fbpx
Wikipedia

Marshmallow

Marshmallow (UK: /mɑːrʃˈmæl/, US: /ˈmɑːrʃmɛl, -mæl-/)[1] is a confectionery made from sugar, water and gelatin whipped to a solid-but-soft consistency. It is used as a filling in baking or molded into shapes and coated with corn starch. This sugar confection is inspired by a medicinal confection made from Althaea officinalis, the marsh-mallow plant.[2]

Marshmallow
Marshmallows
TypeConfectionery
Main ingredientsSugar, gelatin, water, and air
VariationsFood coloring, sprinkles
  • Cookbook: Marshmallow
  •   Media: Marshmallow

History

 
The marsh-mallow plant (Althaea officinalis)

The word "marshmallow" comes from the mallow plant species (Althaea officinalis), a herb native to parts of Europe, North Africa, and Asia which grows in marshes and other damp areas. The plant's stem and leaves are fleshy, and its white flower has five petals. It is not known exactly when marshmallows were invented, but their history goes back as early as 2000 BCE. Ancient Egyptians were said to be the first to make and use the root of the plant to soothe coughs and sore throats and to heal wounds. The first marshmallows were prepared by boiling pieces of root pulp with honey until thick. Once thickened, the mixture was strained, cooled, then used as intended.[3][4]

Whether used for candy or medicine, the manufacture of marshmallows was limited to a small scale. In the early to mid 19th century, the marshmallow had made its way to France, where confectioners augmented the plant's traditional medicinal value with indulgent ingredients utilized by the Egyptians. Owners of small candy stores would whip the sap from the mallow root into a fluffy candy mold. This candy, called Pâte de Guimauve, was a spongy-soft dessert made from whipping dried marshmallow roots with sugar, water, and egg whites.[5][6] It was sold in bar form as a lozenge. Drying and preparation of the marshmallow took one to two days before the final product was produced.[7] In the late 19th century, candy makers started looking for a new process and discovered the starch mogul system, in which trays of modified corn starch had a mold firmly pushed down in them to create cavities within the starch. The cavities were then filled with the whipped marshmallow sap mixture and allowed to cool or harden.[8] At the same time, candy makers began to replace the mallow root with gelatin which created a stable form of marshmallow.[4]

By the early 20th century, thanks to the starch mogul system, marshmallows were introduced to the United States and available for mass consumption. They were sold in tins as penny candy and were soon used in a variety of food recipes like banana fluff, lime mallow sponge, and tutti frutti. In 1956, Alex Doumak patented[9] the extrusion process which involved running marshmallow ingredients through tubes. The tubes created a long rope of marshmallow mixture and were then set out to cool. The ingredients were then cut into equal pieces and packaged.[4]

Modern marshmallow manufacturing is highly automated and has been since the early 1950s when the extrusion process was first developed. Numerous improvements and advancements allow for the production of thousands of pounds of marshmallow a day.[10] Today, the marshmallow typically consists of four ingredients: sugar, water, air, and a whipping agent.

Ingredients

Marshmallows consist of four ingredients: sugar, water, air, and a whipping agent/aerator (usually a protein). The type of sugar and whipping agent varies depending on desired characteristics. Each ingredient plays a specific role in the final product.

The marshmallow is a foam, consisting of an aqueous continuous phase and a gaseous dispersed phase (in other words, a liquid with gas bubbles spread throughout). In addition to being a foam, this also makes marshmallows an "aerated" confection because it is made up of 50% air. The goal of an aerated confection like a marshmallow is to incorporate gas into a sugar mixture, and stabilize the aerated product before the gas can escape. When the gas is introduced into the system, tiny air bubbles are created. This is what contributes to the unique textural properties and mouth-feel of this product.[11]

Protein

In marshmallows, proteins are the main surface-active agents responsible for the formation, and stabilization of the dispersed air. Due to their structure, surface-active molecules gather at the surface area of a portion of (water-based) liquid. A portion of each protein molecule is hydrophilic, with a polar charge, and another portion is hydrophobic and non-polar. The non-polar section has little or no affinity for water, and so this section orients as far away from the water as possible. However, the polar section is attracted to the water and has little or no affinity for the air. Therefore, the molecule orients with the polar section in the water, with the non-polar section in the air. Two primary proteins that are commonly used as aerators in marshmallows are albumen (egg whites) and gelatin.[12]

Albumen (egg whites)

