fbpx
Wikipedia

Harmonic series (music)

A harmonic series (also overtone series) is the sequence of harmonics, musical tones, or pure tones whose frequency is an integer multiple of a fundamental frequency.

Harmonics of a string showing the periods of the pure-tone harmonics (period = 1/frequency)

Pitched musical instruments are often based on an acoustic resonator such as a string or a column of air, which oscillates at numerous modes simultaneously. At the frequencies of each vibrating mode, waves travel in both directions along the string or air column, reinforcing and canceling each other to form standing waves. Interaction with the surrounding air causes audible sound waves, which travel away from the instrument. Because of the typical spacing of the resonances, these frequencies are mostly limited to integer multiples, or harmonics, of the lowest frequency, and such multiples form the harmonic series.

The musical pitch of a note is usually perceived as the lowest partial present (the fundamental frequency), which may be the one created by vibration over the full length of the string or air column, or a higher harmonic chosen by the player. The musical timbre of a steady tone from such an instrument is strongly affected by the relative strength of each harmonic.

Terminology

Partial, harmonic, fundamental, inharmonicity, and overtone

A "complex tone" (the sound of a note with a timbre particular to the instrument playing the note) "can be described as a combination of many simple periodic waves (i.e., sine waves) or partials, each with its own frequency of vibration, amplitude, and phase".[1] (See also, Fourier analysis.)

A partial is any of the sine waves (or "simple tones", as Ellis calls them[2] when translating Helmholtz) of which a complex tone is composed, not necessarily with an integer multiple of the lowest harmonic.

A harmonic is any member of the harmonic series, an ideal set of frequencies that are positive integer multiples of a common fundamental frequency. The fundamental is a harmonic because it is one times itself. A harmonic partial is any real partial component of a complex tone that matches (or nearly matches) an ideal harmonic.[3]

An inharmonic partial is any partial that does not match an ideal harmonic. Inharmonicity is a measure of the deviation of a partial from the closest ideal harmonic, typically measured in cents for each partial.[4]

Many pitched acoustic instruments are designed to have partials that are close to being whole-number ratios with very low inharmonicity; therefore, in music theory, and in instrument design, it is convenient, although not strictly accurate, to speak of the partials in those instruments' sounds as "harmonics", even though they may have some degree of inharmonicity. The piano, one of the most important instruments of western tradition, contains a certain degree of inharmonicity among the frequencies generated by each string. Other pitched instruments, especially certain percussion instruments, such as marimba, vibraphone, tubular bells, timpani, and singing bowls contain mostly inharmonic partials, yet may give the ear a good sense of pitch because of a few strong partials that resemble harmonics. Unpitched, or indefinite-pitched instruments, such as cymbals and tam-tams make sounds (produce spectra) that are rich in inharmonic partials and may give no impression of implying any particular pitch.

An overtone is any partial above the lowest partial. The term overtone does not imply harmonicity or inharmonicity and has no other special meaning other than to exclude the fundamental. It is mostly the relative strength of the different overtones that give an instrument its particular timbre, tone color, or character. When writing or speaking of overtones and partials numerically, care must be taken to designate each correctly to avoid any confusion of one for the other, so the second overtone may not be the third partial, because it is the second sound in a series.[5]

Some electronic instruments, such as synthesizers, can play a pure frequency with no overtones (a sine wave). Synthesizers can also combine pure frequencies into more complex tones, such as to simulate other instruments. Certain flutes and ocarinas are very nearly without overtones.

Frequencies, wavelengths, and musical intervals in example systems

 
Even-numbered string harmonics from 2nd up to the 64th (five octaves)

One of the simplest cases to visualise is a vibrating string, as in the illustration; the string has fixed points at each end, and each harmonic mode divides it into an integer number (1, 2, 3, 4, etc.) of equal-sized sections resonating at increasingly higher frequencies.[6][failed verification] Similar arguments apply to vibrating air columns in wind instruments (for example, "the French horn was originally a valveless instrument that could play only the notes of the harmonic series"[7]), although these are complicated by having the possibility of anti-nodes (that is, the air column is closed at one end and open at the other), conical as opposed to cylindrical bores, or end-openings that run the gamut from no flare, cone flare, or exponentially shaped flares (such as in various bells).

