fbpx
Wikipedia

Methane chimney

A methane chimney or gas chimney is a rising column of natural gas, mainly methane, within a water or sediment column. The contrast in physical properties between the gas phase and the surrounding water makes such chimneys visible in oceanographic and geophysical data. In some cases, gas bubbles released at the seafloor may dissolve before they reach the ocean surface, but the increased hydrocarbon concentration may still be measured by chemical oceanographic techniques.

Illustration showing methane chimney from sea floor to surface.

Identification edit

In some locations along Russia’s northern coast, methane rising from the sea floor to the surface has caused the sea to foam.[1] However, most methane chimneys do not produce such visible signs at the sea surface. Instead, plumes are identified by a combination of chemical and physical oceanographic and geologic data.[2] Plumes of methane bubbles, whether in the water column or subseafloor sediments, have lower density and sound speed than the surrounding water. As such, these plumes can be imaged by a variety of acoustic techniques, including seismic reflection data and conventional fishfinders. Dissolved methane is usually identified through widespread chemical analysis of water samples, including chromatography of gasses extracted from the headspace of seawater samples taken at depth (headspace is the space above a sample in a sealed container, which forms as higher temperature and lower pressure allows gasses to come out of solution). Continuous measurements of methane concentration in seawater can be made by underway ships using cavity ring-down spectroscopy.

Association with climate change edit

Large deposits of frozen methane, when thawing, release gas into the environment.[3] In cases of sub-sea permafrost, the methane gas may be dissolved in the seawater before reaching the surface; however, in a number of sites around the world, these methane chimneys release the gas directly into the atmosphere, contributing to global warming.[4] Research teams in the Arctic measured concentrations of methane to be the highest ever recorded in the summertime.[5] The thawing underwater permafrost is affecting methane release in two ways: thawing organic matter trapped in the permafrost releases methane and carbon dioxide as it decomposes, and methane in gas or solid form beneath the thawing permafrost seeps up through the now-soft soil and escapes into the atmosphere.[6] In part of the International Siberian Shelf Study, which looked at arctic methane emissions, scientists discovered that methane concentrations released from subsea chimneys and seeps were often 100 times higher than background levels, and methane gas has 20 times the heat-trapping capabilities as carbon dioxide.[7]

Marine life edit

Methane chimneys play a major role in marine life, creating chemical deposits that are habitat to a plethora of life.[8] These highly-productive ecosystems occur in a wide range of marine geological settings across the world.[9] Chimneys teem with organisms that feed on the methane and sulfide that are released from the chimneys.[10] Life surrounding the marine methane chimneys consumes 90% of methane released, preventing it from entering the atmosphere.[11] Microbes around methane chimneys form the basis for the entire food web; these microbes are chemolithotrophs, and thus do not require sunlight or oxygen to survive.[12] Marine methane chimneys produce minerals that fertilize the ocean, creating optimal spawning habitats for deep-sea sharks and other fish.[13][14] They are also host to deep-sea crabs, shrimp, mussels, clams, and more shellfish. The expanse of life and ecosystems that these vents provide is still largely unexplored.[15]

Petroleum provinces edit

In hydrocarbon exploration, gas chimneys revealed on seismic reflection data are indicators of active gas migration[16] and a working petroleum system.

Trees as methane chimneys edit

Trees in swampy, low-lying areas can conduct methane produced in soils up through their stems and out their leaves. Other plants in bogs and marshes also act in this way. In the Amazon Rainforest, recent studies have named trees a "massive chimney for pumping out methane".[17] Findings estimated that the Amazon Rainforest emits around 40 million tons of methane per year, as much as the entire arctic permafrost systems.[18] When large portions of the Amazon Basin flood, they create ideal conditions for high-level methane production.[19] The methane flux is a result of abiotic factors such as soil moisture and climate. As seen in the figure 2 of the Quercus cerris tree in Hungary, a cool climate plant that demands moderate soil moisture can be observed to contain flammable concentrations of methane emitted from the stem contraption.[20][21]

Trees are not the only plants that act as methane chimneys; however, studies have shown that species with greater root volume and biomass tend to exhibit a stronger chimney effect, and methane emissions in plant species are increased by raising the water table.[22]

