fbpx
Wikipedia

London dispersion force

London dispersion forces (LDF, also known as dispersion forces, London forces, instantaneous dipole–induced dipole forces, fluctuating induced dipole bonds[1] or loosely as van der Waals forces) are a type of intermolecular force acting between atoms and molecules that are normally electrically symmetric; that is, the electrons are symmetrically distributed with respect to the nucleus.[2] They are part of the van der Waals forces. The LDF is named after the German physicist Fritz London. They are the weakest intermolecular force.

Interaction energy of an argon dimer. The long-range section is due to London dispersion forces.

Introduction edit

The electron distribution around an atom or molecule undergoes fluctuations in time. These fluctuations create instantaneous electric fields which are felt by other nearby atoms and molecules, which in turn adjust the spatial distribution of their own electrons. The net effect is that the fluctuations in electron positions in one atom induce a corresponding redistribution of electrons in other atoms, such that the electron motions become correlated. While the detailed theory requires a quantum-mechanical explanation (see quantum mechanical theory of dispersion forces), the effect is frequently described as the formation of instantaneous dipoles that (when separated by vacuum) attract each other. The magnitude of the London dispersion force is frequently described in terms of a single parameter called the Hamaker constant, typically symbolized  . For atoms that are located closer together than the wavelength of light, the interaction is essentially instantaneous and is described in terms of a "non-retarded" Hamaker constant. For entities that are farther apart, the finite time required for the fluctuation at one atom to be felt at a second atom ("retardation") requires use of a "retarded" Hamaker constant.[3][4][5]

While the London dispersion force between individual atoms and molecules is quite weak and decreases quickly with separation   like  , in condensed matter (liquids and solids), the effect is cumulative over the volume of materials,[6] or within and between organic molecules, such that London dispersion forces can be quite strong in bulk solid and liquids and decay much more slowly with distance. For example, the total force per unit area between two bulk solids decreases by  [7] where   is the separation between them. The effects of London dispersion forces are most obvious in systems that are very non-polar (e.g., that lack ionic bonds), such as hydrocarbons and highly symmetric molecules like bromine (Br2, a liquid at room temperature) or iodine (I2, a solid at room temperature). In hydrocarbons and waxes, the dispersion forces are sufficient to cause condensation from the gas phase into the liquid or solid phase. Sublimation heats of e.g. hydrocarbon crystals reflect the dispersion interaction. Liquification of oxygen and nitrogen gases into liquid phases is also dominated by attractive London dispersion forces.

When atoms/molecules are separated by a third medium (rather than vacuum), the situation becomes more complex. In aqueous solutions, the effects of dispersion forces between atoms or molecules are frequently less pronounced due to competition with polarizable solvent molecules. That is, the instantaneous fluctuations in one atom or molecule are felt both by the solvent (water) and by other molecules.

Larger and heavier atoms and molecules exhibit stronger dispersion forces than smaller and lighter ones.[8] This is due to the increased polarizability of molecules with larger, more dispersed electron clouds. The polarizability is a measure of how easily electrons can be redistributed; a large polarizability implies that the electrons are more easily redistributed. This trend is exemplified by the halogens (from smallest to largest: F2, Cl2, Br2, I2). The same increase of dispersive attraction occurs within and between organic molecules in the order RF, RCl, RBr, RI (from smallest to largest) or with other more polarizable heteroatoms.[9] Fluorine and chlorine are gases at room temperature, bromine is a liquid, and iodine is a solid. The London forces are thought to arise from the motion of electrons.

Quantum mechanical theory edit

The first explanation of the attraction between noble gas atoms was given by Fritz London in 1930.[10][11][12] He used a quantum-mechanical theory based on second-order perturbation theory. The perturbation is because of the Coulomb interaction between the electrons and nuclei of the two moieties (atoms or molecules). The second-order perturbation expression of the interaction energy contains a sum over states. The states appearing in this sum are simple products of the stimulated electronic states of the monomers. Thus, no intermolecular antisymmetrization of the electronic states is included, and the Pauli exclusion principle is only partially satisfied.