Albumen is a mixture of proteins found in egg whites and is utilized for its capacity to create foams. In a commercialized setting, dried albumen is used as opposed to fresh egg whites. In addition to convenience, the advantages of using dried albumen are an increase in food safety and the reduction of water content in the marshmallow. Fresh egg whites carry a higher risk of Salmonella, and are approximately 90 percent water. This is undesirable for the shelf life and firmness of the product. For artisan-type marshmallows, prepared by a candy maker, fresh egg whites are usually used. Albumen is rarely used on its own when incorporated into modern marshmallows, and instead is used in conjunction with gelatin.[13]

Gelatin

Gelatin is the aerator most often used in the production of marshmallows. It is made up of collagen, a structural protein derived from animal skin, connective tissue, and bones. Not only can it stabilize foams, like albumen, but when combined with water it forms a thermally-reversible gel. This means that gelatin can melt, then reset due to its sensitivity to temperature. The melting point of gelatin gel is around 95 °F (35 °C), which is just below normal body temperature (around 97 °F (36 °C)). This is what contributes to the "melt-in-your-mouth" sensation when a marshmallow is consumed—it actually starts to melt when it touches the tongue.[12]

During preparation, the temperature needs to be just above the melting point of the gelatin, so that as soon as it is formed it cools quickly, and the gelatin will set, retaining the desired shape. If the marshmallow rope mixture exiting the extruder during processing is too warm, the marshmallow starts to flow before the gelatin sets. Instead of a round marshmallow, it will take a more oval form. Excessive heat can also degrade, or break down, the gelatin itself. Therefore, when marshmallows are being produced at home or by artisan candy makers, the gelatin is added after the syrup has been heated and cooled down.

In commercial operations, the gelatin is simply cooked with the sugar syrup, rather than being added later after the syrup has cooled. In this case, kinetics play an important role, with both time and temperature factoring in. If the gelatin was added at the beginning of a batch that was then cooked to 112–116 °C in 20–30 minutes, a significant amount of gelatin would break down. The marshmallow would have reduced springiness from that loss of gelatin. But since the time the syrup spends at elevated temperature in modern cookers is so short, there is little to no degradation of the gelatin.[10]

In terms of texture, and mouth-feel, gelatin makes marshmallows chewy by forming a tangled 3-D network of polymer chains. Once gelatin is dissolved in warm water (dubbed the "blooming stage"), it forms a dispersion, which results in[how?] a cross-linking of its helix-shaped chains. The linkages in the gelatin protein network trap air in the marshmallow mixture and immobilize the water molecules in the network. The result is the well-known spongy structure of marshmallows. This is why the omission of gelatin from a marshmallow recipe will result in marshmallow creme, since there is no gelatin network to trap the water and air bubbles.[12]

Sugars

A traditional marshmallow might contain about 60% corn syrup, 30% sugar, and 1–2% gelatin. A combination of different sugars is used to control the solubility of the solution.[14] The corn syrup/sugar ratio will influence the texture by slowing crystallization of the sucrose. The smooth texture of marshmallows relies on disordered, or amorphous, sugar molecules. In contrast, increasing the sugar ratio to about 60–65% will produce a grainy marshmallow.[15] Temperature also plays an important role in producing smooth marshmallows by reducing the time window for ordered crystals to form. To ensure the sugars are disordered, the sugar syrup solution is heated to a high temperature and then cooled rapidly.[16]

Sugarcane and sugar beet

Sugarcane and sugar beet are the two primary sources of sugar, consisting of sucrose molecules. Sucrose is a disaccharide that consists of one glucose and fructose molecule. This sugar provides sweetness and bulk to the marshmallow, while simultaneously setting the foam to a firm consistency as it cools.[15] Sucrose, and sugars in general, impair the ability of a foam to form, but improve foam stability. Therefore, sucrose is used in conjunction with a protein like gelatin. The protein can adsorb, unfold, and form a stable network, while the sugar can increase the viscosity.[17] Liquid drainage of the continuous phase must be minimized as well. Thick liquids drain more slowly than thin ones, and so increasing the viscosity of the continuous phase will reduce drainage. A high viscosity is essential if a stable foam is to be produced. Therefore, sucrose is a main component of marshmallow. But sucrose is seldom used on its own, because of its tendency to crystallize.

Corn syrup

Corn syrup, derived from maize, contains glucose, maltose, and other oligosaccharides. Corn syrup can be obtained from the partial hydrolysis of cornstarch.[18] Corn syrup is important in the production of marshmallow because it prevents the crystallization of other sugars (like sucrose). It may also contribute body, reduce sweetness, and alter flavor release, depending on the Dextrose Equivalent (DE) of the glucose syrup used.

The DE is the measure of the amount of reducing sugars present in a sugar product in relation to glucose. Lower-DE glucose syrups will provide a chewier texture, while higher-DE syrups will make the product more tender.[15] In addition, depending on the type of DE used, can alter the sweetness, hygroscopicity, and browning of the marshmallow. Corn syrup is flavorless and cheap to produce which is why candy companies love using this product.

