fbpx
Wikipedia

MPEG-4

MPEG-4 is a group of international standards for the compression of digital audio and visual data, multimedia systems, and file storage formats. It was originally introduced in late 1998 as a group of audio and video coding formats and related technology agreed upon by the ISO/IEC Moving Picture Experts Group (MPEG) (ISO/IEC JTC 1/SC29/WG11) under the formal standard ISO/IEC 14496 – Coding of audio-visual objects. Uses of MPEG-4 include compression of audiovisual data for Internet video and CD distribution, voice (telephone, videophone) and broadcast television applications. The MPEG-4 standard was developed by a group led by Touradj Ebrahimi (later the JPEG president) and Fernando Pereira.[1]

Background edit

MPEG-4 absorbs many of the features of MPEG-1 and MPEG-2 and other related standards, adding new features such as (extended) VRML support for 3D rendering, object-oriented composite files (including audio, video and VRML objects), support for externally specified Digital Rights Management and various types of interactivity. AAC (Advanced Audio Coding) was standardized as an adjunct to MPEG-2 (as Part 1) before MPEG-4 was issued.

MPEG-4 is still an evolving standard and is divided into a number of parts. Companies promoting MPEG-4 compatibility do not always clearly state which "part" level compatibility they are referring to. The key parts to be aware of are MPEG-4 Part 2 (including Advanced Simple Profile, used by codecs such as DivX, Xvid, Nero Digital and 3ivx and by QuickTime 6) and MPEG-4 part 10 (MPEG-4 AVC/H.264 or Advanced Video Coding, used by the x264 encoder, Nero Digital AVC, QuickTime 7, and high-definition video media like Blu-ray Disc).

Most of the features included in MPEG-4 are left to individual developers to decide whether or not to implement. This means that there are probably no complete implementations of the entire MPEG-4 set of standards. To deal with this, the standard includes the concept of "profiles" and "levels", allowing a specific set of capabilities to be defined in a manner appropriate for a subset of applications.

Initially, MPEG-4 was aimed primarily at low-bit-rate video communications; however, its scope as a multimedia coding standard was later expanded. MPEG-4 is efficient across a variety of bit rates ranging from a few kilobits per second to tens of megabits per second. MPEG-4 provides the following functions:

  • Improved coding efficiency over MPEG-2[2]
  • Ability to encode mixed media data (video, audio, speech)
  • Error resilience to enable robust transmission
  • Ability to interact with the audio-visual scene generated at the receiver

Overview edit

MPEG-4 provides a series of technologies for developers, for various service-providers and for end users:

  • MPEG-4 enables different software and hardware developers to create multimedia objects possessing better abilities of adaptability and flexibility to improve the quality of such services and technologies as digital television, animation graphics, the World Wide Web and their extensions.
  • Data network providers can use MPEG-4 for data transparency. With the help of standard procedures, MPEG-4 data can be interpreted and transformed into other signal types compatible with any available network.
  • The MPEG-4 format provides end users with a wide range of interaction with various animated objects.
  • Standardized Digital Rights Management signaling, otherwise known in the MPEG community as Intellectual Property Management and Protection (IPMP).

The MPEG-4 format can perform various functions, among which might be the following:

  • Multiplexes and synchronizes data, associated with media objects, in such a way that they can be efficiently transported further via network channels.
  • Interaction with the audio-visual scene, which is formed on the side of the receiver.

Profiles and Levels edit

MPEG-4 provides a large and rich set of tools for encoding.[vague] Subsets of the MPEG-4 tool sets have been provided for use in specific applications.[vague] These subsets, called 'Profiles', limit the size of the tool set a decoder is required to implement.[3] In order to restrict computational complexity, one or more 'Levels' are set for each Profile.[3] A Profile and Level combination allows:[3]

  • A codec builder to implement only the subset of the standard needed, while maintaining interworking with other MPEG-4 devices that implement the same combination.[3]
  • Checking whether MPEG-4 devices comply with the standard, referred to as conformance testing.[3]

MPEG-4 Parts edit

MPEG-4 consists of several standards—termed "parts"—including the following (each part covers a certain aspect of the whole specification):

