fbpx
Wikipedia

List of the most distant astronomical objects

This article documents the most distant astronomical objects discovered and verified so far, and the time periods in which they were so classified.

For comparisons with the light travel distance of the astronomical objects listed below, the age of the universe since the Big Bang is currently estimated as 13.787±0.020 Gyr.[1]

Distances to remote objects, other than those in nearby galaxies, are nearly always inferred by measuring the cosmological redshift of their light. By their nature, very distant objects tend to be very faint, and these distance determinations are difficult and subject to errors. An important distinction is whether the distance is determined via spectroscopy or using a photometric redshift technique. The former is generally both more precise and also more reliable, in the sense that photometric redshifts are more prone to being wrong due to confusion with lower redshift sources that may have unusual spectra. For that reason, a spectroscopic redshift is conventionally regarded as being necessary for an object's distance to be considered definitely known, whereas photometrically determined redshifts identify "candidate" very distant sources. Here, this distinction is indicated by a "p" subscript for photometric redshifts.

Most distant spectroscopically-confirmed objects Edit

Most distant astronomical objects with spectroscopic redshift determinations
Image Name Redshift
(z)
Light travel distance§
(Gly)[2][3][4][5]
Type Notes
  JADES-GS-z13-0 z = 13.20+0.04
−0.07
13.576[2] / 13.596[3] / 13.474[4] / 13.473[5] Galaxy Lyman-break galaxy, detection of the Lyman break with JWST/NIRSpec, not yet been through the peer-review process[6]
ID-13077

(UNCOVER-z13)[7][8]

z = 13.079+0.014
−0.001
13.51 Galaxy
JADES-GS-z12-0 z = 12.63+0.24
−0.08
13.556[2] / 13.576[3] / 13.454[4] / 13.453[5] Galaxy Lyman-break galaxy, detection of the Lyman break with JWST/NIRSpec, not yet been through the peer-review process[6]
ID-38766

(UNCOVER-z12)[9][10]

z = 12.393+0.004
−0.001
13.48 Galaxy
  GLASS-z12 z = 12.117+0.01
−0.01
13.536[2] / 13.556[3] / 13.434[4] / 13.433[5] Galaxy Lyman-break galaxy discovered by JWST/NIRCam, confirmed by ALMA detection of [O III] emission[11]
  JADES-GS-z11-0 (UDFj-39546284) z = 11.58+0.05
−0.05
13.512[2] / 13.532[3] / 13.410[4] / 13.409[5] Galaxy Lyman-break galaxy, detection of the Lyman break with JWST/NIRSpec, not yet been through the peer-review process[6]
CEERS J141946.36+525632.8
(Maisie's Galaxy)

[12]

zp = 11.44+0.09
−0.08
13.4 Galaxy Lyman-break galaxy discovered by JWST
  GN-z11 z = 10.6034 ± 0.0013 13.481[2] / 13.501[3] / 13.380[4] / 13.379[5] Galaxy Lyman-break galaxy; detection of the Lyman break with HST at 5.5σ[13] and carbon emission lines with Keck/MOSFIRE at 5.3σ.[14] Conclusive redshift by JWST in February 2023[15]
JADES-GS-z10-0 (UDFj-38116243) z = 10.38+0.07
−0.06
13.449[2] / 13.469[3] / 13.348[4] / 13.347[5] Galaxy Lyman-break galaxy, detection of the Lyman break with JWST/NIRSpec, not yet been through the peer-review process[6]
  JD1 z = 9.756+0.017
−0.007
13.409[2] / 13.429[3] / 13.308[4] / 13.307[5] Galaxy Lyman-break galaxy, detection of the Lyman break with JWST/NIRSpec, not yet been through the peer-review process[16]
  MACS1149-JD1 z = 9.1096±0.0006 13.361[2] / 13.381[3] / 13.261[4] / 13.260[5] Galaxy Detection of hydrogen emission line with the VLT, and oxygen line with ALMA[17]
  EGSY8p7 z = 8.683+0.001
−0.004
13.325[2] / 13.345[3] / 13.225[4] / 13.224[5] Galaxy Lyman-alpha emitter; detection of Lyman-alpha with Keck/MOSFIRE at 7.5σ confidence[18]
SMACS-4590 z = 8.496 13.308[2] / 13.328[3] / 13.208[4] / 13.207[5] Galaxy Detection of hydrogen, oxygen, and neon emission lines with JWST/NIRSpec[19][20][21][22]
A2744_YD4 z = 8.38 13.297[2] / 13.317[3] / 13.197[4] / 13.196[5] Galaxy Lyman-alpha and [O III] emission detected with ALMA at 4.0σ confidence[23]
MACS0416_Y1 z = 8.3118±0.0003 13.290[2] / 13.310[3] / 13.190[4] / 13.189[5] Galaxy [O III] emission detected with ALMA at 6.3σ confidence[24]
GRB 090423 z = 8.23+0.06
−0.07
13.282[2] / 13.302[3] / 13.182[4] / 13.181[5] Gamma-ray burst Lyman-alpha break detected[25]
RXJ2129-11002 z = 8.16±0.01 13.175[2] Galaxy [O III] doublet, Hβ, and [O II] doublet as well as Lyman-alpha break detected with JWST/NIRSpec prism [26]
RXJ2129-11022 z = 8.15±0.01 13.174[2] Galaxy [O III] doublet and Hβ as well as Lyman-alpha break detected with JWST/NIRSpec prism [26]
  EGS-zs8-1 z = 7.7302±0.0006 13.228[2] / 13.248[3] / 13.129[4] / 13.128[5] Galaxy Lyman-break galaxy[27]
SMACS-6355 z = 7.665 13.221[2] / 13.241[3] / 13.121[4] / 13.120[5] Galaxy Detection of hydrogen, oxygen, and neon emission lines with JWST/NIRSpec[19][20][21][22]
z7_GSD_3811 z = 7.6637±0.0011 13.221[2] / 13.240[3] / 13.121[4] / 13.120[5] Galaxy Lyman-alpha emitter[28]
SMACS-10612 z = 7.658 13.221[2] / 13.241[3] / 13.120[4] / 13.119[5] Galaxy Detection of hydrogen, oxygen, and neon emission lines with JWST/NIRSpec[19][20][21]>[22]
QSO J0313–1806 z = 7.6423±0.0013 13.218[2] / 13.238[3] / 13.119[4] / 13.118[5] Quasar Lyman-alpha break detected[29]
ULAS J1342+0928 z = 7.5413±0.0007 13.206[2] / 13.226[3] / 13.107[4] / 13.106[5] Quasar Redshift estimated from [C II] emission[30]
  z8_GND_5296 z = 7.51 13.202[2] / 13.222[3] / 13.103[4] / 13.102[5] Galaxy Lyman-alpha emitter[31]
  A1689-zD1 z = 7.5±0.2 13.201[2] / 13.221[3] / 13.102[4] / 13.101[5] Galaxy Lyman-break galaxy[32]
GS2_1406 z = 7.452±0.003 13.195[2] / 13.215[3] / 13.096[4] / 13.095[5] Galaxy Lyman-alpha emitter[33]
  GN-108036 z = 7.213 13.164[2] / 13.184[3] / 13.065[4] / 13.064[5] Galaxy Lyman alpha emitter[34]
  SXDF-NB1006-2 z = 7.2120±0.0003 13.164[2] / 13.184[3] / 13.065[4] / 13.064[5] Galaxy [O III] emission detected[35]
  BDF-3299 z = 7.109±0.002 13.149[2] / 13.169[3] / 13.051[4] / 13.050[5] Galaxy Lyman-break galaxy[36]
  ULAS J1120+0641 z = 7.085±0.003 13.146[2] / 13.166[3] / 13.048[4] / 13.047[5] Quasar Redshift estimated from Si III]+C III] and Mg II emission lines[37]
  A1703_zD6 z = 7.045±0.004 13.140[2] / 13.160[3] / 13.042[4] / 13.041[5] Galaxy Gravitationally-lensed Lyman-alpha emitter[38]
BDF-521 z = 7.008±0.002 13.135[2] / 13.155[3] / 13.037[4] / 13.036[5] Galaxy Lyman-break galaxy[36]
G2_1408 z = 6.972±0.002 13.130[2] / 13.150[3] / 13.032[4] / 13.030[5] Galaxy Lyman-alpha emitter[39]
  IOK-1 z = 6.965 13.129[2] / 13.149[3] / 13.030[4] / 13.029[5] Galaxy Lyman-alpha emitter[34]
  LAE J095950.99+021219.1 z = 6.944 13.126[2] / 13.146[3] / 13.028[4] / 13.027[5] Galaxy Lyman-alpha emitter[40]
SDF-46975 z = 6.844 13.111[2] / 13.131[3] / 13.013[4] / 13.012[5] Galaxy Lyman-alpha emitter[34]
PSO J172.3556+18.7734 z = 6.823+0.003
−0.001
13.107[2] / 13.127[3] / 13.010[4] / 13.009[5] Quasar
(astrophysical jet)
Redshift estimated from Mg II emission[41]

§ The tabulated distance is the light travel distance, which has no direct physical significance. See discussion at distance measures and Observable Universe

Candidate most distant objects Edit

Since the beginning of the James Webb Space Telescope's (JWST) science operations in June 2022, numerous distant galaxies far beyond what could be seen by the Hubble Space Telescope (z = 11) have been discovered thanks to the JWST's capability of seeing far into the infrared.[42][43] Previously in 2012, there were about 50 possible objects z = 8 or farther, and another 100 candidates at z = 7, based on photometric redshift estimates released by the Hubble eXtreme Deep Field (XDF) project from observations made between mid-2002 and December 2012.[44] Some objects included here have been observed spectroscopically, but had only one emission line tentatively detected, and are therefore still considered candidates by researchers.[45][46]

Notable candidates for most distant astronomical objects
Name Redshift
(z)
Light travel distance§
(Gly)
Type Notes
F200DB-045 zp = 20.4+0.3
−0.3
[43]
or 0.70+0.19
−0.55
[42]or 0.40+0.15
−0.26
[47]
13.725[2] / 13.745[3] / 13.623[4] / 13.621[5] Galaxy Lyman-break galaxy discovered by JWST[43]
NOTE: The redshift value of the galaxy presented by the procedure in one study[42] may differ from the values presented in other studies using different procedures.[43][48][47]
F200DB-175 zp = 16.2+0.3
−0.0
13.657[2] / 13.677[3] / 13.555[4] / 13.554[5] Galaxy Lyman-break galaxy discovered by JWST[43]
S5-z17-1 z = 16.0089±0.0004
or 4.6108±0.0001
13.653[2] / 13.673[3] / 13.551[4] / 13.550[5] Galaxy Lyman-break galaxy discovered by JWST; tentative (5.1σ) ALMA detection of a single emission line possibly attributed to either [C II] (z = 4.6108±0.0001) or [O III] (z = 16.0089±0.0004).[45][46]
F150DB-041 zp = 16.0+0.2
−0.2
[43]
or 3.70+0.02
−0.59
[42]
13.653[2] / 13.673[3] / 13.551[4] / 13.549[5] Galaxy Lyman-break galaxy discovered by JWST[43][42]
SMACS-z16a zp = 15.92+0.17
−0.15
[49]
or 2.96+0.73
−0.21
[42]
13.651[2] / 13.671[3] / 13.549[4] / 13.548[5] Galaxy Lyman-break galaxy discovered by JWST[49][42]
F200DB-015 zp = 15.8+3.4
−0.1
13.648[2] / 13.668[3] / 13.546[4] / 13.545[5] Galaxy Lyman-break galaxy discovered by JWST[43]
F200DB-181 zp = 15.8+0.5
−0.3
13.648[2] / 13.668[3] / 13.546[4] / 13.545[5] Galaxy Lyman-break galaxy discovered by JWST[43]
F200DB-159 zp = 15.8+4.0
−15.2
13.648[2] / 13.668[3] / 13.546[4] / 13.545[5] Galaxy Lyman-break galaxy discovered by JWST[43]
F200DB-086 zp = 15.4+0.6
−14.6
[43]
or 3.53+10.28
−1.84
[42]
13.639[2] / 13.659[3] / 13.537[4] / 13.536[5] Galaxy Lyman-break galaxy discovered by JWST[43][42]
SMACS-z16b zp = 15.32+0.16
−0.13
[49]
or 15.39+0.18
−0.26
[42]
13.637[2] / 13.657[3] / 13.535[4] / 13.534[5] Galaxy Lyman-break galaxy discovered by JWST[49][42]
F150DB-048 zp = 15.0+0.2
−0.8
13.629[2] / 13.649[3] / 13.527[4] / 13.526[5] Galaxy Lyman-break galaxy discovered by JWST[43]
F150DB-007 zp = 14.6+0.4
−0.4
13.619[2] / 13.639[3] / 13.517[4] / 13.516[5] Galaxy Lyman-break galaxy discovered by JWST[43]
F150DB-004 zp = 14.0+0.4
−2.0
13.602[2] / 13.622[3] / 13.500[4] / 13.499[5] Galaxy Lyman-break galaxy discovered by JWST[43]
F150DB-079 zp = 13.8+0.5
−1.9
13.596[2] / 13.616[3] / 13.494[4] / 13.493[5] Galaxy Lyman-break galaxy discovered by JWST[43]
F150DA-007 zp = 13.4+0.6
−2.0
13.583[2] / 13.603[3] / 13.481[4] / 13.480[5] Galaxy Lyman-break galaxy discovered by JWST[43]
F150DA-053 zp = 13.4+0.3
−2.3
13.583[2] / 13.603[3] / 13.481[4] / 13.480[5] Galaxy Lyman-break galaxy discovered by JWST[43]
F150DA-050 zp = 13.4+0.6
−10.0
13.583[2] / 13.603[3] / 13.481[4] / 13.480[5] Galaxy Lyman-break galaxy discovered by JWST[43]
F150DA-058 zp = 13.4+0.6
−12.5
[43]
3.42+0.30
−0.20
[42]
13.583[2] / 13.603[3] / 13.481[4] / 13.480[5] Galaxy Lyman-break galaxy discovered by JWST[43][42]
F150DA-038 zp = 13.4+0.4
−13.2
13.583[2] / 13.603[3] / 13.481[4] / 13.480[5] Galaxy Lyman-break galaxy discovered by JWST[43]
  HD1 z = 13.27 13.579[2] / 13.599[3] / 13.477[4] / 13.476[5] Galaxy Not yet spectroscopically confirmed. Guinness World Record of the most distant confirmed galaxy
Lyman-break galaxy (5σ confidence) followed with a tentative ALMA detection of a single [O III] oxygen emission line only (4σ confidence)[50]
F150DA-010 zp = 12.8+0.6
−1.5
13.562[2] / 13.582[3] / 13.460[4] / 13.459[5] Galaxy Lyman-break galaxy discovered by JWST[43]
S5-z12-1 zp = 12.57+1.23
−0.46
13.553[2] / 13.573[3] / 13.452[4] / 13.451[5] Galaxy Lyman-break galaxy discovered by JWST[45]
CEERS-27535_4 zp = 12.56+1.75
−0.27
13.553[2] / 13.573[3] / 13.452[4] / 13.451[5] Galaxy Lyman-break galaxy discovered by JWST[51]
SMACS-1566 zp = 12.29+1.50
−0.44
13.542[2] / 13.562[3] / 13.441[4] / 13.440[5] Galaxy Lyman-break galaxy discovered by JWST[51]
SMACS-z12b
(F150DA-077)
zp = 12.26+0.17
−0.16
[49][42]
or 13.4+0.4
−1.7
[43]
13.541[2] / 13.561[3] / 13.440[4] / 13.439[5] Galaxy Lyman-break galaxy discovered by JWST[49][42][43]
SMACS-z12a zp = 12.20+0.21
−0.12
13.539[2] / 13.559[3] / 13.437[4] / 13.436[5] Galaxy Lyman-break galaxy discovered by JWST[49][42]
CR2-z12-4 zp = 12.08+2.11
−1.25
13.534[2] / 13.554[3] / 13.432[4] / 13.431[5] Galaxy Lyman-break galaxy discovered by JWST[45]
SMACS-10566 zp = 12.03+0.57
−0.26
13.532[2] / 13.552[3] / 13.430[4] / 13.429[5] Galaxy Lyman-break galaxy discovered by JWST[51]
XDFH-2395446286 zp = 12.0+0.1
−0.2
13.530[2] / 13.550[3] / 13.429[4] / 13.428[5] Galaxy Lyman-break galaxy detected by JWST and Hubble[52]
CR2-z12-2 zp = 11.96+1.44
−0.87
13.529[2] / 13.549[3] / 13.427[4] / 13.426[5] Galaxy Lyman-break galaxy discovered by JWST[45]
9-BUSCAR zp = 11.91+0.10
−0.22
13.527[2] / 13.547[3] / 13.425[4] / 13.424[5] Galaxy Lyman-break galaxy discovered by JWST[53]
SMACS-8347 zp = 11.90+0.27
−0.39
13.526[2] / 13.546[3] / 13.425[4] / 13.424[5] Galaxy Lyman-break galaxy discovered by JWST[51]
CEERS-26409_4 zp = 11.90+1.60
−0.70
13.526[2] / 13.546[3] / 13.425[4] / 13.424[5] Galaxy Lyman-break galaxy discovered by JWST[51]
F150DB-069 zp = 11.8+1.7
−0.2
13.522[2] / 13.542[3] / 13.420[4] / 13.419[5] Galaxy Lyman-break galaxy discovered by JWST[43]
XDFH-2334046578 zp = 11.8+0.4
−0.5
13.522[2] / 13.542[3] / 13.420[4] / 13.419[5] Galaxy Lyman-break galaxy detected by JWST and Hubble[52]
CR2-z12-3 zp = 11.66+0.69
−0.71
13.515[2] / 13.535[3] / 13.414[4] / 13.413[5] Galaxy Lyman-break galaxy discovered by JWST[45]
CR2-z12-1 zp = 11.63+0.51
−0.53
13.514[2] / 13.534[3] / 13.413[4] / 13.412[5] Galaxy Lyman-break galaxy discovered by JWST[45]
F150DB-088 zp = 11.6+0.3
−0.2
13.513[2] / 13.533[3] / 13.411[4] / 13.410[5] Galaxy Lyman-break galaxy discovered by JWST[43]
F150DB-084 zp = 11.6+0.4
−0.4
13.513[2] / 13.533[3] / 13.411[4] / 13.410[5] Galaxy Lyman-break galaxy discovered by JWST[43]
F150DB-044 zp = 11.4+0.4
−11.3
13.503[2] / 13.523[3] / 13.402[4] / 13.401[5] Galaxy Lyman-break galaxy discovered by JWST[43]
XDFH-2404647339 zp = 11.4+0.4
−0.5
13.503[2] / 13.523[3] / 13.402[4] / 13.401[5] Galaxy Lyman-break galaxy detected by JWST and Hubble[52]
F150DB-075 zp = 11.4+0.4
−0.1
[43]
0.04+0.01
−0.01
[42]
13.503[2] / 13.523[3] / 13.402[4] / 13.401[5] Galaxy Lyman-break galaxy discovered by JWST[43][42]
F150DA-062 zp = 11.4+0.3
−0.3
[43]
1.78+0.20
−0.08
[42]
13.503[2] / 13.523[3] / 13.402[4] / 13.401[5] Galaxy Lyman-break galaxy discovered by JWST[43][42]
CEERS-127682 zp = 11.40+0.59
−0.51
13.503[2] / 13.523[3] / 13.402[4] / 13.401[5] Galaxy Lyman-break galaxy discovered by JWST[51]
CEERS-5268_2 zp = 11.40+0.30
−1.11
13.503[2] / 13.523[3] / 13.402[4] / 13.401[5] Galaxy Lyman-break galaxy discovered by JWST[51]
F150DA-060 zp = 11.4+0.6
−8.2
13.503[2] / 13.523[3] / 13.402[4] / 13.401[5] Galaxy Lyman-break galaxy discovered by JWST[43]
F150DA-031 zp = 11.4+1.0
−8.2
13.503[2] / 13.523[3] / 13.402[4] / 13.401[5] Galaxy Lyman-break galaxy discovered by JWST[43]
F150DA-052 zp = 11.4+0.8
−10.6
13.503[2] / 13.523[3] / 13.402[4] / 13.401[5] Galaxy Lyman-break galaxy discovered by JWST[43]
F150DB-054 zp = 11.4+0.5
−10.8
13.503[2] / 13.523[3] / 13.402[4] / 13.401[5] Galaxy Lyman-break galaxy discovered by JWST[43]
SMACS-z11d zp = 11.28±0.32
or 2.35+0.30
−0.67
Galaxy Lyman-break galaxy discovered by JWST[42]
CEERS-77241 zp = 11.27+0.39
−0.70
Galaxy Lyman-break galaxy discovered by JWST[51]
CEERS-6647 zp = 11.27+0.58
−0.28
Galaxy Lyman-break galaxy discovered by JWST[51]
CEERS-622_4 zp = 11.27+0.48
−0.60
Galaxy Lyman-break galaxy discovered by JWST[51]
SMACS-z11c zp = 11.22±0.32
or 3.84+0.05
−0.04
Galaxy Lyman-break galaxy discovered by JWST[42]
SMACS-z11b zp = 11.22±0.56
or 6.94+0.07
−0.07
Galaxy Lyman-break galaxy discovered by JWST[42]
F150DA-005 zp = 11.2+0.4
−0.3
Galaxy Lyman-break galaxy discovered by JWST[43]
F150DA-020 zp = 11.2+0.2
−7.9
Galaxy Lyman-break galaxy discovered by JWST[43]
CEERS-61486 zp = 11.15+0.37
−0.35
Galaxy Lyman-break galaxy discovered by JWST[51]
SMACS-z11e
(F150DA-081)
zp = 11.10+0.21
−0.34
[42]
or 13.4+0.6
−2.2
[43]
Galaxy Lyman-break galaxy discovered by JWST[42][43]
SMACS-z11a zp = 11.05+0.09
−0.08
[49]
or 1.73+0.18
−0.04
[42]
Galaxy Lyman-break galaxy discovered by JWST[49][42]
CR3-z12-1 zp = 11.05+2.24
−0.47
Galaxy Lyman-break galaxy discovered by JWST[45]
F150DA-026 zp = 11.0+0.5
−0.3
Galaxy Lyman-break galaxy discovered by JWST[43]
F150DA-036 zp = 11.0+0.4
−7.8
Galaxy Lyman-break galaxy discovered by JWST[43]
SMACS-z10e zp = 10.89+0.16
−0.14
[49]
or 1.38+1.37
−0.24
[42]
Galaxy Lyman-break galaxy discovered by JWST[49][42]
F150DB-040 zp = 10.8+0.3
−0.2
Galaxy Lyman-break galaxy discovered by JWST[43]
EGS-14506 zp = 10.71+0.34
−0.62
Galaxy Lyman-break galaxy discovered by JWST[54]
MACS0647-JD zp = 10.6±0.3 Galaxy Gravitationally lensed into three images by a galaxy cluster; detected by JWST and Hubble[55][56]
GLASS-z10
(GLASS-1698)[51]
z = 10.38 Galaxy Lyman-break galaxy discovered by JWST; tentative (4.4σ) ALMA detection of [O III] emission line only[57][58]
EGS-7860 zp = 10.11+0.60
−0.82
Galaxy Lyman-break galaxy discovered by JWST[54]
SPT0615-JD zp = 9.9+0.8
−0.6
13.419[2] Galaxy [59]
A2744-JD zp≅9.8 13.412[2] Galaxy Galaxy is being magnified and lensed into three multiple images, geometrically supporting its redshift.[60][61]
MACS1149-JD1 zp≅9.6 13.398[2][62] Candidate galaxy or protogalaxy [63]
GRB 090429B zp≅9.4 13.383[2][64] Gamma-ray burst [65] The photometric redshift in this instance has quite large uncertainty, with the lower limit for the redshift being z>7.
UDFy-33436598 zp≅8.6 13.317[2] Candidate galaxy or protogalaxy [66]
UDFy-38135539 zp≅8.6 13.317[2] Candidate galaxy or protogalaxy A spectroscopic redshift of z = 8.55 was claimed for this source in 2010,[67] but has subsequently been shown to be mistaken.[68]
BoRG-58 zp≅8 13.258[2] Galaxy cluster or protocluster Protocluster candidate[69]

§ The tabulated distance is the light travel distance, which has no direct physical significance. See discussion at distance measures and Observable Universe

List of most distant objects by type Edit

Most distant object by type
Type Object Redshift
(distance)
Notes
Any astronomical object, no matter what type JADES-GS-z13-0 z = 13.20 Most distant galaxy with a spectroscopically-confirmed redshift as of December 2022.[6] These are data from Webb science in progress as of 9 December 2022, which has not yet been through the peer-review process. The estimated light-travel distance is about 13.6 billion light-years (and a proper distance of approximately 33.6 billion light-years (10.3 billion parsecs) from Earth due to the Universe's expansion since the light we now observe left it about 13.6 billion years ago).[3]
Galaxy or protogalaxy
Galaxy cluster CL J1001+0220 z ≅ 2.506 As of 2016[70]
Galaxy supercluster Hyperion proto-supercluster z = 2.45 This supercluster at the time of its discovery in 2018 was the earliest and largest proto-supercluster found to date.[71]
Galaxy protocluster A2744z7p9OD z = 7.88 This protocluster at the time of its discovery in 2023 was the most distant protocluster found and spectroscopically confirmed to date.[72]
Quasar QSO J0313–1806 z = 7.64 [73]
Black hole [73]
Star or protostar or post-stellar corpse
(detected by an event)
Progenitor of GRB 090423 z = 8.2 [74][25] Note, GRB 090429B has a photometric redshift zp≅9.4,[75] and so is most likely more distant than GRB 090423, but is lacking spectroscopic confirmation. Estimated an approximate distance of 13 billion lightyears from Earth
Star or protostar or post-stellar corpse
(detected as a star)
WHL0137-LS (Earendel) z = 6.2 ± 0.1
(12.9 Gly)
Most distant individual star detected (March, 2022).[76][77]

Previous records include SDSS J1229+1122[78] and MACS J1149 Lensed Star 1.[79]

Star cluster The Sparkler z = 1.378
(13.9 Gly)
Galaxy with globular clusters gravitationally lensed in SMACS J0723.3-7327[80]
System of star clusters
X-ray jet PJ352–15 quasar jet z = 5.831
(12.7 Gly)[81]
The previous recordholder was at 12.4 Gly.[82][83]
Microquasar XMMU J004243.6+412519 (2.5 Mly) First extragalactic microquasar discovered[84][85][86]
Nebula-like object Himiko z = 6.595 Possibly one of the largest objects in the early universe.[87][88]
Planet SWEEPS-11 / SWEEPS-04 (27,710 ly) [89]
  • An analysis of the lightcurve of the microlensing event PA-99-N2 suggests the presence of a planet orbiting a star in the Andromeda Galaxy.[90]
  • A controversial microlensing event of lobe A of the double gravitationally lensed Q0957+561 suggests that there is a planet in the lensing galaxy lying at redshift 0.355 (3.7 Gly).[91][92]
Most distant event by type
Type Event Redshift Notes
Gamma-ray burst GRB 090423 z = 8.2 [74][25] Note, GRB 090429B has a photometric redshift zp≅9.4,[75] and so is most likely more distant than GRB 090423, but is lacking spectroscopic confirmation.
Core collapse supernova SN 1000+0216 z = 3.8993 [93]
Type Ia supernova SN UDS10Wil z = 1.914 [94]
Type Ia supernova SN SCP-0401
(Mingus)
z = 1.71 First observed in 2004, it was not until 2013 that it could be identified as a Type-Ia SN.[95][96]
Cosmic Decoupling Cosmic Background Radiation creation z~1000 to 1089 [97][98]

Timeline of most distant astronomical object recordholders Edit

Objects in this list were found to be the most distant object at the time of determination of their distance. This is frequently not the same as the date of their discovery.

