fbpx
Wikipedia

Lithium nickel manganese cobalt oxides

Lithium nickel manganese cobalt oxides (abbreviated NMC, Li-NMC, LNMC, or NCM) are mixed metal oxides of lithium, nickel, manganese and cobalt with the general formula LiNixMnyCo1-x-yO2. These materials are commonly used in lithium-ion batteries for mobile devices and electric vehicles, acting as the positively charged cathode.

A general schematic of a lithium-ion battery. Lithium ions intercalate into the cathode or anode during charging and discharging.

There is a particular interest in optimizing NMC for electric vehicle applications because of the material's high energy density and operating voltage. Reducing the cobalt content in NMC is also a current target, owing to ethical issues with cobalt mining and the metal's high cost.[1] Furthermore, an increased nickel content provides more capacity within the stable operation window.[2]

Structure edit

 
Example of a layered structure. Lithium ions can move in and out between the layers.

NMC materials have layered structures similar to the individual metal oxide compound lithium cobalt oxide (LiCoO2).[3] Lithium ions intercalate between the layers upon discharging, remaining between the lattice planes until the battery gets charged, at which point the lithium de-intercalates and moves to the anode.[4]

Points in a solid solution phase diagram between the end members LiCoO2, LiMnO2, and LiNiO2 represent stoichiometric NMC cathodes.[5] Three numbers immediately following the NMC abbreviation indicate the relative stoichiometry of the three defining metals. For example, an NMC molar composition of 33% nickel, 33% manganese, and 33% cobalt would abbreviate to NMC111 (also NMC333 or NCM333) and have a chemical formula of LiNi 0.33Mn0.33Co 0.33O2. A composition of 50% nickel, 30% manganese, and 20% cobalt would be called NMC532 (or NCM523) and have the formula LiNi0.5Mn0.3Co0.2O2. Other common compositions are NMC622 and NMC811.[4] The general lithium content typically remains around 1:1 with the total transition metal content, with commercial NMC samples usually containing less than 5% excess lithium.[6][7]

For NMC111, the ideal oxidation states for charge distribution are Mn4+, Co3+, and Ni2+. Cobalt and nickel oxidize partially to Co4+ and Ni4+ during charging, while Mn4+ remains inactive and maintains structural stability.[8] Modifying the transition metal stoichiometry changes the material's properties, providing a way to adjust cathode performance.[3] Most notably, increasing the nickel content in NMC increases its initial discharge capacity, but lowers its thermal stability and capacity retention. Increasing cobalt content comes at the cost of replacing either higher-energy nickel or chemically stable manganese while also being expensive. Oxygen can generate from the metal oxide at 300 °C when fully discharged, degrading the lattice. Higher nickel content decreases the oxygen generation temperature while also increasing the heat generation during battery operation.[3] Cation mixing, a process in which Li+ substitutes Ni2+ ions in the lattice, increases as nickel concentration increases as well.[9] The similar size of Ni2+ (0.69 Å) and Li+ (0.76 Å) facilitates cation mixing. Displacing nickel from the layered structure can alter the material's bonding characteristics, forming undesirable phases and lowering its capacity.[10][11]

Synthesis edit

The crystallinity, particle size distribution, morphology, and composition all affect the performance of NMC materials, and these parameters can be tuned by using different synthesis methods.[4][12] The first report of nickel manganese cobalt oxide used a coprecipitation method,[13] which is still commonly used today.[14] This method involves dissolving the desired amount of metal precursors together and then drying them to remove the solvent. This material is then blended with a lithium source and heated to temperatures up to 900 °C under oxygen in a process called calcination. Hydroxides, oxalic acid, and carbonates are the most common coprecipitation agents.[14]

Sol-gel methods are another common NMC synthesis method. In this method, transition metal precursors are dissolved in a nitrate or acetate solution, then combined with a lithium nitrate or lithium acetate and citric acid solution. This mixture is stirred and heated to about 80 °C under basic conditions until a viscous gel forms. The gel is dried at around 120 °C and calcined twice, once at 450 °C and again at 800-900 °C, to obtain NMC material.[12]

Hydrothermal treatment can be paired with either the coprecipitation or sol-gel routes. It involves heating the coprecipitate or gel precursors in an autoclave. The treated precursors are then filtered off and calcined normally. Hydrothermal treatments before calcination improves the crystallinity of NMC, which increases the material's performance in cells. However, this comes at the cost of longer material processing times.[12]