In most pitched musical instruments, the fundamental (first harmonic) is accompanied by other, higher-frequency harmonics. Thus shorter-wavelength, higher-frequency waves occur with varying prominence and give each instrument its characteristic tone quality. The fact that a string is fixed at each end means that the longest allowed wavelength on the string (which gives the fundamental frequency) is twice the length of the string (one round trip, with a half cycle fitting between the nodes at the two ends). Other allowed wavelengths are reciprocal multiples (e.g. 12, 13, 14 times) that of the fundamental.

Theoretically, these shorter wavelengths correspond to vibrations at frequencies that are integer multiples of (e.g. 2, 3, 4 times) the fundamental frequency. Physical characteristics of the vibrating medium and/or the resonator it vibrates against often alter these frequencies. (See inharmonicity and stretched tuning for alterations specific to wire-stringed instruments and certain electric pianos.) However, those alterations are small, and except for precise, highly specialized tuning, it is reasonable to think of the frequencies of the harmonic series as integer multiples of the fundamental frequency.

The harmonic series is an arithmetic progression (f, 2f, 3f, 4f, 5f, ...). In terms of frequency (measured in cycles per second, or hertz, where f is the fundamental frequency), the difference between consecutive harmonics is therefore constant and equal to the fundamental. But because human ears respond to sound nonlinearly, higher harmonics are perceived as "closer together" than lower ones. On the other hand, the octave series is a geometric progression (2f, 4f, 8f, 16f, ...), and people perceive these distances as "the same" in the sense of musical interval. In terms of what one hears, each octave in the harmonic series is divided into increasingly "smaller" and more numerous intervals.

The second harmonic, whose frequency is twice the fundamental, sounds an octave higher; the third harmonic, three times the frequency of the fundamental, sounds a perfect fifth above the second harmonic. The fourth harmonic vibrates at four times the frequency of the fundamental and sounds a perfect fourth above the third harmonic (two octaves above the fundamental). Double the harmonic number means double the frequency (which sounds an octave higher).

 
An illustration in musical notation of the harmonic series (on C) up to the 20th harmonic. The numbers above the harmonic indicate the difference – in cents – from equal temperament (rounded to the nearest integer). Blue notes are very flat and red notes are very sharp. Listeners accustomed to more tonal tuning, such as meantone and well temperaments, notice many other notes are "off".
 
Harmonics on C, from 1st (fundamental) to 32nd harmonic (five octaves higher). Notation used is based on the extended just notation by Ben Johnston
 
Harmonic series as musical notation with intervals between harmonics labeled. Blue notes differ most significantly from equal temperament. One can listen to A2 (110 Hz) and 15 of its partials
 
Staff notation of partials 1, 3, 5, 7, 11, 13, 17, and 19 on C. These are "prime harmonics".[8]

Marin Mersenne wrote: "The order of the Consonances is natural, and ... the way we count them, starting from unity up to the number six and beyond is founded in nature."[9] However, to quote Carl Dahlhaus, "the interval-distance of the natural-tone-row [overtones] [...], counting up to 20, includes everything from the octave to the quarter tone, (and) useful and useless musical tones. The natural-tone-row [harmonic series] justifies everything, that means, nothing."[10]

Harmonics and tuning

If the harmonics are octave displaced and compressed into the span of one octave, some of them are approximated by the notes of what the West has adopted as the chromatic scale based on the fundamental tone. The Western chromatic scale has been modified into twelve equal semitones, which is slightly out of tune with many of the harmonics, especially the 7th, 11th, and 13th harmonics. In the late 1930s, composer Paul Hindemith ranked musical intervals according to their relative dissonance based on these and similar harmonic relationships.[11]

Below is a comparison between the first 31 harmonics and the intervals of 12-tone equal temperament (12TET), octave displaced and compressed into the span of one octave. Tinted fields highlight differences greater than 5 cents (120 of a semitone), which is the human ear's "just noticeable difference" for notes played one after the other (smaller differences are noticeable with notes played simultaneously).