Distances to astronomical objects may be determined through parallax measurements, use of standard references such as cepheid variables or Type Ia supernovas, or redshift measurement. Spectroscopic redshift measurement is preferred, while photometric redshift measurement is also used to identify candidate high redshift sources. The symbol z represents redshift.

Most Distant Object Titleholders (not including candidates based on photometric redshifts)
Object Type Date Distance
(z = Redshift)
Notes
HD1 Galaxy 7 April 2022–Present z = 13.27 Guinness World Record
GN-z11 Galaxy 2016–2022 z = 10.957 [13][14]
EGSY8p7 Galaxy 2015 − 2016 z = 8.68 [99][100][101][102]
Progenitor of GRB 090423 / Remnant of GRB 090423 Gamma-ray burst progenitor / Gamma-ray burst remnant 2009 − 2015 z = 8.2 [25][103]
IOK-1 Galaxy 2006 − 2009 z = 6.96 [103][104][105][106]
SDF J132522.3+273520 Galaxy 2005 − 2006 z = 6.597 [106][107]
SDF J132418.3+271455 Galaxy 2003 − 2005 z = 6.578 [107][108][109][110]
HCM-6A Galaxy 2002 − 2003 z = 6.56 The galaxy is lensed by galaxy cluster Abell 370. This was the first non-quasar galaxy found to exceed redshift 6. It exceeded the redshift of quasar SDSSp J103027.10+052455.0 of z = 6.28[108][109][111][112][113][114]
SDSS J1030+0524
(SDSSp J103027.10+052455.0)
Quasar 2001 − 2002 z = 6.28 [115][116][117][118][119][120]
SDSS 1044–0125
(SDSSp J104433.04–012502.2)
Quasar 2000 − 2001 z = 5.82 [121][122][119][120][123][124][125]
SSA22-HCM1 Galaxy 1999 − 2000 z>=5.74 [126][127]
HDF 4-473.0 Galaxy 1998 − 1999 z = 5.60 [127]
RD1 (0140+326 RD1) Galaxy 1998 z = 5.34 [128][129][130][127][131]
CL 1358+62 G1 & CL 1358+62 G2 Galaxies 1997 − 1998 z = 4.92 These were the most remote objects discovered at the time. The pair of galaxies were found lensed by galaxy cluster CL1358+62 (z = 0.33). This was the first time since 1964 that something other than a quasar held the record for being the most distant object in the universe.[129][132][133][130][127][134]
PC 1247–3406 Quasar 1991 − 1997 z = 4.897 [121][135][136][137][138]
PC 1158+4635 Quasar 1989 − 1991 z = 4.73 [121][138][139][140][141][142]
Q0051–279 Quasar 1987 − 1989 z = 4.43 [143][139][142][144][145][146]
Q0000–26
(QSO B0000–26)
Quasar 1987 z = 4.11 [143][139][147]
PC 0910+5625
(QSO B0910+5625)
Quasar 1987 z = 4.04 This was the second quasar discovered with a redshift over 4.[121][139][148][149]
Q0046–293
(QSO J0048–2903)
Quasar 1987 z = 4.01 [143][139][148][150][151]
Q1208+1011
(QSO B1208+1011)
Quasar 1986 − 1987 z = 3.80 This is a gravitationally-lensed double-image quasar, and at the time of discovery to 1991, had the least angular separation between images, 0.45″.[148][152][153]
PKS 2000–330
(QSO J2003–3251, Q2000–330)
Quasar 1982 − 1986 z = 3.78 [148][154][155]
OQ172
(QSO B1442+101)
Quasar 1974 − 1982 z = 3.53 [156][157][158]
OH471
(QSO B0642+449)
Quasar 1973 − 1974 z = 3.408 Nickname was "the blaze marking the edge of the universe".[156][158][159][160][161]
4C 05.34 Quasar 1970 − 1973 z = 2.877 Its redshift was so much greater than the previous record that it was believed to be erroneous, or spurious.[158][162][163][164]
5C 02.56
(7C 105517.75+495540.95)
Quasar 1968 − 1970 z = 2.399 [134][164][165]
4C 25.05
(4C 25.5)
Quasar 1968 z = 2.358 [134][164][166]
PKS 0237–23
(QSO B0237–2321)
Quasar 1967 − 1968 z = 2.225 [162][166][167][168][169]
4C 12.39
(Q1116+12, PKS 1116+12)
Quasar 1966 − 1967 z = 2.1291 [134][169][170][171]
4C 01.02
(Q0106+01, PKS 0106+1)
Quasar 1965 − 1966 z = 2.0990 [134][169][170][172]
3C 9 Quasar 1965 z = 2.018 [169][173][174][175][176][177]
3C 147 Quasar 1964 − 1965 z = 0.545 [178][179][180][181]
3C 295 Radio galaxy 1960 − 1964 z = 0.461 [127][134][182][183][184]
LEDA 25177 (MCG+01-23-008) Brightest cluster galaxy 1951 − 1960 z = 0.2
(V = 61000 km/s)
This galaxy lies in the Hydra Supercluster. It is located at B1950.0 08h 55m 4s +03° 21′ and is the BCG of the fainter Hydra Cluster Cl 0855+0321 (ACO 732).[127][184][185][186][187][188][189]
LEDA 51975 (MCG+05-34-069) Brightest cluster galaxy 1936 – z = 0.13
(V = 39000 km/s)
The brightest cluster galaxy of the Bootes Cluster (ACO 1930), an elliptical galaxy at B1950.0 14h 30m 6s +31° 46′ apparent magnitude 17.8, was found by Milton L. Humason in 1936 to have a 40,000 km/s recessional redshift velocity.[188][190][191]
LEDA 20221 (MCG+06-16-021) Brightest cluster galaxy 1932 – z = 0.075
(V = 23000 km/s)
This is the BCG of the Gemini Cluster (ACO 568) and was located at B1950.0 07h 05m 0s +35° 04′[190][192]
BCG of WMH Christie's Leo Cluster Brightest cluster galaxy 1931 − 1932 z =
(V = 19700 km/s)
[192][193][194][195]
BCG of Baede's Ursa Major Cluster Brightest cluster galaxy 1930 − 1931 z =
(V = 11700 km/s)
[195][196]
NGC 4860 Galaxy 1929 − 1930 z = 0.026
(V = 7800 km/s)
[196][197][198]
NGC 7619 Galaxy 1929 z = 0.012
(V = 3779 km/s)
Using redshift measurements, NGC 7619 was the highest at the time of measurement. At the time of announcement, it was not yet accepted as a general guide to distance, however, later in the year, Edwin Hubble described redshift in relation to distance, which became accepted widely as an inferred distance.[197][199][200]
NGC 584
(Dreyer nebula 584)
Galaxy 1921 − 1929 z = 0.006
(V = 1800 km/s)
At the time, nebula had yet to be accepted as independent galaxies. However, in 1923, galaxies were generally recognized as external to the Milky Way.[188][197][199][201][202][203][204]
M104 (NGC 4594) Galaxy 1913 − 1921 z = 0.004
(V = 1180 km/s)
This was the second galaxy whose redshift was determined; the first being Andromeda – which is approaching us and thus cannot have its redshift used to infer distance. Both were measured by Vesto Melvin Slipher. At this time, nebula had yet to be accepted as independent galaxies. NGC 4594 was measured originally as 1000 km/s, then refined to 1100, and then to 1180 in 1916.[197][201][204]
Arcturus
(Alpha Bootis)
Star 1891 − 1910 160 ly
(18 mas)
(this is very inaccurate, true=37 ly)
This number is wrong; originally announced in 1891, the figure was corrected in 1910 to 40 ly (60 mas). From 1891 to 1910, it had been thought this was the star with the smallest known parallax, hence the most distant star whose distance was known. Prior to 1891, Arcturus had previously been recorded of having a parallax of 127 mas.[205][206][207][208]
Capella
(Alpha Aurigae)
Star 1849-1891 72 ly
(46 mas)
[209][210][211]
Polaris
(Alpha Ursae Minoris)
Star 1847 - 1849 50 ly
(80 mas)
(this is very inaccurate, true=~375 ly)
[212][213]
Vega
(Alpha Lyrae)
Star (part of a double star pair) 1839 - 1847 7.77 pc
(125 mas)
[212]
61 Cygni Binary star 1838 − 1839 3.48 pc
(313.6 mas)
This was the first star other than the Sun to have its distance measured.[212][214][215]
Uranus Planet of the Solar System 1781 − 1838 18 AU This was the last planet discovered before the first successful measurement of stellar parallax. It had been determined that the stars were much farther away than the planets.
Saturn Planet of the Solar System 1619 − 1781 10 AU From Kepler's Third Law, it was finally determined that Saturn is indeed the outermost of the classical planets, and its distance derived. It had only previously been conjectured to be the outermost, due to it having the longest orbital period, and slowest orbital motion. It had been determined that the stars were much farther away than the planets.
Mars Planet of the Solar System 1609 − 1619 2.6 AU when Mars is diametrically opposed to Earth Kepler correctly characterized Mars and Earth's orbits in the publication Astronomia nova. It had been conjectured that the fixed stars were much farther away than the planets.
Sun Star 3rd century BC — 1609 380 Earth radii (very inaccurate, true=16000 Earth radii) Aristarchus of Samos made a measurement of the distance of the Sun from the Earth in relation to the distance of the Moon from the Earth. The distance to the Moon was described in Earth radii (20, also inaccurate). The diameter of the Earth had been calculated previously. At the time, it was assumed that some of the planets were further away, but their distances could not be measured. The order of the planets was conjecture until Kepler determined the distances from the Sun of the five known planets that were not Earth. It had been conjectured that the fixed stars were much farther away than the planets.
Moon Moon of a planet 3rd century BC 20 Earth radii (very inaccurate, true=64 Earth radii) Aristarchus of Samos made a measurement of the distance between the Earth and the Moon. The diameter of the Earth had been calculated previously.
  • z represents redshift, a measure of recessional velocity and inferred distance due to cosmological expansion
  • mas represents parallax, a measure of angle and distance can be determined through trigonometry

List of objects by year of discovery that turned out to be most distant Edit

This list contains a list of most distant objects by year of discovery of the object, not the determination of its distance. Objects may have been discovered without distance determination, and were found subsequently to be the most distant known at that time. However, object must have been named or described. An object like OJ 287 is ignored even though it was detected as early as 1891 using photographic plates, but ignored until the advent of radiotelescopes.