Invert sugar

Invert sugar is produced when sucrose breaks down due to the addition of water, also known as hydrolysis. This molecule exhibits all the characteristics of honey except the flavor because it is the primary sugar found in honey. This means that invert sugar has the ability to prevent crystallization, and produce a tender marshmallow. It is also an effective humectant, which allows it to trap water, and prevent the marshmallow from drying out. For some candies, this is not a good trait to have, but for marshmallows, it is an advantage since it has a high moisture content.[10]

Fruit syrups

While not widely used for traditional or commercial recipes, fruit syrups have been proposed as an alternative sugar for marshmallows.[19]

Additional ingredients

Flavors

Unless a variation of the standard marshmallow is being made, vanilla is always used as the flavoring. The vanilla can either be added in extract form, or by infusing the vanilla beans in the sugar syrup during cooking. This[clarification needed] is the best technique to get an even distribution of flavor throughout the marshmallow.[13]

Acids

Acids, such as cream of tartar or lemon juice, may also be used to increase foam stability. Addition of acid decreases the pH. This reduces the charge on the protein molecules, and brings them closer to their isoelectric point. This results in a stronger, more stable inter-facial film. When added to egg whites, acid prevents excessive aggregation at the interface. However, acid delays foam formation. It may therefore be added toward the end of the whipping process after a stable foam has been created.[11]

Manufacturing process

Video of making marshmallows
 
Just Born Peeps in an Easter basket

Commercial process

In commercial marshmallow manufacture, the entire process is streamlined and fully automated.

Gelatin is cooked with sugar and syrup. After the gelatin-containing syrup is cooked, it is allowed to cool slightly before air is incorporated. Whipping is generally accomplished in a rotor-stator type device. Compressed air is injected into the warm syrup, held at a temperature just above the melting point of gelatin. In a marshmallow aerator, pins on a rotating cylinder (rotor) intermesh with stationary pins on the wall (stator) provide the shear forces necessary to break the large injected air bubbles into numerous tiny bubbles that provide the smooth, fine-grained texture of the marshmallow. A continuous stream of light, fluffy marshmallow exits the aerator en route to the forming step.

The marshmallow confection is typically formed in one of three ways. First, it can be extruded in the desired shape and cut into pieces, as done for Jet-Puffed marshmallows. Second, it can be deposited onto a belt, as done for Peeps.[20] Third, it can be deposited into a starch-based mold in a mogul to make various shapes.[10]

Home making process

 
A freshly-cut batch of homemade marshmallows

The home process for making marshmallow differs from commercial processes. A mixture of corn syrup and sugar is boiled to about 252 °F (122 °C). In a separate step, gelatin is hydrated with enough warm water to make a thick solution. Once the sugar syrup has cooled to about 100 °F (38 °C), the gelatin solution is blended in along with desired flavoring, and whipped in a mixer to reach the final density. The marshmallow is then scooped out of the bowl, slabbed on a table, and cut into pieces.[13]

Roasted marshmallows and s'mores

A popular camping or backyard tradition in the United Kingdom,[21] North America, New Zealand and Australia is the roasting or toasting of marshmallows over a campfire or other open flame.[22] A marshmallow is placed on the end of a stick or skewer and held carefully over the fire. This creates a caramelized outer skin with a liquid, molten layer underneath. Major flavor compounds and color polymers associated with sugar browning are created during the caramelization process.[23]

S'mores are a traditional campfire treat in the United States, made by placing a toasted marshmallow on a slab of chocolate, which is placed between two graham crackers. These can then be squeezed together, causing the chocolate to begin melting.[24]

Nutrition

Marshmallows are defined in US law as a food of minimal nutritional value.[25]

Dietary preferences

 
Toasted vegan marshmallows served with chocolate mousse

The traditional marshmallow recipe uses powdered marshmallow root, but most commercially manufactured marshmallows instead use gelatin in their manufacture. Vegans and vegetarians avoid gelatin, but there are versions which use a substitute non-animal gelling agent such as agar.[26] In addition, marshmallows are generally not considered to be kosher or halal unless either their gelatin is derived from kosher or halal animals or they are vegan.[27]

Marshmallow creme and other less firm marshmallow products generally contain little or no gelatin, which mainly serves to allow the familiar marshmallow confection to retain its shape. They generally use egg whites instead. Non-gelatin, egg-containing versions of this product may be consumed by ovo vegetarians. Several brands of vegetarian and vegan marshmallows and marshmallow fluff exist.[28]