History edit

NMC cathode materials are historically related to John B. Goodenough's 1980s work on lithium cobalt oxide (LiCoO2),[15] and can be represented as an intergrowth between a layered NaFeO2-type oxide and a closely related lithium rich Li2MnO3 oxide whose amount is related to the initial lithium excess. The invention(s) of Li-rich NCM cathode material(s) was reported ca. 2000–2001 independently by four research teams:

  1. At Argonne National Laboratory in the USA a group led by Michael M. Thackeray[16][17] reported these lithium-rich cathodes with the intergrowth structure.
  2. At Pacific Lithium in New Zealand a team led by Brett Amundsen reported a series of Li(LixCryMnz)O2 layered electrochemically active compounds.[18]
  3. At Dalhousie University in Canada a team led by Jeff Dahn[19] reported a series of layered cathode materials based on a solid solution formulation of Li(LixMyMnz)O2, where metal M is not chromium.
  4. A group at Osaka City University led by Tsutomu Ohzuku,[20] who also developed lithium nickel cobalt aluminium oxides.

Properties edit

The cell voltage of lithium ion batteries with NMC cathodes is 3.6–3.7 V.[21]

Arumugam Manthiram has reported that the relative positioning of the metals' 3d bands to the oxygen 2p band leads to each metal's role within NMC cathode materials. The manganese 3d band is above the oxygen 2p band, resulting in manganese's high chemical stability. The cobalt and nickel 3d bands overlap the oxygen 2p band, allowing them to charge to their 4+ oxidation states without the oxygen ions losing electron density.[22]

Usage edit

 
Audi e-tron Sportback, a car that uses NMC-based batteries as a power source.

Many electric cars use NMC cathode batteries. NMC batteries were installed in the BMW ActiveE in 2011, and in the BMW i8 starting from 2013.[23] Other electric cars with NMC batteries include, as of 2020: Audi e-tron GE, BAIC EU5 R550, BMW i3, BYD Yuan EV535, Chevrolet Bolt, Hyundai Kona Electric, Jaguar I-Pace, Jiangling Motors JMC E200L, NIO ES6, Nissan Leaf S Plus, Renault ZOE, Roewe Ei5, VW e-Golf and VW ID.3.[24] Only a few electric car manufacturers do not use NMC cathodes in their traction batteries. Tesla is a significant exception, as they use nickel cobalt aluminium oxide and lithium iron phosphate batteries for their vehicles. In 2015, Elon Musk reported that the home storage Tesla Powerwall is based on NMC in order to increase the number of charge/discharge cycles over the life of the units.[24]

Mobile electronics such as mobile phones/smartphones, laptops, and pedelecs can also use NMC-based batteries.[25] These applications almost exclusively used lithium cobalt oxide batteries previously.[26] Another application of NMC batteries is battery storage power stations. Two such storage systems were installed in Korea in 2016 with a combined capacity of 15 MWh.[27] In 2017, a 35 MW NMC battery with a capacity of 11 MWh was installed and commissioned in Newman in the Australian state of Western Australia.[28][29]