MPEG-4 parts[4][5]
Part Number First public release date (first edition) Latest public release date (last edition) Latest amendment Title Description
Part 1 ISO/IEC 14496-1 1999 2010[6] 2014[7] Systems Describes synchronization and multiplexing of video and audio. For example, the MPEG-4 file format version 1 (obsoleted by version 2 defined in MPEG-4 Part 14). The functionality of a transport protocol stack for transmitting and/or storing content complying with ISO/IEC 14496 is not within the scope of 14496-1 and only the interface to this layer is considered (DMIF). Information about transport of MPEG-4 content is defined e.g. in MPEG-2 Transport Stream, RTP Audio Video Profiles and others.[8][9][10][11][12]
Part 2 ISO/IEC 14496-2 1999 2004[13] 2009 Visual A compression format for visual data (video, still textures, synthetic images, etc.). Contains many profiles, including the Advanced Simple Profile (ASP), and the Simple Profile (SP).
Part 3 ISO/IEC 14496-3 1999 2009[14] 2017[15] Audio A set of compression formats for perceptual coding of audio signals, including some variations of Advanced Audio Coding (AAC) as well as other audio/speech coding formats and tools (such as Audio Lossless Coding (ALS), Scalable Lossless Coding (SLS), Structured Audio, Text-To-Speech Interface (TTSI), HVXC, CELP and others)
Part 4 ISO/IEC 14496-4 2000 2004[16] 2016 Conformance testing Describes procedures for testing conformance to other parts of the standard.
Part 5 ISO/IEC 14496-5 2000 2001[17] 2017 Reference software Provides reference software for demonstrating and clarifying the other parts of the standard.
Part 6 ISO/IEC 14496-6 1999 2000[18] Delivery Multimedia Integration Framework (DMIF)
Part 7 ISO/IEC TR 14496-7 2002 2004[19] Optimized reference software for coding of audio-visual objects Provides examples of how to make improved implementations (e.g., in relation to Part 5).
Part 8 ISO/IEC 14496-8 2004 2004[20] Carriage of ISO/IEC 14496 contents over IP networks Specifies a method to carry MPEG-4 content on IP networks. It also includes guidelines to design RTP payload formats, usage rules of SDP to transport ISO/IEC 14496-1-related information, MIME type definitions, analysis on RTP security and multicasting.
Part 9 ISO/IEC TR 14496-9 2004 2009[21] Reference hardware description Provides hardware designs for demonstrating how to implement the other parts of the standard.
Part 10 ISO/IEC 14496-10 2003 2014[22] 2016[23] Advanced Video Coding (AVC) A compression format for video signals which is technically identical to the ITU-T H.264 standard.
Part 11 ISO/IEC 14496-11 2005 2015[24] Scene description and application engine Can be used for rich, interactive content with multiple profiles, including 2D and 3D versions. MPEG-4 Part 11 revised MPEG-4 Part 1 – ISO/IEC 14496-1:2001 and two amendments to MPEG-4 Part 1. It describes a system level description of an application engine (delivery, lifecycle, format and behaviour of downloadable Java byte code applications) and the Binary Format for Scene (BIFS) and the Extensible MPEG-4 Textual (XMT) format – a textual representation of the MPEG-4 multimedia content using XML, etc.[24] (It is also known as BIFS, XMT, MPEG-J.[25] MPEG-J was defined in MPEG-4 Part 21)
Part 12 ISO/IEC 14496-12 2004 2015[26] 2017[27] ISO base media file format A file format for storing time-based media content. It is a general format forming the basis for a number of other more specific file formats (e.g. 3GP, Motion JPEG 2000, MPEG-4 Part 14). It is technically identical to ISO/IEC 15444-12 (JPEG 2000 image coding system – Part 12).
Part 13 ISO/IEC 14496-13 2004 2004[28] Intellectual Property Management and Protection (IPMP) Extensions MPEG-4 Part 13 revised an amendment to MPEG-4 Part 1 – ISO/IEC 14496-1:2001/Amd 3:2004. It specifies common Intellectual Property Management and Protection (IPMP) processing, syntax and semantics for the carriage of IPMP tools in the bit stream, IPMP information carriage, mutual authentication for IPMP tools, a list of registration authorities required for the support of the amended specifications (e.g. CISAC), etc. It was defined due to the lack of interoperability of different protection mechanisms (different DRM systems) for protecting and distributing copyrighted digital content such as music or video.[29][30][31][32][33][34][35][36][37]
Part 14 ISO/IEC 14496-14 2003 2003[38] 2010[39] MP4 file format It is also known as "MPEG-4 file format version 2". The designated container file format for MPEG-4 content, which is based on Part 12. It revises and completely replaces Clause 13 of ISO/IEC 14496-1 (MPEG-4 Part 1: Systems), in which the MPEG-4 file format was previously specified.
Part 15 ISO/IEC 14496-15 2004 2022[40] 2023[41] Part 15: Carriage of network abstraction layer (NAL) unit structured video in the ISO base media file format For storage of Part 10 video. File format is based on Part 12, but also allows storage in other file formats.
Part 16 ISO/IEC 14496-16 2004 2011[42] 2016[43] Animation Framework eXtension (AFX) It specifies MPEG-4 Animation Framework eXtension (AFX) model for representing 3D Graphics content. MPEG-4 is extended with higher-level synthetic objects for specifying geometry, texture, animation and dedicated compression algorithms.
Part 17 ISO/IEC 14496-17 2006 2006[44] Streaming text format Timed Text subtitle format
Part 18 ISO/IEC 14496-18 2004 2004[45] 2014 Font compression and streaming For Open Font Format defined in Part 22.
Part 19 ISO/IEC 14496-19 2004 2004[46] Synthesized texture stream Synthesized texture streams are used for creation of very low bitrate synthetic video clips.
Part 20 ISO/IEC 14496-20 2006 2008[47] 2010 Lightweight Application Scene Representation (LASeR) and Simple Aggregation Format (SAF) LASeR requirements (compression efficiency, code and memory footprint) are fulfilled by building upon the existing the Scalable Vector Graphics (SVG) format defined by the World Wide Web Consortium.[48]
Part 21 ISO/IEC 14496-21 2006 2006[49] MPEG-J Graphics Framework eXtensions (GFX) Describes a lightweight programmatic environment for advanced interactive multimedia applications – a framework that marries a subset of the MPEG standard Java application environment (MPEG-J) with a Java API.[25][49][50][51] (at "FCD" stage in July 2005, FDIS January 2006, published as ISO standard on 2006-11-22).
Part 22 ISO/IEC 14496-22 2007 2015[52] 2017 Open Font Format OFFS is based on the OpenType version 1.4 font format specification, and is technically equivalent to that specification.[53][54] Reached "CD" stage in July 2005, published as ISO standard in 2007
Part 23 ISO/IEC 14496-23 2008 2008[55] Symbolic Music Representation (SMR) Reached "FCD" stage in October 2006, published as ISO standard in 2008-01-28
Part 24 ISO/IEC TR 14496-24 2008 2008[56] Audio and systems interaction Describes the desired joint behavior of MPEG-4 File Format and MPEG-4 Audio.
Part 25 ISO/IEC 14496-25 2009 2011[57] 3D Graphics Compression Model Defines a model for connecting 3D Graphics Compression tools defined in MPEG-4 standards to graphics primitives defined in any other standard or specification.
Part 26 ISO/IEC 14496-26 2010 2010[58] 2016 Audio Conformance
Part 27 ISO/IEC 14496-27 2009 2009[59] 2015[60] 3D Graphics conformance 3D Graphics Conformance summarizes the requirements, cross references them to characteristics, and defines how conformance with them can be tested. Guidelines are given on constructing tests to verify decoder conformance.
Part 28 ISO/IEC 14496-28 2012 2012[61] Composite font representation
Part 29 ISO/IEC 14496-29 2014 2015 Web video coding Text of Part 29 is derived from Part 10 - ISO/IEC 14496-10. Web video coding is a technology that is compatible with the Constrained Baseline Profile of ISO/IEC 14496-10 (the subset that is specified in Annex A for Constrained Baseline is a normative specification, while all remaining parts are informative).
Part 30 ISO/IEC 14496-30 2014 2014 Timed text and other visual overlays in ISO base media file format It describes the carriage of some forms of timed text and subtitle streams in files based on ISO/IEC 14496-12 - W3C Timed Text Markup Language 1.0, W3C WebVTT (Web Video Text Tracks). The documentation of these forms does not preclude other definition of carriage of timed text or subtitles; see, for example, 3GPP Timed Text (3GPP TS 26.245).
Part 31 ISO/IEC 14496-31 Under development (2018-05) Video Coding for Browsers Video Coding for Browsers (VCB) - a video compression technology that is intended for use within World Wide Web browser
Part 32 ISO/IEC CD 14496-32 Under development Conformance and reference software
Part 33 ISO/IEC FDIS 14496-33 Under development Internet video coding