See also Edit

References Edit

  1. ^ Planck Collaboration (2020). "Planck 2018 results. VI. Cosmological parameters". Astronomy & Astrophysics. 641. page A6 (see PDF page 15, Table 2: "Age/Gyr", last column). arXiv:1807.06209. Bibcode:2020A&A...641A...6P. doi:10.1051/0004-6361/201833910. S2CID 119335614.
  2. ^ a b c d e f g h i j k l m n o p q r s t u v w x y z aa ab ac ad ae af ag ah ai aj ak al am an ao ap aq ar as at au av aw ax ay az ba bb bc bd be bf bg bh bi bj bk bl bm bn bo bp bq br bs bt bu bv bw bx by bz ca cb cc cd ce cf cg ch ci cj ck cl cm cn Staff (2015). "UCLA Cosmological Calculator". UCLA. Retrieved 6 August 2022. Light travel distance was calculated from redshift value using the UCLA Cosmological Calculator, with parameters values as of 2015: H0=67.74 and OmegaM=0.3089 (see Table/Planck2015 at "Lambda-CDM model#Parameters" )
  3. ^ a b c d e f g h i j k l m n o p q r s t u v w x y z aa ab ac ad ae af ag ah ai aj ak al am an ao ap aq ar as at au av aw ax ay az ba bb bc bd be bf bg bh bi bj bk bl bm bn bo bp bq br bs bt bu bv bw bx by bz ca cb cc cd ce cf Staff (2018). "UCLA Cosmological Calculator". UCLA. Retrieved 6 August 2022. Light travel distance was calculated from redshift value using the UCLA Cosmological Calculator, with parameters values as of 2018: H0=67.4 and OmegaM=0.315 (see Table/Planck2018 at "Lambda-CDM model#Parameters" )
  4. ^ a b c d e f g h i j k l m n o p q r s t u v w x y z aa ab ac ad ae af ag ah ai aj ak al am an ao ap aq ar as at au av aw ax ay az ba bb bc bd be bf bg bh bi bj bk bl bm bn bo bp bq br bs bt bu bv bw bx by bz ca cb cc cd ce Staff (2022). "ICRAR Cosmology Calculator". International Centre for Radio Astronomy Research. Retrieved 6 August 2022. ICRAR Cosmology Calculator - Set H0=67.4 and OmegaM=0.315 (see Table/Planck2018 at "Lambda-CDM model#Parameters")
  5. ^ a b c d e f g h i j k l m n o p q r s t u v w x y z aa ab ac ad ae af ag ah ai aj ak al am an ao ap aq ar as at au av aw ax ay az ba bb bc bd be bf bg bh bi bj bk bl bm bn bo bp bq br bs bt bu bv bw bx by bz ca cb cc cd ce Kempner, Joshua (2022). "KEMPNER Cosmology Calculator". Kempner.net. Retrieved 6 August 2022. KEMP Cosmology Calculator - Set H0=67.4, OmegaM=0.315, and OmegaΛ=0.6847 (see Table/Planck2018 at "Lambda-CDM model#Parameters")
  6. ^ a b c d e Robertson, B. E.; et al. (2023). "Identification and properties of intense star-forming galaxies at redshifts z > 10". Nature Astronomy. 7 (5): 611–621. arXiv:2212.04480. Bibcode:2023NatAs...7..611R. doi:10.1038/s41550-023-01921-1. S2CID 257968812.
  7. ^ "UNCOVER: Illuminating the Early Universe -- JWST/NIRSpec Confirmation of z > 12 Galaxies".
  8. ^ "UNCOVER: A NIRSpec Census of Lensed Galaxies at z=8.50-13.08 Probing a High AGN Fraction and Ionized Bubbles in the Shadow".
  9. ^ "UNCOVER: Illuminating the Early Universe -- JWST/NIRSpec Confirmation of z > 12 Galaxies".
  10. ^ "UNCOVER: A NIRSpec Census of Lensed Galaxies at z=8.50-13.08 Probing a High AGN Fraction and Ionized Bubbles in the Shadow".
  11. ^ Bakx, Tom J. L. C.; et al. (January 2023). "Deep ALMA redshift search of a z~12 GLASS-JWST galaxy candidate". Monthly Notices of the Royal Astronomical Society. 519 (4): 5076–5085. arXiv:2208.13642. doi:10.1093/mnras/stac3723.
  12. ^ Haro, Pablo Arrabal; Dickinson, Mark; Finkelstein, Steven L.; Kartaltepe, Jeyhan S.; Donnan, Callum T.; Burgarella, Denis; Carnall, Adam; Cullen, Fergus; Dunlop, James S.; Fernández, Vital; Fujimoto, Seiji; Jung, Intae; Krips, Melanie; Larson, Rebecca L.; Papovich, Casey (2023-08-14). "Confirmation and refutation of very luminous galaxies in the early universe". Nature. arXiv:2303.15431. doi:10.1038/s41586-023-06521-7. ISSN 0028-0836.
  13. ^ a b Oesch, P. A.; Brammer, G.; van Dokkum, P.; et al. (March 2016). "A Remarkably Luminous Galaxy at z=11.1 Measured with Hubble Space Telescope Grism Spectroscopy". The Astrophysical Journal. 819 (2). 129. arXiv:1603.00461. Bibcode:2016ApJ...819..129O. doi:10.3847/0004-637X/819/2/129. S2CID 119262750.
  14. ^ a b Jiang, Linhua; et al. (January 2021). "Evidence for GN-z11 as a luminous galaxy at redshift 10.957". Nature Astronomy. 5 (3): 256–261. arXiv:2012.06936. Bibcode:2021NatAs...5..256J. doi:10.1038/s41550-020-01275-y. S2CID 229156468.
  15. ^ "JADES NIRSpec Spectroscopy of GN-z11: Lyman-α emission and possible enhanced nitrogen abundance in a z = 10.60 luminous galaxy" (PDF).
  16. ^ Roberts-Borsani, Guido; Treu, Tommaso; Chen, Wenlei; Morishita, Takahiro; Vanzella, Eros; Zitrin, Adi; Bergamini, Pietro; Castellano, Marco; Fontana, Adriano; Grillo, Claudio; Kelly, Patrick L.; Merlin, Emiliano; Paris, Diego; Rosati, Piero; Acebron, Ana (2022-10-27). "A shot in the Dark (Ages): a faint galaxy at $z=9.76$ confirmed with JWST". arXiv:2210.15639 [astro-ph.GA].
  17. ^ T. Hashimoto, N. Laporte, K. Mawatari, R. S. Ellis, A. K. Inoue, E. Zackrisson, G. Roberts-Borsani, W. Zheng, Y. Tamura, F. E. Bauer, T. Fletcher, Y. Harikane, B. Hatsukade, N. H. Hayatsu, Y. Matsuda, H. Matsuo, T. Okamoto, M. Ouchi, R. Pello, C. Rydberg, I. Shimizu, Y. Taniguchi, H. Umehata, N. Yoshida (2019). "The Onset of Star Formation 250 Million Years After the Big Bang". Nature. 557 (7705): 312–313. arXiv:1805.05966. Bibcode:2018Natur.557..392H. doi:10.1038/s41586-018-0117-z. PMID 29765123. S2CID 21702406.{{cite journal}}: CS1 maint: uses authors parameter (link)
  18. ^ Adi Zitrin, Ivo Labbe, Sirio Belli, Rychard Bouwens, Richard S. Ellis, Guido Roberts-Borsani, Daniel P. Stark, Pascal A. Oesch, Renske Smit (2015). "Lyman-alpha Emission from a Luminous z = 8.68 Galaxy: Implications for Galaxies as Tracers of Cosmic Reionization". The Astrophysical Journal. 810 (1): L12. arXiv:1507.02679. Bibcode:2015ApJ...810L..12Z. doi:10.1088/2041-8205/810/1/L12. S2CID 11524667.{{cite journal}}: CS1 maint: uses authors parameter (link)
  19. ^ a b c Curti, Mirko; et al. (January 2023). "The chemical enrichment in the early Universe as probed by JWST via direct metallicity measurements at z 8". Monthly Notices of the Royal Astronomical Society. 518 (1): 425–438. arXiv:2207.12375. Bibcode:2023MNRAS.518..425C. doi:10.1093/mnras/stac2737.
  20. ^ a b c Carnall, A. C.; et al. (January 2023). "A first look at the SMACS0723 JWST ERO: spectroscopic redshifts, stellar masses, and star-formation histories". Monthly Notices of the Royal Astronomical Society: Letters. 518 (1): L45–L50. arXiv:2207.08778. Bibcode:2023MNRAS.518L..45C. doi:10.1093/mnrasl/slac136.
  21. ^ a b c Schaerer, D.; et al. (September 2022). "First look with JWST spectroscopy: Resemblance among z ~ 8 galaxies and local analogs". Astronomy & Astrophysics. 665: 6. arXiv:2207.10034. Bibcode:2022A&A...665L...4S. doi:10.1051/0004-6361/202244556. S2CID 252175886. L4.
  22. ^ a b c Katz, Harley; et al. (January 2023). "AFirst insights into the ISM at z > 8 with JWST: possible physical implications of a high [O III] λ4363/[O III] λ5007". Monthly Notices of the Royal Astronomical Society. 518 (1): 592–603. arXiv:2207.13693. Bibcode:2023MNRAS.518..592K. doi:10.1093/mnras/stac2657.
  23. ^ Laporte, N.; Ellis, R. S.; Boone, F.; Bauer, F. E.; Quénard, D.; Roberts-Borsani, G. W.; Pelló, R.; Pérez-Fournon, I.; Streblyanska, A. (2017). "Dust in the Reionization Era: ALMA Observations of a z = 8.38 Gravitationally Lensed Galaxy". The Astrophysical Journal. 832 (2): L21. arXiv:1703.02039. Bibcode:2017ApJ...837L..21L. doi:10.3847/2041-8213/aa62aa. S2CID 51841290.
  24. ^ Tamura, Y.; Mawatari, K.; Hashimoto, T.; Inoue, A. K.; Zackrisson, E.; Christensen, L.; Binggeli, C; Matsuda, Y.; Matsuo, H.; Takeuchi, T. T.; Asano, R. S.; Sunaga, K.; Shimizu, I.; Okamoto, T.; Yoshida, N.; Lee, M.; Shibuya, T.; Taniguchi, Y.; Umehata, H.; Hatsukade, B.; Kohno, K.; Ota, K. (2017). "Detection of the Far-infrared [O III] and Dust Emission in a Galaxy at Redshift 8.312: Early Metal Enrichment in the Heart of the Reionization Era". The Astrophysical Journal. 874 (1): 27. arXiv:1806.04132. Bibcode:2019ApJ...874...27T. doi:10.3847/1538-4357/ab0374. S2CID 55313459.
  25. ^ a b c d Tanvir, N. R.; Fox, D. B.; Levan, A. J.; Berger, E.; Wiersema, K.; Fynbo, J. P. U.; Cucchiara, A.; Krühler, T.; Gehrels, N.; Bloom, J. S.; Greiner, J.; Evans, P. A.; Rol, E.; Olivares, F.; Hjorth, J.; Jakobsson, P.; Farihi, J.; Willingale, R.; Starling, R. L. C.; Cenko, S. B.; Perley, D.; Maund, J. R.; Duke, J.; Wijers, R. A. M. J.; Adamson, A. J.; Allan, A.; Bremer, M. N.; Burrows, D. N.; Castro-Tirado, A. J.; et al. (2009). "A gamma-ray burst at a redshift of z~8.2". Nature. 461 (7268): 1254–7. arXiv:0906.1577. Bibcode:2009Natur.461.1254T. doi:10.1038/nature08459. PMID 19865165. S2CID 205218350.
  26. ^ a b Langeroodi, Danial; Hjorth, Jens; Chen, Wenlei; Kelly, Patrick L.; Williams, Hayley; Lin, Yu-Heng; Scarlata, Claudia; Zitrin, Adi; Broadhurst, Tom; Diego, Jose M.; Huang, Xiaosheng; Filippenko, Alexei V.; Foley, Ryan J.; Jha, Saurabh; Koekemoer, Anton M.; Oguri, Masamune; Perez-Fournon, Ismael; Pierel, Justin; Poidevin, Frederick; Strolger, Lou (2022). "Evolution of the Mass-Metallicity Relation from Redshift z≈8 to the Local Universe". The Astrophysical Journal. 804 (2). arXiv:2212.02491. Bibcode:2015ApJ...804L..30O. doi:10.1088/2041-8205/804/2/L30. S2CID 55115344.
  27. ^ P. A. Oesch, P. G. van Dokkum, G. D. Illingworth, R. J. Bouwens, I. Momcheva, B. Holden, G. W. Roberts-Borsani, R. Smit, M. Franx, I. Labbe, V. Gonzalez, D. Magee (2015). "A Spectroscopic Redshift Measurement for a Luminous Lyman Break Galaxy at z = 7.730 using Keck/MOSFIRE". The Astrophysical Journal. 804 (2): L30. arXiv:1502.05399. Bibcode:2015ApJ...804L..30O. doi:10.1088/2041-8205/804/2/L30. S2CID 55115344.{{cite journal}}: CS1 maint: uses authors parameter (link)
  28. ^ Song, M.; Finkelstein, S. L.; Livermore, R. C.; Capak, P. L.; Dickinson, M.; Fontana, A. (2016). "Keck/MOSFIRE Spectroscopy of z = 7–8 Galaxies: Lyman-alpha Emission from a Galaxy at z = 7.66". The Astrophysical Journal. 826 (2): 113. arXiv:1602.02160. Bibcode:2016ApJ...826..113S. doi:10.3847/0004-637X/826/2/113. S2CID 51806693.
  29. ^ Wang, Feige; Yang, Jinyi; Fan, Xiaohui; Hennawi, Joseph F.; Barth, Aaron J.; Banados, Eduardo; Bian, Fuyan; Boutsia, Konstantina; Connor, Thomas; Davies, Frederick B.; Decarli, Roberto; Eilers, Anna-Christina; Farina, Emanuele Paolo; Green, Richard; Jiang, Linhua; Li, Jiang-Tao; Mazzucchelli, Chiara; Nanni, Riccardo; Schindler, Jan-Torge; Venemans, Bram; Walter, Fabian; Wu, Xue-Bing; Yue, Minghao (2021). "A Luminous Quasar at Redshift 7.642". The Astrophysical Journal. 907 (1): L1. arXiv:2101.03179. Bibcode:2021ApJ...907L...1W. doi:10.3847/2041-8213/abd8c6. S2CID 231572944.
  30. ^ Bañados, Eduardo; et al. (6 December 2017). "An 800-million-solar-mass black hole in a significantly neutral Universe at a redshift of 7.5". Nature. 553 (7689): 473–476. arXiv:1712.01860. Bibcode:2018Natur.553..473B. doi:10.1038/nature25180. PMID 29211709. S2CID 205263326.
  31. ^ S. L. Finkelstein, C. Papovich, M. Dickinson, M. Song, V. Tilvi, A. M. Koekemoer, K. D. Finkelstein, B. Mobasher, H. C. Ferguson, M. Giavalisco, N. Reddy, M. L. N. Ashby, A. Dekel, G. G. Fazio, A. Fontana, N. A. Grogin, J.-S. Huang, D. Kocevski, M. Rafelski, B. J. Weiner, S. P. Willner (2013). "A galaxy rapidly forming stars 700 million years after the Big Bang at redshift 7.51". Nature. 502 (7472): 524–527. arXiv:1310.6031. Bibcode:2013Natur.502..524F. doi:10.1038/nature12657. PMID 24153304. S2CID 4448085.{{cite journal}}: CS1 maint: uses authors parameter (link)
  32. ^ Watson, Darach; Christensen, Lise; Knudsen, Kirsten Kraiberg; Richard, Johan; Gallazzi, Anna; Michałowski, Michał Jerzy (2015). "A dusty, normal galaxy in the epoch of reionization". Nature. 519 (7543): 327–330. arXiv:1503.00002. Bibcode:2015Natur.519..327W. doi:10.1038/nature14164. PMID 25731171. S2CID 2514879.
  33. ^ Larson, R. L.; Finkelstein, S. L.; Pirzkal, N.; Ryan, R.; Tilvi, V.; Malhotra, S.; Rhoads, J.; Finkelstein, K.; Jung, I.; Christensen, L.; Cimatti, A.; Ferreras, I.; Grogin, N.; Koekemoer, A. M.; Hathi, N.; O'Connell, R.; Östlin, G.; Pasquali, A.; Pharo, J.; Rothberg, B.; Windhorst, R. A. (2018). "Discovery of a z = 7.452 High Equivalent Width Lyman alpha Emitter from the Hubble Space Telescope Faint Infrared Grism Survey". The Astrophysical Journal. 858 (2): 113. arXiv:1712.05807. Bibcode:2018ApJ...858...94L. doi:10.3847/1538-4357/aab893. S2CID 119257857.
  34. ^ a b c Ono, Yoshiaki; Ouchi, Masami; Mobasher, Bahram; Dickinson, Mark; Penner, Kyle; Shimasaku, Kazuhiro; Weiner, Benjamin J.; Kartaltepe, Jeyhan S.; Nakajima, Kimihiko; Nayyeri, Hooshang; Stern, Daniel; Kashikawa, Nobunari; Spinrad, Hyron (2011). "Spectroscopic Confirmation of Three z-Dropout Galaxies at z = 6.844 – 7.213: Demographics of Lyman-Alpha Emission in z ~ 7 Galaxies". The Astrophysical Journal. 744 (2): 83. arXiv:1107.3159. Bibcode:2012ApJ...744...83O. doi:10.1088/0004-637X/744/2/83. S2CID 119306980.
  35. ^ Inoue, Akio K.; et al. (June 2016). "Detection of an oxygen emission line from a high redshift galaxy in the reionization epoch" (PDF). Science. 352 (6293): 1559–1562. arXiv:1606.04989. Bibcode:2016Sci...352.1559I. doi:10.1126/science.aaf0714. PMID 27312046. S2CID 206646433.
  36. ^ a b Vanzella; et al. (2011). "Spectroscopic Confirmation of Two Lyman Break Galaxies at Redshift Beyond 7". The Astrophysical Journal Letters. 730 (2): L35. arXiv:1011.5500. Bibcode:2011ApJ...730L..35V. doi:10.1088/2041-8205/730/2/L35. S2CID 53459241.
  37. ^ Daniel J. Mortlock; Stephen J. Warren; Bram P. Venemans; et al. (2011). "A luminous quasar at a redshift of z = 7.085". Nature. 474 (7353): 616–619. arXiv:1106.6088. Bibcode:2011Natur.474..616M. doi:10.1038/nature10159. PMID 21720366. S2CID 2144362.
  38. ^ Schenker, Matthew A.; et al. (January 2012). "Keck Spectroscopy of Faint 3 < z < 8 Lyman Break Galaxies: Evidence for a Declining Fraction of Emission Line Sources in the Redshift Range 6 < z < 8". The Astrophysical Journal. 744 (2): 7. arXiv:1107.1261. Bibcode:2012ApJ...744..179S. doi:10.1088/0004-637X/744/2/179. S2CID 119244384.
  39. ^ Fontana, A.; Vanzella, E.; Pentericci, L.; Castellano, M.; Giavalisco, M.; Grazian, A.; Boutsia, K.; Cristiani, S.; Dickinson, M.; Giallongo, E.; Maiolino, M.; Moorwood, A.; Santini, P. (2010). "The lack of intense Lyman~alpha in ultradeep spectra of z = 7 candidates in GOODS-S: Imprint of reionization?". The Astrophysical Journal. 725 (2): L205. arXiv:1010.2754. Bibcode:2010ApJ...725L.205F. doi:10.1088/2041-8205/725/2/L205. S2CID 119270473.
  40. ^ Rhoads, James E.; Hibon, Pascale; Malhotra, Sangeeta; Cooper, Michael; Weiner, Benjamin (2012). "A Lyman Alpha Galaxy at Redshift z = 6.944 in the COSMOS Field". The Astrophysical Journal. 752 (2): L28. arXiv:1205.3161. Bibcode:2012ApJ...752L..28R. doi:10.1088/2041-8205/752/2/L28. S2CID 118383532.
  41. ^ Bañados, Eduardo; Mazzucchelli, Chiara; Momjian, Emmanuel; Eilers, Anna-Christina; Wang, Feige; Schindler, Jan-Torge; Connor, Thomas; Andika, Irham Taufik; Barth, Aaron J.; Carilli, Chris; Davies, Frederick B.; Decarli, Roberto; Fan, Xiaohui; Farina, Emanuele Paolo; Hennawi, Joseph F.; Pensabene, Antonio; Stern, Daniel; Venemans, Bram P.; Wenzl, Lukas; Yang, Jinyi (2021). "The Discovery of a Highly Accreting, Radio-loud Quasar at z = 6.82". The Astrophysical Journal. Harvard University. 909 (1): 80. arXiv:2103.03295. Bibcode:2021ApJ...909...80B. doi:10.3847/1538-4357/abe239. S2CID 232135300. Retrieved 26 March 2021.
  42. ^ a b c d e f g h i j k l m n o p q r s t u v w x y z aa ab ac Adams, N. J.; et al. (November 2022). "Discovery and properties of ultra-high redshift galaxies (9 < z < 12) in the JWST ERO SMACS 0723 Field". Monthly Notices of the Royal Astronomical Society. 518 (3): 4755–4766. arXiv:2207.11217. Bibcode:2023MNRAS.518.4755A. doi:10.1093/mnras/stac3347.
  43. ^ a b c d e f g h i j k l m n o p q r s t u v w x y z aa ab ac ad ae af ag ah ai aj ak al am an ao ap aq ar Yan, Haojing; et al. (January 2023). "First Batch of z ≈ 11–20 Candidate Objects Revealed by the James Webb Space Telescope Early Release Observations on SMACS 0723-73". The Astrophysical Journal Letters. 942 (L9): 20. arXiv:2207.11558. Bibcode:2023ApJ...942L...9Y. doi:10.3847/2041-8213/aca80c.
  44. ^ Garth Illingworth; Rychard Bouwens; Pascal Oesch; Ivo Labbe; Dan Magee (December 2012). "Our Latest Results". FirstGalaxies. Retrieved March 10, 2016.
  45. ^ a b c d e f g h Harikane, Yuichi; et al. (2023). "A Comprehensive Study of Galaxies at z ~ 9–16 Found in the Early JWST Data: Ultraviolet Luminosity Functions and Cosmic Star Formation History at the Pre-reionization Epoch". The Astrophysical Journal Supplement Series. 265 (1): 5. arXiv:2208.01612. Bibcode:2023ApJS..265....5H. doi:10.3847/1538-4365/acaaa9. S2CID 251253150.
  46. ^ a b Fujimoto, Seiji; et al. (November 2022). "ALMA FIR View of Ultra High-redshift Galaxy Candidates at z ~ 11-17: Blue Monsters or Low- z Red Interlopers?". arXiv:2211.03896 [astro-ph.GA].
  47. ^ a b Morishita, Takahiro; Stiavelli, Massimo (2023). "Physical Characterization of Early Galaxies in the Webb's First Deep Field SMACS J0723.3-7323". The Astrophysical Journal Letters. 946 (2): L35. arXiv:2207.11671v2. Bibcode:2023ApJ...946L..35M. doi:10.3847/2041-8213/acbf50. S2CID 254220684.