See also

References

  1. ^ Wells, John (3 April 2008). Longman Pronunciation Dictionary (3rd ed.). Pearson Longman. ISBN 978-1-4058-8118-0.
  2. ^ Petkewich, Rachel (2006). "What's that stuff? Marshmallow". Chemical & Engineering News. 84 (16): 41. doi:10.1021/cen-v084n016.p041. Retrieved 2008-02-10.
  3. ^ "How Marshmallows are Made". www.madehow.com. from the original on 2016-10-31.
  4. ^ a b c "Marshmallows". www.candyusa.com. National Confectioners Association. from the original on 2016-12-13.
  5. ^ Beasley, Henry (1851). The Pocket Formulary: And Synopsis of the British & Foreign Pharmacopoeias : Comprising Standard and Approved Formulae for the Preparations and Compounds Employed in Medical Practice. John Churchill.
  6. ^ Dorvault, François Laurent Marie (1850). L'Officine ou Répertoire géneral de pharmacie pratique (in French). Labé.
  7. ^ Pownell, Beaty (1904). The "Queen" Cookery Books (2 ed.). London: Horace Cox.
  8. ^ Almond, Steve (2005-01-01). Candyfreak : a journey through the chocolate underbelly of America. Harcourt. OCLC 56661890.
  9. ^ "Diagram" (PDF). patentimages.storage.googleapis.com. Retrieved 2021-04-21.
  10. ^ a b c d Hartel, Richard; Hartel, AnnaKate (2014). Candy Bites: The Science of Sweets. New York: Copernicus. pp. 199–202. ISBN 978-1-4614-9382-2.
  11. ^ a b Christian, Elizabeth; Vaclavik, Vickie (1996). Essentials of Food Science. New York, NY: Marcel Dekker.
  12. ^ a b c Liu, Eunice (2015). "Homemade Marshmallow". scienceandfooducla.wordpress.com. from the original on 2016-12-21.
  13. ^ a b c Greweling, Peter (2013). Chocolates and confections: Formula, theory, and technique for the artisan confectioner. New York: John Wiley and Sons. pp. 296–311. ISBN 978-0-470-42441-4.
  14. ^ Hartel, Richard W.; Ergun, Roja; Vogel, Sarah (2011-01-01). "Phase/State Transitions of Confectionery Sweeteners: Thermodynamic and Kinetic Aspects". Comprehensive Reviews in Food Science and Food Safety. 10 (1): 17–32. doi:10.1111/j.1541-4337.2010.00136.x. ISSN 1541-4337.
  15. ^ a b c Hegenbert, Scott (1995). "The Sweet Facts of Confection Creation". www.naturalproductinsider.com. from the original on 2016-12-20.
  16. ^ Husband, Tom (October 2014). "The Sweet Science of Candy Making". www.acs.org. American Chemical Society. from the original on 2016-12-22.
  17. ^ Fennema, Owen (1996). Food Chemistry. New York, NY: Marcel Dekker. ISBN 978-0-8247-9346-3.
  18. ^ "Corn Syrup". www.Merriam-Webster.com. from the original on 2016-12-20.
  19. ^ Goztok, S.P.; Gunes, R.; Toker, O.S.; Palabiyik, I.; Konar, N. (2022). "Investigation of the use of various fruit juice concentrates instead of corn syrup in marshmallow type products: A preliminary study". International Journal of Gastronomy and Food Science. 30: 100616. doi:10.1016/j.ijgfs.2022.100616. S2CID 253198704.
  20. ^ Dupzyk, Kevin (April 6, 2023). "A Visit to the Peeps Factory". The New York Times. Photographs by Christopher Payne. That all changed in 1954. That's when Bob Born, who was a member of the family that founded the company, and a colleague invented a machine that could make Peeps automatically.
  21. ^ Bolitho, Claire. "47. Cook on a campfire". National Trust's South West Blog. from the original on 2015-11-21. Retrieved 2015-11-21.
  22. ^ History of Campfire Marshmallows 2011-11-03 at the Wayback Machine. campfiremarshmallows.com
  23. ^ "The science behind a perfectly-toasted marshmallow". 2017-06-11.
  24. ^ "Definition of S'MORE". www.m-w.com. from the original on 2007-12-18.
  25. ^ "Foods of Minimal Nutritional Value". www.fns.usda.gov. Appendix B of 7 CFR Part 210. Food and Nutrition Service, United States Department of Agriculture. 13 September 2013. Retrieved 2017-08-04.
  26. ^ "Gelatin Alternatives". PETA. from the original on 2017-10-24. Retrieved 2017-10-24.
  27. ^ "A Closer Look - Gelatin - Kosher Spirit". OK Kosher Certification (in Japanese). Retrieved 2019-12-31.
  28. ^ "These Gelatin-Free Marshmallow Brands Will Have You Ready for Vegan S'mores Season". PETA. from the original on 2017-10-24. Retrieved 2017-10-24.