Harmonic Interval as a ratio Interval in binary 12TET interval Note Variance cents
1 2 4 8 16 1, 2 1 prime (octave) C 0
17 17/16 (1.0625) 1.0001 minor second C, D +5
9 18 9/8 (1.125) 1.001 major second D +4
19 19/16 (1.1875) 1.0011 minor third D, E −2
5 10 20 5/4 (1.25) 1.01 major third E −14
21 21/16 (1.3125) 1.0101 fourth F −29
11 22 11/8 (1.375) 1.011 tritone F, G −49
23 23/16 (1.4375) 1.0111 +28
3 6 12 24 3/2 (1.5) 1.1 fifth G +2
25 25/16 (1.5625) 1.1001 minor sixth G, A −27
13 26 13/8 (1.625) 1.101 +41
27 27/16 (1.6875) 1.1011 major sixth A +6
7 14 28 7/4 (1.75) 1.11 minor seventh A, B −31
29 29/16 (1.8125) 1.1101 +30
15 30 15/8 (1.875) 1.111 major seventh B −12
31 31/16 (1.9375) 1.1111 +45

The frequencies of the harmonic series, being integer multiples of the fundamental frequency, are naturally related to each other by whole-numbered ratios and small whole-numbered ratios are likely the basis of the consonance of musical intervals (see just intonation). This objective structure is augmented by psychoacoustic phenomena. For example, a perfect fifth, say 200 and 300 Hz (cycles per second), causes a listener to perceive a combination tone of 100 Hz (the difference between 300 Hz and 200 Hz); that is, an octave below the lower (actual sounding) note. This 100 Hz first-order combination tone then interacts with both notes of the interval to produce second-order combination tones of 200 (300 − 100) and 100 (200 − 100) Hz and all further nth-order combination tones are all the same, being formed from various subtraction of 100, 200, and 300. When one contrasts this with a dissonant interval such as a tritone (not tempered) with a frequency ratio of 7:5 one gets, for example, 700 − 500 = 200 (1st order combination tone) and 500 − 200 = 300 (2nd order). The rest of the combination tones are octaves of 100 Hz so the 7:5 interval actually contains four notes: 100 Hz (and its octaves), 300 Hz, 500 Hz and 700 Hz. Note that the lowest combination tone (100 Hz) is a seventeenth (two octaves and a major third) below the lower (actual sounding) note of the tritone. All the intervals succumb to similar analysis as has been demonstrated by Paul Hindemith in his book The Craft of Musical Composition, although he rejected the use of harmonics from the seventh and beyond.[11]

The Mixolydian mode is consonant with the first 10 harmonics of the harmonic series (the 11th harmonic, a tritone, is not in the Mixolydian mode). The Ionian mode is consonant with only the first 6 harmonics of the series (the seventh harmonic, a minor seventh, is not in the Ionian mode).

Timbre of musical instruments

The relative amplitudes (strengths) of the various harmonics primarily determine the timbre of different instruments and sounds, though onset transients, formants, noises, and inharmonicities also play a role. For example, the clarinet and saxophone have similar mouthpieces and reeds, and both produce sound through resonance of air inside a chamber whose mouthpiece end is considered closed. Because the clarinet's resonator is cylindrical, the even-numbered harmonics are less present. The saxophone's resonator is conical, which allows the even-numbered harmonics to sound more strongly and thus produces a more complex tone. The inharmonic ringing of the instrument's metal resonator is even more prominent in the sounds of brass instruments.

Human ears tend to group phase-coherent, harmonically-related frequency components into a single sensation. Rather than perceiving the individual partials–harmonic and inharmonic, of a musical tone, humans perceive them together as a tone color or timbre, and the overall pitch is heard as the fundamental of the harmonic series being experienced. If a sound is heard that is made up of even just a few simultaneous sine tones, and if the intervals among those tones form part of a harmonic series, the brain tends to group this input into a sensation of the pitch of the fundamental of that series, even if the fundamental is not present.

Variations in the frequency of harmonics can also affect the perceived fundamental pitch. These variations, most clearly documented in the piano and other stringed instruments but also apparent in brass instruments, are caused by a combination of metal stiffness and the interaction of the vibrating air or string with the resonating body of the instrument.

Interval strength

David Cope (1997) suggests the concept of interval strength,[12] in which an interval's strength, consonance, or stability (see consonance and dissonance) is determined by its approximation to a lower and stronger, or higher and weaker, position in the harmonic series. See also: Lipps–Meyer law.