Profiles are also defined within the individual "parts", so an implementation of a part is ordinarily not an implementation of an entire part.

MPEG-1, MPEG-2, MPEG-7 and MPEG-21 are other suites of MPEG standards.

Licensing edit

MPEG-4 contains patented technologies, the use of which requires licensing in countries that acknowledge software algorithm patents. Over two dozen companies claim to have patents covering MPEG-4. MPEG LA[62] licenses patents required for MPEG-4 Part 2 Visual from a wide range of companies (audio is licensed separately) and lists all of its licensors and licensees on the site. New licenses for MPEG-4 System patents are under development[63] and no new licenses are being offered while holders of its old MPEG-4 Systems license are still covered under the terms of that license for the patents listed ().

The majority of patents used for the MPEG-4 Visual format are held by three Japanese companies: Mitsubishi Electric (255 patents), Hitachi (206 patents), and Panasonic (200 patents).

See also edit

References edit

  1. ^ Ebrahimi, Touradj; Pereira, Fernando (2002). The MPEG-4 Book. Prentice Hall Professional. ISBN 9780130616210.
  2. ^ Wiegand, T; Sullican, G J; Bjontegaard, G; Luthra, A (2003). "Overview of the H.264/AVC video coding standard". IEEE Transactions on Circuits and Systems for Video Technology. 13 (7): 560–576. doi:10.1109/TCSVT.2003.815165.
  3. ^ a b c d e MacKie, David; Singer, David; Meer, Jan Van der; Swaminathan, Viswanathan; Gentric, Philippe (December 2003), RFC 3640, IETF, p. 31.
  4. ^ MPEG. . Chiariglione. Archived from the original on 2010-04-20. Retrieved 2010-02-09.
  5. ^ ISO/IEC JTC 1/SC 29 (2009-11-09). . Archived from the original on 2013-12-31. Retrieved 2009-11-10.{{cite web}}: CS1 maint: numeric names: authors list (link)
  6. ^ "ISO/IEC 14496-1:2010 – Information technology — Coding of audio-visual objects — Part 1: Systems". Retrieved 2017-08-30.
  7. ^ ISO. "ISO/IEC 14496-1:2010/Amd 2:2014 – Support for raw audio-visual data". Retrieved 2017-08-30.
  8. ^ ISO/IEC (2004-11-15), (PDF), archived from the original (PDF) on 2017-08-31, retrieved 2010-04-11
  9. ^ WG11 (MPEG) (March 2002). "Overview of the MPEG-4 Standard". Retrieved 2010-04-11.{{cite web}}: CS1 maint: numeric names: authors list (link)
  10. ^ WG11 (1997-11-21), Text for CD 14496-1 Systems (MS Word .doc), retrieved 2010-04-11{{citation}}: CS1 maint: numeric names: authors list (link)
  11. ^ "MPEG-4 Systems Elementary Stream Management (ESM)". July 2001. Retrieved 2010-04-11.
  12. ^ "MPEG Systems (1-2-4-7) FAQ, Version 17.0". July 2001. Retrieved 2010-04-11.
  13. ^ "ISO/IEC 14496-2:2004 – Information technology — Coding of audio-visual objects — Part 2: Visual". ISO. Retrieved 2017-08-30.
  14. ^ "ISO/IEC 14496-3:2009 – Information technology — Coding of audio-visual objects — Part 3: Audio". ISO. Retrieved 2017-08-30.
  15. ^ "ISO/IEC 14496-3:2009/Amd 6:2017, Profiles, levels and downmixing method for 22.2 channel programs". ISO. 2017. Retrieved 2017-08-30.
  16. ^ "ISO/IEC 14496-4:2004 – Information technology — Coding of audio-visual objects — Part 4: Conformance testing". ISO. Retrieved 2017-08-30.
  17. ^ "ISO/IEC 14496-5:2001 – Information technology — Coding of audio-visual objects — Part 5: Reference software". ISO. Retrieved 2017-08-30.
  18. ^ "ISO/IEC 14496-6:2000 – Information technology — Coding of audio-visual objects — Part 6: Delivery Multimedia Integration Framework (DMIF)". ISO. Retrieved 2017-08-30.
  19. ^ "ISO/IEC TR 14496-7:2004 – Information technology — Coding of audio-visual objects — Part 7: Optimized reference software for coding of audio-visual objects". ISO. Retrieved 2017-08-30.
  20. ^ "ISO/IEC 14496-8:2004 – Information technology — Coding of audio-visual objects — Part 8: Carriage of ISO/IEC 14496 contents over IP networks". ISO. Retrieved 2017-08-30.
  21. ^ "ISO/IEC TR 14496-9:2009 – Information technology — Coding of audio-visual objects — Part 9: Reference hardware description". ISO. Retrieved 2017-08-30.
  22. ^ "ISO/IEC 14496-10:2014 – Information technology — Coding of audio-visual objects — Part 10: Advanced Video Coding". ISO. Retrieved 2017-08-30.
  23. ^ "ISO/IEC 14496-10:2014/Amd 3:2016 – Constrained Additional supplemental enhancement information". ISO. Retrieved 2017-08-30.
  24. ^ a b "ISO/IEC 14496-11:2015 – Information technology — Coding of audio-visual objects — Part 11: Scene description and application engine". ISO. Retrieved 2017-08-30.
  25. ^ a b "MPEG-J White Paper". July 2005. Retrieved 2010-04-11.
  26. ^ "ISO/IEC 14496-12:2015 – Information technology — Coding of audio-visual objects — Part 12: ISO base media file format". ISO. Retrieved 2014-01-19.
  27. ^ ISO. "ISO/IEC 14496-12:2015/Amd 1:2017 – DRC Extensions". Retrieved 2017-08-30.