London wrote a Taylor series expansion of the perturbation in  , where   is the distance between the nuclear centers of mass of the moieties.

This expansion is known as the multipole expansion because the terms in this series can be regarded as energies of two interacting multipoles, one on each monomer. Substitution of the multipole-expanded form of V into the second-order energy yields an expression that resembles an expression describing the interaction between instantaneous multipoles (see the qualitative description above). Additionally, an approximation, named after Albrecht Unsöld, must be introduced in order to obtain a description of London dispersion in terms of polarizability volumes,  , and ionization energies,  , (ancient term: ionization potentials).

In this manner, the following approximation is obtained for the dispersion interaction   between two atoms   and  . Here   and   are the polarizability volumes of the respective atoms. The quantities   and   are the first ionization energies of the atoms, and   is the intermolecular distance.

 

Note that this final London equation does not contain instantaneous dipoles (see molecular dipoles). The "explanation" of the dispersion force as the interaction between two such dipoles was invented after London arrived at the proper quantum mechanical theory. The authoritative work[13] contains a criticism of the instantaneous dipole model[14] and a modern and thorough exposition of the theory of intermolecular forces.

The London theory has much similarity to the quantum mechanical theory of light dispersion, which is why London coined the phrase "dispersion effect". In physics, the term "dispersion" describes the variation of a quantity with frequency, which is the fluctuation of the electrons in the case of the London dispersion.

Relative magnitude edit

Dispersion forces are usually dominant over the three van der Waals forces (orientation, induction, dispersion) between atoms and molecules, with the exception of molecules that are small and highly polar, such as water. The following contribution of the dispersion to the total intermolecular interaction energy has been given:[15]

Contribution of the dispersion to the total intermolecular interaction energy
Molecule pair % of the total energy of interaction
Ne-Ne 100
CH4-CH4 100
HCl-HCl 86
HBr-HBr 96
HI-HI 99
CH3Cl-CH3Cl 68
NH3-NH3 57
H2O-H2O 24
HCl-HI 96
H2O-CH4 87

See also edit

References edit

  1. ^ Callister, William (December 5, 2000). Fundamentals of Materials Science and Engineering: An Interactive e . Text. John Wiley & Sons, Inc. p. 25. ISBN 0-471-39551-X.
  2. ^ Callister, William D., Jr.; Callister, William D., Jr. (2001). Fundamentals of materials science and engineering : an interactive etext. New York: Wiley. ISBN 0-471-39551-X. OCLC 45162154.{{cite book}}: CS1 maint: multiple names: authors list (link)
  3. ^ Israelachvili, Jacob N. (2011), "Interactions of Biological Membranes and Structures", Intermolecular and Surface Forces, Elsevier, pp. 577–616, doi:10.1016/b978-0-12-375182-9.10021-1, ISBN 978-0-12-375182-9
  4. ^ Gelardi, G.; Flatt, R.J. (2016), "Working mechanisms of water reducers and superplasticizers", Science and Technology of Concrete Admixtures, Elsevier, pp. 257–278, doi:10.1016/b978-0-08-100693-1.00011-4, ISBN 978-0-08-100693-1
  5. ^ LIFSHITZ, E.M.; Hamermesh, M. (1992), "The theory of molecular attractive forces between solids", Perspectives in Theoretical Physics, Elsevier, pp. 329–349, doi:10.1016/b978-0-08-036364-6.50031-4, ISBN 9780080363646, retrieved 2022-08-29
  6. ^ Wagner, J.P.; Schreiner, P.R. (2015), "London dispersion in molecular chemistry — reconsidering steric effects", Angewandte Chemie International Edition, Wiley, 54 (42): 12274–12296, doi:10.1002/anie.201503476, PMID 26262562
  7. ^ Karlström, Gunnar; Jönsson, Bo (6 February 2013). "Intermolecular interactions" (PDF). Theoretical chemistry – Lund University. p. 45. (PDF) from the original on 18 September 2020. Retrieved 18 September 2020.
  8. ^ "London Dispersion Forces". Retrieved May 24, 2019.
  9. ^ Schneider,Hans-Jörg Dispersive Interactions in Solution Complexes Dispersive Interactions in Solution Complexes Acc. Chem. Res 2015, 48 , 1815–1822.[1]
  10. ^ R. Eisenschitz & F. London (1930), "Über das Verhältnis der van der Waalsschen Kräfte zu den homöopolaren Bindungskräften", Zeitschrift für Physik, 60 (7–8): 491–527, Bibcode:1930ZPhy...60..491E, doi:10.1007/BF01341258, S2CID 125644826
  11. ^ London, F. (1930), "Zur Theorie und Systematik der Molekularkräfte", Zeitschrift für Physik, 63 (3–4): 245, Bibcode:1930ZPhy...63..245L, doi:10.1007/BF01421741, S2CID 123122363. English translations in H. Hettema, ed. (2000), Quantum Chemistry, Classic Scientific Papers, Singapore: World Scientific, ISBN 981-02-2771-X, OCLC 898989103, OL 9194584M which is reviewed in Parr, Robert G. (2001), "Quantum Chemistry: Classic Scientific Papers", Physics Today, 54 (6): 63–64, Bibcode:2001PhT....54f..63H, doi:10.1063/1.1387598
  12. ^ F. London (1937), "The general theory of molecular forces", Transactions of the Faraday Society, 33: 8–26, doi:10.1039/tf937330008b
  13. ^ J. O. Hirschfelder; C. F. Curtiss & R. B. Bird (1954), Molecular Theory of Gases and Liquids, New York: Wiley
  14. ^ A. J. Stone (1996), The Theory of Intermolecular Forces, Oxford: Clarendon Press
  15. ^ Jacob Israelachvili (1992), Intermolecular and Surface Forces (2nd ed.), Academic Press