Known sites edit

See also edit

References edit

  1. ^ . E360.yale.edu. 2008-09-23. Archived from the original on 2010-06-14. Retrieved 2010-07-30.
  2. ^ "Climate-Hydrate Interactions". usgs.gov. United States Geological Survey. Retrieved August 31, 2016.
  3. ^ Connor, S. (23 September 2008). "Exclusive: The methane time bomb". The Independent. London. Retrieved 3 April 2010.
  4. ^ "Oh Floe! Melting Ice Releases Millions of Tons of Methane Gas". Tressugar.com. 2008-09-24. Retrieved 2010-07-30.
  5. ^ "Scientists Find Increased Methane Levels In Arctic Ocean". ScienceDaily. Retrieved 2021-03-21.
  6. ^ "Scientists Find Increased Methane Levels In Arctic Ocean". ScienceDaily. Retrieved 2021-03-21.
  7. ^ "A Ticking Time Bomb in the Arctic?". National Wildlife Federation. Retrieved 2021-03-21.
  8. ^ "Hydrothermal vents, methane seeps play enormous role in marine life, global climate". phys.org. Retrieved 2021-03-17.
  9. ^ Levin, Lisa A.; Baco, Amy R.; Bowden, David A.; Colaco, Ana; Cordes, Erik E.; Cunha, Marina R.; Demopoulos, Amanda W. J.; Gobin, Judith; Grupe, Benjamin M.; Le, Jennifer; Metaxas, Anna (2016). "Hydrothermal Vents and Methane Seeps: Rethinking the Sphere of Influence". Frontiers in Marine Science. 3. doi:10.3389/fmars.2016.00072. ISSN 2296-7745.
  10. ^ "Hydrothermal vents, methane seeps play enormous role in marine life, global climate". phys.org. Retrieved 2021-03-17.
  11. ^ "Hydrothermal vents, methane seeps play enormous role in marine life, global climate". phys.org. Retrieved 2021-03-17.
  12. ^ Guy, Allison. "Fueled by Methane Gas, Bizarre Animals Flourish at Deep Sea "Jacuzzis"". Oceana. Retrieved 2021-03-21.
  13. ^ "Hydrothermal vents, methane seeps play enormous role in marine life, global climate". phys.org. Retrieved 2021-03-17.
  14. ^ Guy, Allison. "Fueled by Methane Gas, Bizarre Animals Flourish at Deep Sea "Jacuzzis"". Oceana. Retrieved 2021-03-21.
  15. ^ "Hydrothermal vents, methane seeps play enormous role in marine life, global climate". phys.org. Retrieved 2021-03-17.
  16. ^ Schroot, B.M.; Schüttenhelm R.T.E. (2003). "Expressions of shallow gas in the Netherlands North Sea". Netherlands Journal of Geosciences. 82 (1): 91–105. Bibcode:2003NJGeo..82...91S. doi:10.1017/S0016774600022812.
  17. ^ "Scientists Zero in on Trees as a Surprisingly Large Source of Methane". Yale E360. Retrieved 2021-03-22.
  18. ^ "Scientists Zero in on Trees as a Surprisingly Large Source of Methane". Yale E360. Retrieved 2021-03-22.
  19. ^ "Amazon floodplain trees emit as much methane as all Earth's oceans combined". ScienceDaily. Retrieved 2021-03-22.
  20. ^ Covey, Kristofer R.; Megonigal, J. Patrick (April 2019). "Methane production and emissions in trees and forests". New Phytologist. 222 (1): 35–51. doi:10.1111/nph.15624. ISSN 0028-646X. PMID 30521089. S2CID 54552281.
  21. ^ "Quercus cerris - EUFORGEN European forest genetic resources programme". www.euforgen.org. Retrieved 2023-10-22.
  22. ^ Bhullar, Gurbir S; Iravani, Majid; Edwards, Peter J; Olde Venterink, Harry (2013-09-08). "Methane transport and emissions from soil as affected by water table and vascular plants". BMC Ecology. 13 (1): 32. Bibcode:2013BMCE...13...32B. doi:10.1186/1472-6785-13-32. ISSN 1472-6785. PMC 3847209. PMID 24010540.
  23. ^ "Quantifying the Methane Content of Natural Gas and Gas Hydrate Accumulations in the Deep-Water Basins of the Bering Sea, by Ginger A. Barth, David W. Scholl, and Jonathan R. Childs; #90035 (2004)". Searchanddiscovery.net. Retrieved 2010-07-30.
  24. ^ James Randerson, science correspondent (2008-09-23). "Methane release off Siberian coast prompts concern over runaway climate change | Environment | guardian.co.uk". London: Guardian. Retrieved 2010-07-30.
  25. ^ Magalhães et al., (2012) Formation processes of methane-derived authigenic carbonates from theGulf of Cadiz. Sedimentary Geology, 243-244, pp.155-168.
  26. ^ Snyder, Glen T.; Sano, Yuji; Takahata, Naoto; Matsumoto, Ryo; Kakizaki, Yoshihiro; Tomaru, Hitoshi (2020-03-05). "Magmatic fluids play a role in the development of active gas chimneys and massive gas hydrates in the Japan Sea". Chemical Geology. 535: 119462. Bibcode:2020ChGeo.53519462S. doi:10.1016/j.chemgeo.2020.119462. ISSN 0009-2541.
  27. ^ Aoyama, C.; Matsumoto, R.; Okuda, Y.; Ishida, Y.; Hiruta, A.; Sunamura, M.; Numamani, H.; Tomaru, H.; Snyder, G.; Komatsubara, J.; Takeuchi, R. (November 2004). "Acoustical survey of methane plumes using the quantitative echo sounder in the eastern margin of the sea of Japan". Oceans '04 MTS/IEEE Techno-Ocean '04 (IEEE Cat. No.04CH37600). AGU Meeting Abstracts. Vol. 2. pp. 1004–1009. Bibcode:2004AGUFMPP11B0576A. doi:10.1109/OCEANS.2004.1405646. ISBN 0-7803-8669-8. S2CID 9512671.
  28. ^ Matsumoto, R.; Tomaru, H.; Takeuchi, L.; Hiruta, A.; Ishizaki, O.; Aoyama, C.; Machiyama, H.; Goto, T. (December 2007). "Types and Evolution of Gas Hydrate System along the Tectonically Active Zones of the Western Pacific: Nankai Trough vs. Eastern Margin of Japan Sea". AGUFM. 2007: OS12A–01. Bibcode:2007AGUFMOS12A..01M.