  28. ^ "ISO/IEC 14496-13:2004 – Information technology — Coding of audio-visual objects — Part 13: Intellectual Property Management and Protection (IPMP) extensions". ISO. Retrieved 2017-08-30.
  29. ^ MPEG (March 2002), , archived from the original (MS Word .doc) on 2014-05-12, retrieved 2010-08-01
  30. ^ "MPEG-4 IPMPX white paper". MPEG. July 2005. Retrieved 2010-08-01.
  31. ^ "MPEG Intellectual Property Management and Protection". MPEG. April 2009. Retrieved 2010-08-01.
  32. ^ (PDF), 2004, archived from the original (PDF) on 2010-06-18, retrieved 2010-08-01
  33. ^ . MPEG RA International Agency (CISAC). Archived from the original on 2007-06-16. Retrieved 2010-08-01.
  34. ^ "MPEG RA – FAQ IPMP". MPEG RA International Agency (CISAC). Retrieved 2010-08-01.[permanent dead link]
  35. ^ . CISAC. 2004-12-05. Archived from the original on 2004-12-05. Retrieved 2010-08-01.
  36. ^ Chiariglione, Leonardo (2003), , Torino, IT: Telecom Italia Lab, archived from the original on 2011-07-25, retrieved 2010-08-01
  37. ^ IPMP in MPEG – W3C DRM workshop 22/23 January 2001 (PPT), retrieved 2010-08-01
  38. ^ ISO. "ISO/IEC 14496-14:2003 – Information technology — Coding of audio-visual objects — Part 14: MP4 file format". Retrieved 2017-08-30.
  39. ^ "ISO/IEC 14496-14:2003/Amd 1:2010 – Handling of MPEG-4 audio enhancement layers". ISO. Retrieved 2017-08-30.
  40. ^ "ISO/IEC 14496-15:2022 – Information technology — Coding of audio-visual objects — Part 15: Carriage of network abstraction layer (NAL) unit structured video in the ISO base media file format". ISO. Retrieved 2023-12-07.
  41. ^ "ISO/IEC 14496-15:2022/Amd 1:2023 - Information technology — Coding of audio-visual objects — Part 15: Carriage of network abstraction layer (NAL) unit structured video in the ISO base media file format — Amendment 1: Support for LCEVC". ISO. Retrieved 2023-12-07.
  42. ^ "ISO/IEC 14496-16:2011 – Information technology — Coding of audio-visual objects — Part 16: Animation Framework eXtension (AFX)". ISO. Retrieved 2017-08-30.
  43. ^ "ISO/IEC 14496-16:2011/Amd 3:2016 – Printing material and 3D graphics coding for browsers". Retrieved 2017-08-30.
  44. ^ "ISO/IEC 14496-17:2006 – Information technology — Coding of audio-visual objects — Part 17: Streaming text format". ISO. Retrieved 2017-08-30.
  45. ^ "ISO/IEC 14496-18:2004 – Information technology — Coding of audio-visual objects — Part 18: Font compression and streaming". ISO. Retrieved 2017-08-30.
  46. ^ "ISO/IEC 14496-19:2004 – Information technology – Coding of audio-visual objects — Part 19: Synthesized texture stream". ISO. Retrieved 2017-08-30.
  47. ^ "ISO/IEC 14496-20:2008 – Information technology — Coding of audio-visual objects — Part 20: Lightweight Application Scene Representation (LASeR) and Simple Aggregation Format (SAF)". ISO. Retrieved 2017-08-30.
  48. ^ "MPEG-4 LASeR white paper". July 2005. Retrieved 2010-04-11.
  49. ^ a b "ISO/IEC 14496-21:2006 – Information technology — Coding of audio-visual objects — Part 21: MPEG-J Graphics Framework eXtensions (GFX)". ISO. Retrieved 2017-08-30.
  50. ^ "MPEG-4 Systems MPEG-J". July 2001. Retrieved 2010-04-11.
  51. ^ "MPEG-J GFX white paper". July 2005. Retrieved 2010-04-11.
  52. ^ "ISO/IEC 14496-22:2009 – Information technology — Coding of audio-visual objects — Part 22: Open Font Format". ISO. Retrieved 2017-08-30.
  53. ^ ISO/IEC JTC 1/SC 29/WG 11 (July 2008). "ISO/IEC 14496-22 "Open Font Format"". Chiariglione. Retrieved 2010-02-09.{{cite web}}: CS1 maint: numeric names: authors list (link)
  54. ^ "ISO/IEC 14496-22 Information technology — Coding of audio-visual objects — Part 22: Open Font Format" (Zip) (first ed.). 2007-03-15. Retrieved 2010-01-28.
  55. ^ "ISO/IEC 14496-23:2008 – Information technology — Coding of audio-visual objects — Part 23: Symbolic Music Representation". ISO. Retrieved 2017-08-30.
  56. ^ "ISO/IEC TR 14496-24:2008 – Information technology — Coding of audio-visual objects — Part 24: Audio and systems interaction". ISO. Retrieved 2017-08-30.
  57. ^ "ISO/IEC 14496-25:2011 – Information technology — Coding of audio-visual objects — Part 25: 3D Graphics Compression Model". ISO. Retrieved 2017-08-30.
  58. ^ "ISO/IEC 14496-26:2010 – Information technology — Coding of audio-visual objects — Part 26: Audio conformance". ISO. Retrieved 2017-08-30.
  59. ^ "ISO/IEC 14496-27:2009 – Information technology — Coding of audio-visual objects — Part 27: 3D Graphics conformance". ISO. Retrieved 2017-08-30.
  60. ^ ISO. "ISO/IEC 14496-27:2009/Amd 6:2015 – Pattern-based 3D mesh coding conformance". Retrieved 2017-08-30.
  61. ^ "ISO/IEC CD 14496-28 – Information technology — Coding of audio-visual objects — Part 28: Composite font representation". ISO. Retrieved 2017-08-30.
  62. ^ . Archived from the original on 2018-06-26. Retrieved 2011-01-07.
  63. ^ . Archived from the original on 2011-01-22. Retrieved 2011-01-07.