External links

marshmallow, music, producer, marshmello, other, uses, disambiguation, ɑːr, ɑːr, confectionery, made, from, sugar, water, gelatin, whipped, solid, soft, consistency, used, filling, baking, molded, into, shapes, coated, with, corn, starch, this, sugar, confecti. For the music producer and DJ see Marshmello For other uses see Marshmallow disambiguation Marshmallow UK m ɑːr ʃ ˈ m ae l oʊ US ˈ m ɑːr ʃ m ɛ l oʊ m ae l 1 is a confectionery made from sugar water and gelatin whipped to a solid but soft consistency It is used as a filling in baking or molded into shapes and coated with corn starch This sugar confection is inspired by a medicinal confection made from Althaea officinalis the marsh mallow plant 2 MarshmallowMarshmallowsTypeConfectioneryMain ingredientsSugar gelatin water and airVariationsFood coloring sprinklesCookbook Marshmallow Media Marshmallow Contents 1 History 2 Ingredients 2 1 Protein 2 1 1 Albumen egg whites 2 1 2 Gelatin 2 2 Sugars 2 2 1 Sugarcane and sugar beet 2 2 2 Corn syrup 2 2 3 Invert sugar 2 2 4 Fruit syrups 2 3 Additional ingredients 2 3 1 Flavors 2 3 2 Acids 3 Manufacturing process 3 1 Commercial process 3 2 Home making process 4 Roasted marshmallows and s mores 5 Nutrition 6 Dietary preferences 7 See also 8 References 9 External linksHistory nbsp The marsh mallow plant Althaea officinalis The word marshmallow comes from the mallow plant species Althaea officinalis a herb native to parts of Europe North Africa and Asia which grows in marshes and other damp areas The plant s stem and leaves are fleshy and its white flower has five petals It is not known exactly when marshmallows were invented but their history goes back as early as 2000 BCE Ancient Egyptians were said to be the first to make and use the root of the plant to soothe coughs and sore throats and to heal wounds The first marshmallows were prepared by boiling pieces of root pulp with honey until thick Once thickened the mixture was strained cooled then used as intended 3 4 Whether used for candy or medicine the manufacture of marshmallows was limited to a small scale In the early to mid 19th century the marshmallow had made its way to France where confectioners augmented the plant s traditional medicinal value with indulgent ingredients utilized by the Egyptians Owners of small candy stores would whip the sap from the mallow root into a fluffy candy mold This candy called Pate de Guimauve was a spongy soft dessert made from whipping dried marshmallow roots with sugar water and egg whites 5 6 It was sold in bar form as a lozenge Drying and preparation of the marshmallow took one to two days before the final product was produced 7 In the late 19th century candy makers started looking for a new process and discovered the starch mogul system in which trays of modified corn starch had a mold firmly pushed down in them to create cavities within the starch The cavities were then filled with the whipped marshmallow sap mixture and allowed to cool or harden 8 At the same time candy makers began to replace the mallow root with gelatin which created a stable form of marshmallow 4 By the early 20th century thanks to the starch mogul system marshmallows were introduced to the United States and available for mass consumption They were sold in tins as penny candy and were soon used in a variety of food recipes like banana fluff lime mallow sponge and tutti frutti In 1956 Alex Doumak patented 9 the extrusion process which involved running marshmallow ingredients through tubes The tubes created a long rope of marshmallow mixture and were then set out to cool The ingredients were then cut into equal pieces and packaged 4 Modern marshmallow manufacturing is highly automated and has been since the early 1950s when the extrusion process was first developed Numerous improvements and advancements allow for the production of thousands of pounds of marshmallow a day 10 Today the marshmallow typically consists of four ingredients sugar water air and a whipping agent IngredientsMarshmallows consist of four ingredients sugar water air and a whipping agent aerator usually a protein The type of sugar and whipping agent varies depending on desired characteristics Each ingredient plays a specific role in the final product The marshmallow is a foam consisting of an aqueous continuous phase and a gaseous dispersed phase in other words a liquid with gas bubbles spread throughout In addition to being a foam this also makes marshmallows an aerated confection because it is made up of 50 air The goal of an aerated confection like a marshmallow is to incorporate gas into a sugar mixture and stabilize the aerated product before the gas can escape When the gas is introduced into the system tiny air bubbles are created This is what contributes to the unique textural properties and mouth feel of this product 11 Protein In marshmallows proteins are the main surface active agents responsible for the formation and stabilization of the dispersed air Due to their structure surface active molecules gather at the surface area of a portion of water based liquid A portion of each protein molecule is hydrophilic with a polar charge and another portion is hydrophobic