Thus, an equal-tempered perfect fifth ( play ) is stronger than an equal-tempered minor third ( play), since they approximate a just perfect fifth ( play) and just minor third ( play), respectively. The just minor third appears between harmonics 5 and 6 while the just fifth appears lower, between harmonics 2 and 3.

See also

Notes

  1. ^ William Forde Thompson (2008). Music, Thought, and Feeling: Understanding the Psychology of Music. p. 46. ISBN 978-0-19-537707-1.
  2. ^ Hermann von Helmholtz (1885). On the Sensations of Tone as a Physiological Basis for the Theory of Music. Translated by Alexander John Ellis (2nd ed.). Longmans, Green. p. 23.
  3. ^ John R. Pierce (2001). "Consonance and Scales". In Perry R. Cook (ed.). Music, Cognition, and Computerized Sound. MIT Press. ISBN 978-0-262-53190-0.
  4. ^ Martha Goodway and Jay Scott Odell (1987). The Historical Harpsichord Volume Two: The Metallurgy of 17th- and 18th- Century Music Wire. Pendragon Press. ISBN 978-0-918728-54-8.
  5. ^ Riemann 1896, p. 143: "let it be understood, the second overtone is not the third tone of the series, but the second"
  6. ^ Roederer, Juan G. (1995). The Physics and Psychophysics of Music. p. 106. ISBN 0-387-94366-8.
  7. ^ Kostka, Stefan; Payne, Dorothy (1995). Tonal Harmony (3rd ed.). McGraw-Hill. p. 102. ISBN 0-07-035874-5.
  8. ^ Fonville, John (Summer 1991). "Ben Johnston's Extended Just Intonation: A guide for interpreters". Perspectives of New Music. 29 (2): 106–137 (121). doi:10.2307/833435. JSTOR 833435.
  9. ^ Cohen, H. F. (2013). Quantifying Music: The science of music at the first stage of scientific revolution 1580–1650. Springer. p. 103. ISBN 9789401576864.
  10. ^ Sabbagh, Peter (2003). The Development of Harmony in Scriabin's Works, p. 12. Universal. ISBN 9781581125955. Cites: Dahlhaus, Carl (1972). "Struktur und Expression bei Alexander Skrjabin", Musik des Ostens, Vol. 6, p. 229.
  11. ^ a b Hindemith, Paul (1942). The Craft of Musical Composition: Book 1 – Theoretical Part, pp. 15ff. Translated by Arthur Mendel (London: Schott & Co; New York: Associated Music Publishers. ISBN 0901938300). 2014-07-01 at the Wayback Machine.
  12. ^ Cope, David (1997). Techniques of the Contemporary Composer, p. 40–41. New York, New York: Schirmer Books. ISBN 0-02-864737-8.

Sources

Further reading

  • Coul, Manuel Op de. "List of intervals (Compiled)". Huygens-Fokker Foundation centre for microtonal music. Retrieved 2016-06-15.
  • Datta, A. K.; Sengupta, R.; Dey, N.; Nag, D. (2006). . Kolkata, India: SRD ITC SRA. pp. I–X, 1–103. ISBN 81-903818-0-6. Archived from the original on 2012-01-18.
  • Helmholtz, H. (1865). Die Lehre von dem Tonempfindungen. Zweite ausgabe (in German). Braunschweig: Vieweg und Sohn. pp. I–XII, 1–606. Retrieved 2016-10-12. (see Sensations of Tone)
  • IEV (1994). "Electropedia: The World's Online Electrotechnical Vocabulary". International Electrotechnical Commission. Retrieved 2016-06-15.
  • Lamb, Horace (1911). "Harmonic Analysis" . In Chisholm, Hugh (ed.). Encyclopædia Britannica. Vol. 12 (11th ed.). Cambridge University Press. pp. 956, 958.
  • Partch, Harry (1974). Genesis of a Music: An Account of a Creative Work, Its Roots, and Its Fulfillments (PDF) (2nd enlarged ed.). New York: Da Capo Press. ISBN 0-306-80106-X. Retrieved 2016-06-15.
  • Schouten, J. F. (February 24, 1940). The residue, a new component in subjective sound analysis (PDF). Eindhoven, Holland: Natuurkundig Laboratorium der N. V. Philips' Gloeilampenfabrieken (communicated by Prof. G. Holst at the meeting). pp. 356–65. Retrieved 2016-09-26.
  • Волконский, Андрей Михайлович (1998). Основы темперации (in Russian). Композитор, Москва. ISBN 5-85285-184-1. Retrieved 2016-06-15.
  • Тюлин, Юрий Николаевич (1966). Беспалова, Н. (ed.). Учение о гармонии [The teaching on harmony] (in Russian) (Издание Третье, Исправленное и Дополненное = Third Edition, Revised and Enlarged ed.). Moscow: Музыка.