External links edit

  • Overview of the MPEG-4 Standard at the MPEG Official Website
  • MPEG Industry Forum (MPEGIF) MPEG-4 page at archive.today (archived 2012-10-22)
  • MPEG Industry Forum (MPEGIF) MPEG-4 White Paper at the Library of Congress Web Archives (archived 2010-01-08)
  • JM MPEG-4 AVC /H.264 Reference Code
  • OpenIPMP: Open Source DRM Project for MPEG-4

mpeg, group, international, standards, compression, digital, audio, visual, data, multimedia, systems, file, storage, formats, originally, introduced, late, 1998, group, audio, video, coding, formats, related, technology, agreed, upon, moving, picture, experts. MPEG 4 is a group of international standards for the compression of digital audio and visual data multimedia systems and file storage formats It was originally introduced in late 1998 as a group of audio and video coding formats and related technology agreed upon by the ISO IEC Moving Picture Experts Group MPEG ISO IEC JTC 1 SC29 WG11 under the formal standard ISO IEC 14496 Coding of audio visual objects Uses of MPEG 4 include compression of audiovisual data for Internet video and CD distribution voice telephone videophone and broadcast television applications The MPEG 4 standard was developed by a group led by Touradj Ebrahimi later the JPEG president and Fernando Pereira 1 Contents 1 Background 2 Overview 2 1 Profiles and Levels 3 MPEG 4 Parts 4 Licensing 5 See also 6 References 7 External linksBackground editMPEG 4 absorbs many of the features of MPEG 1 and MPEG 2 and other related standards adding new features such as extended VRML support for 3D rendering object oriented composite files including audio video and VRML objects support for externally specified Digital Rights Management and various types of interactivity AAC Advanced Audio Coding was standardized as an adjunct to MPEG 2 as Part 1 before MPEG 4 was issued MPEG 4 is still an evolving standard and is divided into a number of parts Companies promoting MPEG 4 compatibility do not always clearly state which part level compatibility they are referring to The key parts to be aware of are MPEG 4 Part 2 including Advanced Simple Profile used by codecs such as DivX Xvid Nero Digital and 3ivx and by QuickTime 6 and MPEG 4 part 10 MPEG 4 AVC H 264 or Advanced Video Coding used by the x264 encoder Nero Digital AVC QuickTime 7 and high definition video media like Blu ray Disc Most of the features included in MPEG 4 are left to individual developers to decide whether or not to implement This means that there are probably no complete implementations of the entire MPEG 4 set of standards To deal with this the standard includes the concept of profiles and levels allowing a specific set of capabilities to be defined in a manner appropriate for a subset of applications Initially MPEG 4 was aimed primarily at low bit rate video communications however its scope as a multimedia coding standard was later expanded MPEG 4 is efficient across a variety of bit rates ranging from a few kilobits per second to tens of megabits per second MPEG 4 provides the following functions Improved coding efficiency over MPEG 2 2 Ability to encode mixed media data video audio speech Error resilience to enable robust transmission Ability to interact with the audio visual scene generated at the receiverOverview editMPEG 4 provides a series of technologies for developers for various service providers and for end users MPEG 4 enables different software and hardware developers to create multimedia objects possessing better abilities of adaptability and flexibility to improve the quality of such services and technologies as digital television animation graphics the World Wide Web and their extensions Data network providers can use MPEG 4 for data transparency With the help of standard procedures MPEG 4 data can be interpreted and transformed into other signal types compatible with any available network The MPEG 4 format provides end users with a wide range of interaction with various animated objects Standardized Digital Rights Management signaling otherwise known in the MPEG community as Intellectual Property Management and Protection IPMP The MPEG 4 format can perform various functions among which might be the following Multiplexes and synchronizes data associated with media objects in such a way that they can be efficiently transported further via network channels Interaction with the audio visual scene which is formed on the side of the receiver Profiles and Levels edit See also Profiles and levels specified in MPEG 4 Part 2 Profiles specified in MPEG 4 Part 10 and Levels specified in MPEG 4 Part 10 MPEG 4 provides a large and rich set of tools for encoding vague Subsets of the MPEG 4 tool sets have been provided for use in specific applications vague These subsets called Profiles limit the size of the tool set a decoder is required to implement 3 In order to restrict computational complexity one or more Levels are set for each Profile 3 A Profile and Level combination allows 3 A codec builder to implement only the subset of the standard needed while maintaining interworking with other MPEG 4 devices that implement the same combination 3 Checking whether MPEG 4 devices comply with the standard referred to as conformance testing 3 MPEG 4 Parts editMPEG 4 consists of several standards termed parts including the following each part covers a certain aspect of the whole specification MPEG 4 parts 4 5 Part Number First public release date first edition Latest public release date last edition Latest amendment Title Description Part 1 ISO IEC 14496 1 1999 2010 6 2014 7 Systems Describes synchronization and multiplexing of video and audio For example the MPEG 4 file format version 1 obsoleted by version 2 defined in MPEG 4 Part 14 The functionality of a transport protocol stack for transmitting and or storing content complying with ISO IEC 14496 is not within the scope of 14496 1 and only the interface to this layer is considered DMIF