See also edit

References edit

  1. ^ Warner, John T. (2019-01-01), Warner, John T. (ed.), "Chapter 8 - The materials", Lithium-Ion Battery Chemistries, Elsevier, pp. 171–217, doi:10.1016/b978-0-12-814778-8.00008-9, ISBN 978-0-12-814778-8, S2CID 239383589, retrieved 2023-04-02
  2. ^ Oswald, Stefan; Gasteiger, Hubert A. (2023-03-01). "The Structural Stability Limit of Layered Lithium Transition Metal Oxides Due to Oxygen Release at High State of Charge and Its Dependence on the Nickel Content". Journal of the Electrochemical Society. 170 (3): 030506. Bibcode:2023JElS..170c0506O. doi:10.1149/1945-7111/acbf80. ISSN 0013-4651. S2CID 258406065.
  3. ^ a b c Manthiram, Arumugam; Knight, James C.; Myung, Seung-Taek; Oh, Seung-Min; Sun, Yang-Kook (2015-10-07). "Nickel-Rich and Lithium-Rich Layered Oxide Cathodes: Progress and Perspectives". Advanced Energy Materials. 6 (1): 1501010. doi:10.1002/aenm.201501010. S2CID 97342610.
  4. ^ a b c Warner, John T. (2019-01-01), Warner, John T. (ed.), "Chapter 5 - The Cathodes", Lithium-Ion Battery Chemistries, Elsevier, pp. 99–114, doi:10.1016/b978-0-12-814778-8.00005-3, ISBN 978-0-12-814778-8, S2CID 239420965, retrieved 2023-04-02
  5. ^ Houchins, Gregory; Viswanathan, Venkatasubramanian (2020-01-01). "Towards Ultra Low Cobalt Cathodes: A High Fidelity Computational Phase Search of Layered Li-Ni-Mn-Co Oxides". Journal of the Electrochemical Society. 167 (7): 070506. arXiv:1805.08171. Bibcode:2020JElS..167g0506H. doi:10.1149/2.0062007JES. ISSN 0013-4651. S2CID 201303669.
  6. ^ Julien, Christian; Mauger, Alain; Zaghib, Karim; Groult, Henri (2016-07-19). "Optimization of Layered Cathode Materials for Lithium-Ion Batteries". Materials. 9 (7): 595. Bibcode:2016Mate....9..595J. doi:10.3390/ma9070595. ISSN 1996-1944. PMC 5456936. PMID 28773717.
  7. ^ Li, Xuemin; Colclasure, Andrew M.; Finegan, Donal P.; Ren, Dongsheng; Shi, Ying; Feng, Xuning; Cao, Lei; Yang, Yuan; Smith, Kandler (2019-02-20). "Degradation mechanisms of high capacity 18650 cells containing Si-graphite anode and nickel-rich NMC cathode". Electrochimica Acta. 297: 1109–1120. doi:10.1016/j.electacta.2018.11.194. OSTI 1491439. S2CID 104299816.
  8. ^ Yoon, Won-Sub; Grey, Clare P.; Balasubramanian, Mahalingam; Yang, Xiao-Qing; Fischer, Daniel A.; McBreen, James (2004). "Combined NMR and XAS Study on Local Environments and Electronic Structures of Electrochemically Li-Ion Deintercalated Li[sub 1−x]Co[sub 1/3]Ni[sub 1/3]Mn[sub 1/3]O[sub 2] Electrode System". Electrochemical and Solid-State Letters. 7 (3): A53. doi:10.1149/1.1643592.
  9. ^ Zhang, Xiaoyu; Jiang, W. J.; Mauger, A.; Qilu; Gendron, F.; Julien, C. M. (2010-03-01). "Minimization of the cation mixing in Li1+x(NMC)1−xO2 as cathode material". Journal of Power Sources. 195 (5): 1292–1301. Bibcode:2010JPS...195.1292Z. doi:10.1016/j.jpowsour.2009.09.029. ISSN 0378-7753.
  10. ^ Xu, Bo; Fell, Christopher R.; Chi, Miaofang; Meng, Ying Shirley (2011). "Identifying surface structural changes in layered Li-excess nickel manganese oxides in high voltage lithium ion batteries: A joint experimental and theoretical study". Energy & Environmental Science. 4 (6): 2223. doi:10.1039/c1ee01131f. ISSN 1754-5692.
  11. ^ Zhao, Enyue; Fang, Lincan; Chen, Minmin; Chen, Dongfeng; Huang, Qingzhen; Hu, Zhongbo; Yan, Qing-bo; Wu, Meimei; Xiao, Xiaoling (2017-01-24). "New insight into Li/Ni disorder in layered cathode materials for lithium ion batteries: a joint study of neutron diffraction, electrochemical kinetic analysis and first-principles calculations". Journal of Materials Chemistry A. 5 (4): 1679–1686. doi:10.1039/C6TA08448F. ISSN 2050-7496.
  12. ^ a b c Malik, Monu; Chan, Ka Ho; Azimi, Gisele (2022-08-01). "Review on the synthesis of LiNixMnyCo1-x-yO2 (NMC) cathodes for lithium-ion batteries". Materials Today Energy. 28: 101066. doi:10.1016/j.mtener.2022.101066. ISSN 2468-6069. S2CID 249483077.