  48. ^ Harikane, Yuichi; Ouchi, Masami; Oguri, Masamune; Ono, Yoshiaki; Nakajima, Kimihiko; Isobe, Yuki; Umeda, Hiroya; Mawatari, Ken; Zhang, Yechi (2023). "A Comprehensive Study of Galaxies at z ~ 9–16 Found in the Early JWST Data: Ultraviolet Luminosity Functions and Cosmic Star Formation History at the Pre-reionization Epoch". The Astrophysical Journal Supplement Series. 265 (1): 5. arXiv:2208.01612v3. Bibcode:2023ApJS..265....5H. doi:10.3847/1538-4365/acaaa9. S2CID 251253150.
  49. ^ a b c d e f g h i j k Hakim, Atek; et al. (November 2022). "Revealing galaxy candidates out to z 16 with JWST observations of the lensing cluster SMACS0723". Monthly Notices of the Royal Astronomical Society. 519 (1): 1201–1220. arXiv:2207.12338. Bibcode:2023MNRAS.519.1201A. doi:10.1093/mnras/stac3144.
  50. ^ Harikane, Y.; et al. (April 2022). "A Search for H-Dropout Lyman Break Galaxies at z ~ 12–16". The Astrophysical Journal. 929 (1): 1. arXiv:2112.09141. Bibcode:2022ApJ...929....1H. doi:10.3847/1538-4357/ac53a9. S2CID 246823511.{{cite journal}}: CS1 maint: date and year (link)
  51. ^ a b c d e f g h i j k l Donnan, C. T.; et al. (November 2022). "The evolution of the galaxy UV luminosity function at redshifts z ≃ 8 - 15 from deep JWST and ground-based near-infrared imaging". Monthly Notices of the Royal Astronomical Society. 518 (4): 6011–6040. arXiv:2207.12356. Bibcode:2023MNRAS.518.6011D. doi:10.1093/mnras/stac3472.
  52. ^ a b c Bouwens, Rychard J.; et al. (2023). "Evolution of the UV LF from z ~ 15 to z ~ 8 using new JWST NIRCam medium-band observations over the HUDF/XDF". Monthly Notices of the Royal Astronomical Society. 523: 1036–1055. arXiv:2211.02607. doi:10.1093/mnras/stad1145.
  53. ^ Rodighiero, Giulia; et al. (January 2023). "JWST unveils heavily obscured (active and passive) sources up to z 13". Monthly Notices of the Royal Astronomical Society: Letters. 518 (1): L19–L24. arXiv:2208.02825. Bibcode:2023MNRAS.518L..19R. doi:10.1093/mnrasl/slac115.
  54. ^ a b Whitler, Lily; et al. (December 2022). "On the ages of bright galaxies 500 Myr after the Big Bang: insights into star formation activity at z ≳ 15 with JWST". Monthly Notices of the Royal Astronomical Society. 519 (1): 157–171. arXiv:2208.01599. Bibcode:2023MNRAS.519..157W. doi:10.1093/mnras/stac3535.
  55. ^ Coe, Dan; Zitrin, Adi; Carrasco, Mauricio; Shu, Xinwen; Zheng, Wei; Postman, Marc; Bradley, Larry; Koekemoer, Anton; Bouwens, Rychard; Broadhurst, Tom; Monna, Anna; Host, Ole; Moustakas, Leonidas A.; Ford, Holland; Moustakas, John; Van Der Wel, Arjen; Donahue, Megan; Rodney, Steven A.; Benítez, Narciso; Jouvel, Stephanie; Seitz, Stella; Kelson, Daniel D.; Rosati, Piero (2013). "CLASH: Three Strongly Lensed Images of a Candidate z ~ 11 Galaxy". The Astrophysical Journal. 762 (1): 32. arXiv:1211.3663. Bibcode:2013ApJ...762...32C. doi:10.1088/0004-637x/762/1/32. S2CID 119114237.
  56. ^ Hsiao, Tiger Yu-Yang; et al. (2023). "JWST Reveals a Possible z ~ 11 Galaxy Merger in Triply Lensed MACS0647–JD". The Astrophysical Journal Letters. 949 (2): L34. arXiv:2210.14123. Bibcode:2023ApJ...949L..34H. doi:10.3847/2041-8213/acc94b. S2CID 253107903.
  57. ^ Naidu, Rohan P.; et al. (November 2022). "Two Remarkably Luminous Galaxy Candidates at z ≈ 10 − 12 Revealed by JWST". The Astrophysical Journal Letters. 940 (1): 11. arXiv:2207.09434. Bibcode:2022ApJ...940L..14N. doi:10.3847/2041-8213/ac9b22. S2CID 250644267. L14.
  58. ^ Yoon, Ilsang; et al. (October 2022). "ALMA Observation of a z≳10 Galaxy Candidate Discovered with JWST". arXiv:2210.08413 [astro-ph.GA].
  59. ^ Salmon, Brett; Coe, Dan; Bradley, Larry; Bradač, Marusa; Huang, Kuang-Han; Strait, Victoria; Oesch, Pascal; Paterno-Mahler, Rachel; Zitrin, Adi; Acebron, Ana; Cibirka, Nathália; Kikuchihara, Shotaro; Oguri, Masamune; Brammer, Gabriel B; Sharon, Keren; Trenti, Michele; Avila, Roberto J; Ogaz, Sara; Andrade-Santos, Felipe; Carrasco, Daniela; Cerny, Catherine; Dawson, William; Frye, Brenda L; Hoag, Austin; Jones, Christine; Mainali, Ramesh; Ouchi, Masami; Rodney, Steven A; Stark, Daniel; Umetsu, Keiichi (2018). "A Candidate z~10 Galaxy Strongly Lensed into a Spatially Resolved Arc". The Astrophysical Journal. 864: L22. arXiv:1801.03103. doi:10.3847/2041-8213/aadc10. S2CID 78087820.
  60. ^ "Hubble Finds Distant Galaxy Through Cosmic Magnifying Glass". NASA. 23 April 2015.
  61. ^ Zitrin, Adi; Zheng, Wei; Broadhurst, Tom; Moustakas, John; Lam, Daniel; Shu, Xinwen; Huang, Xingxing; Diego, Jose M.; Ford, Holland; Lim, Jeremy; Bauer, Franz E.; Infante, Leopoldo; Kelson, Daniel D.; Molino, Alberto (2014). "A Geometrically Supported z ~ 10 Candidate Multiply Imaged by the Hubble Frontier Fields Cluster A2744" (PDF). The Astrophysical Journal. 793 (1): L12. arXiv:1407.3769. Bibcode:2014ApJ...793L..12Z. doi:10.1088/2041-8205/793/1/L12. S2CID 43853349.
  62. ^ "NASA Telescopes Spy Ultra-Distant Galaxy". NASA.
  63. ^ Zheng, W.; Postman, M.; Zitrin, A.; Moustakas, J.; Shu, X.; Jouvel, S.; Høst, O.; Molino, A.; Bradley, L.; Coe, D.; Moustakas, L. A.; Carrasco, M.; Ford, H.; Benítez, N.; Lauer, T. R.; Seitz, S.; Bouwens, R.; Koekemoer, A.; Medezinski, E.; Bartelmann, M.; Broadhurst, T.; Donahue, M.; Grillo, C.; Infante, L.; Jha, S. W.; Kelson, D. D.; Lahav, O.; Lemze, D.; Melchior, P.; Meneghetti, M. (2012). "A magnified young galaxy from about 500 million years after the Big Bang". Nature. 489 (7416): 406–408. arXiv:1204.2305. Bibcode:2012Natur.489..406Z. doi:10.1038/nature11446. PMID 22996554. S2CID 4415218.
  64. ^ Penn State Science, "Cosmic Explosion is New Candidate for Most Distant Object in the Universe", Derek. B. Fox , Barbara K. Kennedy , 25 May 2011
  65. ^ Space Daily, Explosion Helps Researcher Spot Universe's Most Distant Object, 27 May 2011
  66. ^ "ESA Science & Technology: The Hubble eXtreme Deep Field (annotated)".
  67. ^ David Shiga. "Dim galaxy is most distant object yet found". New Scientist.
  68. ^ Bunker, Andrew J.; Caruana, Joseph; Wilkins, Stephen M.; Stanway, Elizabeth R.; Lorenzoni, Silvio; Lacy, Mark; Jarvis, Matt J.; Hickey, Samantha (2013). "VLT/XSHOOTER and Subaru/MOIRCS spectroscopy of HUDF.YD3: no evidence for Lyman &". Monthly Notices of the Royal Astronomical Society. 430 (4): 3314. arXiv:1301.4477. Bibcode:2013MNRAS.430.3314B. doi:10.1093/mnras/stt132.
  69. ^ Trenti, M.; Bradley, L. D.; Stiavelli, M.; Shull, J. M.; Oesch, P.; Bouwens, R. J.; Munoz, J. A.; Romano-Diaz, E.; Treu, T.; Shlosman, I.; Carollo, C. M. (2011). "Overdensities of Y-dropout Galaxies from the Brightest-of-Reionizing Galaxies Survey: A Candidate Protocluster at Redshift z ≈ 8". The Astrophysical Journal. 746 (1): 55. arXiv:1110.0468. Bibcode:2012ApJ...746...55T. doi:10.1088/0004-637X/746/1/55. S2CID 119294290.
  70. ^ Wang, Tao; Elbaz, David; Daddi, Emanuele; Finoguenov, Alexis; Liu, Daizhong; Schrieber, Corenin; Martin, Sergio; Strazzullo, Veronica; Valentino, Francesco; van Der Burg, Remco; Zanella, Anita; Cisela, Laure; Gobat, Raphael; Le Brun, Amandine; Pannella, Maurilio; Sargent, Mark; Shu, Xinwen; Tan, Qinghua; Cappelluti, Nico; Li, Xanxia (2016). "Discovery of a galaxy cluster with a violently starbursting core at z=2.506". The Astrophysical Journal. 828 (1): 56. arXiv:1604.07404. Bibcode:2016ApJ...828...56W. doi:10.3847/0004-637X/828/1/56. S2CID 8771287.
  71. ^ Cucciati, O.; Lemaux, B. C.; Zamorani, G.; Le Fevre, O.; Tasca, L. A. M.; Hathi, N. P.; Lee, K-G.; Bardelli, S.; Cassata, P.; Garilli, B.; Le Brun, V.; Maccagni, D.; Pentericci, L.; Thomas, R.; Vanzella, E.; Zucca, E.; Lubin, L. M.; Amorin, R.; Cassara', L. P.; Cimatti, A.; Talia, M.; Vergani, D.; Koekemoer, A.; Pforr, J.; Salvato, M. (2018). "The progeny of a Cosmic Titan: a massive multi-component proto-supercluster in formation at z=2.45 in VUDS". Astronomy & Astrophysics. 619: A49. arXiv:1806.06073. Bibcode:2018A&A...619A..49C. doi:10.1051/0004-6361/201833655. S2CID 119472428.
  72. ^ Morishita, Takahiro; Roberts-Borsani, Guido; Treu, Tommaso; Brammer, Gabriel; Mason, Charlotte A.; Trenti, Michele; Vulcani, Benedetta; Wang, Xin; Acebron, Ana; Bahé, Yannick; Bergamini, Pietro; Boyett, Kristan; Bradac, Marusa; Calabrò, Antonello; Castellano, Marco; Chen, Wenlei; De Lucia, Gabriella; Filippenko, Alexei V.; Fontana, Adriano; Glazebrook, Karl; Grillo, Claudio; Henry, Alaina; Jones, Tucker; Kelly, Patrick L.; Koekemoer, Anton M.; Leethochawalit, Nicha; Lu, Ting-Yi; Marchesini, Danilo; Mascia, Sara; Mercurio, Amata; Merlin, Emiliano; Metha, Benjamin; Nanayakkara, Themiya; Nonino, Mario; Paris, Diego; Pentericci, Laura; Santini, Paola; Strait, Victoria; Vanzella, Eros; Windhorst, Rogier A.; Rosati, Piero; Xie, Lizhi (30 January 2023). "Early results from GLASS-JWST. XVIII: A spectroscopically confirmed protocluster 650 million years after the Big Bang". Astrophysical Journal Letters. 947 (2). arXiv:2211.09097. Bibcode:2023ApJ...947L..24M. doi:10.3847/2041-8213/acb99e. S2CID 253553396.
  73. ^ a b A Luminous Quasar at a Redshift of z=7.64, presentation at 237th Meeting of the American Astronomical Society, January 12, 2021
  74. ^ a b NASA, "New Gamma-Ray Burst Smashes Cosmic Distance Record", 28 April 2009
  75. ^ a b Science Codex, "GRB 090429B – most distant gamma-ray burst yet" 2011-05-31 at the Wayback Machine, NASA/Goddard, 27 May 2011
  76. ^ Welch, Brian; et al. (30 March 2022). "A highly magnified star at redshift 6.2". Nature. 603 (7903): 815–818. arXiv:2209.14866. Bibcode:2022Natur.603..815W. doi:10.1038/s41586-022-04449-y. PMID 35354998. S2CID 247842625. Retrieved 30 March 2022.
  77. ^ Gianopoulos, Andrea (30 March 2022). "Record Broken: Hubble Spots Farthest Star Ever Seen". NASA. Retrieved 30 March 2022.
  78. ^ Sky and Telescope, "The Most Distant Star Ever Seen?", Camille M. Carlisle, 12 April 2013
  79. ^ Kelly, Patrick L.; et al. (2018). "Extreme magnification of an individual star at redshift 1.5 by a galaxy-cluster lens". Nature Astronomy. 2 (4): 334–342. arXiv:1706.10279. Bibcode:2018NatAs...2..334K. doi:10.1038/s41550-018-0430-3. S2CID 119412560.
  80. ^ Mowla, Lamiya; et al. (October 2022). "The Sparkler: Evolved High-redshift Globular Cluster Candidates Captured by JWST". The Astrophysical Journal Letters. 937 (2): 9. arXiv:2208.02233. Bibcode:2022ApJ...937L..35M. doi:10.3847/2041-8213/ac90ca. L35.
  81. ^ Connor, Thomas; Bañados, Eduardo; Stern, Daniel; Carilli, Chris; Fabian, Andrew; Momjian, Emmanuel; Rojas-Ruiz, Sofía; Decarli, Roberto; Farina, Emanuele Paolo; Mazzucchelli, Chiara; Earnshaw, Hannah P. (2021). "Enhanced X-Ray Emission from the Most Radio-powerful Quasar in the Universe's First Billion Years". The Astrophysical Journal. 911 (2): 120. arXiv:2103.03879. Bibcode:2021ApJ...911..120C. doi:10.3847/1538-4357/abe710. S2CID 232148026.
  82. ^ NASA.gov
  83. ^ SpaceDaily, "Record-Setting X-ray Jet Discovered", 30 November 2012 (accessed 4 December 2012)
  84. ^ ESA, "Artist's impression of the X-ray binary XMMU J004243.6+412519", 12 December 2012 (accessed 18 December 2012)
  85. ^ e! Science News, "XMMU J004243.6+412519: Black-Hole Binary At The Eddington Limit", 12 December 2012 (accessed 18 December 2012)
  86. ^ SpaceDaily, "Microquasar found in neighbor galaxy, tantalizing scientists", 17 December 2012 (accessed 18 December 2012)
  87. ^ Ouchi, Masami; Ono, Yoshiaki; Egami, Eiichi; Saito, Tomoki; Oguri, Masamune; McCarthy, Patrick J.; Farrah, Duncan; Kashikawa, Nobunari; Momcheva, Ivelina; Shimasaku, Kazuhiro; Nakanishi, Kouichiro; Furusawa, Hisanori; Akiyama, Masayuki; Dunlop, James S.; Mortier, Angela M. J. (2009-05-01). "Discovery of a Giant Lyα Emitter Near the Reionization Epoch". The Astrophysical Journal. 696 (2): 1164–1175. arXiv:0807.4174. Bibcode:2009ApJ...696.1164O. doi:10.1088/0004-637X/696/2/1164. ISSN 0004-637X. S2CID 15246638.
  88. ^ Hsu, Jeremy (2009-04-22). "Giant Mystery Blob Discovered Near Dawn of Time". SPACE.com. Retrieved 2009-04-24.
  89. ^ USA Today, "Smallest, most distant planet outside solar system found", Malcolm Ritter, 25 January 2006 (accessed 5 August 2010)
  90. ^ Schneider, J. "Notes for star PA-99-N2". The Extrasolar Planets Encyclopaedia. Retrieved 2010-08-06.
  91. ^ Exoplaneten.de, "The Microlensing Event of Q0957+561" 2012-02-11 at the Wayback Machine (accessed 5 August 2010)
  92. ^ Schild, R.E. (1996). "Microlensing Variability of the Gravitationally Lensed Quasar Q0957+561 A,B". Astrophysical Journal. 464: 125. Bibcode:1996ApJ...464..125S. doi:10.1086/177304.
  93. ^ Cooke, Jeff; Sullivan, Mark; Gal-Yam, Avishay; Barton, Elizabeth J.; Carlberg, Raymond G.; Ryan-Weber, Emma V.; Horst, Chuck; Omori, Yuuki; Díaz, C. Gonzalo (2012). "Superluminous supernovae at redshifts of 2.05 and 3.90". Nature. 491 (7423): 228–31. arXiv:1211.2003. Bibcode:2012Natur.491..228C. doi:10.1038/nature11521. PMID 23123848. S2CID 4397580.
  94. ^ "Record-breaking supernova in the CANDELS Ultra Deep Survey: before, after, and difference". www.spacetelescope.org.
  95. ^ Science Newsline, "The Farthest Supernova Yet for Measuring Cosmic History" 2013-05-21 at the Wayback Machine, Lawrence Berkeley National Laboratory, 9 January 2013 (accessed 10 January 2013)
  96. ^ Space.com, "Most Distant 'Standard Candle' Star Explosion Found", Mike Wall, 9 January 2013 (accessed 10 January 2013)
  97. ^ Hinshaw, G.; Weiland, J. L.; Hill, R. S.; Odegard, N.; Larson, D.; Bennett, C. L.; Dunkley, J.; Gold, B.; Greason, M. R.; Jarosik, N.; Komatsu, E.; Nolta, M. R.; Page, L.; Spergel, D. N.; Wollack, E.; Halpern, M.; Kogut, A.; Limon, M.; Meyer, S. S.; Tucker, G. S.; Wright, E. L. (2009). "Five-Year Wilkinson Microwave Anisotropy Probe Observations: Data Processing, Sky Maps, and Basic Results". Astrophysical Journal Supplement. 180 (2): 225–245. arXiv:0803.0732. Bibcode:2009ApJS..180..225H. doi:10.1088/0067-0049/180/2/225. S2CID 3629998.
  98. ^ Redshift states the Cosmic microwave background radiation as having a redshift of z = 1089
  99. ^ Jonathan Amos (3 March 2016). "Hubble sets new cosmic distance record". BBC News.
  100. ^ Mike Wall (5 August 2015). "Ancient Galaxy Is Most Distant Ever Found". Space.com.
  101. ^ W. M. Keck Observatory (6 August 2015). "A new record: Keck Observatory measures most distant galaxy". Astronomy Now.
  102. ^ Mario De Leo Winkler (15 July 2015). "The Farthest Object in the Universe". Huffington Post.
  103. ^ a b New Scientist, "Most distant object in the universe spotted", Rachel Courtland, 22:32 27 April 2009 . Retrieved 2009-11-11.
  104. ^ New Scientist, "First generation of galaxies glimpsed forming", 'David Shiga ', 19:01 13 September 2006 (accessed 2009/11/11)
  105. ^ Iye, M; Ota, K; Kashikawa, N; Furusawa, H; Hashimoto, T; Hattori, T; Matsuda, Y; Morokuma, T; Ouchi, M; Shimasaku, K (2006). "A galaxy at a redshift z = 6.96". Nature. 443 (7108): 186–8. arXiv:astro-ph/0609393. Bibcode:2006Natur.443..186I. doi:10.1038/nature05104. PMID 16971942. S2CID 2876103.
  106. ^ a b Taniguchi, Yoshi (23 June 2008). "Star Forming Galaxies at z > 5". Proceedings of the International Astronomical Union. 3 (S250): 429–436. arXiv:0804.0644. Bibcode:2008IAUS..250..429T. doi:10.1017/S1743921308020796. S2CID 198472.
  107. ^ a b Taniguchi, Yoshiaki; Ajiki, Masaru; Nagao, Tohru; Shioya, Yasuhiro; Murayama, Takashi; Kashikawa, Nobunari; Kodaira, Keiichi; Kaifu, Norio; Ando, Hiroyasu; Karoji, Hiroshi; Akiyama, Masayuki; Aoki, Kentaro; Doi, Mamoru; Fujita, Shinobu S.; Furusawa, Hisanori; Hayashino, Tomoki; Iwamuro, Fumihide; Iye, Masanori; Kobayashi, Naoto; Kodama, Tadayuki; Komiyama, Yutaka; Matsuda, Yuichi; Miyazaki, Satoshi; Mizumoto, Yoshihiko; Morokuma, Tomoki; Motohara, Kentaro; Nariai, Kyoji; Ohta, Koji; Ohyama, Youichi; et al. (2005). "The SUBARU Deep Field Project: Lymanα Emitters at a Redshift of 6.6" (PDF). Publications of the Astronomical Society of Japan. 57: 165–182. arXiv:astro-ph/0407542. Bibcode:2005PASJ...57..165T. doi:10.1093/pasj/57.1.165.
  108. ^ a b BBC News, Most distant galaxy detected, Tuesday, 25 March 2003, 14:28 GMT
  109. ^ a b SpaceRef, Subaru Telescope Detects the Most Distant Galaxy Yet and Expects Many More, Monday, March 24, 2003
  110. ^ Kodaira, K.; Taniguchi, Y.; Kashikawa, N.; Kaifu, N.; Ando, H.; Karoji, H.; Ajiki, Masaru; Akiyama, Masayuki; Aoki, Kentaro; Doi, Mamoru; Fujita, Shinobu S.; Furusawa, Hisanori; Hayashino, Tomoki; Imanishi, Masatoshi; Iwamuro, Fumihide; Iye, Masanori; Kawabata, Koji S.; Kobayashi, Naoto; Kodama, Tadayuki; Komiyama, Yutaka; Kosugi, George; Matsuda, Yuichi; Miyazaki, Satoshi; Mizumoto, Yoshihiko; Motohara, Kentaro; Murayama, Takashi; Nagao, Tohru; Nariai, Kyoji; Ohta, Kouji; et al. (2003). "The Discovery of Two Lyman$α$ Emitters Beyond Redshift 6 in the Subaru Deep Field". Publications of the Astronomical Society of Japan. 55 (2): L17. arXiv:astro-ph/0301096. Bibcode:2003PASJ...55L..17K. doi:10.1093/pasj/55.2.L17.
  111. ^ New Scientist, New record for Universe's most distant object, 17:19 14 March 2002
  112. ^ BBC News, Far away stars light early cosmos, Thursday, 14 March 2002, 11:38 GMT
  113. ^ Hu, E. M. (2002). "A Redshift z = 6.56 Galaxy behind the Cluster Abell 370". The Astrophysical Journal. 568 (2): L75–L79. arXiv:astro-ph/0203091. Bibcode:2002ApJ...568L..75H. doi:10.1086/340424.
  114. ^ . Hera.ph1.uni-koeln.de. 2008-04-14. Archived from the original on 2011-05-18. Retrieved 2010-10-22.