london, dispersion, force, also, known, dispersion, forces, london, forces, instantaneous, dipole, induced, dipole, forces, fluctuating, induced, dipole, bonds, loosely, waals, forces, type, intermolecular, force, acting, between, atoms, molecules, that, norma. London dispersion forces LDF also known as dispersion forces London forces instantaneous dipole induced dipole forces fluctuating induced dipole bonds 1 or loosely as van der Waals forces are a type of intermolecular force acting between atoms and molecules that are normally electrically symmetric that is the electrons are symmetrically distributed with respect to the nucleus 2 They are part of the van der Waals forces The LDF is named after the German physicist Fritz London They are the weakest intermolecular force Interaction energy of an argon dimer The long range section is due to London dispersion forces Contents 1 Introduction 2 Quantum mechanical theory 3 Relative magnitude 4 See also 5 ReferencesIntroduction editThe electron distribution around an atom or molecule undergoes fluctuations in time These fluctuations create instantaneous electric fields which are felt by other nearby atoms and molecules which in turn adjust the spatial distribution of their own electrons The net effect is that the fluctuations in electron positions in one atom induce a corresponding redistribution of electrons in other atoms such that the electron motions become correlated While the detailed theory requires a quantum mechanical explanation see quantum mechanical theory of dispersion forces the effect is frequently described as the formation of instantaneous dipoles that when separated by vacuum attract each other The magnitude of the London dispersion force is frequently described in terms of a single parameter called the Hamaker constant typically symbolized A displaystyle A nbsp For atoms that are located closer together than the wavelength of light the interaction is essentially instantaneous and is described in terms of a non retarded Hamaker constant For entities that are farther apart the finite time required for the fluctuation at one atom to be felt at a second atom retardation requires use of a retarded Hamaker constant 3 4 5 While the London dispersion force between individual atoms and molecules is quite weak and decreases quickly with separation R displaystyle R nbsp like 1 R 6 displaystyle frac 1 R 6 nbsp in condensed matter liquids and solids the effect is cumulative over the volume of materials 6 or within and between organic molecules such that London dispersion forces can be quite strong in bulk solid and liquids and decay much more slowly with distance For example the total force per unit area between two bulk solids decreases by 1 R 3 displaystyle frac 1 R 3 nbsp 7 where R displaystyle R nbsp is the separation between them The effects of London dispersion forces are most obvious in systems that are very non polar e g that lack ionic bonds such as hydrocarbons and highly symmetric molecules like bromine Br2 a liquid at room temperature or iodine I2 a solid at room temperature In hydrocarbons and waxes the dispersion forces are sufficient to cause condensation from the gas phase into the liquid or solid phase Sublimation heats of e g hydrocarbon crystals reflect the dispersion interaction Liquification of oxygen and nitrogen gases into liquid phases is also dominated by attractive London dispersion forces When atoms molecules are separated by a third medium rather than vacuum the situation becomes more complex In aqueous solutions the effects of dispersion forces between atoms or molecules are frequently less pronounced due to competition with polarizable solvent molecules