harmonic, series, music, harmonic, series, also, overtone, series, sequence, harmonics, musical, tones, pure, tones, whose, frequency, integer, multiple, fundamental, frequency, harmonics, string, showing, periods, pure, tone, harmonics, period, frequency, pit. A harmonic series also overtone series is the sequence of harmonics musical tones or pure tones whose frequency is an integer multiple of a fundamental frequency Harmonics of a string showing the periods of the pure tone harmonics period 1 frequency Pitched musical instruments are often based on an acoustic resonator such as a string or a column of air which oscillates at numerous modes simultaneously At the frequencies of each vibrating mode waves travel in both directions along the string or air column reinforcing and canceling each other to form standing waves Interaction with the surrounding air causes audible sound waves which travel away from the instrument Because of the typical spacing of the resonances these frequencies are mostly limited to integer multiples or harmonics of the lowest frequency and such multiples form the harmonic series The musical pitch of a note is usually perceived as the lowest partial present the fundamental frequency which may be the one created by vibration over the full length of the string or air column or a higher harmonic chosen by the player The musical timbre of a steady tone from such an instrument is strongly affected by the relative strength of each harmonic Contents 1 Terminology 1 1 Partial harmonic fundamental inharmonicity and overtone 2 Frequencies wavelengths and musical intervals in example systems 3 Harmonics and tuning 4 Timbre of musical instruments 5 Interval strength 6 See also 7 Notes 8 Further readingTerminology EditPartial harmonic fundamental inharmonicity and overtone Edit A complex tone the sound of a note with a timbre particular to the instrument playing the note can be described as a combination of many simple periodic waves i e sine waves or partials each with its own frequency of vibration amplitude and phase 1 See also Fourier analysis A partial is any of the sine waves or simple tones as Ellis calls them 2 when translating Helmholtz of which a complex tone is composed not necessarily with an integer multiple of the lowest harmonic A harmonic is any member of the harmonic series an ideal set of frequencies that are positive integer multiples of a common fundamental frequency The fundamental is a harmonic because it is one times itself A harmonic partial is any real partial component of a complex tone that matches or nearly matches an ideal harmonic 3 An inharmonic partial is any partial that does not match an ideal harmonic Inharmonicity is a measure of the deviation of a partial from the closest ideal harmonic typically measured in cents for each partial 4 Many pitched acoustic instruments are designed to have partials that are close to being whole number ratios with very low inharmonicity therefore in music theory and in instrument design it is convenient although not strictly accurate to speak of the partials in those instruments sounds as harmonics even though they may have some degree of inharmonicity The piano one of the most important instruments of western tradition contains a certain degree of inharmonicity among the frequencies generated by each string Other pitched instruments especially certain percussion instruments such as marimba vibraphone tubular bells timpani and singing bowls contain mostly inharmonic partials yet may give the ear a good sense of pitch because of a few strong partials that resemble harmonics Unpitched or indefinite pitched instruments such as cymbals and tam tams make sounds produce spectra that are rich in inharmonic partials and may give no impression of implying any particular pitch An overtone is any partial above the lowest partial The term overtone does not imply harmonicity or inharmonicity and has no other special meaning other than to exclude the fundamental It is mostly the relative strength of the different overtones that give an instrument its particular timbre tone color or character When writing or speaking of overtones and partials numerically care must be taken to designate each correctly to avoid any confusion of one for the other so the second overtone may not be the third partial because it is the second sound in a series 5 Some electronic instruments such as synthesizers can play a pure frequency with no overtones a sine wave Synthesizers can also combine pure frequencies into more complex tones such as to simulate other instruments Certain flutes and ocarinas are very nearly without overtones Frequencies wavelengths and musical intervals in