  115. ^ Pentericci, L.; Fan, X.; Rix, H. W.; Strauss, M. A.; Narayanan, V. K.; Richards, G T.; Schneider, D. P.; Krolik, J.; Heckman, T.; Brinkmann, J.; Lamb, D. Q.; Szokoly, G. P. (2002). "VLT observations of the z = 6.28 quasar SDSS 1030+0524". The Astronomical Journal. 123 (5): 2151. arXiv:astro-ph/0112075. Bibcode:2002AJ....123.2151P. doi:10.1086/340077. S2CID 119041760.
  116. ^ The Astrophysical Journal, 578:702–707, 20 October 2002, A Constraint on the Gravitational Lensing Magnification and Age of the Redshift z = 6.28 Quasar SDSS 1030+0524
  117. ^ White, Richard L.; Becker, Robert H.; Fan, Xiaohui; Strauss, Michael A. (2003). "Probing the Ionization State of the Universe atz>6". The Astronomical Journal. 126 (1): 1–14. arXiv:astro-ph/0303476. Bibcode:2003AJ....126....1W. doi:10.1086/375547. S2CID 51505828.
  118. ^ Farrah, D.; Priddey, R.; Wilman, R.; Haehnelt, M.; McMahon, R. (2004). "The X-Ray Spectrum of the z = 6.30 QSO SDSS J1030+0524". The Astrophysical Journal. 611 (1): L13–L16. arXiv:astro-ph/0406561. Bibcode:2004ApJ...611L..13F. doi:10.1086/423669. S2CID 14854831.
  119. ^ a b PennState Eberly College of Science, Discovery Announced of Two Most Distant Objects 2007-11-21 at the Wayback Machine, June 2001
  120. ^ a b SDSS, Early results from the Sloan Digital Sky Survey: From under our nose to the edge of the universe, June 2001
  121. ^ a b c d PennState – Eberly College of Science – Science Journal – Summer 2000 – Vol. 17, No. 1 International Team of Astronomers Finds Most Distant Object 2009-09-12 at the Wayback Machine
  122. ^ The Astrophysical Journal Letters, 522:L9–L12, 1999 September 1, An Extremely Luminous Galaxy at z = 5.74
  123. ^ PennState Eberly College of Science, X-rays from the Most Distant Quasar Captured with the XMM-Newton Satellite 2007-11-21 at the Wayback Machine, Dec 2000
  124. ^ UW-Madison Astronomy, Confirmed High Redshift (z > 5.5) Galaxies – (Last Updated 10th February 2005) 2007-06-18 at the Wayback Machine
  125. ^ SPACE.com, Most Distant Object in Universe Comes Closer, 01 December 2000
  126. ^ The Astrophysical Journal Letters, 522:L9–L12, September 1, 1999, An Extremely Luminous Galaxy at z = 5.74
  127. ^ a b c d e f Publications of the Astronomical Society of the Pacific, 111: 1475–1502, 1999 December; Search Techniques for Distant Galaxies; Introduction
  128. ^ New York Times, Peering Back in Time, Astronomers Glimpse Galaxies Aborning, October 20, 1998
  129. ^ a b Astronomy Picture of the Day, A Baby Galaxy, March 24, 1998
  130. ^ a b Dey, Arjun; Spinrad, Hyron; Stern, Daniel; Graham, James R.; Chaffee, Frederic H. (1998). "A Galaxy at z = 5.34". The Astrophysical Journal. 498 (2): L93. arXiv:astro-ph/9803137. Bibcode:1998ApJ...498L..93D. doi:10.1086/311331.
  131. ^ "A New Most Distant Object: z = 5.34". Astro.ucla.edu. Retrieved 2010-10-22.
  132. ^ Astronomy Picture of the Day, Behind CL1358+62: A New Farthest Object, July 31, 1997
  133. ^ Franx, Marijn; Illingworth, Garth D.; Kelson, Daniel D.; Van Dokkum, Pieter G.; Tran, Kim-Vy (1997). "A Pair of Lensed Galaxies at z = 4.92 in the Field of CL 1358+62". The Astrophysical Journal. 486 (2): L75. arXiv:astro-ph/9704090. Bibcode:1997ApJ...486L..75F. doi:10.1086/310844. S2CID 14502310.
  134. ^ a b c d e f Illingworth, Garth (1999). "Galaxies at High Redshift". Astrophysics and Space Science. 269/270: 165–181. arXiv:astro-ph/0009187. Bibcode:1999Ap&SS.269..165I. doi:10.1023/a:1017052809781. S2CID 119363931.
  135. ^ Smith, J. D.; Djorgovski, S.; Thompson, D.; Brisken, W. F.; Neugebauer, G.; Matthews, K.; Meylan, G.; Piotto, G.; Suntzeff, N. B. (1994). "Multicolor detection of high-redshift quasars, 2: Five objects with Z greater than or approximately equal to 4" (PDF). The Astronomical Journal. 108: 1147. Bibcode:1994AJ....108.1147S. doi:10.1086/117143.
  136. ^ New Scientist, issue 1842, 10 October 1992, page 17, Science: Infant galaxy's light show
  137. ^ FermiLab Scientists of Sloan Digital Sky Survey Discover Most Distant Quasar 2009-09-12 at the Wayback Machine December 8, 1998
  138. ^ a b Hook, Isobel M.; McMahon, Richard G. (1998). "Discovery of radio-loud quasars with z = 4.72 and z = 4.01". Monthly Notices of the Royal Astronomical Society. 294 (1): L7–L12. arXiv:astro-ph/9801026. Bibcode:1998MNRAS.294L...7H. doi:10.1046/j.1365-8711.1998.01368.x.
  139. ^ a b c d e Turner, Edwin L. (1991). "Quasars and galaxy formation. I – the Z greater than 4 objects". Astronomical Journal. 101: 5. Bibcode:1991AJ....101....5T. doi:10.1086/115663.
  140. ^ SIMBAD, Object query : PC 1158+4635, QSO B1158+4635 -- Quasar
  141. ^ Cowie, Lennox L. (1991). "Young Galaxies". Annals of the New York Academy of Sciences. 647 (1 Texas/ESO–Cer): 31–41. Bibcode:1991NYASA.647...31C. doi:10.1111/j.1749-6632.1991.tb32157.x. S2CID 222074763.
  142. ^ a b New York Times, Peering to Edge of Time, Scientists Are Astonished, November 20, 1989
  143. ^ a b c Warren, S. J.; Hewett, P. C.; Osmer, P. S.; Irwin, M. J. (1987). "Quasars of redshift z = 4.43 and z = 4.07 in the South Galactic Pole field". Nature. 330 (6147): 453. Bibcode:1987Natur.330..453W. doi:10.1038/330453a0. S2CID 4352819.
  144. ^ Levshakov, S. A. (1989). "Absorption spectra of quasars". Astrophysics. 29 (2): 657–671. Bibcode:1988Ap.....29..657L. doi:10.1007/BF01005972. S2CID 122978350.
  145. ^ New York Times, Objects Detected in Universe May Be the Most Distant Ever Sighted, January 14, 1988
  146. ^ New York Times, Astronomers Peer Deeper Into Cosmos, May 10, 1988
  147. ^ SIMBAD, Object query : Q0000-26, QSO B0000-26 – Quasar
  148. ^ a b c d Schmidt, Maarten; Schneider, Donald P.; Gunn, James E. (1987). "PC 0910 + 5625 – an optically selected quasar with a redshift of 4.04". Astrophysical Journal. 321: L7. Bibcode:1987ApJ...321L...7S. doi:10.1086/184996.
  149. ^ SIMBAD, Object query : PC 0910+5625, QSO B0910+5625 -- Quasar
  150. ^ Warren, S. J.; Hewett, P. C.; Irwin, M. J.; McMahon, R. G.; Bridgeland, M. T.; Bunclark, P. S.; Kibblewhite, E. J. (1987). "First observation of a quasar with a redshift of 4". Nature. 325 (6100): 131. Bibcode:1987Natur.325..131W. doi:10.1038/325131a0. S2CID 4335291.
  151. ^ SIMBAD, Object query : Q0046-293, QSO J0048-2903 -- Quasar
  152. ^ SIMBAD, Object query : Q1208+1011, QSO B1208+1011 – Quasar
  153. ^ New Scientist, Quasar doubles help to fix the Hubble constant, 16 November 1991
  154. ^ Orwell Astronomical Society (Ipswich) – OASI ; Archived Astronomy News Items, 1972–1997 2009-09-12 at the Wayback Machine
  155. ^ SIMBAD, Object query : PKS 2000-330, QSO J2003-3251 – Quasar
  156. ^ a b OSU Big Ear, History of the OSU Radio Observatory
  157. ^ SIMBAD, Object query : OQ172, QSO B1442+101 – Quasar
  158. ^ a b c "QUASARS – THREE YEARS LATER".
  159. ^ Time Magazine, , Monday, Apr. 23, 1973
  160. ^ SIMBAD, Object query : OH471, QSO B0642+449 – Quasar
  161. ^ Warren, S J; Hewett, P C (1990). "The detection of high-redshift quasars". Reports on Progress in Physics. 53 (8): 1095. Bibcode:1990RPPh...53.1095W. doi:10.1088/0034-4885/53/8/003. S2CID 250880776.
  162. ^ a b The Structure of the Physical Universe, Volume III – The Universe of Motion, CHAPTER 23 – Quasar Redshifts 2008-06-19 at the Wayback Machine, by Dewey Bernard Larson ISBN 0-913138-11-8, 1984
  163. ^ Bahcall, John N.; Oke, J. B. (1971). "Some Inferences from Spectrophotometry of Quasi-Stellar Sources". Astrophysical Journal. 163: 235. Bibcode:1971ApJ...163..235B. doi:10.1086/150762.
  164. ^ a b c Lynds, R.; Wills, D. (1970). "The Unusually Large Redshift of 4C 05.34". Nature. 226 (5245): 532. Bibcode:1970Natur.226..532L. doi:10.1038/226532a0. PMID 16057373. S2CID 28297458.
  165. ^ SIMBAD, Object query : 5C 02.56, 7C 105517.75+495540.95 – Quasar
  166. ^ a b Burbidge, Geoffrey (1968). "The Distribution of Redshifts in Quasi-Stellar Objects, N-Systems and Some Radio and Compact Galaxies". Astrophysical Journal. 154: L41. Bibcode:1968ApJ...154L..41B. doi:10.1086/180265.
  167. ^ Time Magazine, , Friday, Apr. 07, 1967
  168. ^ SIMBAD, Object query : QSO B0237-2321, QSO B0237-2321 – Quasar
  169. ^ a b c d Burbidge, Geoffrey (1967). "On the Wavelengths of the Absorption Lines in Quasi-Stellar Objects". Astrophysical Journal. 147: 851. Bibcode:1967ApJ...147..851B. doi:10.1086/149072.
  170. ^ a b Time Magazine, , Friday, Mar. 11, 1966
  171. ^ SIMBAD, Object query : Q1116+12, 4C 12.39 – Quasar
  172. ^ SIMBAD, Object query : Q0106+01, 4C 01.02 – Quasar
  173. ^ Time Magazine, , Friday, May. 21, 1965
  174. ^ Time Magazine, , Friday, Jun. 18, 1965
  175. ^ The Cosmic Century: A History of Astrophysics and Cosmology p. 379 by Malcolm S. Longair – 2006
  176. ^ Schmidt, Maarten (1965). "Large Redshifts of Five Quasi-Stellar Sources". Astrophysical Journal. 141: 1295. Bibcode:1965ApJ...141.1295S. doi:10.1086/148217.
  177. ^ The Discovery of Radio Galaxies and Quasars, 1965
  178. ^ Schmidt, Maarten; Matthews, Thomas A. (1965). "Redshifts of the Quasi-Stellar Radio Sources 3c 47 and 3c 147". Quasi-Stellar Sources and Gravitational Collapse: 269. Bibcode:1965qssg.conf..269S.
  179. ^ Schneider, Donald P.; Van Gorkom, J. H.; Schmidt, Maarten; Gunn, James E. (1992). "Radio properties of optically selected high-redshift quasars. I – VLA observations of 22 quasars at 6 CM". Astronomical Journal. 103: 1451. Bibcode:1992AJ....103.1451S. doi:10.1086/116159.
  180. ^ Time Magazine, Finding the Fastest Galaxy: 76,000 Miles per Second[permanent dead link], Friday, Apr. 10, 1964
  181. ^ Schmidt, Maarten; Matthews, Thomas A. (1964). "Redshift of the Quasi-Stellar Radio Sources 3c 47 and 3c 147". Astrophysical Journal. 139: 781. Bibcode:1964ApJ...139..781S. doi:10.1086/147815.
  182. ^ "The Discovery of Radio Galaxies and Quasars". Retrieved 2010-10-22.
  183. ^ McCarthy, Patrick J. (1993). "High Redshift Radio Galaxies". Annual Review of Astronomy and Astrophysics. 31: 639–688. Bibcode:1993ARA&A..31..639M. doi:10.1146/annurev.aa.31.090193.003231.
  184. ^ a b Sandage, Allan (1961). "The Ability of the 200-INCH Telescope to Discriminate Between Selected World Models". Astrophysical Journal. 133: 355. Bibcode:1961ApJ...133..355S. doi:10.1086/147041.
  185. ^ Hubble, E. P. (1953). "The law of red shifts (George Darwin Lecture)". Monthly Notices of the Royal Astronomical Society. 113 (6): 658–666. Bibcode:1953MNRAS.113..658H. doi:10.1093/mnras/113.6.658.
  186. ^ Sandage, Allan. "Observational Tests of World Models: 6.1. Local Tests for Linearity of the Redshift-Distance Relation". Annu. Rev. Astron. Astrophys. 1988 (26): 561–630.
  187. ^ Humason, M. L.; Mayall, N. U.; Sandage, A. R. (1956). "Redshifts and magnitudes of extragalactic nebulae". Astronomical Journal. 61: 97. Bibcode:1956AJ.....61...97H. doi:10.1086/107297.
  188. ^ a b c "1053 May 8 meeting of the Royal Astronomical Society". The Observatory. 73: 97. 1953. Bibcode:1953Obs....73...97.
  189. ^ Merrill, Paul W. (1958). "From Atoms to Galaxies". Astronomical Society of the Pacific Leaflets. 7 (349): 393. Bibcode:1958ASPL....7..393M.
  190. ^ a b Humason, M. L. (January 1936). "The Apparent Radial Velocities of 100 Extra-Galactic Nebulae". The Astrophysical Journal. 83: 10. Bibcode:1936ApJ....83...10H. doi:10.1086/143696.
  191. ^ "The First 50 Years At Palomar: 1949–1999 ; The Early Years of Stellar Evolution, Cosmology, and High-Energy Astrophysics'; 5.2.1. The Mount Wilson Years ; Annu. Rev. Astron. Astrophys. 1999. 37: 445–486
  192. ^ a b Chant, C. A. (1 April 1932). "Notes and Queries (Doings at Mount Wilson-Ritchey's Photographic Telescope-Infra-red Photographic Plates)". Journal of the Royal Astronomical Society of Canada. 26: 180. Bibcode:1932JRASC..26..180C.
  193. ^ Humason, Milton L. (July 1931). "Apparent Velocity-Shifts in the Spectra of Faint Nebulae". The Astrophysical Journal. 74: 35. Bibcode:1931ApJ....74...35H. doi:10.1086/143287.
  194. ^ Hubble, Edwin; Humason, Milton L. (July 1931). "The Velocity-Distance Relation among Extra-Galactic Nebulae". The Astrophysical Journal. 74: 43. Bibcode:1931ApJ....74...43H. doi:10.1086/143323.
  195. ^ a b Humason, M. L. (1 January 1931). "The Large Apparent Velocities of Extra-Galactic Nebulae". Leaflet of the Astronomical Society of the Pacific. 1 (37): 149. Bibcode:1931ASPL....1..149H.
  196. ^ a b Humason, M. L. (1930). "The Rayton short-focus spectrographic objective". Astrophysical Journal. 71: 351. Bibcode:1930ApJ....71..351H. doi:10.1086/143255.
  197. ^ a b c d Trimble, Virginia (1996). "H_0: The Incredible Shrinking Constant, 1925–1975" (PDF). Publications of the Astronomical Society of the Pacific. 108: 1073. Bibcode:1996PASP..108.1073T. doi:10.1086/133837. S2CID 122165424.
  198. ^ "The Berkeley Meeting of the Astronomical Society of the Pacific, June 20–21, 1929". Publications of the Astronomical Society of the Pacific. 41 (242): 244. 1929. Bibcode:1929PASP...41..244.. doi:10.1086/123945.
  199. ^ a b From the Proceedings of the National Academy of Sciences; Volume 15 : March 15, 1929 : Number 3 ; The Large Radial Velocity of N. G. C. 7619 ; January 17, 1929
  200. ^ The Journal of the Royal Astronomical Society of Canada / Journal de la Société Royale D'astronomie du Canada; Vol. 83, No. 6 December 1989 Whole No. 621 ; EDWIN HUBBLE 1889–1953
  201. ^ a b National Academy of Sciences; Biographical Memoirs: V. 52 – Vesto Melvin Slipher; ISBN 0-309-03099-4
  202. ^ Bailey, S. I. (1920). "Comet Skjellerup". Harvard College Observatory Bulletin. 739: 1. Bibcode:1920BHarO.739....1B.
  203. ^ New York Times, DREYER NEBULA NO. 584 Inconceivably Distant; Dr. Slipher Says the Celestial Speed Champion Is 'Many Millions of Light Years' Away. ; January 19, 1921, Wednesday
  204. ^ a b New York Times, Nebula Dreyer Breaks All Sky Speed Records; Portion of the Constellation of Cetus Is Rushing Along at Rate of 1,240 Miles a Second. ; January 18, 1921, Tuesday
  205. ^ Hawera & Normanby Star, "Items of Interest", 29 December 1910, Volume LX, page 3 . Retrieved 25 March 2010.
  206. ^ Evening Star (San Jose), "Colossal Arcturus", Pittsburgh Dispatch, 10 June 1910 . Retrieved 25 March 2010.
  207. ^ Nelson Evening Mail, "British Bloodthirstiness", 2 November 1891, Volume XXV, Issue 230, Page 3 . Retrieved 25 March 2010.
  208. ^ "Handbook of astronomy", Dionysius Lardner & Edwin Dunkin, Lockwood & Co. (1875), p.121
  209. ^ "The Three Heavens", Josiah Crampton, William Hunt and Company (1876), p.164
  210. ^ (in German) Kosmos: Entwurf einer physischen Weltbeschreibung, Volume 4, Alexander von Humboldt, J. G. Cotta (1858), p.195
  211. ^ "Outlines of Astronomy", John F. W. Herschel, Longman & Brown (1849), ch. 'Parallax of Stars', p.551 (section 851)
  212. ^ a b c The North American Review, "The Observatory at Pulkowa", FGW Struve, Volume 69 Issue 144 (July 1849)
  213. ^ The Sidereal Messenger, "Of the Precession of the Equinoxes, Nutation of the Earth's Axis, And Aberration of Light", Vol.1, No. 12, April 1847: 'Derby, Bradley, & Co.' Cincinnati
  214. ^ SEDS, "Friedrich Wilhelm Bessel (July 22, 1784 – March 17, 1846)" February 4, 2012, at the Wayback Machine . Retrieved 11 November 2009.
  215. ^ Harper's New Monthly Magazine, "Some Talks of an Astronomer", Simon Newcomb, Volume 0049 Issue 294 (November 1874), pp.827 (accessed 2009-Nov-11)
  216. ^ Jensen, Joseph B.; Tonry, John L.; Barris, Brian J.; Thompson, Rodger I.; Liu, Michael C.; Rieke, Marcia J.; Ajhar, Edward A.; Blakeslee, John P. (February 2003). "Measuring Distances and Probing the Unresolved Stellar Populations of Galaxies Using Infrared Surface Brightness Fluctuations". Astrophysical Journal. 583 (2): 712–726. arXiv:astro-ph/0210129. Bibcode:2003ApJ...583..712J. doi:10.1086/345430. S2CID 551714.
  217. ^ Kepple, George Robert; Glen W. Sanner (1998). The Night Sky Observer's Guide, Volume 1. Willmann-Bell, Inc. p. 18. ISBN 978-0-943396-58-3.
  218. ^ Fodera-Serio, G.; Indorato, L.; Nastasi, P. (February 1985). "Hodierna's Observations of Nebulae and his Cosmology". Journal for the History of Astronomy. 16 (1): 1–36. Bibcode:1985JHA....16....1F. doi:10.1177/002182868501600101.
  219. ^ G. Gavazzi; A. Boselli; M. Scodeggio; D. Pierini & E. Belsole (1999). "The 3D structure of the Virgo cluster from H-band Fundamental Plane and Tully-Fisher distance determinations". Monthly Notices of the Royal Astronomical Society. 304 (3): 595–610. arXiv:astro-ph/9812275. Bibcode:1999MNRAS.304..595G. doi:10.1046/j.1365-8711.1999.02350.x. S2CID 41700753.
  220. ^ Burnham, Robert Jr (1978). Burnham's Celestial Handbook: Volume Three, Pavo Through Vulpecula. Dover. pp. 2086–2088. ISBN 978-0-486-23673-5.
  221. ^ "The OBEY Survey – NGC 584".
  222. ^ "Distance Results for NGC 0001". NASA/IPAC Extragalactic Database. Retrieved 2010-05-03.
  223. ^ Falla, D. F.; Evans, A. (1972). "On the Mass and Distance of the Quasi-Stellar Object 3C 273". Astrophysics and Space Science. 15 (3): 395. Bibcode:1972Ap&SS..15..395F. doi:10.1007/BF00649767. S2CID 124870214.
  224. ^ Variable Star Of The Season January 23, 2009, at the Wayback Machine
  225. ^ Minkowski, R. (1960). "A New Distant Cluster of Galaxies". Astrophysical Journal. 132: 908. Bibcode:1960ApJ...132..908M. doi:10.1086/146994.
  226. ^ "Exploding star is oldest object seen in universe". Cnn.com. 2009-04-29. Retrieved 2010-10-22.
  227. ^ Krimm, H.; et al. (2009). "GRB 090423: Swift detection of a burst". GCN Circulars. 9198: 1. Bibcode:2009GCN..9198....1K.