and non polar The non polar section has little or no affinity for water and so this section orients as far away from the water as possible However the polar section is attracted to the water and has little or no affinity for the air Therefore the molecule orients with the polar section in the water with the non polar section in the air Two primary proteins that are commonly used as aerators in marshmallows are albumen egg whites and gelatin 12 Albumen egg whites Albumen is a mixture of proteins found in egg whites and is utilized for its capacity to create foams In a commercialized setting dried albumen is used as opposed to fresh egg whites In addition to convenience the advantages of using dried albumen are an increase in food safety and the reduction of water content in the marshmallow Fresh egg whites carry a higher risk of Salmonella and are approximately 90 percent water This is undesirable for the shelf life and firmness of the product For artisan type marshmallows prepared by a candy maker fresh egg whites are usually used Albumen is rarely used on its own when incorporated into modern marshmallows and instead is used in conjunction with gelatin 13 Gelatin Gelatin is the aerator most often used in the production of marshmallows It is made up of collagen a structural protein derived from animal skin connective tissue and bones Not only can it stabilize foams like albumen but when combined with water it forms a thermally reversible gel This means that gelatin can melt then reset due to its sensitivity to temperature The melting point of gelatin gel is around 95 F 35 C which is just below normal body temperature around 97 F 36 C This is what contributes to the melt in your mouth sensation when a marshmallow is consumed it actually starts to melt when it touches the tongue 12 During preparation the temperature needs to be just above the melting point of the gelatin so that as soon as it is formed it cools quickly and the gelatin will set retaining the desired shape If the marshmallow rope mixture exiting the extruder during processing is too warm the marshmallow starts to flow before the gelatin sets Instead of a round marshmallow it will take a more oval form Excessive heat can also degrade or break down the gelatin itself Therefore when marshmallows are being produced at home or by artisan candy makers the gelatin is added after the syrup has been heated and cooled down In commercial operations the gelatin is simply cooked with the sugar syrup rather than being added later after the syrup has cooled In this case kinetics play an important role with both time and temperature factoring in If the gelatin was added at the beginning of a batch that was then cooked to 112 116 C in 20 30 minutes a significant amount of gelatin would break down The marshmallow would have reduced springiness from that loss of gelatin But since the time the syrup spends at elevated temperature in modern cookers is so short there is little to no degradation of the gelatin 10 In terms of texture and mouth feel gelatin makes marshmallows chewy by forming a tangled 3 D network of polymer chains Once gelatin is dissolved in warm water dubbed the blooming stage it forms a dispersion which results in how a cross linking of its helix shaped chains The linkages in the gelatin protein network trap air in the marshmallow mixture and immobilize the water molecules in the network The result is the well known spongy structure of marshmallows This is why the omission of gelatin from a marshmallow recipe will result in marshmallow creme since there is no gelatin network to trap the water and air bubbles 12 Sugars A traditional marshmallow might contain about 60 corn syrup 30 sugar and 1 2 gelatin A combination of different sugars is used to control the solubility of the solution 14 The corn syrup sugar ratio will influence the texture by slowing crystallization of the sucrose The smooth texture of marshmallows relies on disordered or amorphous sugar molecules In contrast increasing the sugar ratio to about 60 65 will produce a grainy marshmallow 15 Temperature also plays an important role in producing smooth marshmallows by reducing the time window for ordered crystals to form To ensure the sugars are disordered the sugar syrup solution is heated to a high temperature and then cooled rapidly 16 Sugarcane and sugar beet Sugarcane and sugar beet are the two primary sources of sugar consisting of sucrose molecules Sucrose is a disaccharide that consists of one glucose and fructose molecule This sugar provides sweetness and bulk to the marshmallow while simultaneously setting the foam to a firm consistency as it cools 15 Sucrose and sugars in general impair the ability of a foam to form but improve foam stability Therefore sucrose is used in conjunction with a protein like gelatin The protein can adsorb unfold and form a stable network while the sugar can increase the viscosity 17 Liquid drainage of the continuous phase must be minimized as well Thick liquids drain more slowly than thin ones and so increasing the viscosity of the continuous phase will reduce drainage A high viscosity is essential if a stable foam is to be produced Therefore sucrose is a