  13. ^ Liu, Zhaolin; Yu, Aishui; Lee, Jim Y (1999-09-01). "Synthesis and characterization of LiNi1−x−yCoxMnyO2 as the cathode materials of secondary lithium batteries". Journal of Power Sources. 81–82: 416–419. Bibcode:1999JPS....81..416L. doi:10.1016/S0378-7753(99)00221-9. ISSN 0378-7753.
  14. ^ a b Dong, Hongxu; Koenig, Gary M. (2020). "A review on synthesis and engineering of crystal precursors produced via coprecipitation for multicomponent lithium-ion battery cathode materials". CrystEngComm. 22 (9): 1514–1530. doi:10.1039/C9CE00679F. ISSN 1466-8033. S2CID 198357149.
  15. ^ Mizushima, K.; Jones, P. C.; Wiseman, P. J.; Goodenough, J. B. (1980-06-01). "LixCoO2 (0". Materials Research Bulletin. 15 (6): 783–789. doi:10.1016/0025-5408(80)90012-4. ISSN 0025-5408. S2CID 97799722.
  16. ^ US6677082B2, Thackeray, Michael M.; Johnson, Christopher S. & Amine, Khalil et al., "Lithium metal oxide electrodes for lithium cells and batteries", issued 2004-01-13 
  17. ^ US6680143B2, Thackeray, Michael M.; Johnson, Christopher S. & Amine, Khalil et al., "Lithium metal oxide electrodes for lithium cells and batteries", issued 2004-01-20 
  18. ^ Ammundsen, B.; Desilvestro, J.; Groutso, T.; Hassel, D.; Metsen, J.B.; Regan, E.; Steiner, R.; Pickering, P.J. (1999-12-01). "Solid State Synthesis and Properties of Doped LiMnO2 Cathode Materials". MRS Online Proceedings Library. 575: 49–589. doi:10.1557/PROC-575-49.
  19. ^ US6964828B2, Lu, Zhonghua & Dahn, Jeffrey R., "Cathode compositions for lithium-ion batteries", issued 2005-11-15 
  20. ^ Makimura, Yoshinari; Ohzuku, Tsutomu (2003-06-01). "Lithium insertion material of LiNi1/2Mn1/2O2 for advanced lithium-ion batteries". Journal of Power Sources. Selected papers presented at the 11th International Meeting on Lithium Batteries. 119–121: 156–160. Bibcode:2003JPS...119..156M. doi:10.1016/S0378-7753(03)00170-8. ISSN 0378-7753.
  21. ^ Miller, Peter (2015-01-01). "Automotive Lithium-Ion Batteries". Johnson Matthey Technology Review. 59 (1): 4–13. doi:10.1595/205651315X685445.
  22. ^ Manthiram, Arumugam (2020-03-25). "A reflection on lithium-ion battery cathode chemistry". Nature Communications. 11 (1): 1550. Bibcode:2020NatCo..11.1550M. doi:10.1038/s41467-020-15355-0. ISSN 2041-1723. PMC 7096394. PMID 32214093. S2CID 256644096.
  23. ^ Sakti, Apurba; Michalek, Jeremy J.; Fuchs, Erica R. H.; Whitacre, Jay F. (2015-01-01). "A techno-economic analysis and optimization of Li-ion batteries for light-duty passenger vehicle electrification". Journal of Power Sources. 273: 966–980. Bibcode:2015JPS...273..966S. doi:10.1016/j.jpowsour.2014.09.078. ISSN 0378-7753.
  24. ^ a b Li, Wangda; Erickson, Evan M.; Manthiram, Arumugam (2020-01-13). "High-nickel layered oxide cathodes for lithium-based automotive batteries". Nature Energy. 5 (1): 26–34. Bibcode:2020NatEn...5...26L. doi:10.1038/s41560-019-0513-0. ISSN 2058-7546. S2CID 256706287.
  25. ^ Jürgen Garche; Klaus Brandt, eds. (2019). Li-battery safety. Amsterdam, Netherlands: Elsevier. ISBN 978-0-444-64008-6. OCLC 1054022372.
  26. ^ Patoux, Sébastien; Sannier, Lucas; Lignier, Hélène; Reynier, Yvan; Bourbon, Carole; Jouanneau, Séverine; Le Cras, Frédéric; Martinet, Sébastien (2008-05-01). "High voltage nickel manganese spinel oxides for Li-ion batteries". Electrochimica Acta. 53 (12): 4137–4145. doi:10.1016/j.electacta.2007.12.054. ISSN 0013-4686.
  27. ^ Kokam (March 7, 2016). "Kokam's 56 Megawatt Energy Storage Project Features World's Largest Lithium NMC Energy Storage System for Frequency Regulation". PR Newswire. Retrieved April 2, 2023.
  28. ^ Giles Parkinson (2019-08-12). "Alinta sees sub 5-year payback for unsubsidised big battery at Newman". RenewEconomy.
  29. ^ (PDF). Archived from the original (PDF) on 2020-02-23. Retrieved 2020-03-01.