list, most, distant, astronomical, objects, this, article, documents, most, distant, astronomical, objects, discovered, verified, time, periods, which, they, were, classified, comparisons, with, light, travel, distance, astronomical, objects, listed, below, un. This article documents the most distant astronomical objects discovered and verified so far and the time periods in which they were so classified For comparisons with the light travel distance of the astronomical objects listed below the age of the universe since the Big Bang is currently estimated as 13 787 0 020 Gyr 1 Distances to remote objects other than those in nearby galaxies are nearly always inferred by measuring the cosmological redshift of their light By their nature very distant objects tend to be very faint and these distance determinations are difficult and subject to errors An important distinction is whether the distance is determined via spectroscopy or using a photometric redshift technique The former is generally both more precise and also more reliable in the sense that photometric redshifts are more prone to being wrong due to confusion with lower redshift sources that may have unusual spectra For that reason a spectroscopic redshift is conventionally regarded as being necessary for an object s distance to be considered definitely known whereas photometrically determined redshifts identify candidate very distant sources Here this distinction is indicated by a p subscript for photometric redshifts Contents 1 Most distant spectroscopically confirmed objects 2 Candidate most distant objects 3 List of most distant objects by type 4 Timeline of most distant astronomical object recordholders 5 List of objects by year of discovery that turned out to be most distant 6 See also 7 ReferencesMost distant spectroscopically confirmed objects EditMost distant astronomical objects with spectroscopic redshift determinations Image Name Redshift z Light travel distance Gly 2 3 4 5 Type Notes JADES GS z13 0 z 13 20 0 04 0 07 13 576 2 13 596 3 13 474 4 13 473 5 Galaxy Lyman break galaxy detection of the Lyman break with JWST NIRSpec not yet been through the peer review process 6 ID 13077 UNCOVER z13 7 8 z 13 079 0 014 0 001 13 51 GalaxyJADES GS z12 0 z 12 63 0 24 0 08 13 556 2 13 576 3 13 454 4 13 453 5 Galaxy Lyman break galaxy detection of the Lyman break with JWST NIRSpec not yet been through the peer review process 6 ID 38766 UNCOVER z12 9 10 z 12 393 0 004 0 001 13 48 Galaxy GLASS z12 z 12 117 0 01 0 01 13 536 2 13 556 3 13 434 4 13 433 5 Galaxy Lyman break galaxy discovered by JWST NIRCam confirmed by ALMA detection of O III emission 11 JADES GS z11 0 UDFj 39546284 z 11 58 0 05 0 05 13 512 2 13 532 3 13 410 4 13 409 5 Galaxy Lyman break galaxy detection of the Lyman break with JWST NIRSpec not yet been through the peer review process 6 CEERS J141946 36 525632 8 Maisie s Galaxy 12 zp 11 44 0 09 0 08 13 4 Galaxy Lyman break galaxy discovered by JWST GN z11 z 10 6034 0 0013 13 481 2 13 501 3 13 380 4 13 379 5 Galaxy Lyman break galaxy detection of the Lyman break with HST at 5 5s 13 and carbon emission lines with Keck MOSFIRE at 5 3s 14 Conclusive redshift by JWST in February 2023 15 JADES GS z10 0 UDFj 38116243 z 10 38 0 07 0 06 13 449 2 13 469 3 13 348 4 13 347 5 Galaxy Lyman break galaxy detection of the Lyman break with JWST NIRSpec not yet been through the peer review process 6 JD1 z 9 756 0 017 0 007 13 409 2 13 429 3 13 308 4 13 307 5 Galaxy Lyman break galaxy detection of the Lyman break with JWST NIRSpec not yet been through the peer review process 16 MACS1149 JD1 z 9 1096 0 0006 13 361 2 13 381 3 13 261 4 13 260 5 Galaxy Detection of hydrogen emission line with the VLT and oxygen line with ALMA 17 EGSY8p7 z 8 683 0 001 0 004 13 325 2 13 345 3 13 225 4 13 224 5 Galaxy Lyman alpha emitter detection of Lyman alpha with Keck MOSFIRE at 7 5s confidence 18 SMACS 4590 z 8 496 13 308 2 13 328 3 13 208 4 13 207 5 Galaxy Detection of hydrogen oxygen and neon emission lines with JWST NIRSpec 19 20 21 22 A2744 YD4 z 8 38 13 297 2 13 317 3 13 197 4 13 196 5 Galaxy Lyman alpha and O III emission detected with ALMA at 4 0s confidence 23 MACS0416 Y1 z 8 3118 0 0003 13 290 2 13 310 3 13 190 4 13 189 5 Galaxy O III emission detected with ALMA at 6 3s confidence 24 GRB 090423 z 8 23 0 06 0 07 13 282 2 13 302 3 13 182 4 13 181 5 Gamma ray burst Lyman alpha break detected 25 RXJ2129 11002 z 8 16 0 01 13 175 2 Galaxy O III doublet Hb and O II doublet as well as Lyman alpha break detected with JWST NIRSpec prism 26 RXJ2129 11022 z 8 15 0 01 13 174 2 Galaxy O III doublet and Hb as well as Lyman alpha break detected with JWST NIRSpec prism 26 EGS zs8 1 z 7 7302 0 0006 13 228 2 13 248 3 13 129 4 13 128 5 Galaxy Lyman break galaxy 27 SMACS 6355 z 7 665 13 221 2 13 241 3 13 121 4 13 120 5 Galaxy Detection of hydrogen oxygen and neon emission lines with JWST NIRSpec 19 20 21 22 z7 GSD 3811 z 7 6637 0 0011 13 221 2 13 240 3 13 121 4 13 120 5 Galaxy Lyman alpha emitter 28 SMACS 10612 z 7 658 13 221 2 13 241 3 13 120 4 13 119 5 Galaxy Detection of hydrogen oxygen and neon emission lines with JWST NIRSpec 19 20 21 gt 22 QSO J0313 1806 z 7 6423 0 0013 13 218 2 13 238 3 13 119 4 13 118 5 Quasar Lyman alpha break detected 29 ULAS J1342 0928 z 7 5413 0 0007 13 206 2 13 226 3 13 107 4 13 106 5 Quasar Redshift estimated from C II emission 30 z8 GND 5296 z 7 51 13 202 2 13 222 3 13 103 4 13 102 5 Galaxy Lyman alpha emitter 31 A1689 zD1 z 7 5 0 2 13 201 2 13 221 3 13 102 4 13 101 5 Galaxy Lyman break galaxy 32 GS2 1406 z 7 452 0 003 13 195 2 13 215 3 13 096 4 13 095 5 Galaxy Lyman alpha emitter 33 GN 108036 z 7 213 13 164 2 13 184 3 13 065 4 13 064 5 Galaxy Lyman alpha emitter 34 SXDF NB1006 2 z 7 2120 0 0003 13 164 2 13 184 3 13 065 4 13 064 5 Galaxy O III emission detected 35 BDF 3299 z 7 109 0 002 13 149 2 13 169 3 13 051 4 13 050 5 Galaxy Lyman break galaxy 36 ULAS J1120 0641 z 7 085 0 003 13 146 2 13 166 3 13 048 4 13 047 5 Quasar Redshift estimated from Si III C III and Mg II emission lines 37 A1703 zD6 z 7 045 0 004 13 140 2 13 160 3 13 042 4 13 041 5 Galaxy Gravitationally lensed Lyman alpha emitter 38 BDF 521 z 7 008 0 002 13 135 2 13 155 3 13 037 4 13 036 5 Galaxy Lyman break galaxy 36 G2 1408 z 6 972 0 002 13 130 2 13 150 3 13 032 4 13 030 5 Galaxy Lyman alpha emitter 39 IOK 1 z 6 965 13 129 2 13 149 3 13 030 4 13 029 5 Galaxy Lyman alpha emitter 34 LAE J095950 99 021219 1 z 6 944 13 126 2 13 146 3 13 028 4 13 027 5 Galaxy Lyman alpha emitter 40 SDF 46975 z 6 844 13 111 2 13 131 3 13 013 4 13 012 5 Galaxy Lyman alpha emitter 34 PSO J172 3556 18 7734 z 6 823 0 003 0 001 13 107 2 13 127 3 13 010 4 13 009 5 Quasar astrophysical jet Redshift estimated from Mg II emission 41 The tabulated distance is the light travel distance which has no direct physical significance See discussion at distance measures and Observable UniverseCandidate most distant objects EditSince the beginning of the James Webb Space Telescope s JWST science operations in June 2022 numerous distant galaxies far beyond what could be seen by the Hubble Space Telescope z 11 have been discovered thanks to the JWST s capability of seeing far into the infrared 42 43 Previously in 2012 there were about 50 possible objects z 8 or farther and another 100 candidates at z 7 based on photometric redshift estimates released by the Hubble eXtreme Deep Field XDF project from observations made between mid 2002 and December 2012 44 Some objects included here have been observed spectroscopically but had only one emission line tentatively detected and are therefore still considered candidates by researchers 45 46 Notable candidates for most distant astronomical objects Name Redshift z Light travel distance Gly Type NotesF200DB 045 zp 20 4 0 3 0 3 43 or 0 70 0 19 0 55 42 or 0 40 0 15 0 26 47 13 725 2 13 745 3 13 623 4 13 621 5 Galaxy Lyman break galaxy discovered by JWST 43 NOTE The redshift value of the galaxy presented by the procedure in one study 42 may differ from the values presented in other studies using different procedures 43 48 47 F200DB 175 zp 16 2 0 3 0 0 13 657 2 13 677 3 13 555 4 13 554 5 Galaxy Lyman break galaxy discovered by JWST 43 S5 z17 1 z 16 0089 0 0004 or 4 6108 0 0001 13 653 2 13 673 3 13 551 4 13 550 5 Galaxy Lyman break galaxy discovered by JWST tentative 5 1s ALMA detection of a single emission line possibly attributed to either C II z 4 6108 0 0001 or O III z 16 0089 0 0004 45 46 F150DB 041 zp 16 0 0 2 0 2 43 or 3 70 0 02 0 59 42 13 653 2 13 673 3 13 551 4 13 549 5 Galaxy Lyman break galaxy discovered by JWST 43 42 SMACS z16a zp 15 92 0 17 0 15 49 or 2 96 0 73 0 21 42 13 651 2 13 671 3 13 549 4 13 548 5 Galaxy Lyman break galaxy discovered by JWST 49 42 F200DB 015 zp 15 8 3 4 0 1 13 648 2 13 668 3 13 546 4 13 545 5 Galaxy Lyman break galaxy discovered by JWST 43 F200DB 181 zp 15 8 0 5 0 3 13 648 2 13 668 3 13 546 4 13 545 5 Galaxy Lyman break galaxy discovered by JWST 43 F200DB 159 zp 15 8 4 0 15 2 13 648 2 13 668 3 13 546 4 13 545 5 Galaxy Lyman break galaxy discovered by JWST 43 F200DB 086 zp 15 4 0 6 14 6 43 or 3 53 10 28 1 84 42 13 639 2 13 659 3 13 537 4 13 536 5 Galaxy Lyman break galaxy discovered by JWST 43 42 SMACS z16b zp 15 32 0 16 0 13 49 or 15 39 0 18 0 26 42 13 637 2 13 657 3 13 535 4 13 534 5 Galaxy Lyman break galaxy discovered by JWST 49 42 F150DB 048 zp 15 0 0 2 0 8 13 629 2 13 649 3 13 527 4 13 526 5 Galaxy Lyman break galaxy discovered by JWST 43 F150DB 007 zp 14 6 0 4 0 4 13 619 2 13 639 3 13 517 4 13 516 5 Galaxy Lyman break galaxy discovered by JWST 43 F150DB 004 zp 14 0 0 4 2 0 13 602 2 13 622 3 13 500 4 13 499 5 Galaxy Lyman break galaxy discovered by JWST 43 F150DB 079 zp 13 8 0 5 1 9 13 596 2 13 616 3 13 494 4 13 493 5 Galaxy Lyman break galaxy discovered by JWST 43 F150DA 007 zp 13 4 0 6 2 0 13 583 2 13 603 3 13 481 4 13 480 5 Galaxy Lyman break galaxy discovered by JWST 43 F150DA 053 zp 13 4 0 3 2 3 13 583 2 13 603 3 13 481 4 13 480 5 Galaxy Lyman break galaxy discovered by JWST 43 F150DA 050 zp 13 4 0 6 10 0 13 583 2 13 603 3 13 481 4 13 480 5 Galaxy Lyman break galaxy discovered by JWST 43 F150DA 058 zp 13 4 0 6 12 5 43 3 42 0 30 0 20 42 13 583 2 13 603 3 13 481 4 13 480 5 Galaxy Lyman break galaxy discovered by JWST 43 42 F150DA 038 zp 13 4 0 4 13 2 13 583 2 13 603 3 13 481 4 13 480 5 Galaxy Lyman break galaxy discovered by JWST 43 HD1 z 13 27 13 579 2 13 599 3 13 477 4 13 476 5 Galaxy Not yet spectroscopically confirmed Guinness World Record of the most distant confirmed galaxyLyman break galaxy 5s confidence followed with a tentative ALMA detection of a single O III oxygen emission line only 4s confidence 50 F150DA 010 zp 12 8 0 6 1 5 13 562 2 13 582 3 13 460 4 13 459 5 Galaxy Lyman break galaxy discovered by JWST 43 S5 z12 1 zp 12 57 1 23 0 46 13 553 2 13 573 3 13 452 4 13 451 5 Galaxy Lyman break galaxy discovered by JWST 45 CEERS 27535 4 zp 12 56 1 75 0 27 13 553 2 13 573 3 13 452 4 13 451 5 Galaxy Lyman break galaxy discovered by JWST 51 SMACS 1566 zp 12 29 1 50 0 44 13 542 2 13 562 3 13 441 4 13 440 5 Galaxy Lyman break galaxy discovered by JWST 51 SMACS z12b F150DA 077 zp 12 26 0 17 0 16 49 42 or 13 4 0 4 1 7 43 13 541 2 13 561 3 13 440 4 13 439 5 Galaxy Lyman break galaxy discovered by JWST 49 42 43 SMACS z12a zp 12 20 0 21 0 12 13 539 2 13 559 3 13 437 4 13 436 5 Galaxy Lyman break galaxy discovered by JWST 49 42 CR2 z12 4 zp 12 08 2 11 1 25 13 534 2 13 554 3 13 432 4 13 431 5 Galaxy Lyman break galaxy discovered by JWST 45 SMACS 10566 zp 12 03 0 57 0 26 13 532 2 13 552 3 13 430 4 13 429 5 Galaxy Lyman break galaxy discovered by JWST 51 XDFH 2395446286 zp 12 0 0 1 0 2 13 530 2 13 550 3 13 429 4 13 428 5 Galaxy Lyman break galaxy detected by JWST and Hubble 52 CR2 z12 2 zp 11 96 1 44 0 87 13 529 2 13 549 3 13 427 4 13 426 5 Galaxy Lyman break galaxy discovered by JWST 45 9 BUSCAR zp 11 91 0 10 0 22 13 527 2 13 547 3 13 425 4 13 424 5 Galaxy Lyman break galaxy discovered by JWST 53 SMACS 8347 zp 11 90 0 27 0 39 13 526 2 13 546 3 13 425 4 13 424 5 Galaxy Lyman break galaxy discovered by JWST 51 CEERS 26409 4 zp 11 90 1 60 0 70 13 526 2 13 546 3 13 425 4 13 424 5 Galaxy Lyman break galaxy discovered by JWST 51 F150DB 069 zp 11 8 1 7 0 2 13 522 2 13 542 3 13 420 4 13 419 5 Galaxy Lyman break galaxy discovered by JWST 43 XDFH 2334046578 zp 11 8 0 4 0 5 13 522 2 13 542 3 13 420 4 13 419 5 Galaxy Lyman break galaxy detected by JWST and Hubble 52 CR2 z12 3 zp 11 66 0 69 0 71 13 515 2 13 535 3 13 414 4 13 413 5 Galaxy Lyman break galaxy discovered by JWST 45 CR2 z12 1 zp 11 63 0 51 0 53 13 514 2 13 534 3 13 413 4 13 412 5 Galaxy Lyman break galaxy discovered by JWST 45 F150DB 088 zp 11 6 0 3 0 2 13 513 2 13 533 3 13 411 4 13 410 5 Galaxy Lyman break galaxy discovered by JWST 43 F150DB 084 zp 11 6 0 4 0 4 13 513 2 13 533 3 13 411 4 13 410 5 Galaxy Lyman break galaxy discovered by JWST 43 F150DB 044 zp 11 4 0 4 11 3 13 503 2 13 523 3 13 402 4 13 401 5 Galaxy Lyman break galaxy discovered by JWST 43 XDFH 2404647339 zp 11 4 0 4 0 5 13 503 2 13 523 3 13 402 4 13 401 5 Galaxy Lyman break galaxy detected by JWST and Hubble 52 F150DB 075 zp 11 4 0 4 0 1 43 0 04 0 01 0 01 42 13 503 2 13 523 3 13 402 4 13 401 5 Galaxy Lyman break galaxy discovered by JWST 43 42 F150DA 062 zp 11 4 0 3 0 3 43 1 78 0 20 0 08 42 13 503 2 13 523 3 13 402 4 13 401 5 Galaxy Lyman break galaxy discovered by JWST 43 42 CEERS 127682 zp 11 40 0 59 0 51 13 503 2 13 523 3 13 402 4 13 401 5 Galaxy Lyman break galaxy discovered by JWST 51 CEERS 5268 2 zp 11 40 0 30 1 11 13 503 2 13 523 3 13 402 4 13 401 5 Galaxy Lyman break galaxy discovered by JWST 51 F150DA 060 zp 11 4 0 6 8 2 13 503 2 13 523 3 13 402 4 13 401 5 Galaxy Lyman break galaxy discovered by JWST 43 F150DA 031 zp 11 4 1 0 8 2 13 503 2 13 523 3 13 402 4 13 401 5 Galaxy Lyman break galaxy discovered by JWST 43 F150DA 052 zp 11 4 0 8 10 6 13 503 2 13 523 3 13 402 4 13 401 5 Galaxy Lyman break galaxy discovered by JWST 43 F150DB 054 zp 11 4 0 5 10 8 13 503 2 13 523 3 13 402 4 13 401 5 Galaxy Lyman break galaxy discovered by JWST 43 SMACS z11d zp 11 28 0 32 or 2 35 0 30 0 67 Galaxy Lyman break galaxy discovered by JWST 42 CEERS 77241 zp 11 27 0 39 0 70 Galaxy Lyman break galaxy discovered by JWST 51 CEERS 6647 zp 11 27 0 58 0 28 Galaxy Lyman break galaxy discovered by JWST 51 CEERS 622 4 zp 11 27 0 48 0 60 Galaxy Lyman break galaxy discovered by JWST 51 SMACS z11c zp 11 22 0 32 or 3 84 0 05 0 04 Galaxy Lyman break galaxy discovered by JWST 42 SMACS z11b zp 11 22 0 56 or 6 94 0 07 0 07 Galaxy Lyman break galaxy discovered by JWST 42 F150DA 005 zp 11 2 0 4 0 3 Galaxy Lyman break galaxy discovered by JWST 43 F150DA 020 zp 11 2 0 2 7 9 Galaxy Lyman break galaxy discovered by JWST 43 CEERS 61486 zp 11 15 0 37 0 35 Galaxy Lyman break galaxy discovered by JWST 51 SMACS z11e F150DA 081 zp 11 10 0 21 0 34 42 or 13 4 0 6 2 2 43 Galaxy Lyman break galaxy discovered by JWST 42 43 SMACS z11a zp 11 05 0 09 0 08 49 or 1 73 0 18 0 04 42 Galaxy Lyman break galaxy discovered by JWST 49 42 CR3 z12 1 zp 11 05 2 24 0 47 Galaxy Lyman break galaxy discovered by JWST 45 F150DA 026 zp 11 0 0 5 0 3 Galaxy Lyman break galaxy discovered by JWST 43 F150DA 036 zp 11 0 0 4 7 8 Galaxy Lyman break galaxy discovered by JWST 43 SMACS z10e zp 10 89 0 16 0 14 49 or 1 38 1 37 0 24 42 Galaxy Lyman break galaxy discovered by JWST 49 42 F150DB 040 zp 10 8 0 3 0 2 Galaxy Lyman break galaxy discovered by JWST 43 EGS 14506 zp 10 71 0 34 0 62 Galaxy Lyman break galaxy discovered by JWST 54 MACS0647 JD zp 10 6 0 3 Galaxy Gravitationally lensed into three images by a galaxy cluster detected by JWST and Hubble 55 56 GLASS z10 GLASS 1698 51 z 10 38 Galaxy Lyman break galaxy discovered by JWST tentative 4 4s ALMA detection of O III emission line only 57 58 EGS 7860 zp 10 11 0 60 0 82 Galaxy Lyman break galaxy discovered by JWST 54 SPT0615 JD zp 9 9 0 8 0 6 13 419 2 Galaxy 59 A2744 JD zp 9 8 13 412 2 Galaxy Galaxy is being magnified and lensed into three multiple images geometrically supporting its redshift 60 61 MACS1149 JD1 zp 9 6 13 398 2 62 Candidate galaxy or protogalaxy 63 GRB 090429B zp 9 4 13 383 2 64 Gamma ray burst 65 The photometric redshift in this instance has quite large uncertainty with the lower limit for the redshift being z gt 7 UDFy 33436598 zp 8 6 13 317 2 Candidate galaxy or protogalaxy 66 UDFy 38135539 zp 8 6 13 317 2 Candidate galaxy or protogalaxy A spectroscopic redshift of z 8 55 was claimed for this source in 2010 67 but has subsequently been shown to be mistaken 68 BoRG 58 zp 8 13 258 2 Galaxy cluster or protocluster Protocluster candidate 69 The tabulated distance is the light travel distance which has no direct physical significance See discussion at distance measures and Observable UniverseThis is a dynamic list and may never be able to satisfy particular standards for completeness You can help by adding missing items with reliable sources List of most distant objects by type EditThis article needs to be updated Please help update this article to reflect recent events or newly available information June 2023 Most distant object by type Type Object Redshift distance NotesAny astronomical object no matter what type JADES GS z13 0 z 13 20 Most distant galaxy with a spectroscopically confirmed redshift as of December 2022 update 6 These are data from Webb science in progress as of 9 December 2022 which has not yet been through the peer review process The estimated light travel distance is about 13 6 billion light years and a proper distance of approximately 33 6 billion light years 10 3 billion parsecs from Earth due to the Universe s expansion since the light we now observe left it about 13 6 billion years ago 3 See also List of galaxiesGalaxy or protogalaxyGalaxy cluster CL J1001 0220 z 2 506 As of 2016 70 See also List of galaxy clustersGalaxy supercluster Hyperion proto supercluster z 2 45 This supercluster at the time of its discovery in 2018 was the earliest and largest proto supercluster found to date 71 See also List of superclustersGalaxy protocluster A2744z7p9OD z 7 88 This protocluster at the time of its discovery in 2023 was the most distant protocluster found and spectroscopically confirmed to date 72 See also List of galaxy groups and clustersQuasar QSO J0313 1806 z 7 64 73 See also List of quasarsBlack hole 73 Star or protostar or post stellar corpse detected by an event Progenitor of GRB 090423 z 8 2 74 25 Note GRB 090429B has a photometric redshift zp 9 4 75 and so is most likely more distant than GRB 090423 but is lacking spectroscopic confirmation See also List of gamma ray bursts Estimated an approximate distance of 13 billion lightyears from EarthStar or protostar or post stellar corpse detected as a star WHL0137 LS Earendel z 6 2 0 1 12 9 Gly Most distant individual star detected March 2022 76 77 Previous records include SDSS J1229 1122 78 and MACS J1149 Lensed Star 1 79 Star cluster The Sparkler z 1 378 13 9 Gly Galaxy with globular clusters gravitationally lensed in SMACS J0723 3 7327 80 System of star clustersX ray jet PJ352 15 quasar jet z 5 831 12 7 Gly 81 The previous recordholder was at 12 4 Gly 82 83 Microquasar XMMU J004243 6 412519 2 5 Mly First extragalactic microquasar discovered 84 85 86 Nebula like object Himiko z 6 595 Possibly one of the largest objects in the early universe 87 88 Planet SWEEPS 11 SWEEPS 04 27 710 ly 89 An analysis of the lightcurve of the microlensing event PA 99 N2 suggests the presence of a planet orbiting a star in the Andromeda Galaxy 90 A controversial microlensing event of lobe A of the double gravitationally lensed Q0957 561 suggests that there is a planet in the lensing galaxy lying at redshift 0 355 3 7 Gly 91 92 Most distant event by type Type Event Redshift NotesGamma ray burst GRB 090423 z 8 2 74 25 Note GRB 090429B has a photometric redshift zp 9 4 75 and so is most likely more distant than GRB 090423 but is lacking spectroscopic confirmation See also List of gamma ray burstsCore collapse supernova SN 1000 0216 z 3 8993 93 See also List of most distant supernovaeType Ia supernova SN UDS10Wil z 1 914 94 See also List of supernovaeType Ia supernova SN SCP 0401 Mingus z 1 71 First observed in 2004 it was not until 2013 that it could be identified as a Type Ia SN 95 96 See also List of supernovaeCosmic Decoupling Cosmic Background Radiation creation z 1000 to 1089 97 98 Timeline of most distant astronomical object recordholders EditObjects in this list were found to be the most distant object at the time of determination of their distance This is frequently not the same as the date of their discovery Distances to astronomical objects may be determined through parallax measurements use of standard references such as cepheid variables or Type Ia supernovas or redshift measurement Spectroscopic redshift measurement is preferred while photometric redshift measurement is also used to identify candidate high redshift sources The symbol z represents redshift Most Distant Object Titleholders not including candidates based on photometric redshifts Object Type Date Distance z Redshift NotesHD1 Galaxy 7 April 2022 Present z 13 27 Guinness World RecordGN z11 Galaxy 2016 2022 z 10 957 13 14 EGSY8p7 Galaxy 2015 2016 z 8 68 99 100 101 102 Progenitor of GRB 090423 Remnant of GRB 090423 Gamma ray burst progenitor Gamma ray burst remnant 2009 2015 z 8 2 25 103 IOK 1 Galaxy 2006 2009 z 6 96 103 104 105 106 SDF J132522 3 273520 Galaxy 2005 2006 z 6 597 106 107 SDF J132418 3 271455 Galaxy 2003 2005 z 6 578 107 108 109 110 HCM 6A Galaxy 2002 2003 z 6 56 The galaxy is lensed by galaxy cluster Abell 370 This was the first non quasar galaxy found to exceed redshift 6 It exceeded the redshift of quasar SDSSp J103027 10 052455 0 of z 6 28 108 109 111 112 113 114 SDSS J1030 0524 SDSSp J103027 10 052455 0 Quasar 2001 2002 z 6 28 115 116 117 118 119 120 SDSS 1044 0125 SDSSp J104433 04 012502 2 Quasar 2000 2001 z 5 82 121 122 119 120 123 124 125 SSA22 HCM1 Galaxy 1999 2000 z gt 5 74 126 127 HDF 4 473 0 Galaxy 1998 1999 z 5 60 127 RD1 0140 326 RD1 Galaxy 1998 z 5 34 128 129 130 127 131 CL 1358 62 G1 amp CL 1358 62 G2 Galaxies 1997 1998 z 4 92 These were the most remote objects discovered at the time The pair of galaxies were found lensed by galaxy cluster CL1358 62 z 0 33 This was the first time since 1964 that something other than a quasar held the record for being the most distant object in the universe 129 132 133 130 127 134 PC 1247 3406 Quasar 1991 1997 z 4 897 121 135 136 137 138 PC 1158 4635 Quasar 1989 1991 z 4 73 121 138 139 140 141 142 Q0051 279 Quasar 1987 1989 z 4 43 143 139 142 144 145 146 Q0000 26 QSO B0000 26 Quasar 1987 z 4 11 143 139 147 PC 0910 5625 QSO B0910 5625 Quasar 1987 z 4 04 This was the second quasar discovered with a redshift over 4 121 139 148 149 Q0046 293 QSO J0048 2903 Quasar 1987 z 4 01 143 139 148 150 151 Q1208 1011 QSO B1208 1011 Quasar 1986 1987 z 3 80 This is a gravitationally lensed double image quasar and at the time of discovery to 1991 had the least angular separation between images 0 45 148 152 153 PKS 2000 330 QSO J2003 3251 Q2000 330 Quasar 1982 1986 z 3 78 148 154 155 OQ172 QSO B1442 101 Quasar 1974 1982 z 3 53 156 157 158 OH471 QSO B0642 449 Quasar 1973 1974 z 3 408 Nickname was the blaze marking the edge of the universe 156 158 159 160 161 4C 05 34 Quasar 1970 1973 z 2 877 Its redshift was so much greater than the previous record that it was believed to be erroneous or spurious 158 162 163 164 5C 02 56 7C 105517 75 495540 95 Quasar 1968 1970 z 2 399 134 164 165 4C 25 05 4C 25 5 Quasar 1968 z 2 358 134 164 166 PKS 0237 23 QSO B0237 2321 Quasar 1967 1968 z 2 225 162 166 167 168 169 4C 12 39 Q1116 12 PKS 1116 12 Quasar 1966 1967 z 2 1291 134 169 170 171 4C 01 02 Q0106 01 PKS 0106 1 Quasar 1965 1966 z 2 0990 134 169 170 172 3C 9 Quasar 1965 z 2 018 169 173 174 175 176 177 3C 147 Quasar 1964 1965 z 0 545 178 179 180 181 3C 295 Radio galaxy 1960 1964 z 0 461 127 134 182 183 184 LEDA 25177 MCG 01 23 008 Brightest cluster galaxy 1951 1960 z 0 2 V 61000 km s This galaxy lies in the Hydra Supercluster It is located at B1950 0 08h 55m 4s 03 21 and is the BCG of the fainter Hydra Cluster Cl 0855 0321 ACO 732 127 184 185 186 187 188 189 LEDA 51975 MCG 05 34 069 Brightest cluster galaxy 1936 z 0 13 V 39000 km s The brightest cluster galaxy of the Bootes Cluster ACO 1930 an elliptical galaxy at B1950 0 14h 30m 6s 31 46 apparent magnitude 17 8 was found by Milton L Humason in 1936 to have a 40 000 km s recessional redshift velocity 188 190 191 LEDA 20221 MCG 06 16 021 Brightest cluster galaxy 1932 z 0 075 V 23000 km s This is the BCG of the Gemini Cluster ACO 568 and was located at B1950 0 07h 05m 0s 35 04 190 192 BCG of WMH Christie s Leo Cluster Brightest cluster galaxy 1931 1932 z V 19700 km s 192 193 194 195 BCG of Baede s Ursa Major Cluster Brightest cluster galaxy 1930 1931 z V 11700 km s 195 196 NGC 4860 Galaxy 1929 1930 z 0 026 V 7800 km s 196 197 198 NGC 7619 Galaxy 1929 z 0 012 V 3779 km s Using redshift measurements NGC 7619 was the highest at the time of measurement At the time of announcement it was not yet accepted as a general guide to distance however later in the year Edwin Hubble described redshift in relation to distance which became accepted widely as an inferred distance 197 199 200 NGC 584 Dreyer nebula 584 Galaxy 1921 1929 z 0 006 V 1800 km s At the time nebula had yet to be accepted as independent galaxies However in 1923 galaxies were generally recognized