example systems Edit Even numbered string harmonics from 2nd up to the 64th five octaves One of the simplest cases to visualise is a vibrating string as in the illustration the string has fixed points at each end and each harmonic mode divides it into an integer number 1 2 3 4 etc of equal sized sections resonating at increasingly higher frequencies 6 failed verification Similar arguments apply to vibrating air columns in wind instruments for example the French horn was originally a valveless instrument that could play only the notes of the harmonic series 7 although these are complicated by having the possibility of anti nodes that is the air column is closed at one end and open at the other conical as opposed to cylindrical bores or end openings that run the gamut from no flare cone flare or exponentially shaped flares such as in various bells In most pitched musical instruments the fundamental first harmonic is accompanied by other higher frequency harmonics Thus shorter wavelength higher frequency waves occur with varying prominence and give each instrument its characteristic tone quality The fact that a string is fixed at each end means that the longest allowed wavelength on the string which gives the fundamental frequency is twice the length of the string one round trip with a half cycle fitting between the nodes at the two ends Other allowed wavelengths are reciprocal multiples e g 1 2 1 3 1 4 times that of the fundamental Theoretically these shorter wavelengths correspond to vibrations at frequencies that are integer multiples of e g 2 3 4 times the fundamental frequency Physical characteristics of the vibrating medium and or the resonator it vibrates against often alter these frequencies See inharmonicity and stretched tuning for alterations specific to wire stringed instruments and certain electric pianos However those alterations are small and except for precise highly specialized tuning it is reasonable to think of the frequencies of the harmonic series as integer multiples of the fundamental frequency The harmonic series is an arithmetic progression f 2f 3f 4f 5f In terms of frequency measured in cycles per second or hertz where f is the fundamental frequency the difference between consecutive harmonics is therefore constant and equal to the fundamental But because human ears respond to sound nonlinearly higher harmonics are perceived as closer together than lower ones On the other hand the octave series is a geometric progression 2f 4f 8f 16f and people perceive these distances as the same in the sense of musical interval In terms of what one hears each octave in the harmonic series is divided into increasingly smaller and more numerous intervals The second harmonic whose frequency is twice the fundamental sounds an octave higher the third harmonic three times the frequency of the fundamental sounds a perfect fifth above the second harmonic The fourth harmonic vibrates at four times the frequency of the fundamental and sounds a perfect fourth above the third harmonic two octaves above the fundamental Double the harmonic number means double the frequency which sounds an octave higher An illustration in musical notation of the harmonic series on C up to the 20th harmonic The numbers above the harmonic indicate the difference in cents from equal temperament rounded to the nearest integer Blue notes are very flat and red notes are very sharp Listeners accustomed to more tonal tuning such as meantone and well temperaments notice many other notes are off Harmonics on C from 1st fundamental to 32nd harmonic five octaves higher Notation used is based on the extended just notation by Ben Johnston source source source Harmonic series as musical notation with intervals between harmonics labeled Blue notes differ most significantly from equal temperament One can listen to A2 110 Hz and 15 of its partials Staff notation of partials 1 3 5 7 11 13 17 and 19 on C These are prime harmonics 8 source source source Marin Mersenne wrote The order of the Consonances is natural and the way we count them starting from unity up to the number six and beyond is founded in nature 9 However to quote Carl Dahlhaus the interval distance of the natural tone row overtones counting up to 20 includes everything from the octave to the quarter tone and useful and useless musical tones The natural tone row harmonic series justifies everything that means nothing 10 Harmonics and tuning EditIf the harmonics are octave displaced and compressed into the span of one octave some of them are approximated by the notes of what the West has adopted as the chromatic scale based on the fundamental tone The Western chromatic scale has been modified into twelve