Information about transport of MPEG 4 content is defined e g in MPEG 2 Transport Stream RTP Audio Video Profiles and others 8 9 10 11 12 Part 2 ISO IEC 14496 2 1999 2004 13 2009 Visual A compression format for visual data video still textures synthetic images etc Contains many profiles including the Advanced Simple Profile ASP and the Simple Profile SP Part 3 ISO IEC 14496 3 1999 2009 14 2017 15 Audio A set of compression formats for perceptual coding of audio signals including some variations of Advanced Audio Coding AAC as well as other audio speech coding formats and tools such as Audio Lossless Coding ALS Scalable Lossless Coding SLS Structured Audio Text To Speech Interface TTSI HVXC CELP and others Part 4 ISO IEC 14496 4 2000 2004 16 2016 Conformance testing Describes procedures for testing conformance to other parts of the standard Part 5 ISO IEC 14496 5 2000 2001 17 2017 Reference software Provides reference software for demonstrating and clarifying the other parts of the standard Part 6 ISO IEC 14496 6 1999 2000 18 Delivery Multimedia Integration Framework DMIF Part 7 ISO IEC TR 14496 7 2002 2004 19 Optimized reference software for coding of audio visual objects Provides examples of how to make improved implementations e g in relation to Part 5 Part 8 ISO IEC 14496 8 2004 2004 20 Carriage of ISO IEC 14496 contents over IP networks Specifies a method to carry MPEG 4 content on IP networks It also includes guidelines to design RTP payload formats usage rules of SDP to transport ISO IEC 14496 1 related information MIME type definitions analysis on RTP security and multicasting Part 9 ISO IEC TR 14496 9 2004 2009 21 Reference hardware description Provides hardware designs for demonstrating how to implement the other parts of the standard Part 10 ISO IEC 14496 10 2003 2014 22 2016 23 Advanced Video Coding AVC A compression format for video signals which is technically identical to the ITU T H 264 standard Part 11 ISO IEC 14496 11 2005 2015 24 Scene description and application engine Can be used for rich interactive content with multiple profiles including 2D and 3D versions MPEG 4 Part 11 revised MPEG 4 Part 1 ISO IEC 14496 1 2001 and two amendments to MPEG 4 Part 1 It describes a system level description of an application engine delivery lifecycle format and behaviour of downloadable Java byte code applications and the Binary Format for Scene BIFS and the Extensible MPEG 4 Textual XMT format a textual representation of the MPEG 4 multimedia content using XML etc 24 It is also known as BIFS XMT MPEG J 25 MPEG J was defined in MPEG 4 Part 21 Part 12 ISO IEC 14496 12 2004 2015 26 2017 27 ISO base media file format A file format for storing time based media content It is a general format forming the basis for a number of other more specific file formats e g 3GP Motion JPEG 2000 MPEG 4 Part 14 It is technically identical to ISO IEC 15444 12 JPEG 2000 image coding system Part 12 Part 13 ISO IEC 14496 13 2004 2004 28 Intellectual Property Management and Protection IPMP Extensions MPEG 4 Part 13 revised an amendment to MPEG 4 Part 1 ISO IEC 14496 1 2001 Amd 3 2004 It specifies common Intellectual Property Management and Protection IPMP processing syntax and semantics for the carriage of IPMP tools in the bit stream IPMP information carriage mutual authentication for IPMP tools a list of registration authorities required for the support of the amended specifications e g CISAC etc It was defined due to the lack of interoperability of different protection mechanisms different DRM systems for protecting and distributing copyrighted digital content such as music or video 29 30 31 32 33 34 35 36 37 Part 14 ISO IEC 14496 14 2003 2003 38 2010 39 MP4 file format It is also known as MPEG 4 file format version 2 The designated container file format for MPEG 4 content which is based on Part 12 It revises and completely replaces Clause 13 of ISO IEC 14496 1 MPEG 4 Part 1 Systems in which the MPEG 4 file format was previously specified Part 15 ISO IEC 14496 15 2004 2022 40 2023 41 Part 15 Carriage of network abstraction layer NAL unit structured video in the ISO base media file format For storage of Part 10 video File format is based on Part 12 but also allows storage in other file formats Part 16 ISO IEC 14496 16 2004 2011 42 2016 43 Animation Framework eXtension AFX It specifies MPEG 4 Animation Framework eXtension AFX model for representing 3D Graphics content MPEG 4 is extended with higher level synthetic objects for specifying geometry texture animation and dedicated compression algorithms Part 17 ISO IEC 14496 17 2006 2006 44 Streaming text format Timed Text subtitle format Part 18 ISO IEC 14496 18 2004 2004 45 2014 Font compression and streaming For Open Font Format defined in Part 22 Part 19 ISO IEC 14496 19 2004 2004 46 Synthesized texture stream Synthesized texture streams are used for creation of very low bitrate synthetic video clips Part 20 ISO IEC 14496 20 2006 2008 47 2010 Lightweight Application Scene Representation LASeR and Simple Aggregation Format SAF LASeR requirements compression efficiency code and memory footprint are fulfilled by building upon the existing the Scalable Vector Graphics SVG format defined by the World Wide Web Consortium 48 Part 21 ISO IEC 14496 21 2006 2006 49 MPEG J Graphics Framework eXtensions GFX Describes a lightweight programmatic environment for advanced interactive multimedia applications a framework that marries a subset of the MPEG standard Java application environment MPEG J with a Java API 25 49 50 51 at FCD stage in July 2005 FDIS January 2006 published as ISO standard on 2006 11 22 Part 22 ISO IEC 14496 22 2007 2015 52 2017 Open Font Format OFFS is based on the OpenType version 1 4 font format specification and is technically equivalent to that specification 53 54 Reached CD stage in July 2005 published as ISO standard in 2007 Part 23 ISO IEC 14496 23 2008 2008 55 Symbolic Music Representation SMR Reached FCD stage in October 2006 