as external to the Milky Way 188 197 199 201 202 203 204 M104 NGC 4594 Galaxy 1913 1921 z 0 004 V 1180 km s This was the second galaxy whose redshift was determined the first being Andromeda which is approaching us and thus cannot have its redshift used to infer distance Both were measured by Vesto Melvin Slipher At this time nebula had yet to be accepted as independent galaxies NGC 4594 was measured originally as 1000 km s then refined to 1100 and then to 1180 in 1916 197 201 204 Arcturus Alpha Bootis Star 1891 1910 160 ly 18 mas this is very inaccurate true 37 ly This number is wrong originally announced in 1891 the figure was corrected in 1910 to 40 ly 60 mas From 1891 to 1910 it had been thought this was the star with the smallest known parallax hence the most distant star whose distance was known Prior to 1891 Arcturus had previously been recorded of having a parallax of 127 mas 205 206 207 208 Capella Alpha Aurigae Star 1849 1891 72 ly 46 mas 209 210 211 Polaris Alpha Ursae Minoris Star 1847 1849 50 ly 80 mas this is very inaccurate true 375 ly 212 213 Vega Alpha Lyrae Star part of a double star pair 1839 1847 7 77 pc 125 mas 212 61 Cygni Binary star 1838 1839 3 48 pc 313 6 mas This was the first star other than the Sun to have its distance measured 212 214 215 Uranus Planet of the Solar System 1781 1838 18 AU This was the last planet discovered before the first successful measurement of stellar parallax It had been determined that the stars were much farther away than the planets Saturn Planet of the Solar System 1619 1781 10 AU From Kepler s Third Law it was finally determined that Saturn is indeed the outermost of the classical planets and its distance derived It had only previously been conjectured to be the outermost due to it having the longest orbital period and slowest orbital motion It had been determined that the stars were much farther away than the planets Mars Planet of the Solar System 1609 1619 2 6 AU when Mars is diametrically opposed to Earth Kepler correctly characterized Mars and Earth s orbits in the publication Astronomia nova It had been conjectured that the fixed stars were much farther away than the planets Sun Star 3rd century BC 1609 380 Earth radii very inaccurate true 16000 Earth radii Aristarchus of Samos made a measurement of the distance of the Sun from the Earth in relation to the distance of the Moon from the Earth The distance to the Moon was described in Earth radii 20 also inaccurate The diameter of the Earth had been calculated previously At the time it was assumed that some of the planets were further away but their distances could not be measured The order of the planets was conjecture until Kepler determined the distances from the Sun of the five known planets that were not Earth It had been conjectured that the fixed stars were much farther away than the planets Moon Moon of a planet 3rd century BC 20 Earth radii very inaccurate true 64 Earth radii Aristarchus of Samos made a measurement of the distance between the Earth and the Moon The diameter of the Earth had been calculated previously z represents redshift a measure of recessional velocity and inferred distance due to cosmological expansion mas represents parallax a measure of angle and distance can be determined through trigonometryList of objects by year of discovery that turned out to be most distant EditThis list contains a list of most distant objects by year of discovery of the object not the determination of its distance Objects may have been discovered without distance determination and were found subsequently to be the most distant known at that time However object must have been named or described An object like OJ 287 is ignored even though it was detected as early as 1891 using photographic plates but ignored until the advent of radiotelescopes Examples Year of record Modern light travel distance Mly Object Type Detected using First record by 1 964 2 5 216 Andromeda Galaxy Spiral galaxy naked eye Abd al Rahman al Sufi 217 1654 3 Triangulum Galaxy Spiral galaxy refracting telescope Giovanni Battista Hodierna 218 1779 68 219 Messier 58 Barred spiral galaxy refracting telescope Charles Messier 220 1785 76 4 221 NGC 584 Galaxy William Herschel1880s 206 29 222 NGC 1 Spiral galaxy Dreyer Herschel1959 2 400 223 3C 273 Quasar Parkes Radio Telescope Maarten Schmidt Bev Oke 224 1960 5 000 225 3C 295 Radio galaxy Palomar Observatory Rudolph MinkowskiData missing from table2009 13 000 226 GRB 090423 Gamma ray burst progenitor Swift Gamma Ray Burst Mission Krimm H et al 227 See also EditAge of the universe List of largest cosmic structures List of exoplanet extremes Lists of astronomical objectsReferences Edit Planck Collaboration 2020 Planck 2018 results VI Cosmological parameters Astronomy amp Astrophysics 641 page A6 see PDF page 15 Table 2 Age Gyr last column arXiv 1807 06209 Bibcode 2020A amp A 641A 6P doi 10 1051 0004 6361 201833910 S2CID 119335614 a b c d e f g h i j k l m n o p q r s t u v w x y z aa ab ac ad ae af ag ah ai aj ak al am an ao ap aq ar as at au av aw ax ay az ba bb bc bd be bf bg bh bi bj bk bl bm bn bo bp bq br bs bt bu bv bw bx by bz ca cb cc cd ce cf cg ch ci cj ck cl cm cn Staff 2015 UCLA Cosmological Calculator UCLA Retrieved 6 August 2022 Light travel distance was calculated from redshift value using the UCLA Cosmological Calculator with parameters values as of 2015 H0 67 74 and OmegaM 0 3089 see Table Planck2015 at Lambda CDM model Parameters a b c d e f g h i j k l m n o p q r s t u v w x y z aa ab ac ad ae af ag ah ai aj ak al am an ao ap aq ar as at au av aw ax ay az ba bb bc bd be bf bg bh bi bj bk bl bm bn bo bp bq br bs bt bu bv bw bx by bz ca cb cc cd ce cf Staff 2018 UCLA Cosmological Calculator UCLA Retrieved 6 August 2022 Light travel distance was calculated from redshift value using the UCLA Cosmological Calculator with parameters values as of 2018 H0 67 4 and OmegaM 0 315 see Table Planck2018 at Lambda CDM model Parameters a b c d e f g h i j k l m n o p q r s t u v w x y z aa ab ac ad ae af ag ah ai aj ak al am an ao ap aq ar as at au av aw ax ay az ba bb bc bd be bf bg bh bi bj bk bl bm bn bo bp bq br bs bt bu bv bw bx by bz ca cb cc cd ce Staff 2022 ICRAR Cosmology Calculator International Centre for Radio Astronomy Research Retrieved 6 August 2022 ICRAR Cosmology Calculator Set H0 67 4 and OmegaM 0 315 see Table Planck2018 at Lambda CDM model Parameters a b c d e f g h i j k l m n o p q r s t u v w x y z aa ab ac ad ae af ag ah ai aj ak al am an ao ap aq ar as at au av aw ax ay az ba bb bc bd be bf bg bh bi bj bk bl bm bn bo bp bq br bs bt bu bv bw bx by bz ca cb cc cd ce Kempner Joshua 2022 KEMPNER Cosmology Calculator Kempner net Retrieved 6 August 2022 KEMP Cosmology Calculator Set H0 67 4 OmegaM 0 315 and OmegaL 0 6847 see Table Planck2018 at Lambda CDM model Parameters a b c d e Robertson B E et al 2023 Identification and properties of intense star forming galaxies at redshifts z gt 10 Nature Astronomy 7 5 611 621 arXiv 2212 04480 Bibcode 2023NatAs 7 611R doi 10 1038 s41550 023 01921 1 S2CID 257968812 UNCOVER Illuminating the Early Universe JWST NIRSpec Confirmation of z gt 12 Galaxies UNCOVER A NIRSpec Census of Lensed Galaxies at z 8 50 13 08 Probing a High AGN Fraction and Ionized Bubbles in the Shadow UNCOVER Illuminating the Early Universe JWST NIRSpec Confirmation of z gt 12 Galaxies UNCOVER A NIRSpec Census of Lensed Galaxies at z 8 50 13 08 Probing a High AGN Fraction and Ionized Bubbles in the Shadow Bakx Tom J L C et al January 2023 Deep ALMA redshift search of a z 12 GLASS JWST galaxy candidate Monthly Notices of the Royal Astronomical Society 519 4 5076 5085 arXiv 2208 13642 doi 10 1093 mnras stac3723 Haro Pablo Arrabal Dickinson Mark Finkelstein Steven L Kartaltepe Jeyhan S Donnan Callum T Burgarella Denis Carnall Adam Cullen Fergus Dunlop James S Fernandez Vital Fujimoto Seiji Jung Intae Krips Melanie Larson Rebecca L Papovich Casey 2023 08 14 Confirmation and refutation of very luminous galaxies in the early universe Nature arXiv 2303 15431 doi 10 1038 s41586 023 06521 7 ISSN 0028 0836 a b Oesch P A Brammer G van Dokkum P et al March 2016 A Remarkably Luminous Galaxy at z 11 1 Measured with Hubble Space Telescope Grism Spectroscopy The Astrophysical Journal 819 2 129 arXiv 1603 00461 Bibcode 2016ApJ 819 129O doi 10 3847 0004 637X 819 2 129 S2CID 119262750 a b Jiang Linhua et al January 2021 Evidence for GN z11 as a luminous galaxy at redshift 10 957 Nature Astronomy 5 3 256 261 arXiv 2012 06936 Bibcode 2021NatAs 5 256J doi 10 1038 s41550 020 01275 y S2CID 229156468 JADES NIRSpec Spectroscopy of GN z11 Lyman a emission and possible enhanced nitrogen abundance in a z 10 60 luminous galaxy PDF Roberts Borsani Guido Treu Tommaso Chen Wenlei Morishita Takahiro Vanzella Eros Zitrin Adi Bergamini Pietro Castellano Marco Fontana Adriano Grillo Claudio Kelly Patrick L Merlin Emiliano Paris Diego Rosati Piero Acebron Ana 2022 10 27 A shot in the Dark Ages a faint galaxy at z 9 76 confirmed with JWST arXiv 2210 15639 astro ph GA T Hashimoto N Laporte K Mawatari R S Ellis A K Inoue E Zackrisson G Roberts Borsani W Zheng Y Tamura F E Bauer T Fletcher Y Harikane B Hatsukade N H Hayatsu Y Matsuda H Matsuo T Okamoto M Ouchi R Pello C Rydberg I Shimizu Y Taniguchi H Umehata N Yoshida 2019 The Onset of Star Formation 250 Million Years After the Big Bang Nature 557 7705 312 313 arXiv 1805 05966 Bibcode 2018Natur 557 392H doi 10 1038 s41586 018 0117 z PMID 29765123 S2CID 21702406 a href Template Cite journal html title Template Cite journal cite journal a CS1 maint uses authors parameter link Adi Zitrin Ivo Labbe Sirio Belli Rychard Bouwens Richard S Ellis Guido Roberts Borsani Daniel P Stark Pascal A Oesch Renske Smit 2015 Lyman alpha Emission from a Luminous z 8 68 Galaxy Implications for Galaxies as Tracers of Cosmic Reionization The Astrophysical Journal 810 1 L12 arXiv 1507 02679 Bibcode 2015ApJ 810L 12Z doi 10 1088 2041 8205 810 1 L12 S2CID 11524667 a href Template Cite journal html title Template Cite journal cite journal a CS1 maint uses authors parameter link a b c Curti Mirko et al January 2023 The chemical enrichment in the early Universe as probed by JWST via direct metallicity measurements at z 8 Monthly Notices of the Royal Astronomical Society 518 1 425 438 arXiv 2207 12375 Bibcode 2023MNRAS 518 425C doi 10 1093 mnras stac2737 a b c Carnall A C et al January 2023 A first look at the SMACS0723 JWST ERO spectroscopic redshifts stellar masses and star formation histories Monthly Notices of the Royal Astronomical Society Letters 518 1 L45 L50 arXiv 2207 08778 Bibcode 2023MNRAS 518L 45C doi 10 1093 mnrasl slac136 a b c Schaerer D et al September 2022 First look with JWST spectroscopy Resemblance among z 8 galaxies and local analogs Astronomy amp Astrophysics 665 6 arXiv 2207 10034 Bibcode 2022A amp A 665L 4S doi 10 1051 0004 6361 202244556 S2CID 252175886 L4 a b c Katz Harley et al January 2023 AFirst insights into the ISM at z gt 8 with JWST possible physical implications of a high O III l4363 O III l5007 Monthly Notices of the Royal Astronomical Society 518 1 592 603 arXiv 2207 13693 Bibcode 2023MNRAS 518 592K doi 10 1093 mnras stac2657 Laporte N Ellis R S Boone F Bauer F E Quenard D Roberts Borsani G W Pello R Perez Fournon I Streblyanska A 2017 Dust in the Reionization Era ALMA Observations of a z 8 38 Gravitationally Lensed Galaxy The Astrophysical Journal 832 2 L21 arXiv 1703 02039 Bibcode 2017ApJ 837L 21L doi 10 3847 2041 8213 aa62aa S2CID 51841290 Tamura Y Mawatari K Hashimoto T Inoue A K Zackrisson E Christensen L Binggeli C Matsuda Y Matsuo H Takeuchi T T Asano R S Sunaga K Shimizu I Okamoto T Yoshida N Lee M Shibuya T Taniguchi Y Umehata H Hatsukade B Kohno K Ota K 2017 Detection of the Far infrared O III and Dust Emission in a Galaxy at Redshift 8 312 Early Metal Enrichment in the Heart of the Reionization Era The Astrophysical Journal 874 1 27 arXiv 1806 04132 Bibcode 2019ApJ 874 27T doi 10 3847 1538 4357 ab0374 S2CID 55313459 a b c d Tanvir N R Fox D B Levan A J Berger E Wiersema K Fynbo J P U Cucchiara A Kruhler T Gehrels N Bloom J S Greiner J Evans P A Rol E Olivares F Hjorth J Jakobsson P Farihi J Willingale R Starling R L C Cenko S B Perley D Maund J R Duke J Wijers R A M J Adamson A J Allan A Bremer M N Burrows D N Castro Tirado A J et al 2009 A gamma ray burst at a redshift of z 8 2 Nature 461 7268 1254 7 arXiv 0906 1577 Bibcode 2009Natur 461 1254T doi 10 1038 nature08459 PMID 19865165 S2CID 205218350 a b Langeroodi Danial Hjorth Jens Chen Wenlei Kelly Patrick L Williams Hayley Lin Yu Heng Scarlata Claudia Zitrin Adi Broadhurst Tom Diego Jose M Huang Xiaosheng Filippenko Alexei V Foley Ryan J Jha Saurabh Koekemoer Anton M Oguri Masamune Perez Fournon Ismael Pierel Justin Poidevin Frederick Strolger Lou 2022 Evolution of the Mass Metallicity Relation from Redshift z 8 to the Local Universe The Astrophysical Journal 804 2 arXiv 2212 02491 Bibcode 2015ApJ 804L 30O doi 10 1088 2041 8205 804 2 L30 S2CID 55115344 P A Oesch P G van Dokkum G D Illingworth R J Bouwens I Momcheva B Holden G W Roberts Borsani R Smit M Franx I Labbe V Gonzalez D Magee 2015 A Spectroscopic Redshift Measurement for a Luminous Lyman Break Galaxy at z 7 730 using Keck MOSFIRE The Astrophysical Journal 804 2 L30 arXiv 1502 05399 Bibcode 2015ApJ 804L 30O doi 10 1088 2041 8205 804 2 L30 S2CID 55115344 a href Template Cite journal html title Template Cite journal cite journal a CS1 maint uses authors parameter link Song M Finkelstein S L Livermore R C Capak P L Dickinson M Fontana A 2016 Keck MOSFIRE Spectroscopy of z 7 8 Galaxies Lyman alpha Emission from a Galaxy at z 7 66 The Astrophysical Journal 826 2 113 arXiv 1602 02160 Bibcode 2016ApJ 826 113S doi 10 3847 0004 637X 826 2 113 S2CID 51806693 Wang Feige Yang Jinyi Fan Xiaohui Hennawi Joseph F Barth Aaron J Banados Eduardo Bian Fuyan Boutsia Konstantina Connor Thomas Davies Frederick B Decarli Roberto Eilers Anna Christina Farina Emanuele Paolo Green Richard Jiang Linhua Li Jiang Tao Mazzucchelli Chiara Nanni Riccardo Schindler Jan Torge Venemans Bram Walter Fabian Wu Xue Bing Yue Minghao 2021 A Luminous Quasar at Redshift 7 642 The Astrophysical Journal 907 1 L1 arXiv 2101 03179 Bibcode 2021ApJ 907L 1W doi 10 3847 2041 8213 abd8c6 S2CID 231572944 Banados Eduardo et al 6 December 2017 An 800 million solar mass black hole in a significantly neutral Universe at a redshift of 7 5 Nature 553 7689 473 476 arXiv 1712 01860 Bibcode 2018Natur 553 473B doi 10 1038 nature25180 PMID 29211709 S2CID 205263326 S L Finkelstein C Papovich M Dickinson M Song V Tilvi A M Koekemoer K D Finkelstein B Mobasher H C Ferguson M Giavalisco N Reddy M L N Ashby A Dekel G G Fazio A Fontana N A Grogin J S Huang D Kocevski M Rafelski B J Weiner S P Willner 2013 A galaxy rapidly forming stars 700 million years after the Big Bang at redshift 7 51 Nature 502 7472 524 527 arXiv 1310 6031 Bibcode 2013Natur 502 524F doi 10 1038 nature12657 PMID 24153304 S2CID 4448085 a href Template Cite journal html title Template Cite journal cite journal a CS1 maint uses authors parameter link Watson Darach Christensen Lise Knudsen Kirsten Kraiberg Richard Johan Gallazzi Anna Michalowski Michal Jerzy 2015 A dusty normal galaxy in the epoch of reionization Nature 519 7543 327 330 arXiv 1503 00002 Bibcode 2015Natur 519 327W doi 10 1038 nature14164 PMID 25731171 S2CID 2514879 Larson R L Finkelstein S L Pirzkal N Ryan R Tilvi V Malhotra S Rhoads J Finkelstein K Jung I Christensen L Cimatti A Ferreras I Grogin N Koekemoer A M Hathi N O Connell R Ostlin G Pasquali A Pharo J Rothberg B Windhorst R A 2018 Discovery of a z 7 452 High Equivalent Width Lyman alpha Emitter from the Hubble Space Telescope Faint Infrared Grism Survey The Astrophysical Journal 858 2 113 arXiv 1712 05807 Bibcode 2018ApJ 858 94L doi 10 3847 1538 4357 aab893 S2CID 119257857 a b c Ono Yoshiaki Ouchi Masami Mobasher Bahram Dickinson Mark Penner Kyle Shimasaku Kazuhiro Weiner Benjamin J Kartaltepe Jeyhan S Nakajima Kimihiko Nayyeri Hooshang Stern Daniel Kashikawa Nobunari Spinrad Hyron 2011 Spectroscopic Confirmation of Three z Dropout Galaxies at z 6 844 7 213 Demographics of Lyman Alpha Emission in z 7 Galaxies The Astrophysical Journal 744 2 83 arXiv 1107 3159 Bibcode 2012ApJ 744 83O doi 10 1088 0004 637X 744 2 83 S2CID 119306980 Inoue Akio K et al June 2016 Detection of an oxygen emission line from a high redshift galaxy in the reionization epoch PDF Science 352 6293 1559 1562 arXiv 1606 04989 Bibcode 2016Sci 352 1559I doi 10 1126 science aaf0714 PMID 27312046 S2CID 206646433 a b Vanzella et al 2011 Spectroscopic Confirmation of Two Lyman Break Galaxies at Redshift Beyond 7 The Astrophysical Journal Letters 730 2 L35 arXiv 1011 5500 Bibcode 2011ApJ 730L 35V doi 10 1088 2041 8205 730 2 L35 S2CID 53459241 Daniel J Mortlock Stephen J Warren Bram P Venemans et al 2011 A luminous quasar at a redshift of z 7 085 Nature 474 7353 616 619 arXiv 1106 6088 Bibcode 2011Natur 474 616M doi 10 1038 nature10159 PMID 21720366 S2CID 2144362 Schenker Matthew A et al January 2012 Keck Spectroscopy of Faint 3 lt z lt 8 Lyman Break Galaxies Evidence for a Declining Fraction of Emission Line Sources in the Redshift Range 6 lt z lt 8 The Astrophysical Journal 744 2 7 arXiv 1107 1261 Bibcode 2012ApJ 744 179S doi 10 1088 0004 637X 744 2 179 S2CID 119244384 Fontana A Vanzella E Pentericci L Castellano M Giavalisco M Grazian A Boutsia K Cristiani S Dickinson M Giallongo E Maiolino M Moorwood A Santini P 2010 The lack of intense Lyman alpha in ultradeep spectra of z 7 candidates in GOODS S Imprint of reionization The Astrophysical Journal 725 2 L205 arXiv 1010 2754 Bibcode 2010ApJ 725L 205F doi 10 1088 2041 8205 725 2 L205 S2CID 119270473 Rhoads James E Hibon Pascale Malhotra Sangeeta Cooper Michael Weiner Benjamin 2012 A Lyman Alpha Galaxy at Redshift z 6 944 in the COSMOS Field The Astrophysical Journal 752 2 L28 arXiv 1205 3161 Bibcode 2012ApJ 752L 28R doi 10 1088 2041 8205 752 2 L28 S2CID 118383532 Banados Eduardo Mazzucchelli Chiara Momjian Emmanuel Eilers Anna Christina Wang Feige Schindler Jan Torge Connor Thomas Andika Irham Taufik Barth Aaron J Carilli Chris Davies Frederick B Decarli Roberto Fan Xiaohui Farina Emanuele Paolo Hennawi Joseph F Pensabene Antonio Stern Daniel Venemans Bram P Wenzl Lukas Yang Jinyi 2021 The Discovery of a Highly Accreting Radio loud Quasar at z 6 82 The Astrophysical Journal Harvard University 909 1 80 arXiv 2103 03295 Bibcode 2021ApJ 909 80B doi 10 3847 1538 4357 abe239 S2CID 232135300 Retrieved 26 March 2021 a b c d e f g h i j k l m n o p q r s t u v w x y z aa ab ac Adams N J et al November 2022 Discovery and properties of ultra high redshift galaxies 9 lt z lt 12 in the JWST ERO SMACS 0723 Field Monthly Notices of the Royal Astronomical Society 518 3 4755 4766 arXiv 2207 11217 Bibcode 2023MNRAS 518 4755A doi 10 1093 mnras stac3347 a b c d e f g h i j k l m n o p q r s t u v w x y z aa ab ac ad ae af ag ah ai aj ak al am an ao ap aq ar Yan Haojing et al January 2023 First Batch of z 11 20 Candidate Objects Revealed by the James Webb Space Telescope Early Release Observations on SMACS 0723 73 The Astrophysical Journal Letters 942 L9 20 arXiv 2207 11558 Bibcode 2023ApJ 942L 9Y doi 10 3847 2041 8213 aca80c Garth Illingworth Rychard Bouwens Pascal Oesch Ivo Labbe Dan Magee December 2012 Our Latest Results FirstGalaxies Retrieved March 10 2016 a b c d e f g h Harikane Yuichi et al 2023 A Comprehensive Study of Galaxies at z 9 16 Found in the Early JWST Data Ultraviolet Luminosity Functions and Cosmic Star Formation History at the Pre reionization Epoch The Astrophysical Journal Supplement Series 265 1 5 arXiv 2208 01612 Bibcode 2023ApJS 265 5H doi 10 3847 1538 4365 acaaa9 S2CID 251253150 a b Fujimoto Seiji et al November 2022 ALMA FIR View of Ultra High redshift Galaxy Candidates at z 11 17 Blue Monsters or Low z Red Interlopers arXiv 2211 03896 astro ph GA a b Morishita Takahiro Stiavelli Massimo 2023 Physical Characterization of Early Galaxies in the Webb s First Deep Field SMACS J0723 3 7323 The Astrophysical Journal Letters 946 2 L35 arXiv 2207 11671v2 Bibcode 2023ApJ 946L 35M doi 10 3847 2041 8213 acbf50 S2CID 254220684 Harikane Yuichi Ouchi Masami Oguri Masamune Ono Yoshiaki Nakajima Kimihiko Isobe Yuki Umeda Hiroya Mawatari Ken Zhang Yechi 2023 A Comprehensive Study of Galaxies at z 9 16 Found in the Early JWST Data Ultraviolet Luminosity Functions and Cosmic Star Formation History at the Pre reionization Epoch The Astrophysical Journal Supplement Series 265 1 5 arXiv 2208 01612v3 Bibcode 2023ApJS 265 5H doi 10 3847 1538 4365 acaaa9 S2CID 251253150 a b c d e f g h i j k Hakim Atek et al November 2022 Revealing galaxy candidates out to z 16 with JWST observations of the lensing cluster SMACS0723 Monthly Notices of the Royal Astronomical Society 519 1 1201 1220 arXiv 2207 12338 Bibcode 2023MNRAS 519 1201A doi 10 1093 mnras stac3144 Harikane Y et al April 2022 A Search for H Dropout Lyman Break Galaxies at z 12 16 The Astrophysical Journal 929 1 1 arXiv 2112 09141 Bibcode 2022ApJ 929 1H doi 10 3847 1538 4357 ac53a9 S2CID 246823511 a href Template Cite journal html title Template Cite journal cite journal a CS1 maint date and year link a b c d e f g h i j k l Donnan C T et al November 2022 The evolution of the galaxy UV luminosity function at redshifts z 8 15 from deep JWST and ground based near infrared imaging Monthly Notices of the Royal Astronomical Society 518 4 6011 6040 arXiv 2207 12356 Bibcode 2023MNRAS 518 6011D doi 10 1093 mnras stac3472 a b c Bouwens Rychard J et al 2023 Evolution of the UV LF from z 15 to z 8 using new JWST NIRCam medium band observations over the HUDF XDF Monthly Notices of the Royal Astronomical Society 523 1036 1055 arXiv 2211 02607 doi 10 1093 mnras stad1145 Rodighiero Giulia et al January 2023 JWST unveils heavily obscured active and passive sources up to z 13 Monthly Notices of the Royal Astronomical Society Letters 518 1 L19 L24 arXiv 2208 02825 Bibcode 2023MNRAS 518L 19R doi 10 1093 mnrasl slac115 a b Whitler Lily et al December 2022 On the ages of bright galaxies 500 Myr after the Big Bang insights into star formation activity at z 15 with JWST Monthly Notices of the Royal Astronomical Society 519 1 157 171 arXiv 2208 01599 Bibcode 2023MNRAS 519 157W doi 10 1093 mnras stac3535 Coe Dan Zitrin Adi Carrasco Mauricio Shu Xinwen Zheng Wei Postman Marc Bradley Larry Koekemoer Anton Bouwens Rychard Broadhurst Tom Monna Anna Host Ole Moustakas Leonidas A Ford Holland Moustakas John Van Der Wel Arjen Donahue Megan Rodney Steven A Benitez Narciso Jouvel Stephanie Seitz Stella Kelson Daniel D Rosati Piero 2013 CLASH Three Strongly Lensed Images of a Candidate z 11 Galaxy The Astrophysical Journal 762 1 32 arXiv 1211 3663 Bibcode 2013ApJ 762 32C doi 10 1088 0004 637x 762 1 32 S2CID 119114237 Hsiao Tiger Yu Yang et al 2023 JWST Reveals a Possible z 11 Galaxy Merger in Triply Lensed MACS0647 JD The Astrophysical Journal Letters 949 2 L34 arXiv 2210 14123 Bibcode 2023ApJ 949L 34H doi 10 3847 2041 8213 acc94b S2CID 253107903 Naidu Rohan P et al November 2022 Two Remarkably Luminous Galaxy Candidates at z 10 12 Revealed by JWST The Astrophysical Journal Letters 940 1 11 arXiv 2207 09434 Bibcode 2022ApJ 940L 14N doi 10 3847 2041 8213 ac9b22 S2CID 250644267 L14 Yoon Ilsang et al October 2022 ALMA Observation of a z 10 Galaxy Candidate Discovered with JWST arXiv 2210 08413 astro ph GA Salmon Brett Coe Dan Bradley Larry Bradac Marusa Huang Kuang Han Strait Victoria Oesch Pascal Paterno Mahler Rachel Zitrin Adi Acebron Ana Cibirka Nathalia Kikuchihara Shotaro Oguri Masamune Brammer Gabriel B Sharon Keren Trenti Michele Avila Roberto J Ogaz Sara Andrade Santos Felipe Carrasco Daniela Cerny Catherine Dawson William Frye Brenda L Hoag Austin Jones Christine Mainali Ramesh Ouchi Masami Rodney Steven A Stark Daniel Umetsu Keiichi 2018 A Candidate z 10 Galaxy Strongly Lensed into a Spatially Resolved Arc The Astrophysical Journal 864 L22 arXiv 1801 03103 doi 10 3847 2041 8213 aadc10 S2CID 78087820 Hubble Finds Distant Galaxy Through Cosmic Magnifying Glass NASA 23 April 2015 Zitrin Adi Zheng Wei Broadhurst Tom Moustakas John Lam Daniel Shu Xinwen Huang Xingxing Diego Jose M Ford Holland Lim Jeremy Bauer Franz E Infante Leopoldo Kelson Daniel D Molino Alberto 2014 A Geometrically Supported z 10 Candidate Multiply Imaged by the Hubble Frontier Fields Cluster A2744 PDF The Astrophysical Journal 793 1 L12 arXiv 1407 3769 Bibcode 2014ApJ 793L 12Z doi 10 1088 2041 8205 793 1 L12 S2CID 43853349 NASA Telescopes Spy Ultra Distant Galaxy NASA Zheng W Postman M Zitrin A Moustakas J Shu X Jouvel S Host O Molino A Bradley L Coe D Moustakas L A Carrasco M Ford H Benitez N Lauer T R Seitz S Bouwens R Koekemoer A Medezinski E Bartelmann M Broadhurst T Donahue M Grillo C Infante L Jha S W Kelson D D Lahav O Lemze D Melchior P Meneghetti M 2012 A magnified young galaxy from about 500 million years after the Big Bang Nature 489 7416 406 408 arXiv 1204 2305 Bibcode 2012Natur 489 406Z doi 10 1038 nature11446 PMID 22996554 S2CID 4415218 Penn State Science Cosmic Explosion is New Candidate for Most Distant Object in the Universe Derek B Fox Barbara K Kennedy 25 May 2011 Space Daily Explosion Helps Researcher Spot Universe s Most Distant Object 27 May 2011 ESA Science amp Technology The Hubble eXtreme Deep Field annotated David Shiga Dim galaxy is most distant object