]: Cambridge University Press. ISBN 978-0521033749.
  • Shearer, Peter M. (2009). Introduction to seismology (2nd ed.). Cambridge: Cambridge University Press. pp. 231–237. ISBN 9780521882101.

External links edit

  • Harvard lecture notes on normal modes

normal, mode, this, article, includes, list, references, related, reading, external, links, sources, remain, unclear, because, lacks, inline, citations, please, help, improve, this, article, introducing, more, precise, citations, december, 2010, learn, when, r. This article includes a list of references related reading or external links but its sources remain unclear because it lacks inline citations Please help improve this article by introducing more precise citations December 2010 Learn how and when to remove this message A normal mode of a dynamical system is a pattern of motion in which all parts of the system move sinusoidally with the same frequency and with a fixed phase relation The free motion described by the normal modes takes place at fixed frequencies These fixed frequencies of the normal modes of a system are known as its natural frequencies or resonant frequencies A physical object such as a building bridge or molecule has a set of normal modes and their natural frequencies that depend on its structure materials and boundary conditions The most general motion of a linear system is a superposition of its normal modes The modes are normal in the sense that they can move independently that is to say that an excitation of one mode will never cause motion of a different mode In mathematical terms normal modes are orthogonal to each other Vibration of a single normal mode of a circular disc with a pinned boundary condition along the entire outer edge See other modes A flash photo of a cup of black coffee vibrating in normal modes source source source source source source Excitation of normal modes in a drop of water during the Leidenfrost effect Contents 1 General definitions 1 1 Mode 1 2 Mode numbers 1 3 Nodes 2 In mechanical systems 2 1 Coupled oscillators 2 2 Standing waves 2 3 Elastic solids 3 In quantum mechanics 4 In seismology 5 See also 6 Sources 7 External linksGeneral definitions editMode edit In the wave theory of physics and engineering a mode in a dynamical system is a standing wave state of excitation in which all the components of the system will be affected sinusoidally at a fixed frequency associated with that mode Because no real system can perfectly fit under the standing wave framework the mode concept is taken as a general characterization of specific states of oscillation thus treating the dynamic system in a linear fashion in which linear superposition of states can be performed Typical examples include In a mechanical dynamical system a vibrating rope is the most clear example of a mode in which the rope is the medium the stress on the rope is the excitation and the displacement of the rope with respect to its static state is the modal variable In an acoustic dynamical system a single sound pitch is a mode in which the air is the medium the sound pressure in the air is the excitation and the displacement of the air molecules is the modal variable In a structural dynamical system a high tall building oscillating under its most flexural axis is a mode in which all the material of the building under the proper numerical simplifications is the medium the seismic wind environmental solicitations are the excitations and the displacements are the modal variable In an electrical dynamical system a resonant cavity made of thin metal walls enclosing a hollow space for a particle accelerator is a pure standing wave system and thus an example of a mode in which the hollow space of the cavity is the medium the RF source a Klystron or another RF source is the excitation and the electromagnetic field is the modal variable When relating to music normal modes of vibrating instruments strings air pipes drums etc are called overtones The concept of normal modes also finds application in other dynamical systems such as optics quantum mechanics atmospheric dynamics and molecular dynamics Most dynamical systems can be excited in several modes possibly simultaneously Each mode is characterized by one or several frequencies dubious discuss according to the modal variable field For example a vibrating rope in 2D space is defined by a single frequency 1D axial displacement but a vibrating rope in 3D space is defined by two frequencies 2D axial displacement For a given amplitude on the modal variable each mode will store a specific amount of energy because of the sinusoidal excitation The normal or dominant mode of a system with multiple modes will be the mode storing the minimum amount of energy for a given amplitude of the modal variable or equivalently for a given stored amount of energy