fbpx
Wikipedia

List of interface bit rates

This is a list of interface bit rates, is a measure of information transfer rates, or digital bandwidth capacity, at which digital interfaces in a computer or network can communicate over various kinds of buses and channels. The distinction can be arbitrary between a computer bus, often closer in space, and larger telecommunications networks. Many device interfaces or protocols (e.g., SATA, USB, SAS, PCIe) are used both inside many-device boxes, such as a PC, and one-device-boxes, such as a hard drive enclosure. Accordingly, this page lists both the internal ribbon and external communications cable standards together in one sortable table.

Factors limiting actual performance, criteria for real decisions Edit

Most of the listed rates are theoretical maximum throughput measures; in practice, the actual effective throughput is almost inevitably lower in proportion to the load from other devices (network/bus contention), physical or temporal distances, and other overhead in data link layer protocols etc. The maximum goodput (for example, the file transfer rate) may be even lower due to higher layer protocol overhead and data packet retransmissions caused by line noise or interference such as crosstalk, or lost packets in congested intermediate network nodes. All protocols lose something, and the more robust ones that deal resiliently with very many failure situations tend to lose more maximum throughput to get higher total long term rates.

Device interfaces where one bus transfers data via another will be limited to the throughput of the slowest interface, at best. For instance, SATA revision 3.0 (6 Gbit/s) controllers on one PCI Express 2.0 (5 Gbit/s) channel will be limited to the 5 Gbit/s rate and have to employ more channels to get around this problem. Early implementations of new protocols very often have this kind of problem. The physical phenomena on which the device relies (such as spinning platters in a hard drive) will also impose limits; for instance, no spinning platter shipping in 2009 saturates SATA revision 2.0 (3 Gbit/s), so moving from this 3 Gbit/s interface to USB 3.0 at 4.8 Gbit/s for one spinning drive will result in no increase in realized transfer rate.

Contention in a wireless or noisy spectrum, where the physical medium is entirely out of the control of those who specify the protocol, requires measures that also use up throughput. Wireless devices, BPL, and modems may produce a higher line rate or gross bit rate, due to error-correcting codes and other physical layer overhead. It is extremely common for throughput to be far less than half of theoretical maximum, though the more recent technologies (notably BPL) employ preemptive spectrum analysis to avoid this and so have much more potential to reach actual gigabit rates in practice than prior modems.

Another factor reducing throughput is deliberate policy decisions made by Internet service providers that are made for contractual, risk management, aggregation saturation, or marketing reasons. Examples are rate limiting, bandwidth throttling, and the assignment of IP addresses to groups. These practices tend to minimize the throughput available to every user, but maximize the number of users that can be supported on one backbone.

Furthermore, chips are often not available in order to implement the fastest rates. AMD, for instance, does not support the 32-bit HyperTransport interface on any CPU it has shipped as of the end of 2009. Additionally, WiMAX service providers in the US typically support only up to 4 Mbit/s as of the end of 2009.

Choosing service providers or interfaces based on theoretical maxima is unwise, especially for commercial needs. A good example is large scale data centers, which should be more concerned with price per port to support the interface, wattage and heat considerations, and total cost of the solution. Because some protocols such as SCSI and Ethernet now operate many orders of magnitude faster than when originally deployed, scalability of the interface is one major factor, as it prevents costly shifts to technologies that are not backward compatible. Underscoring this is the fact that these shifts often happen involuntarily or by surprise, especially when a vendor abandons support for a proprietary system.

Conventions Edit

By convention, bus and network data rates are denoted either in bits per second (bit/s) or bytes per second (B/s). In general, parallel interfaces are quoted in B/s and serial in bit/s. The more commonly used is shown below in bold type.

On devices like modems, bytes may be more than 8 bits long because they may be individually padded out with additional start and stop bits; the figures below will reflect this. Where channels use line codes (such as Ethernet, Serial ATA, and PCI Express), quoted rates are for the decoded signal.

The figures below are simplex data rates, which may conflict with the duplex rates vendors sometimes use in promotional materials. Where two values are listed, the first value is the downstream rate and the second value is the upstream rate.

The use of decimal prefixes is standard in data communications.

Bandwidths Edit

The figures below are grouped by network or bus type, then sorted within each group from lowest to highest bandwidth; gray shading indicates a lack of known implementations.

As stated above, all quoted bandwidths are for each direction. Therefore, for duplex interfaces (capable of simultaneous transmission both ways), the stated values are simplex (one way) speeds, rather than total upstream+downstream.

Time Signal Station to Radio Clock Edit

Technology Max. rate Year
IRIG and related 1 bit/s ~0.125 characters/s[1][2] ?

Teletypewriter (TTY) or telecommunications device for the deaf (TDD) Edit

Technology Max. rate Year
TTY (V.18) 45.4545 bit/s 6 characters/s[3] 1994[4]
TTY (V.18) 50 bit/s 6.6 characters/s 1994
NTSC Line 21 Closed Captioning kbit/s ~100 characters/s 1976[5]