equal semitones which is slightly out of tune with many of the harmonics especially the 7th 11th and 13th harmonics In the late 1930s composer Paul Hindemith ranked musical intervals according to their relative dissonance based on these and similar harmonic relationships 11 Below is a comparison between the first 31 harmonics and the intervals of 12 tone equal temperament 12TET octave displaced and compressed into the span of one octave Tinted fields highlight differences greater than 5 cents 1 20 of a semitone which is the human ear s just noticeable difference for notes played one after the other smaller differences are noticeable with notes played simultaneously Harmonic Interval as a ratio Interval in binary 12TET interval Note Variance cents1 2 4 8 16 1 2 1 prime octave C 017 17 16 1 0625 1 0001 minor second C D 59 18 9 8 1 125 1 001 major second D 419 19 16 1 1875 1 0011 minor third D E 25 10 20 5 4 1 25 1 01 major third E 1421 21 16 1 3125 1 0101 fourth F 2911 22 11 8 1 375 1 011 tritone F G 4923 23 16 1 4375 1 0111 283 6 12 24 3 2 1 5 1 1 fifth G 225 25 16 1 5625 1 1001 minor sixth G A 2713 26 13 8 1 625 1 101 4127 27 16 1 6875 1 1011 major sixth A 67 14 28 7 4 1 75 1 11 minor seventh A B 3129 29 16 1 8125 1 1101 3015 30 15 8 1 875 1 111 major seventh B 1231 31 16 1 9375 1 1111 45The frequencies of the harmonic series being integer multiples of the fundamental frequency are naturally related to each other by whole numbered ratios and small whole numbered ratios are likely the basis of the consonance of musical intervals see just intonation This objective structure is augmented by psychoacoustic phenomena For example a perfect fifth say 200 and 300 Hz cycles per second causes a listener to perceive a combination tone of 100 Hz the difference between 300 Hz and 200 Hz that is an octave below the lower actual sounding note This 100 Hz first order combination tone then interacts with both notes of the interval to produce second order combination tones of 200 300 100 and 100 200 100 Hz and all further nth order combination tones are all the same being formed from various subtraction of 100 200 and 300 When one contrasts this with a dissonant interval such as a tritone not tempered with a frequency ratio of 7 5 one gets for example 700 500 200 1st order combination tone and 500 200 300 2nd order The rest of the combination tones are octaves of 100 Hz so the 7 5 interval actually contains four notes 100 Hz and its octaves 300 Hz 500 Hz and 700 Hz Note that the lowest combination tone 100 Hz is a seventeenth two octaves and a major third below the lower actual sounding note of the tritone All the intervals succumb to similar analysis as has been demonstrated by Paul Hindemith in his book The Craft of Musical Composition although he rejected the use of harmonics from the seventh and beyond 11 The Mixolydian mode is consonant with the first 10 harmonics of the harmonic series the 11th harmonic a tritone is not in the Mixolydian mode The Ionian mode is consonant with only the first 6 harmonics of the series the seventh harmonic a minor seventh is not in the Ionian mode Timbre of musical instruments EditThis section needs additional citations for verification Please help improve this article by adding citations to reliable sources Unsourced material may be challenged and removed November 2011 Learn how and when to remove this template message The relative amplitudes strengths of the various harmonics primarily determine the timbre of different instruments and sounds though onset transients formants noises and inharmonicities also play a role For example the clarinet and saxophone have similar mouthpieces and reeds and both produce sound through resonance of air inside a chamber whose mouthpiece end is considered closed Because the clarinet s resonator is cylindrical the even numbered harmonics are less present The saxophone s resonator is conical which allows the even numbered harmonics to sound more strongly and thus produces a more complex tone The inharmonic ringing of the instrument s metal resonator is even more prominent in the sounds of brass instruments Human ears tend to group phase coherent harmonically related frequency components into a single sensation Rather than perceiving the individual partials harmonic and inharmonic of a musical tone humans perceive them together as a tone color or timbre and the overall pitch is heard as the fundamental of the harmonic series being experienced If a sound is heard that is made up of even just a few simultaneous sine tones and if the intervals among those tones form part of a harmonic series the brain tends to group this input into a sensation of the pitch of the fundamental of