lithium, nickel, manganese, cobalt, oxides, abbreviated, lnmc, mixed, metal, oxides, lithium, nickel, manganese, cobalt, with, general, formula, linixmnyco1, these, materials, commonly, used, lithium, batteries, mobile, devices, electric, vehicles, acting, pos. Lithium nickel manganese cobalt oxides abbreviated NMC Li NMC LNMC or NCM are mixed metal oxides of lithium nickel manganese and cobalt with the general formula LiNixMnyCo1 x yO2 These materials are commonly used in lithium ion batteries for mobile devices and electric vehicles acting as the positively charged cathode A general schematic of a lithium ion battery Lithium ions intercalate into the cathode or anode during charging and discharging There is a particular interest in optimizing NMC for electric vehicle applications because of the material s high energy density and operating voltage Reducing the cobalt content in NMC is also a current target owing to ethical issues with cobalt mining and the metal s high cost 1 Furthermore an increased nickel content provides more capacity within the stable operation window 2 Contents 1 Structure 2 Synthesis 3 History 4 Properties 5 Usage 6 See also 7 ReferencesStructure edit nbsp Example of a layered structure Lithium ions can move in and out between the layers NMC materials have layered structures similar to the individual metal oxide compound lithium cobalt oxide LiCoO2 3 Lithium ions intercalate between the layers upon discharging remaining between the lattice planes until the battery gets charged at which point the lithium de intercalates and moves to the anode 4 Points in a solid solution phase diagram between the end members LiCoO2 LiMnO2 and LiNiO2 represent stoichiometric NMC cathodes 5 Three numbers immediately following the NMC abbreviation indicate the relative stoichiometry of the three defining metals For example an NMC molar composition of 33 nickel 33 manganese and 33 cobalt would abbreviate to NMC111 also NMC333 or NCM333 and have a chemical formula of LiNi 0 33Mn0 33Co 0 33O2 A composition of 50 nickel 30 manganese and 20 cobalt would be called NMC532 or NCM523 and have the formula LiNi0 5Mn0 3Co0 2O2 Other common compositions are NMC622 and NMC811 4 The general lithium content typically remains around 1 1 with the total transition metal content with commercial NMC samples usually containing less than 5 excess lithium 6 7 For NMC111 the ideal oxidation states for charge distribution are Mn4 Co3 and Ni2 Cobalt and nickel oxidize partially to Co4 and Ni4 during charging while Mn4 remains inactive and maintains structural stability 8 Modifying the transition metal stoichiometry changes the material s properties providing a way to adjust cathode performance 3 Most notably increasing the nickel content in NMC increases its initial discharge capacity but lowers its thermal stability and capacity retention Increasing cobalt content comes at the cost of replacing either higher energy nickel or chemically stable manganese while also being expensive Oxygen can generate from the metal oxide at 300 C when fully discharged degrading the lattice Higher nickel content decreases the oxygen generation temperature while also increasing the heat generation during battery operation 3 Cation mixing a process in which Li substitutes Ni2 ions in the lattice increases as nickel concentration increases as well 9 The similar size of Ni2 0 69 A and Li 0 76 A facilitates cation mixing Displacing nickel from the layered structure can alter the material s bonding characteristics forming undesirable phases and lowering its capacity 10 11 Synthesis editThe crystallinity particle size distribution morphology and composition all affect the performance of NMC materials and these parameters can be tuned by using different synthesis methods 4 12 The