the dominant mode will be the mode imposing the maximum amplitude of the modal variable Mode numbers edit A mode of vibration is characterized by a modal frequency and a mode shape It is numbered according to the number of half waves in the vibration For example if a vibrating beam with both ends pinned displayed a mode shape of half of a sine wave one peak on the vibrating beam it would be vibrating in mode 1 If it had a full sine wave one peak and one trough it would be vibrating in mode 2 In a system with two or more dimensions such as the pictured disk each dimension is given a mode number Using polar coordinates we have a radial coordinate and an angular coordinate If one measured from the center outward along the radial coordinate one would encounter a full wave so the mode number in the radial direction is 2 The other direction is trickier because only half of the disk is considered due to the anti symmetric also called skew symmetry nature of a disk s vibration in the angular direction Thus measuring 180 along the angular direction you would encounter a half wave so the mode number in the angular direction is 1 So the mode number of the system is 2 1 or 1 2 depending on which coordinate is considered the first and which is considered the second coordinate so it is important to always indicate which mode number matches with each coordinate direction In linear systems each mode is entirely independent of all other modes In general all modes have different frequencies with lower modes having lower frequencies and different mode shapes Nodes edit nbsp A mode shape of a drum membrane with nodal lines shown in pale green In a one dimensional system at a given mode the vibration will have nodes or places where the displacement is always zero These nodes correspond to points in the mode shape where the mode shape is zero Since the vibration of a system is given by the mode shape multiplied by a time function the displacement of the node points remain zero at all times When expanded to a two dimensional system these nodes become lines where the displacement is always zero If you watch the animation above you will see two circles one about halfway between the edge and center and the other on the edge itself and a straight line bisecting the disk where the displacement is close to zero In an idealized system these lines equal zero exactly as shown to the right In mechanical systems editCoupled oscillators edit Consider two equal bodies not affected by gravity each of mass m attached to three springs each with spring constant k They are attached in the following manner forming a system that is physically symmetric nbsp where the edge points are fixed and cannot move We ll use x1 t to denote the horizontal displacement of the left mass and x2 t to denote the displacement of the right mass If one denotes acceleration the second derivative of x t with respect to time as x displaystyle scriptstyle ddot x nbsp the equations of motion are m x 1 k x 1 k x 2 x 1 2 k x 1 k x 2 m x 2 k x 2 k x 1 x 2 2 k x 2 k x 1 displaystyle begin aligned m ddot x 1 amp kx 1 k x 2 x 1 2kx 1 kx 2 m ddot x 2 amp kx 2 k x 1 x 2 2kx 2 kx 1 end aligned nbsp Since we expect oscillatory motion of a normal mode where w is the same for both masses we try x 1 t A 1 e i w t x 2 t A 2 e i w t displaystyle begin aligned x 1 t amp A 1 e i omega t x 2 t amp A 2 e i omega t end aligned nbsp Substituting these into the equations of motion gives us w 2 m A 1 e i w t 2 k A 1 e i w t k A 2 e i w t w 2 m A 2 e i w t k A 1 e i w t 2 k A 2 e i w t displaystyle begin aligned omega 2 mA 1 e i omega t amp 2kA 1 e i omega t kA 2 e i omega t omega 2 mA 2 e i omega t amp kA 1 e i omega t 2kA 2 e i omega t end aligned nbsp Since the exponential factor is common to all terms we omit it and simplify w 2 m 2 k A 1 k A 2 0 k A 1 w 2 m 2 k A 2 0 displaystyle begin aligned omega 2 m 2k A 1 kA 2 amp 0 kA 1 omega 2 m 2k A 2 amp 0 end aligned nbsp And in matrix representation w 2 m 2 k k k w 2 m 2 k A 1 A 2 0 displaystyle begin bmatrix omega 2 m 2k amp k k amp omega 2 m 2k end bmatrix begin pmatrix A 1 A 2 end pmatrix 0 nbsp If the matrix on the left is invertible the unique solution is the trivial solution A1 A2 x1 x2 0 0 The non trivial solutions are to be found for those values of w whereby the matrix on the left is singular i e is not invertible It follows that the determinant of the matrix must be equal to 0 so w 2 m 2 k 2 k 2 0 displaystyle omega 2 m 2k 2 k 2 0 nbsp Solving for w displaystyle omega nbsp we have two positive solutions w 1 k m w 2 3 k m displaystyle begin aligned omega 1 amp sqrt frac k m omega 2 amp sqrt frac 3k m end aligned nbsp If we substitute w1 into the matrix and solve for A1 A2 we get 1 1 If we substitute w2 we get 1 1 These vectors are eigenvectors and the frequencies are eigenvalues