That is the instantaneous fluctuations in one atom or molecule are felt both by the solvent water and by other molecules Larger and heavier atoms and molecules exhibit stronger dispersion forces than smaller and lighter ones 8 This is due to the increased polarizability of molecules with larger more dispersed electron clouds The polarizability is a measure of how easily electrons can be redistributed a large polarizability implies that the electrons are more easily redistributed This trend is exemplified by the halogens from smallest to largest F2 Cl2 Br2 I2 The same increase of dispersive attraction occurs within and between organic molecules in the order RF RCl RBr RI from smallest to largest or with other more polarizable heteroatoms 9 Fluorine and chlorine are gases at room temperature bromine is a liquid and iodine is a solid The London forces are thought to arise from the motion of electrons Quantum mechanical theory editThe first explanation of the attraction between noble gas atoms was given by Fritz London in 1930 10 11 12 He used a quantum mechanical theory based on second order perturbation theory The perturbation is because of the Coulomb interaction between the electrons and nuclei of the two moieties atoms or molecules The second order perturbation expression of the interaction energy contains a sum over states The states appearing in this sum are simple products of the stimulated electronic states of the monomers Thus no intermolecular antisymmetrization of the electronic states is included and the Pauli exclusion principle is only partially satisfied London wrote a Taylor series expansion of the perturbation in 1 R displaystyle frac 1 R nbsp where R displaystyle R nbsp is the distance between the nuclear centers of mass of the moieties This expansion is known as the multipole expansion because the terms in this series can be regarded as energies of two interacting multipoles one on each monomer Substitution of the multipole expanded form of V into the second order energy yields an expression that resembles an expression describing the interaction between instantaneous multipoles see the qualitative description above Additionally an approximation named after Albrecht Unsold must be introduced in order to obtain a description of London dispersion in terms of polarizability volumes a displaystyle alpha nbsp and ionization energies I displaystyle I nbsp ancient term ionization potentials In this manner the following approximation is obtained for the dispersion interaction E A B d i s p displaystyle E AB rm disp nbsp between two atoms A displaystyle A nbsp and B displaystyle B nbsp Here a A displaystyle alpha A nbsp and a B displaystyle alpha B nbsp are the polarizability volumes of the respective atoms The quantities I A displaystyle I A nbsp and I B displaystyle I B nbsp are the first ionization energies of the atoms and R displaystyle R nbsp is the intermolecular distance E A B d i s p 3 2 I A I B I A I B a A a B R 6 displaystyle E AB rm disp approx 3 over 2 I A I B over I A I B alpha A alpha B over R 6 nbsp Note that this final London equation does not contain instantaneous dipoles see molecular dipoles The explanation of the dispersion force as the interaction between two such dipoles was invented after London arrived at the proper quantum mechanical theory The authoritative work 13 contains a criticism of the instantaneous dipole model 14 and a modern and thorough exposition of the theory of intermolecular forces The London theory has much similarity to the quantum mechanical theory of light dispersion which is why London coined the phrase dispersion effect In physics the term dispersion describes the variation of