first report of nickel manganese cobalt oxide used a coprecipitation method 13 which is still commonly used today 14 This method involves dissolving the desired amount of metal precursors together and then drying them to remove the solvent This material is then blended with a lithium source and heated to temperatures up to 900 C under oxygen in a process called calcination Hydroxides oxalic acid and carbonates are the most common coprecipitation agents 14 Sol gel methods are another common NMC synthesis method In this method transition metal precursors are dissolved in a nitrate or acetate solution then combined with a lithium nitrate or lithium acetate and citric acid solution This mixture is stirred and heated to about 80 C under basic conditions until a viscous gel forms The gel is dried at around 120 C and calcined twice once at 450 C and again at 800 900 C to obtain NMC material 12 Hydrothermal treatment can be paired with either the coprecipitation or sol gel routes It involves heating the coprecipitate or gel precursors in an autoclave The treated precursors are then filtered off and calcined normally Hydrothermal treatments before calcination improves the crystallinity of NMC which increases the material s performance in cells However this comes at the cost of longer material processing times 12 History editNMC cathode materials are historically related to John B Goodenough s 1980s work on lithium cobalt oxide LiCoO2 15 and can be represented as an intergrowth between a layered NaFeO2 type oxide and a closely related lithium rich Li2MnO3 oxide whose amount is related to the initial lithium excess The invention s of Li rich NCM cathode material s was reported ca 2000 2001 independently by four research teams At Argonne National Laboratory in the USA a group led by Michael M Thackeray 16 17 reported these lithium rich cathodes with the intergrowth structure At Pacific Lithium in New Zealand a team led by Brett Amundsen reported a series of Li LixCryMnz O2 layered electrochemically active compounds 18 At Dalhousie University in Canada a team led by Jeff Dahn 19 reported a series of layered cathode materials based on a solid solution formulation of Li LixMyMnz O2 where metal M is not chromium A group at Osaka City University led by Tsutomu Ohzuku 20 who also developed lithium nickel cobalt aluminium oxides Properties editThe cell voltage of lithium ion batteries with NMC cathodes is 3 6 3 7 V 21 Arumugam Manthiram has reported that the relative positioning of the metals 3d bands to the oxygen 2p band leads to each metal s role within NMC cathode materials The manganese 3d band is above the oxygen 2p band resulting in manganese s high chemical stability The cobalt and nickel 3d bands overlap the oxygen 2p band allowing them to charge to their 4 oxidation states without the oxygen ions losing electron density 22 Usage edit nbsp Audi e tron Sportback a car that uses NMC based batteries as a power source Many electric cars use NMC cathode batteries NMC batteries were installed in the BMW ActiveE in 2011 and in the BMW i8 starting from 2013 23 Other electric cars with NMC batteries include as of 2020 Audi e tron GE BAIC EU5 R550 BMW i3 BYD Yuan EV535 Chevrolet Bolt Hyundai Kona Electric Jaguar I Pace Jiangling Motors JMC E200L NIO ES6 Nissan Leaf S Plus Renault ZOE Roewe Ei5 VW e Golf and VW ID 3 24 Only a few electric car manufacturers do not use NMC cathodes in their traction batteries Tesla is a significant exception as they use nickel cobalt aluminium oxide and lithium iron phosphate batteries for their vehicles In 2015 Elon Musk reported that the home storage Tesla Powerwall is based on NMC in order to increase the number of charge discharge cycles over the life of the units 24 Mobile electronics such as mobile phones smartphones