External links edit

  • IFM-GEOMAR, Kiel, DE
  • - discusses U.S. government funding of methane hydrates research
  • Are there deposits of methane under the sea? Will global warming release the methane to the atmosphere?
  • Methane seeps from Arctic sea bed
  • , Forbes magazine, 2 September 2008
  • The Methane Time Bomb, The Independent, 23 September 2008
  • Methane Hydrates: Natural Hazard or Natural Resource?

methane, chimney, methane, chimney, chimney, rising, column, natural, mainly, methane, within, water, sediment, column, contrast, physical, properties, between, phase, surrounding, water, makes, such, chimneys, visible, oceanographic, geophysical, data, some, . A methane chimney or gas chimney is a rising column of natural gas mainly methane within a water or sediment column The contrast in physical properties between the gas phase and the surrounding water makes such chimneys visible in oceanographic and geophysical data In some cases gas bubbles released at the seafloor may dissolve before they reach the ocean surface but the increased hydrocarbon concentration may still be measured by chemical oceanographic techniques Illustration showing methane chimney from sea floor to surface Contents 1 Identification 2 Association with climate change 3 Marine life 4 Petroleum provinces 5 Trees as methane chimneys 6 Known sites 7 See also 8 References 9 External linksIdentification editIn some locations along Russia s northern coast methane rising from the sea floor to the surface has caused the sea to foam 1 However most methane chimneys do not produce such visible signs at the sea surface Instead plumes are identified by a combination of chemical and physical oceanographic and geologic data 2 Plumes of methane bubbles whether in the water column or subseafloor sediments have lower density and sound speed than the surrounding water As such these plumes can be imaged by a variety of acoustic techniques including seismic reflection data and conventional fishfinders Dissolved methane is usually identified through widespread chemical analysis of water samples including chromatography of gasses extracted from the headspace of seawater samples taken at depth headspace is the space above a sample in a sealed container which forms as higher temperature and lower pressure allows gasses to come out of solution Continuous measurements of methane concentration in seawater can be made by underway ships using cavity ring down spectroscopy Association with climate change editLarge deposits of frozen methane when thawing release gas into the environment 3 In cases of sub sea permafrost the methane gas may be dissolved in the seawater before reaching the surface however in a number of sites around the world these methane chimneys release the gas directly into the atmosphere contributing to global warming 4 Research teams in the Arctic measured concentrations of methane to be the highest ever recorded in the summertime 5 The thawing underwater permafrost is affecting methane release in two ways thawing organic matter trapped in the permafrost releases methane and carbon dioxide as it decomposes and methane in gas or solid form beneath the thawing permafrost seeps up through the now soft soil and escapes into the atmosphere 6 In part of the International Siberian Shelf Study which looked at arctic methane emissions scientists discovered that methane concentrations released from subsea chimneys and seeps were often 100 times higher than background levels and methane gas has 20 times the heat trapping capabilities as carbon dioxide 7 Marine life editMethane chimneys play a major role in marine life creating chemical deposits that are habitat to a plethora of life 8 These highly productive ecosystems