published as ISO standard in 2008 01 28 Part 24 ISO IEC TR 14496 24 2008 2008 56 Audio and systems interaction Describes the desired joint behavior of MPEG 4 File Format and MPEG 4 Audio Part 25 ISO IEC 14496 25 2009 2011 57 3D Graphics Compression Model Defines a model for connecting 3D Graphics Compression tools defined in MPEG 4 standards to graphics primitives defined in any other standard or specification Part 26 ISO IEC 14496 26 2010 2010 58 2016 Audio Conformance Part 27 ISO IEC 14496 27 2009 2009 59 2015 60 3D Graphics conformance 3D Graphics Conformance summarizes the requirements cross references them to characteristics and defines how conformance with them can be tested Guidelines are given on constructing tests to verify decoder conformance Part 28 ISO IEC 14496 28 2012 2012 61 Composite font representation Part 29 ISO IEC 14496 29 2014 2015 Web video coding Text of Part 29 is derived from Part 10 ISO IEC 14496 10 Web video coding is a technology that is compatible with the Constrained Baseline Profile of ISO IEC 14496 10 the subset that is specified in Annex A for Constrained Baseline is a normative specification while all remaining parts are informative Part 30 ISO IEC 14496 30 2014 2014 Timed text and other visual overlays in ISO base media file format It describes the carriage of some forms of timed text and subtitle streams in files based on ISO IEC 14496 12 W3C Timed Text Markup Language 1 0 W3C WebVTT Web Video Text Tracks The documentation of these forms does not preclude other definition of carriage of timed text or subtitles see for example 3GPP Timed Text 3GPP TS 26 245 Part 31 ISO IEC 14496 31 Under development 2018 05 Video Coding for Browsers Video Coding for Browsers VCB a video compression technology that is intended for use within World Wide Web browser Part 32 ISO IEC CD 14496 32 Under development Conformance and reference software Part 33 ISO IEC FDIS 14496 33 Under development Internet video coding Profiles are also defined within the individual parts so an implementation of a part is ordinarily not an implementation of an entire part MPEG 1 MPEG 2 MPEG 7 and MPEG 21 are other suites of MPEG standards Licensing editFurther information MPEG 4 Part 2 Patent holders MPEG 4 contains patented technologies the use of which requires licensing in countries that acknowledge software algorithm patents Over two dozen companies claim to have patents covering MPEG 4 MPEG LA 62 licenses patents required for MPEG 4 Part 2 Visual from a wide range of companies audio is licensed separately and lists all of its licensors and licensees on the site New licenses for MPEG 4 System patents are under development 63 and no new licenses are being offered while holders of its old MPEG 4 Systems license are still covered under the terms of that license for the patents listed MPEG LA Patent List The majority of patents used for the MPEG 4 Visual format are held by three Japanese companies Mitsubishi Electric 255 patents Hitachi 206 patents and Panasonic 200 patents See also editMPEG MPEG 4 Structured Audio MPEG 4 SLS ISO IEC JTC 1 SC 29References edit Ebrahimi Touradj Pereira Fernando 2002 The MPEG 4 Book Prentice Hall Professional ISBN 9780130616210 Wiegand T Sullican G J Bjontegaard G Luthra A 2003 Overview of the H 264 AVC video coding standard IEEE Transactions on Circuits and Systems for Video Technology 13 7 560 576 doi 10 1109 TCSVT 2003 815165 a b c d e MacKie David Singer David Meer Jan Van der Swaminathan Viswanathan Gentric Philippe December 2003 RFC 3640 IETF p 31 MPEG MPEG standards Full list of standards developed or under development Chiariglione Archived from the original on 2010 04 20 Retrieved 2010 02 09 ISO IEC JTC 1 SC 29 2009 11 09 Programme of Work MPEG 4 Coding of audio visual objects Archived from the original on 2013 12 31 Retrieved 2009 11 10 a href Template Cite web html title Template Cite web cite web a CS1 maint numeric names authors list link ISO IEC 14496 1 2010 Information technology Coding of audio visual objects Part 1 Systems Retrieved 2017 08 30 ISO ISO IEC 14496 1 2010 Amd 2 2014 Support for raw audio visual data Retrieved 2017 08 30 ISO IEC 2004 11 15 ISO IEC 14496 1 2004 Third edition 2004 11 15 Information technology Coding of audio visual objects Part 1 Systems PDF archived from the original PDF on 2017 08 31 retrieved 2010 04 11 WG11 MPEG March 2002 Overview of the MPEG 4 Standard Retrieved 2010 04 11 a href Template Cite web html title Template Cite web cite web a CS1 maint numeric names authors list link WG11 1997 11 21 Text for CD 14496 1 Systems MS Word doc retrieved 2010 04 11 a href Template Citation html title Template Citation citation a CS1 maint numeric names authors list link MPEG 4 Systems Elementary Stream Management ESM July 2001 Retrieved 2010 04 11 MPEG Systems 1 2 4 7 FAQ Version 17 0 July 2001 Retrieved 2010 04 11 ISO IEC 14496 2 2004 Information technology Coding of audio visual objects Part 2 Visual ISO Retrieved 2017 08 30 ISO IEC 14496 3 2009 Information technology Coding of audio visual objects Part 3 Audio ISO Retrieved 2017 08 30 ISO IEC 14496 3 2009 Amd 6 2017 Profiles levels and downmixing method for 22 2 channel programs ISO 2017 Retrieved 2017 08 30 ISO IEC 14496 4 2004 Information technology Coding of audio visual objects Part 4 Conformance testing ISO Retrieved 2017 08 30 ISO IEC 14496 5 2001 Information technology Coding of audio visual objects Part 5 Reference software ISO Retrieved 2017 08 30 ISO IEC 14496 6 2000 Information technology Coding of audio visual objects Part 6 Delivery Multimedia Integration Framework DMIF ISO Retrieved 2017 08 30 ISO IEC TR 14496 7 2004 Information technology Coding of audio visual objects Part 7 Optimized reference software for coding of audio visual objects ISO Retrieved 2017 08 30 ISO IEC 14496 8 2004 Information technology Coding of audio visual objects Part 8 Carriage of ISO IEC 14496 contents over IP networks ISO Retrieved 2017 08 30 ISO IEC TR 14496 9 