laptops and pedelecs can also use NMC based batteries 25 These applications almost exclusively used lithium cobalt oxide batteries previously 26 Another application of NMC batteries is battery storage power stations Two such storage systems were installed in Korea in 2016 with a combined capacity of 15 MWh 27 In 2017 a 35 MW NMC battery with a capacity of 11 MWh was installed and commissioned in Newman in the Australian state of Western Australia 28 29 See also editLithium ion battery Lithium cobalt oxide Lithium iron phosphate Karim ZaghibReferences edit Warner John T 2019 01 01 Warner John T ed Chapter 8 The materials Lithium Ion Battery Chemistries Elsevier pp 171 217 doi 10 1016 b978 0 12 814778 8 00008 9 ISBN 978 0 12 814778 8 S2CID 239383589 retrieved 2023 04 02 Oswald Stefan Gasteiger Hubert A 2023 03 01 The Structural Stability Limit of Layered Lithium Transition Metal Oxides Due to Oxygen Release at High State of Charge and Its Dependence on the Nickel Content Journal of the Electrochemical Society 170 3 030506 Bibcode 2023JElS 170c0506O doi 10 1149 1945 7111 acbf80 ISSN 0013 4651 S2CID 258406065 a b c Manthiram Arumugam Knight James C Myung Seung Taek Oh Seung Min Sun Yang Kook 2015 10 07 Nickel Rich and Lithium Rich Layered Oxide Cathodes Progress and Perspectives Advanced Energy Materials 6 1 1501010 doi 10 1002 aenm 201501010 S2CID 97342610 a b c Warner John T 2019 01 01 Warner John T ed Chapter 5 The Cathodes Lithium Ion Battery Chemistries Elsevier pp 99 114 doi 10 1016 b978 0 12 814778 8 00005 3 ISBN 978 0 12 814778 8 S2CID 239420965 retrieved 2023 04 02 Houchins Gregory Viswanathan Venkatasubramanian 2020 01 01 Towards Ultra Low Cobalt Cathodes A High Fidelity Computational Phase Search of Layered Li Ni Mn Co Oxides Journal of the Electrochemical Society 167 7 070506 arXiv 1805 08171 Bibcode 2020JElS 167g0506H doi 10 1149 2 0062007JES ISSN 0013 4651 S2CID 201303669 Julien Christian Mauger Alain Zaghib Karim Groult Henri 2016 07 19 Optimization of Layered Cathode Materials for Lithium Ion Batteries Materials 9 7 595 Bibcode 2016Mate 9 595J doi 10 3390 ma9070595 ISSN 1996 1944 PMC 5456936 PMID 28773717 Li Xuemin Colclasure Andrew M Finegan Donal P Ren Dongsheng Shi Ying Feng Xuning Cao Lei Yang Yuan Smith Kandler 2019 02 20 Degradation mechanisms of high capacity 18650 cells containing Si graphite anode and nickel rich NMC cathode Electrochimica Acta 297 1109 1120 doi 10 1016 j electacta 2018 11 194 OSTI 1491439 S2CID 104299816 Yoon Won Sub Grey Clare P Balasubramanian Mahalingam Yang Xiao Qing Fischer Daniel A McBreen James 2004 Combined NMR and XAS Study on Local Environments and Electronic Structures of Electrochemically Li Ion Deintercalated Li sub 1 x Co sub 1 3 Ni sub 1 3 Mn sub 1 3 O sub 2 Electrode System Electrochemical and Solid State Letters 7 3 A53 doi 10 1149 1 1643592 Zhang Xiaoyu Jiang W J Mauger A Qilu Gendron F Julien C M 2010 03 01 Minimization of the cation mixing in Li1 x NMC 1 xO2 as cathode material Journal of Power Sources 195 5 1292 1301 Bibcode 2010JPS 195 1292Z doi 10 1016 j jpowsour 2009 09 029 ISSN 0378 7753 Xu Bo Fell Christopher R Chi Miaofang Meng Ying Shirley 2011 Identifying surface structural changes in layered Li excess nickel manganese oxides in high voltage lithium ion batteries A joint experimental and theoretical study Energy amp Environmental Science 4 6 2223 doi 10 1039 c1ee01131f ISSN 1754 5692 Zhao Enyue Fang Lincan Chen Minmin Chen Dongfeng Huang Qingzhen Hu Zhongbo Yan Qing bo Wu Meimei Xiao Xiaoling 2017 01 24 New insight into Li Ni disorder in layered cathode materials for lithium ion batteries a joint study of neutron diffraction electrochemical kinetic analysis and first principles calculations Journal of Materials Chemistry A 5 4 1679 1686 doi 10 1039 C6TA08448F ISSN 2050 