The first normal mode is h 1 x 1 1 t x 2 1 t c 1 1 1 cos w 1 t f 1 displaystyle vec eta 1 begin pmatrix x 1 1 t x 2 1 t end pmatrix c 1 begin pmatrix 1 1 end pmatrix cos omega 1 t varphi 1 nbsp Which corresponds to both masses moving in the same direction at the same time This mode is called antisymmetric The second normal mode is h 2 x 1 2 t x 2 2 t c 2 1 1 cos w 2 t f 2 displaystyle vec eta 2 begin pmatrix x 1 2 t x 2 2 t end pmatrix c 2 begin pmatrix 1 1 end pmatrix cos omega 2 t varphi 2 nbsp This corresponds to the masses moving in the opposite directions while the center of mass remains stationary This mode is called symmetric The general solution is a superposition of the normal modes where c1 c2 f1 and f2 are determined by the initial conditions of the problem The process demonstrated here can be generalized and formulated using the formalism of Lagrangian mechanics or Hamiltonian mechanics Standing waves edit A standing wave is a continuous form of normal mode In a standing wave all the space elements i e x y z coordinates are oscillating in the same frequency and in phase reaching the equilibrium point together but each has a different amplitude nbsp The general form of a standing wave is PS t f x y z A cos w t B sin w t displaystyle Psi t f x y z A cos omega t B sin omega t nbsp where ƒ x y z represents the dependence of amplitude on location and the cosine sine are the oscillations in time Physically standing waves are formed by the interference superposition of waves and their reflections although one may also say the opposite that a moving wave is a superposition of standing waves The geometric shape of the medium determines what would be the interference pattern thus determines the ƒ x y z form of the standing wave This space dependence is called a normal mode Usually for problems with continuous dependence on x y z there is no single or finite number of normal modes but there are infinitely many normal modes If the problem is bounded i e it is defined on a finite section of space there are countably many normal modes usually numbered n 1 2 3 If the problem is not bounded there is a continuous spectrum of normal modes Elastic solids edit Main articles Einstein solid and Debye model In any solid at any temperature the primary particles e g atoms or molecules are not stationary but rather vibrate about mean positions In insulators the capacity of the solid to store thermal energy is due almost entirely to these vibrations Many physical properties of the solid e g modulus of elasticity can be predicted given knowledge of the frequencies with which the particles vibrate The simplest assumption by Einstein is that all the particles oscillate about their mean positions with the same natural frequency n This is equivalent to the assumption that all atoms vibrate independently with a frequency n Einstein also assumed that the allowed energy states of these oscillations are harmonics or integral multiples of hn The spectrum of waveforms can be described mathematically using a Fourier series of sinusoidal density fluctuations or thermal phonons nbsp The fundamental and the first six overtones of a vibrating string The mathematics of wave propagation in crystalline solids consists of treating the harmonics as an ideal Fourier series of sinusoidal density fluctuations or atomic displacement waves Debye subsequently recognized that each oscillator is intimately coupled to its neighboring oscillators at all times Thus by replacing Einstein s identical uncoupled oscillators with the same number of coupled oscillators Debye correlated the elastic vibrations of a one dimensional solid with the number of mathematically special modes of vibration of a stretched string see figure The pure tone of lowest pitch or frequency is referred to as the fundamental and the multiples of that frequency are called its harmonic overtones He assigned to one of the oscillators the frequency of the fundamental vibration of the whole block of solid He assigned to the remaining oscillators the frequencies of the harmonics of that fundamental with the highest of all these frequencies being limited by the motion of the smallest primary unit The normal modes of vibration of a crystal are in general superpositions of many overtones each with an appropriate amplitude and phase Longer wavelength low frequency phonons are exactly those acoustical vibrations which are considered in the theory of sound Both longitudinal and transverse waves can be propagated through a solid while in general only longitudinal waves are supported by fluids In the longitudinal mode the displacement of particles from their positions of equilibrium coincides with the propagation direction of the wave Mechanical longitudinal waves have been also referred to as compression waves For transverse modes individual