that series even if the fundamental is not present Variations in the frequency of harmonics can also affect the perceived fundamental pitch These variations most clearly documented in the piano and other stringed instruments but also apparent in brass instruments are caused by a combination of metal stiffness and the interaction of the vibrating air or string with the resonating body of the instrument Interval strength EditDavid Cope 1997 suggests the concept of interval strength 12 in which an interval s strength consonance or stability see consonance and dissonance is determined by its approximation to a lower and stronger or higher and weaker position in the harmonic series See also Lipps Meyer law Thus an equal tempered perfect fifth play help info is stronger than an equal tempered minor third play since they approximate a just perfect fifth play and just minor third play respectively The just minor third appears between harmonics 5 and 6 while the just fifth appears lower between harmonics 2 and 3 See also Edit Wikimedia Commons has media related to Harmonic series music Fourier series Klang music Otonality and Utonality Piano acoustics Scale of harmonics Undertone seriesNotes Edit William Forde Thompson 2008 Music Thought and Feeling Understanding the Psychology of Music p 46 ISBN 978 0 19 537707 1 Hermann von Helmholtz 1885 On the Sensations of Tone as a Physiological Basis for the Theory of Music Translated by Alexander John Ellis 2nd ed Longmans Green p 23 John R Pierce 2001 Consonance and Scales In Perry R Cook ed Music Cognition and Computerized Sound MIT Press ISBN 978 0 262 53190 0 Martha Goodway and Jay Scott Odell 1987 The Historical Harpsichord Volume Two The Metallurgy of 17th and 18th Century Music Wire Pendragon Press ISBN 978 0 918728 54 8 Riemann 1896 p 143 let it be understood the second overtone is not the third tone of the series but the second Roederer Juan G 1995 The Physics and Psychophysics of Music p 106 ISBN 0 387 94366 8 Kostka Stefan Payne Dorothy 1995 Tonal Harmony 3rd ed McGraw Hill p 102 ISBN 0 07 035874 5 Fonville John Summer 1991 Ben Johnston s Extended Just Intonation A guide for interpreters Perspectives of New Music 29 2 106 137 121 doi 10 2307 833435 JSTOR 833435 Cohen H F 2013 Quantifying Music The science of music at the first stage of scientific revolution 1580 1650 Springer p 103 ISBN 9789401576864 Sabbagh Peter 2003 The Development of Harmony in Scriabin s Works p 12 Universal ISBN 9781581125955 Cites Dahlhaus Carl 1972 Struktur und Expression bei Alexander Skrjabin Musik des Ostens Vol 6 p 229 a b Hindemith Paul 1942 The Craft of Musical Composition Book 1 Theoretical Part pp 15ff Translated by Arthur Mendel London Schott amp Co New York Associated Music Publishers ISBN 0901938300 Archived 2014 07 01 at the Wayback Machine Cope David 1997 Techniques of the Contemporary Composer p 40 41 New York New York Schirmer Books ISBN 0 02 864737 8 Sources Riemann Hugo 1896 Dictionary of Music Translated by John South Shedlock London Augener amp Co Further reading EditCoul Manuel Op de List of intervals Compiled Huygens Fokker Foundation centre for microtonal music Retrieved 2016 06 15 Datta A K Sengupta R Dey N Nag D 2006 Experimental Analysis of Shrutis from Performances in Hindustani Music Kolkata India SRD ITC SRA pp I X 1 103 ISBN 81 903818 0 6 Archived from the original on 2012 01 18 Helmholtz H 1865 Die Lehre von dem Tonempfindungen Zweite ausgabe in German Braunschweig Vieweg und Sohn pp I XII 1 606 Retrieved 2016 10 12 see Sensations of Tone IEV 1994 Electropedia The World s Online Electrotechnical Vocabulary International Electrotechnical Commission Retrieved 2016 06 15 Lamb Horace 1911 Harmonic Analysis In Chisholm Hugh ed Encyclopaedia Britannica Vol 12 11th ed Cambridge University Press pp 956 958 Partch Harry 1974 Genesis of a Music An Account of a Creative Work Its Roots and Its Fulfillments PDF 2nd enlarged ed New York Da Capo Press ISBN 0 306 80106 X Retrieved 2016 06 15 Schouten J F February 24 1940 The residue a new component in subjective sound analysis PDF Eindhoven Holland Natuurkundig Laboratorium der N V Philips Gloeilampenfabrieken communicated by Prof G Holst at the meeting pp 356 65 Retrieved 2016 09 26 Volkonskij Andrej Mihajlovich 1998 Osnovy temperacii in Russian Kompozitor Moskva ISBN 5 85285 184 1 Retrieved 2016 06 15 Tyulin Yurij Nikolaevich 1966 Bespalova N ed Uchenie o garmonii The teaching on harmony in Russian Izdanie Trete Ispravlennoe i Dopolnennoe Third Edition Revised and Enlarged ed Moscow Muzyka Retrieved from https en wikipedia org w index php title Harmonic series music amp oldid 1124536005, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.