7496 a b c Malik Monu Chan Ka Ho Azimi Gisele 2022 08 01 Review on the synthesis of LiNixMnyCo1 x yO2 NMC cathodes for lithium ion batteries Materials Today Energy 28 101066 doi 10 1016 j mtener 2022 101066 ISSN 2468 6069 S2CID 249483077 Liu Zhaolin Yu Aishui Lee Jim Y 1999 09 01 Synthesis and characterization of LiNi1 x yCoxMnyO2 as the cathode materials of secondary lithium batteries Journal of Power Sources 81 82 416 419 Bibcode 1999JPS 81 416L doi 10 1016 S0378 7753 99 00221 9 ISSN 0378 7753 a b Dong Hongxu Koenig Gary M 2020 A review on synthesis and engineering of crystal precursors produced via coprecipitation for multicomponent lithium ion battery cathode materials CrystEngComm 22 9 1514 1530 doi 10 1039 C9CE00679F ISSN 1466 8033 S2CID 198357149 Mizushima K Jones P C Wiseman P J Goodenough J B 1980 06 01 LixCoO2 0 Materials Research Bulletin 15 6 783 789 doi 10 1016 0025 5408 80 90012 4 ISSN 0025 5408 S2CID 97799722 US6677082B2 Thackeray Michael M Johnson Christopher S amp Amine Khalil et al Lithium metal oxide electrodes for lithium cells and batteries issued 2004 01 13 US6680143B2 Thackeray Michael M Johnson Christopher S amp Amine Khalil et al Lithium metal oxide electrodes for lithium cells and batteries issued 2004 01 20 Ammundsen B Desilvestro J Groutso T Hassel D Metsen J B Regan E Steiner R Pickering P J 1999 12 01 Solid State Synthesis and Properties of Doped LiMnO2 Cathode Materials MRS Online Proceedings Library 575 49 589 doi 10 1557 PROC 575 49 US6964828B2 Lu Zhonghua amp Dahn Jeffrey R Cathode compositions for lithium ion batteries issued 2005 11 15 Makimura Yoshinari Ohzuku Tsutomu 2003 06 01 Lithium insertion material of LiNi1 2Mn1 2O2 for advanced lithium ion batteries Journal of Power Sources Selected papers presented at the 11th International Meeting on Lithium Batteries 119 121 156 160 Bibcode 2003JPS 119 156M doi 10 1016 S0378 7753 03 00170 8 ISSN 0378 7753 Miller Peter 2015 01 01 Automotive Lithium Ion Batteries Johnson Matthey Technology Review 59 1 4 13 doi 10 1595 205651315X685445 Manthiram Arumugam 2020 03 25 A reflection on lithium ion battery cathode chemistry Nature Communications 11 1 1550 Bibcode 2020NatCo 11 1550M doi 10 1038 s41467 020 15355 0 ISSN 2041 1723 PMC 7096394 PMID 32214093 S2CID 256644096 Sakti Apurba Michalek Jeremy J Fuchs Erica R H Whitacre Jay F 2015 01 01 A techno economic analysis and optimization of Li ion batteries for light duty passenger vehicle electrification Journal of Power Sources 273 966 980 Bibcode 2015JPS 273 966S doi 10 1016 j jpowsour 2014 09 078 ISSN 0378 7753 a b Li Wangda Erickson Evan M Manthiram Arumugam 2020 01 13 High nickel layered oxide cathodes for lithium based automotive batteries Nature Energy 5 1 26 34 Bibcode 2020NatEn 5 26L doi 10 1038 s41560 019 0513 0 ISSN 2058 7546 S2CID 256706287 Jurgen Garche Klaus Brandt eds 2019 Li battery safety Amsterdam Netherlands Elsevier ISBN 978 0 444 64008 6 OCLC 1054022372 Patoux Sebastien Sannier Lucas Lignier Helene Reynier Yvan Bourbon Carole Jouanneau Severine Le Cras Frederic Martinet Sebastien 2008 05 01 High voltage nickel manganese spinel oxides for Li ion batteries Electrochimica Acta 53 12 4137 4145 doi 10 1016 j electacta 2007 12 054 ISSN 0013 4686 Kokam March 7 2016 Kokam s 56 Megawatt Energy Storage Project Features World s Largest Lithium NMC Energy Storage System for Frequency Regulation PR Newswire Retrieved April 2 2023 Giles Parkinson 2019 08 12 Alinta sees sub 5 year payback for unsubsidised big battery at Newman RenewEconomy Energy Storage Solution Provider PDF Archived from the original PDF on 2020 02 23 Retrieved 2020 03 01 Retrieved from https en wikipedia org w index php title Lithium nickel manganese cobalt oxides amp oldid 1223674746, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.