particles move perpendicular to the propagation of the wave According to quantum theory the mean energy of a normal vibrational mode of a crystalline solid with characteristic frequency n is E n 1 2 h n h n e h n k T 1 displaystyle E nu frac 1 2 h nu frac h nu e h nu kT 1 nbsp The term 1 2 hn represents the zero point energy or the energy which an oscillator will have at absolute zero E n tends to the classic value kT at high temperatures E n k T 1 1 12 h n k T 2 O h n k T 4 displaystyle E nu kT left 1 frac 1 12 left frac h nu kT right 2 O left frac h nu kT right 4 cdots right nbsp By knowing the thermodynamic formula S E N V 1 T displaystyle left frac partial S partial E right N V frac 1 T nbsp the entropy per normal mode is S n 0 T d d T E n d T T E n T k log 1 e h n k T displaystyle begin aligned S left nu right amp int 0 T frac d dT E left nu right frac dT T 10pt amp frac E left nu right T k log left 1 e frac h nu kT right end aligned nbsp The free energy is F n E T S k T log 1 e h n k T displaystyle F nu E TS kT log left 1 e frac h nu kT right nbsp which for kT gt gt hn tends to F n k T log h n k T displaystyle F nu kT log left frac h nu kT right nbsp In order to calculate the internal energy and the specific heat we must know the number of normal vibrational modes a frequency between the values n and n dn Allow this number to be f n dn Since the total number of normal modes is 3N the function f n is given by f n d n 3 N displaystyle int f nu d nu 3N nbsp The integration is performed over all frequencies of the crystal Then the internal energy U will be given by U f n E n d n displaystyle U int f nu E nu d nu nbsp In quantum mechanics editIn quantum mechanics a state ps displaystyle psi rangle nbsp of a system is described by a wavefunction ps x t displaystyle psi x t nbsp which solves the Schrodinger equation The square of the absolute value of ps displaystyle psi nbsp i e P x t ps x t 2 displaystyle P x t psi x t 2 nbsp is the probability density to measure the particle in place x at time t Usually when involving some sort of potential the wavefunction is decomposed into a superposition of energy eigenstates each oscillating with frequency of w E n ℏ displaystyle omega E n hbar nbsp Thus one may write ps t n n n ps t 0 e i E n t ℏ displaystyle psi t rangle sum n n rangle left langle n psi t 0 right rangle e iE n t hbar nbsp The eigenstates have a physical meaning further than an orthonormal basis When the energy of the system is measured the wavefunction collapses into one of its eigenstates and so the particle wavefunction is described by the pure eigenstate corresponding to the measured energy In seismology editNormal modes are generated in the Earth from long wavelength seismic waves from large earthquakes interfering to form standing waves For an elastic isotropic homogeneous sphere spheroidal toroidal and radial or breathing modes arise Spheroidal modes only involve P and SV waves like Rayleigh waves and depend on overtone number n and angular order l but have degeneracy of azimuthal order m Increasing l concentrates fundamental branch closer to surface and at large l this tends to Rayleigh waves Toroidal modes only involve SH waves like Love waves and do not exist in fluid outer core Radial modes are just a subset of spheroidal modes with l 0 The degeneracy does not exist on Earth as it is broken by rotation ellipticity and 3D heterogeneous velocity and density structure It may be assumed that each mode can be isolated the self coupling approximation or that many modes close in frequency resonate the cross coupling approximation Self coupling will solely change the phase velocity and not the number of waves around a great circle resulting in a stretching or shrinking of standing wave pattern Modal cross coupling occurs due to the rotation of the Earth from aspherical elastic structure or due to Earth s ellipticity and leads to a mixing of fundamental spheroidal and toroidal modes See also editAntiresonance Critical speed Harmonic oscillator Harmonic series music Infrared spectroscopy Leaky mode Mechanical resonance Modal analysis Mode electromagnetism Quasinormal mode Sturm Liouville theory Torsional vibration Vibrations of a circular membraneSources editBlevins Robert D 2001 Formulas for natural frequency and mode shape Reprint ed Malabar Florida Krieger Pub ISBN 978 1575241845 Tzou H S Bergman L A eds 2008 Dynamics and Control of Distributed Systems Cambridge England Cambridge University Press ISBN 978 0521033749 Shearer Peter M 2009 Introduction to seismology 2nd ed Cambridge Cambridge University Press pp 231 237 ISBN 9780521882101 External links editHarvard lecture notes on normal modes Retrieved from https en wikipedia org w index php title Normal mode amp oldid 1222158642, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.