a quantity with frequency which is the fluctuation of the electrons in the case of the London dispersion Relative magnitude editDispersion forces are usually dominant over the three van der Waals forces orientation induction dispersion between atoms and molecules with the exception of molecules that are small and highly polar such as water The following contribution of the dispersion to the total intermolecular interaction energy has been given 15 Contribution of the dispersion to the total intermolecular interaction energy Molecule pair of the total energy of interactionNe Ne 100CH4 CH4 100HCl HCl 86HBr HBr 96HI HI 99CH3Cl CH3Cl 68NH3 NH3 57H2O H2O 24HCl HI 96H2O CH4 87See also edit nbsp Chemistry portal nbsp Biology portalDispersion chemistry van der Waals force Noncovalent interactionsReferences edit Callister William December 5 2000 Fundamentals of Materials Science and Engineering An Interactive e Text John Wiley amp Sons Inc p 25 ISBN 0 471 39551 X Callister William D Jr Callister William D Jr 2001 Fundamentals of materials science and engineering an interactive etext New York Wiley ISBN 0 471 39551 X OCLC 45162154 a href Template Cite book html title Template Cite book cite book a CS1 maint multiple names authors list link Israelachvili Jacob N 2011 Interactions of Biological Membranes and Structures Intermolecular and Surface Forces Elsevier pp 577 616 doi 10 1016 b978 0 12 375182 9 10021 1 ISBN 978 0 12 375182 9 Gelardi G Flatt R J 2016 Working mechanisms of water reducers and superplasticizers Science and Technology of Concrete Admixtures Elsevier pp 257 278 doi 10 1016 b978 0 08 100693 1 00011 4 ISBN 978 0 08 100693 1 LIFSHITZ E M Hamermesh M 1992 The theory of molecular attractive forces between solids Perspectives in Theoretical Physics Elsevier pp 329 349 doi 10 1016 b978 0 08 036364 6 50031 4 ISBN 9780080363646 retrieved 2022 08 29 Wagner J P Schreiner P R 2015 London dispersion in molecular chemistry reconsidering steric effects Angewandte Chemie International Edition Wiley 54 42 12274 12296 doi 10 1002 anie 201503476 PMID 26262562 Karlstrom Gunnar Jonsson Bo 6 February 2013 Intermolecular interactions PDF Theoretical chemistry Lund University p 45 Archived PDF from the original on 18 September 2020 Retrieved 18 September 2020 London Dispersion Forces Retrieved May 24 2019 Schneider Hans Jorg Dispersive Interactions in Solution Complexes Dispersive Interactions in Solution Complexes Acc Chem Res 2015 48 1815 1822 1 R Eisenschitz amp F London 1930 Uber das Verhaltnis der van der Waalsschen Krafte zu den homoopolaren Bindungskraften Zeitschrift fur Physik 60 7 8 491 527 Bibcode 1930ZPhy 60 491E doi 10 1007 BF01341258 S2CID 125644826 London F 1930 Zur Theorie und Systematik der Molekularkrafte Zeitschrift fur Physik 63 3 4 245 Bibcode 1930ZPhy 63 245L doi 10 1007 BF01421741 S2CID 123122363 English translations in H Hettema ed 2000 Quantum Chemistry Classic Scientific Papers Singapore World Scientific ISBN 981 02 2771 X OCLC 898989103 OL 9194584M which is reviewed in Parr Robert G 2001 Quantum Chemistry Classic Scientific Papers Physics Today 54 6 63 64 Bibcode 2001PhT 54f 63H doi 10 1063 1 1387598 F London 1937 The general theory of molecular forces Transactions of the Faraday Society 33 8 26 doi 10 1039 tf937330008b J O Hirschfelder C F Curtiss amp R B Bird 1954 Molecular Theory of Gases and Liquids New York Wiley A J Stone 1996 The Theory of Intermolecular Forces Oxford Clarendon Press Jacob Israelachvili 1992 Intermolecular and Surface Forces 2nd ed Academic Press Retrieved from https en wikipedia org w index php title London dispersion force amp oldid 1136196176, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.