main component of marshmallow But sucrose is seldom used on its own because of its tendency to crystallize Corn syrup Corn syrup derived from maize contains glucose maltose and other oligosaccharides Corn syrup can be obtained from the partial hydrolysis of cornstarch 18 Corn syrup is important in the production of marshmallow because it prevents the crystallization of other sugars like sucrose It may also contribute body reduce sweetness and alter flavor release depending on the Dextrose Equivalent DE of the glucose syrup used The DE is the measure of the amount of reducing sugars present in a sugar product in relation to glucose Lower DE glucose syrups will provide a chewier texture while higher DE syrups will make the product more tender 15 In addition depending on the type of DE used can alter the sweetness hygroscopicity and browning of the marshmallow Corn syrup is flavorless and cheap to produce which is why candy companies love using this product Invert sugar Invert sugar is produced when sucrose breaks down due to the addition of water also known as hydrolysis This molecule exhibits all the characteristics of honey except the flavor because it is the primary sugar found in honey This means that invert sugar has the ability to prevent crystallization and produce a tender marshmallow It is also an effective humectant which allows it to trap water and prevent the marshmallow from drying out For some candies this is not a good trait to have but for marshmallows it is an advantage since it has a high moisture content 10 Fruit syrups While not widely used for traditional or commercial recipes fruit syrups have been proposed as an alternative sugar for marshmallows 19 Additional ingredients Flavors Unless a variation of the standard marshmallow is being made vanilla is always used as the flavoring The vanilla can either be added in extract form or by infusing the vanilla beans in the sugar syrup during cooking This clarification needed is the best technique to get an even distribution of flavor throughout the marshmallow 13 Acids Acids such as cream of tartar or lemon juice may also be used to increase foam stability Addition of acid decreases the pH This reduces the charge on the protein molecules and brings them closer to their isoelectric point This results in a stronger more stable inter facial film When added to egg whites acid prevents excessive aggregation at the interface However acid delays foam formation It may therefore be added toward the end of the whipping process after a stable foam has been created 11 Manufacturing process source source source source source source Video of making marshmallows nbsp Just Born Peeps in an Easter basket Commercial process In commercial marshmallow manufacture the entire process is streamlined and fully automated Gelatin is cooked with sugar and syrup After the gelatin containing syrup is cooked it is allowed to cool slightly before air is incorporated Whipping is generally accomplished in a rotor stator type device Compressed air is injected into the warm syrup held at a temperature just above the melting point of gelatin In a marshmallow aerator pins on a rotating cylinder rotor intermesh with stationary pins on the wall stator provide the shear forces necessary to break the large injected air bubbles into numerous tiny bubbles that provide the smooth fine grained texture of the marshmallow A continuous stream of light fluffy marshmallow exits the aerator en route to the forming step The marshmallow confection is typically formed in one of three ways First it can be extruded in the desired shape and cut into pieces as done for Jet Puffed marshmallows Second it can be deposited onto a belt as done for Peeps 20 Third it can be deposited into a starch based mold in a mogul to make various shapes 10 Home making process nbsp A freshly cut batch of homemade marshmallows The home process for making marshmallow differs from commercial processes A mixture of corn syrup and sugar is boiled to about 252 F 122 C In a separate step gelatin is hydrated with enough warm water to make a thick solution Once the sugar syrup has cooled to about 100 F 38 C the gelatin solution is blended in along with desired flavoring and whipped in a mixer to reach the final density The marshmallow is then scooped out of the bowl slabbed on a table and cut into pieces 13 Roasted marshmallows and s moresA popular camping or backyard tradition in the United Kingdom 21 North America New Zealand and Australia is the roasting or toasting of marshmallows over a campfire or other open flame 22 A marshmallow is placed on the end of a stick or skewer and held carefully over the fire This creates a caramelized outer skin with a liquid molten layer underneath Major flavor compounds and color polymers associated with sugar browning are created during the caramelization process 23 S mores are a traditional campfire treat in the United States made by placing a toasted marshmallow on a slab of chocolate which is placed between two graham crackers These can then be squeezed together causing the chocolate to begin melting 24 nbsp Roasting a marshmallow nbsp A roasted marshmallow nbsp An open faced s moreNutritionMarshmallows