occur in a wide range of marine geological settings across the world 9 Chimneys teem with organisms that feed on the methane and sulfide that are released from the chimneys 10 Life surrounding the marine methane chimneys consumes 90 of methane released preventing it from entering the atmosphere 11 Microbes around methane chimneys form the basis for the entire food web these microbes are chemolithotrophs and thus do not require sunlight or oxygen to survive 12 Marine methane chimneys produce minerals that fertilize the ocean creating optimal spawning habitats for deep sea sharks and other fish 13 14 They are also host to deep sea crabs shrimp mussels clams and more shellfish The expanse of life and ecosystems that these vents provide is still largely unexplored 15 Petroleum provinces editIn hydrocarbon exploration gas chimneys revealed on seismic reflection data are indicators of active gas migration 16 and a working petroleum system Trees as methane chimneys editTrees in swampy low lying areas can conduct methane produced in soils up through their stems and out their leaves Other plants in bogs and marshes also act in this way In the Amazon Rainforest recent studies have named trees a massive chimney for pumping out methane 17 Findings estimated that the Amazon Rainforest emits around 40 million tons of methane per year as much as the entire arctic permafrost systems 18 When large portions of the Amazon Basin flood they create ideal conditions for high level methane production 19 The methane flux is a result of abiotic factors such as soil moisture and climate As seen in the figure 2 of the Quercus cerris tree in Hungary a cool climate plant that demands moderate soil moisture can be observed to contain flammable concentrations of methane emitted from the stem contraption 20 21 Trees are not the only plants that act as methane chimneys however studies have shown that species with greater root volume and biomass tend to exhibit a stronger chimney effect and methane emissions in plant species are increased by raising the water table 22 Known sites editNorth coast of Russia Golfo Dulce Costa Rica Bering Sea 23 Northern coast of Siberia 24 Gulf of Cadiz 25 Joetsu Basin Japan 26 27 28 See also editClathrate gun hypothesis Arctic methane release Methane clathrate Clathrate hydrate Runaway climate change Global warming Hydrothermal ventReferences edit Yale Environment 360 Numerous Methane Chimneys Discovered by Vessel in Russian Arctic E360 yale edu 2008 09 23 Archived from the original on 2010 06 14 Retrieved 2010 07 30 Climate Hydrate Interactions usgs gov United States Geological Survey Retrieved August 31 2016 Connor S 23 September 2008 Exclusive The methane time bomb The Independent London Retrieved 3 April 2010 Oh Floe Melting Ice Releases Millions of Tons of Methane Gas Tressugar com 2008 09 24 Retrieved 2010 07 30 Scientists Find Increased Methane Levels In Arctic Ocean ScienceDaily Retrieved 2021 03 21 Scientists Find Increased Methane Levels In Arctic Ocean ScienceDaily Retrieved 2021 03 21 A Ticking Time Bomb in the Arctic National Wildlife Federation Retrieved 2021 03 21 Hydrothermal vents methane seeps play enormous role in marine life global climate phys org Retrieved 2021 03 17 Levin Lisa A Baco Amy R Bowden David A Colaco Ana Cordes Erik E Cunha Marina R Demopoulos Amanda W J Gobin Judith Grupe Benjamin M Le Jennifer Metaxas Anna 2016 Hydrothermal Vents and Methane Seeps Rethinking the Sphere of Influence Frontiers in Marine Science 3 doi 10 3389 fmars 2016 00072 ISSN 2296 7745 Hydrothermal vents methane seeps play enormous role in marine life global climate phys org Retrieved 2021 03 17 Hydrothermal vents methane seeps play enormous role in marine life global climate