2009 Information technology Coding of audio visual objects Part 9 Reference hardware description ISO Retrieved 2017 08 30 ISO IEC 14496 10 2014 Information technology Coding of audio visual objects Part 10 Advanced Video Coding ISO Retrieved 2017 08 30 ISO IEC 14496 10 2014 Amd 3 2016 Constrained Additional supplemental enhancement information ISO Retrieved 2017 08 30 a b ISO IEC 14496 11 2015 Information technology Coding of audio visual objects Part 11 Scene description and application engine ISO Retrieved 2017 08 30 a b MPEG J White Paper July 2005 Retrieved 2010 04 11 ISO IEC 14496 12 2015 Information technology Coding of audio visual objects Part 12 ISO base media file format ISO Retrieved 2014 01 19 ISO ISO IEC 14496 12 2015 Amd 1 2017 DRC Extensions Retrieved 2017 08 30 ISO IEC 14496 13 2004 Information technology Coding of audio visual objects Part 13 Intellectual Property Management and Protection IPMP extensions ISO Retrieved 2017 08 30 MPEG March 2002 FPDAM ISO IEC 14496 1 2001 AMD3 Final Proposed Draft Amendment archived from the original MS Word doc on 2014 05 12 retrieved 2010 08 01 MPEG 4 IPMPX white paper MPEG July 2005 Retrieved 2010 08 01 MPEG Intellectual Property Management and Protection MPEG April 2009 Retrieved 2010 08 01 MPEG 4 IPMP Extension For Interoperable Protection of Multimedia Content PDF 2004 archived from the original PDF on 2010 06 18 retrieved 2010 08 01 MPEG Registration Authority IPMP MPEG RA International Agency CISAC Archived from the original on 2007 06 16 Retrieved 2010 08 01 MPEG RA FAQ IPMP MPEG RA International Agency CISAC Retrieved 2010 08 01 permanent dead link Intellectual Property Management and Protection Registration Authority CISAC 2004 12 05 Archived from the original on 2004 12 05 Retrieved 2010 08 01 Chiariglione Leonardo 2003 Digital media Can content business and users coexist Torino IT Telecom Italia Lab archived from the original on 2011 07 25 retrieved 2010 08 01 IPMP in MPEG W3C DRM workshop 22 23 January 2001 PPT retrieved 2010 08 01 ISO ISO IEC 14496 14 2003 Information technology Coding of audio visual objects Part 14 MP4 file format Retrieved 2017 08 30 ISO IEC 14496 14 2003 Amd 1 2010 Handling of MPEG 4 audio enhancement layers ISO Retrieved 2017 08 30 ISO IEC 14496 15 2022 Information technology Coding of audio visual objects Part 15 Carriage of network abstraction layer NAL unit structured video in the ISO base media file format ISO Retrieved 2023 12 07 ISO IEC 14496 15 2022 Amd 1 2023 Information technology Coding of audio visual objects Part 15 Carriage of network abstraction layer NAL unit structured video in the ISO base media file format Amendment 1 Support for LCEVC ISO Retrieved 2023 12 07 ISO IEC 14496 16 2011 Information technology Coding of audio visual objects Part 16 Animation Framework eXtension AFX ISO Retrieved 2017 08 30 ISO IEC 14496 16 2011 Amd 3 2016 Printing material and 3D graphics coding for browsers Retrieved 2017 08 30 ISO IEC 14496 17 2006 Information technology Coding of audio visual objects Part 17 Streaming text format ISO Retrieved 2017 08 30 ISO IEC 14496 18 2004 Information technology Coding of audio visual objects Part 18 Font compression and streaming ISO Retrieved 2017 08 30 ISO IEC 14496 19 2004 Information technology Coding of audio visual objects Part 19 Synthesized texture stream ISO Retrieved 2017 08 30 ISO IEC 14496 20 2008 Information technology Coding of audio visual objects Part 20 Lightweight Application Scene Representation LASeR and Simple Aggregation Format SAF ISO Retrieved 2017 08 30 MPEG 4 LASeR white paper July 2005 Retrieved 2010 04 11 a b ISO IEC 14496 21 2006 Information technology Coding of audio visual objects Part 21 MPEG J Graphics Framework eXtensions GFX ISO Retrieved 2017 08 30 MPEG 4 Systems MPEG J July 2001 Retrieved 2010 04 11 MPEG J GFX white paper July 2005 Retrieved 2010 04 11 ISO IEC 14496 22 2009 Information technology Coding of audio visual objects Part 22 Open Font Format ISO Retrieved 2017 08 30 ISO IEC JTC 1 SC 29 WG 11 July 2008 ISO IEC 14496 22 Open Font Format Chiariglione Retrieved 2010 02 09 a href Template Cite web html title Template Cite web cite web a CS1 maint numeric names authors list link ISO IEC 14496 22 Information technology Coding of audio visual objects Part 22 Open Font Format Zip first ed 2007 03 15 Retrieved 2010 01 28 ISO IEC 14496 23 2008 Information technology Coding of audio visual objects Part 23 Symbolic Music Representation ISO Retrieved 2017 08 30 ISO IEC TR 14496 24 2008 Information technology Coding of audio visual objects Part 24 Audio and systems interaction ISO Retrieved 2017 08 30 ISO IEC 14496 25 2011 Information technology Coding of audio visual objects Part 25 3D Graphics Compression Model ISO Retrieved 2017 08 30 ISO IEC 14496 26 2010 Information technology Coding of audio visual objects Part 26 Audio conformance ISO Retrieved 2017 08 30 ISO IEC 14496 27 2009 Information technology Coding of audio visual objects Part 27 3D Graphics conformance ISO Retrieved 2017 08 30 ISO ISO IEC 14496 27 2009 Amd 6 2015 Pattern based 3D mesh coding conformance Retrieved 2017 08 30 ISO IEC CD 14496 28 Information technology Coding of audio visual objects Part 28 Composite font representation ISO Retrieved 2017 08 30 MPEG Licensing Authority MPEG 4 Visual Introduction Archived from the original on 2018 06 26 Retrieved 2011 01 07 MPEG Licensing Authority MPEG 4 Systems Introduction Archived from the original on 2011 01 22 Retrieved 2011 01 07 External links editOverview of the MPEG 4 Standard at the MPEG Official Website MPEG Industry Forum MPEGIF MPEG 4 page at archive today archived 2012 10 22 MPEG Industry Forum MPEGIF MPEG 4 White Paper at the Library of Congress Web Archives archived 2010 01 08 JM MPEG 4 AVC H 264 Reference Code OpenIPMP Open Source DRM Project for MPEG 4 Retrieved from https en wikipedia org w index php title MPEG 4 amp oldid 1189139209, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.