are defined in US law as a food of minimal nutritional value 25 Dietary preferences nbsp Toasted vegan marshmallows served with chocolate mousse The traditional marshmallow recipe uses powdered marshmallow root but most commercially manufactured marshmallows instead use gelatin in their manufacture Vegans and vegetarians avoid gelatin but there are versions which use a substitute non animal gelling agent such as agar 26 In addition marshmallows are generally not considered to be kosher or halal unless either their gelatin is derived from kosher or halal animals or they are vegan 27 Marshmallow creme and other less firm marshmallow products generally contain little or no gelatin which mainly serves to allow the familiar marshmallow confection to retain its shape They generally use egg whites instead Non gelatin egg containing versions of this product may be consumed by ovo vegetarians Several brands of vegetarian and vegan marshmallows and marshmallow fluff exist 28 See alsoChocolate coated marshmallow treats Chubby Bunny children s game involving marshmallows Divinity confectionery Flump sweet Marshmallow creme Peeps Stanford marshmallow experiment Stay Puft Marshmallow ManReferences Wells John 3 April 2008 Longman Pronunciation Dictionary 3rd ed Pearson Longman ISBN 978 1 4058 8118 0 Petkewich Rachel 2006 What s that stuff Marshmallow Chemical amp Engineering News 84 16 41 doi 10 1021 cen v084n016 p041 Retrieved 2008 02 10 How Marshmallows are Made www madehow com Archived from the original on 2016 10 31 a b c Marshmallows www candyusa com National Confectioners Association Archived from the original on 2016 12 13 Beasley Henry 1851 The Pocket Formulary And Synopsis of the British amp Foreign Pharmacopoeias Comprising Standard and Approved Formulae for the Preparations and Compounds Employed in Medical Practice John Churchill Dorvault Francois Laurent Marie 1850 L Officine ou Repertoire general de pharmacie pratique in French Labe Pownell Beaty 1904 The Queen Cookery Books 2 ed London Horace Cox Almond Steve 2005 01 01 Candyfreak a journey through the chocolate underbelly of America Harcourt OCLC 56661890 Diagram PDF patentimages storage googleapis com Retrieved 2021 04 21 a b c d Hartel Richard Hartel AnnaKate 2014 Candy Bites The Science of Sweets New York Copernicus pp 199 202 ISBN 978 1 4614 9382 2 a b Christian Elizabeth Vaclavik Vickie 1996 Essentials of Food Science New York NY Marcel Dekker a b c Liu Eunice 2015 Homemade Marshmallow scienceandfooducla wordpress com Archived from the original on 2016 12 21 a b c Greweling Peter 2013 Chocolates and confections Formula theory and technique for the artisan confectioner New York John Wiley and Sons pp 296 311 ISBN 978 0 470 42441 4 Hartel Richard W Ergun Roja Vogel Sarah 2011 01 01 Phase State Transitions of Confectionery Sweeteners Thermodynamic and Kinetic Aspects Comprehensive Reviews in Food Science and Food Safety 10 1 17 32 doi 10 1111 j 1541 4337 2010 00136 x ISSN 1541 4337 a b c Hegenbert Scott 1995 The Sweet Facts of Confection Creation www naturalproductinsider com Archived from the original on 2016 12 20 Husband Tom October 2014 The Sweet Science of Candy Making www acs org American Chemical Society Archived from the original on 2016 12 22 Fennema Owen 1996 Food Chemistry New York NY Marcel Dekker ISBN 978 0 8247 9346 3 Corn Syrup www Merriam Webster com Archived from the original on 2016 12 20 Goztok S P Gunes R Toker O S Palabiyik I Konar N 2022 Investigation of the use of various fruit juice concentrates instead of corn syrup in marshmallow type products A preliminary study International Journal of Gastronomy and Food Science 30 100616 doi 10 1016 j ijgfs 2022 100616 S2CID 253198704 Dupzyk Kevin April 6 2023 A Visit to the Peeps Factory The New York Times Photographs by Christopher Payne That all changed in 1954 That s when Bob Born who was a member of the family that founded the company and a colleague invented a machine that could make Peeps automatically Bolitho Claire 47 Cook on a campfire National Trust s South West Blog Archived from the original on 2015 11 21 Retrieved 2015 11 21 History of Campfire Marshmallows Archived 2011 11 03 at the Wayback Machine campfiremarshmallows com The science behind a perfectly toasted marshmallow 2017 06 11 Definition of S MORE www m w com Archived from the original on 2007 12 18 Foods of Minimal Nutritional Value www fns usda gov Appendix B of 7 CFR Part 210 Food and Nutrition Service United States Department of Agriculture 13 September 2013 Retrieved 2017 08 04 Gelatin Alternatives PETA Archived from the original on 2017 10 24 Retrieved 2017 10 24 A Closer Look Gelatin Kosher Spirit OK Kosher Certification in Japanese Retrieved 2019 12 31 These Gelatin Free Marshmallow Brands Will Have You Ready for Vegan S mores Season PETA Archived from the original on 2017 10 24 Retrieved 2017 10 24 External links nbsp Look up marshmallow in Wiktionary the free dictionary nbsp Wikimedia Commons has media related to Marshmallows The Marshmallow Explained at HowStuffWorks com Retrieved from https en wikipedia org w index php title Marshmallow amp oldid 1216163481, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.