phys org Retrieved 2021 03 17 Guy Allison Fueled by Methane Gas Bizarre Animals Flourish at Deep Sea Jacuzzis Oceana Retrieved 2021 03 21 Hydrothermal vents methane seeps play enormous role in marine life global climate phys org Retrieved 2021 03 17 Guy Allison Fueled by Methane Gas Bizarre Animals Flourish at Deep Sea Jacuzzis Oceana Retrieved 2021 03 21 Hydrothermal vents methane seeps play enormous role in marine life global climate phys org Retrieved 2021 03 17 Schroot B M Schuttenhelm R T E 2003 Expressions of shallow gas in the Netherlands North Sea Netherlands Journal of Geosciences 82 1 91 105 Bibcode 2003NJGeo 82 91S doi 10 1017 S0016774600022812 Scientists Zero in on Trees as a Surprisingly Large Source of Methane Yale E360 Retrieved 2021 03 22 Scientists Zero in on Trees as a Surprisingly Large Source of Methane Yale E360 Retrieved 2021 03 22 Amazon floodplain trees emit as much methane as all Earth s oceans combined ScienceDaily Retrieved 2021 03 22 Covey Kristofer R Megonigal J Patrick April 2019 Methane production and emissions in trees and forests New Phytologist 222 1 35 51 doi 10 1111 nph 15624 ISSN 0028 646X PMID 30521089 S2CID 54552281 Quercus cerris EUFORGEN European forest genetic resources programme www euforgen org Retrieved 2023 10 22 Bhullar Gurbir S Iravani Majid Edwards Peter J Olde Venterink Harry 2013 09 08 Methane transport and emissions from soil as affected by water table and vascular plants BMC Ecology 13 1 32 Bibcode 2013BMCE 13 32B doi 10 1186 1472 6785 13 32 ISSN 1472 6785 PMC 3847209 PMID 24010540 Quantifying the Methane Content of Natural Gas and Gas Hydrate Accumulations in the Deep Water Basins of the Bering Sea by Ginger A Barth David W Scholl and Jonathan R Childs 90035 2004 Searchanddiscovery net Retrieved 2010 07 30 James Randerson science correspondent 2008 09 23 Methane release off Siberian coast prompts concern over runaway climate change Environment guardian co uk London Guardian Retrieved 2010 07 30 Magalhaes et al 2012 Formation processes of methane derived authigenic carbonates from theGulf of Cadiz Sedimentary Geology 243 244 pp 155 168 Snyder Glen T Sano Yuji Takahata Naoto Matsumoto Ryo Kakizaki Yoshihiro Tomaru Hitoshi 2020 03 05 Magmatic fluids play a role in the development of active gas chimneys and massive gas hydrates in the Japan Sea Chemical Geology 535 119462 Bibcode 2020ChGeo 53519462S doi 10 1016 j chemgeo 2020 119462 ISSN 0009 2541 Aoyama C Matsumoto R Okuda Y Ishida Y Hiruta A Sunamura M Numamani H Tomaru H Snyder G Komatsubara J Takeuchi R November 2004 Acoustical survey of methane plumes using the quantitative echo sounder in the eastern margin of the sea of Japan Oceans 04 MTS IEEE Techno Ocean 04 IEEE Cat No 04CH37600 AGU Meeting Abstracts Vol 2 pp 1004 1009 Bibcode 2004AGUFMPP11B0576A doi 10 1109 OCEANS 2004 1405646 ISBN 0 7803 8669 8 S2CID 9512671 Matsumoto R Tomaru H Takeuchi L Hiruta A Ishizaki O Aoyama C Machiyama H Goto T December 2007 Types and Evolution of Gas Hydrate System along the Tectonically Active Zones of the Western Pacific Nankai Trough vs Eastern Margin of Japan Sea AGUFM 2007 OS12A 01 Bibcode 2007AGUFMOS12A 01M External links editIFM GEOMAR Kiel DE Burning ice picture Methane Hydrates discusses U S government funding of methane hydrates research Are there deposits of methane under the sea Will global warming release the methane to the atmosphere Methane seeps from Arctic sea bed Energy s Most Dangerous Game Forbes magazine 2 September 2008 The Methane Time Bomb The Independent 23 September 2008 Methane Hydrates Natural Hazard or Natural Resource Retrieved from https en wikipedia org w index php title Methane chimney amp oldid 1219311941, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.