yet found New Scientist Bunker Andrew J Caruana Joseph Wilkins Stephen M Stanway Elizabeth R Lorenzoni Silvio Lacy Mark Jarvis Matt J Hickey Samantha 2013 VLT XSHOOTER and Subaru MOIRCS spectroscopy of HUDF YD3 no evidence for Lyman amp Monthly Notices of the Royal Astronomical Society 430 4 3314 arXiv 1301 4477 Bibcode 2013MNRAS 430 3314B doi 10 1093 mnras stt132 Trenti M Bradley L D Stiavelli M Shull J M Oesch P Bouwens R J Munoz J A Romano Diaz E Treu T Shlosman I Carollo C M 2011 Overdensities of Y dropout Galaxies from the Brightest of Reionizing Galaxies Survey A Candidate Protocluster at Redshift z 8 The Astrophysical Journal 746 1 55 arXiv 1110 0468 Bibcode 2012ApJ 746 55T doi 10 1088 0004 637X 746 1 55 S2CID 119294290 Wang Tao Elbaz David Daddi Emanuele Finoguenov Alexis Liu Daizhong Schrieber Corenin Martin Sergio Strazzullo Veronica Valentino Francesco van Der Burg Remco Zanella Anita Cisela Laure Gobat Raphael Le Brun Amandine Pannella Maurilio Sargent Mark Shu Xinwen Tan Qinghua Cappelluti Nico Li Xanxia 2016 Discovery of a galaxy cluster with a violently starbursting core at z 2 506 The Astrophysical Journal 828 1 56 arXiv 1604 07404 Bibcode 2016ApJ 828 56W doi 10 3847 0004 637X 828 1 56 S2CID 8771287 Cucciati O Lemaux B C Zamorani G Le Fevre O Tasca L A M Hathi N P Lee K G Bardelli S Cassata P Garilli B Le Brun V Maccagni D Pentericci L Thomas R Vanzella E Zucca E Lubin L M Amorin R Cassara L P Cimatti A Talia M Vergani D Koekemoer A Pforr J Salvato M 2018 The progeny of a Cosmic Titan a massive multi component proto supercluster in formation at z 2 45 in VUDS Astronomy amp Astrophysics 619 A49 arXiv 1806 06073 Bibcode 2018A amp A 619A 49C doi 10 1051 0004 6361 201833655 S2CID 119472428 Morishita Takahiro Roberts Borsani Guido Treu Tommaso Brammer Gabriel Mason Charlotte A Trenti Michele Vulcani Benedetta Wang Xin Acebron Ana Bahe Yannick Bergamini Pietro Boyett Kristan Bradac Marusa Calabro Antonello Castellano Marco Chen Wenlei De Lucia Gabriella Filippenko Alexei V Fontana Adriano Glazebrook Karl Grillo Claudio Henry Alaina Jones Tucker Kelly Patrick L Koekemoer Anton M Leethochawalit Nicha Lu Ting Yi Marchesini Danilo Mascia Sara Mercurio Amata Merlin Emiliano Metha Benjamin Nanayakkara Themiya Nonino Mario Paris Diego Pentericci Laura Santini Paola Strait Victoria Vanzella Eros Windhorst Rogier A Rosati Piero Xie Lizhi 30 January 2023 Early results from GLASS JWST XVIII A spectroscopically confirmed protocluster 650 million years after the Big Bang Astrophysical Journal Letters 947 2 arXiv 2211 09097 Bibcode 2023ApJ 947L 24M doi 10 3847 2041 8213 acb99e S2CID 253553396 a b A Luminous Quasar at a Redshift of z 7 64 presentation at 237th Meeting of the American Astronomical Society January 12 2021 a b NASA New Gamma Ray Burst Smashes Cosmic Distance Record 28 April 2009 a b Science Codex GRB 090429B most distant gamma ray burst yet Archived 2011 05 31 at the Wayback Machine NASA Goddard 27 May 2011 Welch Brian et al 30 March 2022 A highly magnified star at redshift 6 2 Nature 603 7903 815 818 arXiv 2209 14866 Bibcode 2022Natur 603 815W doi 10 1038 s41586 022 04449 y PMID 35354998 S2CID 247842625 Retrieved 30 March 2022 Gianopoulos Andrea 30 March 2022 Record Broken Hubble Spots Farthest Star Ever Seen NASA Retrieved 30 March 2022 Sky and Telescope The Most Distant Star Ever Seen Camille M Carlisle 12 April 2013 Kelly Patrick L et al 2018 Extreme magnification of an individual star at redshift 1 5 by a galaxy cluster lens Nature Astronomy 2 4 334 342 arXiv 1706 10279 Bibcode 2018NatAs 2 334K doi 10 1038 s41550 018 0430 3 S2CID 119412560 Mowla Lamiya et al October 2022 The Sparkler Evolved High redshift Globular Cluster Candidates Captured by JWST The Astrophysical Journal Letters 937 2 9 arXiv 2208 02233 Bibcode 2022ApJ 937L 35M doi 10 3847 2041 8213 ac90ca L35 Connor Thomas Banados Eduardo Stern Daniel Carilli Chris Fabian Andrew Momjian Emmanuel Rojas Ruiz Sofia Decarli Roberto Farina Emanuele Paolo Mazzucchelli Chiara Earnshaw Hannah P 2021 Enhanced X Ray Emission from the Most Radio powerful Quasar in the Universe s First Billion Years The Astrophysical Journal 911 2 120 arXiv 2103 03879 Bibcode 2021ApJ 911 120C doi 10 3847 1538 4357 abe710 S2CID 232148026 NASA gov SpaceDaily Record Setting X ray Jet Discovered 30 November 2012 accessed 4 December 2012 ESA Artist s impression of the X ray binary XMMU J004243 6 412519 12 December 2012 accessed 18 December 2012 e Science News XMMU J004243 6 412519 Black Hole Binary At The Eddington Limit 12 December 2012 accessed 18 December 2012 SpaceDaily Microquasar found in neighbor galaxy tantalizing scientists 17 December 2012 accessed 18 December 2012 Ouchi Masami Ono Yoshiaki Egami Eiichi Saito Tomoki Oguri Masamune McCarthy Patrick J Farrah Duncan Kashikawa Nobunari Momcheva Ivelina Shimasaku Kazuhiro Nakanishi Kouichiro Furusawa Hisanori Akiyama Masayuki Dunlop James S Mortier Angela M J 2009 05 01 Discovery of a Giant Lya Emitter Near the Reionization Epoch The Astrophysical Journal 696 2 1164 1175 arXiv 0807 4174 Bibcode 2009ApJ 696 1164O doi 10 1088 0004 637X 696 2 1164 ISSN 0004 637X S2CID 15246638 Hsu Jeremy 2009 04 22 Giant Mystery Blob Discovered Near Dawn of Time SPACE com Retrieved 2009 04 24 USA Today Smallest most distant planet outside solar system found Malcolm Ritter 25 January 2006 accessed 5 August 2010 Schneider J Notes for star PA 99 N2 The Extrasolar Planets Encyclopaedia Retrieved 2010 08 06 Exoplaneten de The Microlensing Event of Q0957 561 Archived 2012 02 11 at the Wayback Machine accessed 5 August 2010 Schild R E 1996 Microlensing Variability of the Gravitationally Lensed Quasar Q0957 561 A B Astrophysical Journal 464 125 Bibcode 1996ApJ 464 125S doi 10 1086 177304 Cooke Jeff Sullivan Mark Gal Yam Avishay Barton Elizabeth J Carlberg Raymond G Ryan Weber Emma V Horst Chuck Omori Yuuki Diaz C Gonzalo 2012 Superluminous supernovae at redshifts of 2 05 and 3 90 Nature 491 7423 228 31 arXiv 1211 2003 Bibcode 2012Natur 491 228C doi 10 1038 nature11521 PMID 23123848 S2CID 4397580 Record breaking supernova in the CANDELS Ultra Deep Survey before after and difference www spacetelescope org Science Newsline The Farthest Supernova Yet for Measuring Cosmic History Archived 2013 05 21 at the Wayback Machine Lawrence Berkeley National Laboratory 9 January 2013 accessed 10 January 2013 Space com Most Distant Standard Candle Star Explosion Found Mike Wall 9 January 2013 accessed 10 January 2013 Hinshaw G Weiland J L Hill R S Odegard N Larson D Bennett C L Dunkley J Gold B Greason M R Jarosik N Komatsu E Nolta M R Page L Spergel D N Wollack E Halpern M Kogut A Limon M Meyer S S Tucker G S Wright E L 2009 Five Year Wilkinson Microwave Anisotropy Probe Observations Data Processing Sky Maps and Basic Results Astrophysical Journal Supplement 180 2 225 245 arXiv 0803 0732 Bibcode 2009ApJS 180 225H doi 10 1088 0067 0049 180 2 225 S2CID 3629998 Redshift states the Cosmic microwave background radiation as having a redshift of z 1089 Jonathan Amos 3 March 2016 Hubble sets new cosmic distance record BBC News Mike Wall 5 August 2015 Ancient Galaxy Is Most Distant Ever Found Space com W M Keck Observatory 6 August 2015 A new record Keck Observatory measures most distant galaxy Astronomy Now Mario De Leo Winkler 15 July 2015 The Farthest Object in the Universe Huffington Post a b New Scientist Most distant object in the universe spotted Rachel Courtland 22 32 27 April 2009 Retrieved 2009 11 11 New Scientist First generation of galaxies glimpsed forming David Shiga 19 01 13 September 2006 accessed 2009 11 11 Iye M Ota K Kashikawa N Furusawa H Hashimoto T Hattori T Matsuda Y Morokuma T Ouchi M Shimasaku K 2006 A galaxy at a redshift z 6 96 Nature 443 7108 186 8 arXiv astro ph 0609393 Bibcode 2006Natur 443 186I doi 10 1038 nature05104 PMID 16971942 S2CID 2876103 a b Taniguchi Yoshi 23 June 2008 Star Forming Galaxies at z gt 5 Proceedings of the International Astronomical Union 3 S250 429 436 arXiv 0804 0644 Bibcode 2008IAUS 250 429T doi 10 1017 S1743921308020796 S2CID 198472 a b Taniguchi Yoshiaki Ajiki Masaru Nagao Tohru Shioya Yasuhiro Murayama Takashi Kashikawa Nobunari Kodaira Keiichi Kaifu Norio Ando Hiroyasu Karoji Hiroshi Akiyama Masayuki Aoki Kentaro Doi Mamoru Fujita Shinobu S Furusawa Hisanori Hayashino Tomoki Iwamuro Fumihide Iye Masanori Kobayashi Naoto Kodama Tadayuki Komiyama Yutaka Matsuda Yuichi Miyazaki Satoshi Mizumoto Yoshihiko Morokuma Tomoki Motohara Kentaro Nariai Kyoji Ohta Koji Ohyama Youichi et al 2005 The SUBARU Deep Field Project Lymana Emitters at a Redshift of 6 6 PDF Publications of the Astronomical Society of Japan 57 165 182 arXiv astro ph 0407542 Bibcode 2005PASJ 57 165T doi 10 1093 pasj 57 1 165 a b BBC News Most distant galaxy detected Tuesday 25 March 2003 14 28 GMT a b SpaceRef Subaru Telescope Detects the Most Distant Galaxy Yet and Expects Many More Monday March 24 2003 Kodaira K Taniguchi Y Kashikawa N Kaifu N Ando H Karoji H Ajiki Masaru Akiyama Masayuki Aoki Kentaro Doi Mamoru Fujita Shinobu S Furusawa Hisanori Hayashino Tomoki Imanishi Masatoshi Iwamuro Fumihide Iye Masanori Kawabata Koji S Kobayashi Naoto Kodama Tadayuki Komiyama Yutaka Kosugi George Matsuda Yuichi Miyazaki Satoshi Mizumoto Yoshihiko Motohara Kentaro Murayama Takashi Nagao Tohru Nariai Kyoji Ohta Kouji et al 2003 The Discovery of Two Lyman a Emitters Beyond Redshift 6 in the Subaru Deep Field Publications of the Astronomical Society of Japan 55 2 L17 arXiv astro ph 0301096 Bibcode 2003PASJ 55L 17K doi 10 1093 pasj 55 2 L17 New Scientist New record for Universe s most distant object 17 19 14 March 2002 BBC News Far away stars light early cosmos Thursday 14 March 2002 11 38 GMT Hu E M 2002 A Redshift z 6 56 Galaxy behind the Cluster Abell 370 The Astrophysical Journal 568 2 L75 L79 arXiv astro ph 0203091 Bibcode 2002ApJ 568L 75H doi 10 1086 340424 K2 1 HCM 6A Discovery of a redshift z 6 56 galaxy lying behind the cluster Abell 370 Hera ph1 uni koeln de 2008 04 14 Archived from the original on 2011 05 18 Retrieved 2010 10 22 Pentericci L Fan X Rix H W Strauss M A Narayanan V K Richards G T Schneider D P Krolik J Heckman T Brinkmann J Lamb D Q Szokoly G P 2002 VLT observations of the z 6 28 quasar SDSS 1030 0524 The Astronomical Journal 123 5 2151 arXiv astro ph 0112075 Bibcode 2002AJ 123 2151P doi 10 1086 340077 S2CID 119041760 The Astrophysical Journal 578 702 707 20 October 2002 A Constraint on the Gravitational Lensing Magnification and Age of the Redshift z 6 28 Quasar SDSS 1030 0524 White Richard L Becker Robert H Fan Xiaohui Strauss Michael A 2003 Probing the Ionization State of the Universe atz gt 6 The Astronomical Journal 126 1 1 14 arXiv astro ph 0303476 Bibcode 2003AJ 126 1W doi 10 1086 375547 S2CID 51505828 Farrah D Priddey R Wilman R Haehnelt M McMahon R 2004 The X Ray Spectrum of the z 6 30 QSO SDSS J1030 0524 The Astrophysical Journal 611 1 L13 L16 arXiv astro ph 0406561 Bibcode 2004ApJ 611L 13F doi 10 1086 423669 S2CID 14854831 a b PennState Eberly College of Science Discovery Announced of Two Most Distant Objects Archived 2007 11 21 at the Wayback Machine June 2001 a b SDSS Early results from the Sloan Digital Sky Survey From under our nose to the edge of the universe June 2001 a b c d PennState Eberly College of Science Science Journal Summer 2000 Vol 17 No 1 International Team of Astronomers Finds Most Distant Object Archived 2009 09 12 at the Wayback Machine The Astrophysical Journal Letters 522 L9 L12 1999 September 1 An Extremely Luminous Galaxy at z 5 74 PennState Eberly College of Science X rays from the Most Distant Quasar Captured with the XMM Newton Satellite Archived 2007 11 21 at the Wayback Machine Dec 2000 UW Madison Astronomy Confirmed High Redshift z gt 5 5 Galaxies Last Updated 10th February 2005 Archived 2007 06 18 at the Wayback Machine SPACE com Most Distant Object in Universe Comes Closer 01 December 2000 The Astrophysical Journal Letters 522 L9 L12 September 1 1999 An Extremely Luminous Galaxy at z 5 74 a b c d e f Publications of the Astronomical Society of the Pacific 111 1475 1502 1999 December Search Techniques for Distant Galaxies Introduction New York Times Peering Back in Time Astronomers Glimpse Galaxies Aborning October 20 1998 a b Astronomy Picture of the Day A Baby Galaxy March 24 1998 a b Dey Arjun Spinrad Hyron Stern Daniel Graham James R Chaffee Frederic H 1998 A Galaxy at z 5 34 The Astrophysical Journal 498 2 L93 arXiv astro ph 9803137 Bibcode 1998ApJ 498L 93D doi 10 1086 311331 A New Most Distant Object z 5 34 Astro ucla edu Retrieved 2010 10 22 Astronomy Picture of the Day Behind CL1358 62 A New Farthest Object July 31 1997 Franx Marijn Illingworth Garth D Kelson Daniel D Van Dokkum Pieter G Tran Kim Vy 1997 A Pair of Lensed Galaxies at z 4 92 in the Field of CL 1358 62 The Astrophysical Journal 486 2 L75 arXiv astro ph 9704090 Bibcode 1997ApJ 486L 75F doi 10 1086 310844 S2CID 14502310 a b c d e f Illingworth Garth 1999 Galaxies at High Redshift Astrophysics and Space Science 269 270 165 181 arXiv astro ph 0009187 Bibcode 1999Ap amp SS 269 165I doi 10 1023 a 1017052809781 S2CID 119363931 Smith J D Djorgovski S Thompson D Brisken W F Neugebauer G Matthews K Meylan G Piotto G Suntzeff N B 1994 Multicolor detection of high redshift quasars 2 Five objects with Z greater than or approximately equal to 4 PDF The Astronomical Journal 108 1147 Bibcode 1994AJ 108 1147S doi 10 1086 117143 New Scientist issue 1842 10 October 1992 page 17 Science Infant galaxy s light show FermiLab Scientists of Sloan Digital Sky Survey Discover Most Distant Quasar Archived 2009 09 12 at the Wayback Machine December 8 1998 a b Hook Isobel M McMahon Richard G 1998 Discovery of radio loud quasars with z 4 72 and z 4 01 Monthly Notices of the Royal Astronomical Society 294 1 L7 L12 arXiv astro ph 9801026 Bibcode 1998MNRAS 294L 7H doi 10 1046 j 1365 8711 1998 01368 x a b c d e Turner Edwin L 1991 Quasars and galaxy formation I the Z greater than 4 objects Astronomical Journal 101 5 Bibcode 1991AJ 101 5T doi 10 1086 115663 SIMBAD Object query PC 1158 4635 QSO B1158 4635 Quasar Cowie Lennox L 1991 Young Galaxies Annals of the New York Academy of Sciences 647 1 Texas ESO Cer 31 41 Bibcode 1991NYASA 647 31C doi 10 1111 j 1749 6632 1991 tb32157 x S2CID 222074763 a b New York Times Peering to Edge of Time Scientists Are Astonished November 20 1989 a b c Warren S J Hewett P C Osmer P S Irwin M J 1987 Quasars of redshift z 4 43 and z 4 07 in the South Galactic Pole field Nature 330 6147 453 Bibcode 1987Natur 330 453W doi 10 1038 330453a0 S2CID 4352819 Levshakov S A 1989 Absorption spectra of quasars Astrophysics 29 2 657 671 Bibcode 1988Ap 29 657L doi 10 1007 BF01005972 S2CID 122978350 New York Times Objects Detected in Universe May Be the Most Distant Ever Sighted January 14 1988 New York Times Astronomers Peer Deeper Into Cosmos May 10 1988 SIMBAD Object query Q0000 26 QSO B0000 26 Quasar a b c d Schmidt Maarten Schneider Donald P Gunn James E 1987 PC 0910 5625 an optically selected quasar with a redshift of 4 04 Astrophysical Journal 321 L7 Bibcode 1987ApJ 321L 7S doi 10 1086 184996 SIMBAD Object query PC 0910 5625 QSO B0910 5625 Quasar Warren S J Hewett P C Irwin M J McMahon R G Bridgeland M T Bunclark P S Kibblewhite E J 1987 First observation of a quasar with a redshift of 4 Nature 325 6100 131 Bibcode 1987Natur 325 131W doi 10 1038 325131a0 S2CID 4335291 SIMBAD Object query Q0046 293 QSO J0048 2903 Quasar SIMBAD Object query Q1208 1011 QSO B1208 1011 Quasar New Scientist Quasar doubles help to fix the Hubble constant 16 November 1991 Orwell Astronomical Society Ipswich OASI Archived Astronomy News Items 1972 1997 Archived 2009 09 12 at the Wayback Machine SIMBAD Object query PKS 2000 330 QSO J2003 3251 Quasar a b OSU Big Ear History of the OSU Radio Observatory SIMBAD Object query OQ172 QSO B1442 101 Quasar a b c QUASARS THREE YEARS LATER Time Magazine The Edge of Night Monday Apr 23 1973 SIMBAD Object query OH471 QSO B0642 449 Quasar Warren S J Hewett P C 1990 The detection of high redshift quasars Reports on Progress in Physics 53 8 1095 Bibcode 1990RPPh 53 1095W doi 10 1088 0034 4885 53 8 003 S2CID 250880776 a b The Structure of the Physical Universe Volume III The Universe of Motion CHAPTER 23 Quasar Redshifts Archived 2008 06 19 at the Wayback Machine by Dewey Bernard Larson ISBN 0 913138 11 8 1984 Bahcall John N Oke J B 1971 Some Inferences from Spectrophotometry of Quasi Stellar Sources Astrophysical Journal 163 235 Bibcode 1971ApJ 163 235B doi 10 1086 150762 a b c Lynds R Wills D 1970 The Unusually Large Redshift of 4C 05 34 Nature 226 5245 532 Bibcode 1970Natur 226 532L doi 10 1038 226532a0 PMID 16057373 S2CID 28297458 SIMBAD Object query 5C 02 56 7C 105517 75 495540 95 Quasar a b Burbidge Geoffrey 1968 The Distribution of Redshifts in Quasi Stellar Objects N Systems and Some Radio and Compact Galaxies Astrophysical Journal 154 L41 Bibcode 1968ApJ 154L 41B doi 10 1086 180265 Time Magazine A Farther Out Quasar Friday Apr 07 1967 SIMBAD Object query QSO B0237 2321 QSO B0237 2321 Quasar a b c d Burbidge Geoffrey 1967 On the Wavelengths of the Absorption Lines in Quasi Stellar Objects Astrophysical Journal 147 851 Bibcode 1967ApJ 147 851B doi 10 1086 149072 a b Time Magazine The Man on the Mountain Friday Mar 11 1966 SIMBAD Object query Q1116 12 4C 12 39 Quasar SIMBAD Object query Q0106 01 4C 01 02 Quasar Time Magazine Toward the Edge of the Universe Friday May 21 1965 Time Magazine The Quasi Quasars Friday Jun 18 1965 The Cosmic Century A History of Astrophysics and Cosmology p 379 by Malcolm S Longair 2006 Schmidt Maarten 1965 Large Redshifts of Five Quasi Stellar Sources Astrophysical Journal 141 1295 Bibcode 1965ApJ 141 1295S doi 10 1086 148217 The Discovery of Radio Galaxies and Quasars 1965 Schmidt Maarten Matthews Thomas A 1965 Redshifts of the Quasi Stellar Radio Sources 3c 47 and 3c 147 Quasi Stellar Sources and Gravitational Collapse 269 Bibcode 1965qssg conf 269S Schneider Donald P Van Gorkom J H Schmidt Maarten Gunn James E 1992 Radio properties of optically selected high redshift quasars I VLA observations of 22 quasars at 6 CM Astronomical Journal 103 1451 Bibcode 1992AJ 103 1451S doi 10 1086 116159 Time Magazine Finding the Fastest Galaxy 76 000 Miles per Second permanent dead link Friday Apr 10 1964 Schmidt Maarten Matthews Thomas A 1964 Redshift of the Quasi Stellar Radio Sources 3c 47 and 3c 147 Astrophysical Journal 139 781 Bibcode 1964ApJ 139 781S doi 10 1086 147815 The Discovery of Radio Galaxies and Quasars Retrieved 2010 10 22 McCarthy Patrick J 1993 High Redshift Radio Galaxies Annual Review of Astronomy and Astrophysics 31 639 688 Bibcode 1993ARA amp A 31 639M doi 10 1146 annurev aa 31 090193 003231 a b Sandage Allan 1961 The Ability of the 200 INCH Telescope to Discriminate Between Selected World Models Astrophysical Journal 133 355 Bibcode 1961ApJ 133 355S doi 10 1086 147041 Hubble E P 1953 The law of red shifts George Darwin Lecture Monthly Notices of the Royal Astronomical Society 113 6 658 666 Bibcode 1953MNRAS 113 658H doi 10 1093 mnras 113 6 658 Sandage Allan Observational Tests of World Models 6 1 Local Tests for Linearity of the Redshift Distance Relation Annu Rev Astron Astrophys 1988 26 561 630 Humason M L Mayall N U Sandage A R 1956 Redshifts and magnitudes of extragalactic nebulae Astronomical Journal 61 97 Bibcode 1956AJ 61 97H doi 10 1086 107297 a b c 1053 May 8 meeting of the Royal Astronomical Society The Observatory 73 97 1953 Bibcode 1953Obs 73 97 Merrill Paul W 1958 From Atoms to Galaxies Astronomical Society of the Pacific Leaflets 7 349 393 Bibcode 1958ASPL 7 393M a b Humason M L January 1936 The Apparent Radial Velocities of 100 Extra Galactic Nebulae The Astrophysical Journal 83 10 Bibcode 1936ApJ 83 10H doi 10 1086 143696 The First 50 Years At Palomar 1949 1999 The Early Years of Stellar Evolution Cosmology and High Energy Astrophysics 5 2 1 The Mount Wilson Years Annu Rev Astron Astrophys 1999 37 445 486 a b Chant C A 1 April 1932 Notes and Queries Doings at Mount Wilson Ritchey s Photographic Telescope Infra red Photographic Plates Journal of the Royal Astronomical Society of Canada 26 180 Bibcode 1932JRASC 26 180C Humason Milton L July 1931 Apparent Velocity Shifts in the Spectra of Faint Nebulae The Astrophysical Journal 74 35 Bibcode 1931ApJ 74 35H doi 10 1086 143287 Hubble Edwin Humason Milton L July 1931 The Velocity Distance Relation among Extra Galactic Nebulae The Astrophysical Journal 74 43 Bibcode 1931ApJ 74 43H doi 10 1086 143323 a b Humason M L 1 January 1931 The Large Apparent Velocities of Extra Galactic Nebulae Leaflet of the Astronomical Society of the Pacific 1 37 149 Bibcode 1931ASPL 1 149H a b Humason M L 1930 The Rayton short focus spectrographic objective Astrophysical Journal 71 351 Bibcode 1930ApJ 71 351H doi 10 1086 143255 a b c d Trimble Virginia 1996 H 0 The Incredible Shrinking Constant 1925 1975 PDF Publications of the Astronomical Society of the Pacific 108 1073 Bibcode 1996PASP 108 1073T doi 10 1086 133837 S2CID 122165424 The Berkeley Meeting of the Astronomical Society of the Pacific June 20 21 1929 Publications of the Astronomical Society of the Pacific 41 242 244 1929 Bibcode 1929PASP 41 244 doi 10 1086 123945 a b From the Proceedings of the National Academy of Sciences Volume 15 March 15 1929 Number 3 The Large Radial Velocity of N G C 7619 January 17 1929 The Journal of the Royal Astronomical Society of Canada Journal de la Societe Royale D astronomie du Canada Vol 83 No 6 December 1989 Whole No 621 EDWIN HUBBLE 1889 1953 a b National Academy of Sciences Biographical Memoirs V 52 Vesto Melvin Slipher ISBN 0 309 03099 4 Bailey S I 1920 Comet Skjellerup Harvard College Observatory Bulletin 739 1 Bibcode 1920BHarO 739 1B New York Times DREYER NEBULA NO 584 Inconceivably Distant Dr Slipher Says the Celestial Speed Champion Is Many Millions of Light Years Away January 19 1921 Wednesday a b New York Times Nebula Dreyer Breaks All Sky Speed Records Portion of the Constellation of Cetus Is Rushing Along at Rate of 1 240 Miles a Second January 18 1921 Tuesday Hawera amp Normanby Star Items of Interest 29 December 1910 Volume LX page 3 Retrieved 25 March 2010 Evening Star San Jose Colossal Arcturus Pittsburgh Dispatch 10 June 1910 Retrieved 25 March 2010 Nelson Evening Mail British Bloodthirstiness 2 November 1891 Volume XXV Issue 230 Page 3 Retrieved 25 March 2010 Handbook of astronomy Dionysius Lardner amp Edwin Dunkin Lockwood amp Co 1875 p 121 The Three Heavens Josiah Crampton William Hunt and Company 1876 p 164 in German Kosmos Entwurf einer physischen Weltbeschreibung Volume 4 Alexander von Humboldt J G Cotta 1858 p 195 Outlines of Astronomy John F W Herschel Longman amp Brown 1849 ch Parallax of Stars p 551 section 851 a b c The North American Review The Observatory at Pulkowa FGW Struve Volume 69 Issue 144 July 1849 The Sidereal Messenger Of the Precession of the Equinoxes Nutation of the Earth s Axis And Aberration of Light Vol 1 No 12 April 1847 Derby Bradley amp Co Cincinnati SEDS Friedrich Wilhelm Bessel July 22 1784 March 17 1846 Archived February 4 2012 at the Wayback Machine Retrieved 11 November 2009 Harper s New Monthly Magazine Some Talks of an Astronomer Simon Newcomb Volume 0049 Issue 294 November 1874 pp 827 accessed 2009 Nov 11 Jensen Joseph B Tonry John L Barris Brian J Thompson Rodger I Liu Michael C Rieke Marcia J Ajhar Edward A Blakeslee John P February 2003 Measuring Distances and Probing the Unresolved Stellar Populations of Galaxies Using Infrared Surface Brightness Fluctuations Astrophysical Journal 583 2 712 726 arXiv astro ph 0210129 Bibcode 2003ApJ 583 712J doi 10 1086 345430 S2CID 551714 Kepple George Robert Glen W Sanner 1998 The Night Sky Observer s Guide Volume 1 Willmann Bell Inc p 18 ISBN 978 0 943396 58 3 Fodera Serio G Indorato L Nastasi P February 1985 Hodierna s Observations of Nebulae and his Cosmology Journal for the History of Astronomy 16 1 1 36 Bibcode 1985JHA 16 1F doi 10 1177 002182868501600101 G Gavazzi A Boselli M Scodeggio D Pierini amp E Belsole 1999 The 3D structure of the Virgo cluster from H band Fundamental Plane and Tully Fisher distance determinations Monthly Notices of the Royal Astronomical Society 304 3 595 610 arXiv astro ph 9812275 Bibcode 1999MNRAS 304 595G doi 10 1046 j 1365 8711 1999 02350 x S2CID 41700753 Burnham Robert Jr 1978 Burnham s Celestial Handbook Volume Three Pavo Through Vulpecula Dover pp 2086 2088 ISBN 978 0 486 23673 5 The OBEY Survey NGC 584 Distance Results for NGC 0001 NASA IPAC Extragalactic Database Retrieved 2010 05 03 Falla D F Evans A 1972 On the Mass and Distance of the Quasi Stellar Object 3C 273 Astrophysics and Space Science 15 3 395 Bibcode 1972Ap amp SS 15 395F doi 10 1007 BF00649767 S2CID 124870214 Variable Star Of The Season Archived January 23 2009 at the Wayback Machine Minkowski R 1960 A New Distant Cluster of Galaxies Astrophysical Journal 132 908 Bibcode 1960ApJ 132 908M doi 10 1086 146994 Exploding star is oldest object seen in universe Cnn com 2009 04 29 Retrieved 2010 10 22 Krimm H et al 2009 GRB 090423 Swift detection of a burst GCN Circulars 9198 1 Bibcode 2009GCN 9198 1K Portals Astronomy Stars Spaceflight Outer space Solar System Retrieved from https en wikipedia org w index php title List of the most distant astronomical objects amp oldid 1172053395, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.