Modems (narrowband and broadband) Edit

Narrowband (POTS: 4 kHz channel) Edit

Technology Rate Rate ex. overhead Year
Morse code (skilled operator) 0.021 kbit/s[6] characters per second (cps) (~40 wpm)[7] 1844
Normal Human Speech 0.039 kbit/s[8] prehistoric
Teleprinter (50 baud) 0.05 kbit/s 404 operations per minute 1940x
Modem 110 baud (Bell 101) 0.11 kbit/s 0.010 kB/s (~10 cps)[9] 1959
Modem 300 (300 baud; Bell 103 or V.21) 0.3 kbit/s 0.03 kB/s (~30 cps)[9] 1962[10]
Modem 1200/75 (600 baud; V.23) 1.2/0.075 kbit/s 0.12/0.0075 kB/s (~120 cps)[9] 1964(?)[11]
Modem 1200 (600 baud; Vadic VA3400, Bell 212A, or V.22) 1.2 kbit/s 0.12 kB/s (~120 cps)[9] 1976
Modem 1200 (Bell 202C, 202D) 1.2 kbit/s 0.15 kB/s (~150 cps) ?
Modem 2000 (Bell 201A) 2 kbit/s 0.25 kB/s (~250 cps) ?
Modem 2400 (Bell 201B) 2.4 kbit/s 0.3 kB/s (~300 cps) ?
Modem 2400 (600 baud; V.22bis) 2.4 kbit/s 0.3 kB/s[9] 1984[11]
Modem 4800/75 (1600 baud; V.27ter) 4.8/0.075 kbit/s 0.6/0.0075 kB/s[9] 1976[11]
Modem 4800 (1600 baud, Bell 208A, 208B) 4.8 kbit/s 0.6 kB/s
Modem 9600 (2400 baud; V.32) 9.6 kbit/s 1.2 kB/s[9] 1984[11]
Modem 14.4 (2400 baud; V.32bis) 14.4 kbit/s 1.8 kB/s[9] 1991[10]
Modem 28.8 (3200 baud; V.34-1994) 28.8 kbit/s 3.6 kB/s[9] 1994
Modem 33.6 (3429 baud; V.34-1996/98) 33.6 kbit/s 4.2 kB/s[9] 1996[11]
Modem 56k (8000/3429 baud; V.90) 56.0/33.6 kbit/s[12] 7/4.2 kB/s 1998
Modem 56k (8000/8000 baud; V.92) 56.0/48.0 kbit/s[12] 7/6 kB/s 2001
Modem data compression (variable; V.92/V.44) 56.0–320.0 kbit/s[12] 7–40 kB/s 2000[11]
ISP-side text/image compression (variable) 56.0–1000.0 kbit/s 7–125 kB/s 1998[11]
ISDN Basic Rate Interface (single/dual channel) 64/128 kbit/s[13] 8/16 kB/s 1986[14]
IDSL (dual ISDN + 16 kbit/s data channels) 144 kbit/s 18 kB/s 2000[15]

Broadband (hundreds of kHz to GHz wide) Edit

Technology Rate Rate ex. overhead Year
ADSL (G.lite) 1536/512 kbit/s 192/64 kB/s 1998
HDSL ITU G.991.1 a.k.a. DS1 1544 kbit/s 193 kB/s 1998[16]
MSDSL 2000 kbit/s 250 kB/s ?
SDSL 2320 kbit/s 290 kB/s ?
SHDSL ITU G.991.2 5690 kbit/s 711 kB/s 2001
ADSL (G.dmt) ITU G.992.1 8192/1024 kbit/s 1024/128 kB/s 1999
ADSL2 ITU G.992.3/4 12288/1440 kbit/s 1536/180 kB/s 2002
ADSL2+ ITU G.992.5 24576/3584 kbit/s 3072/448 kB/s 2003
DOCSIS 1.0[17] (cable modem) 38/9 Mbit/s 4.75/1.125 MB/s 1997
DOCSIS 2.0[18] (cable modem) 38/27 Mbit/s 4.75/3.375 MB/s 2002
VDSL ITU G.993.1 52 Mbit/s MB/s 2001
VDSL2 ITU G.993.2 100 Mbit/s 12.5 MB/s 2006
Uni-DSL 200 Mbit/s 25 MB/s 2006
VDSL2 ITU G.993.2 Amendment 1 (11/15) 300 Mbit/s 37.5 MB/s 2015
BPON (G.983) (fiber optic service) 622/155 Mbit/s 77.7/19.3 MB/s 2005[19]
G.fast ITU G.9700 1000 Mbit/s 125 MB/s 2014
EPON (802.3ah) (fiber optic service) 1000/1000 Mbit/s 125/125 MB/s 2008
DOCSIS 3.0[20] (cable modem) 1216/216 Mbit/s 152/27 MB/s 2006
GPON (G.984) (fiber optic service) 2488/1244 Mbit/s 311/155.5 MB/s 2008[21]
DOCSIS 3.1[22] (cable modem) 10/2 Gbit/s 1.25/0.25 GB/s 2013
10G-PON (G.987) (fiber optic service) 10/2.5 Gbit/s 1.25/0.3125 GB/s 2012[23]
DOCSIS 4.0 (cable modem) 10/6 Gbit/s 1.25/0.75 GB/s 2017
XGS-PON (G.9807.1) (fiber optic service) 10/10 Gbit/s 1.25/1.25 GB/s 2016
NG-PON2 (G.989) (fiber optic service) 40/10 Gbit/s 5/1.25 GB/s 2015[24]

Mobile telephone interfaces Edit

Technology Download rate Upload rate Year
GSM CSD (2G) 14.4 kbit/s[25] 1.8 kB/s 14.4 kbit/s 1.8 kB/s
HSCSD 57.6 kbit/s 5.4 kB/s 14.4 kbit/s 1.8 kB/s
GPRS (2.5G) 57.6 kbit/s 7.2 kB/s 28.8 kbit/s 3.6 kB/s
WiDEN 100 kbit/s 12.5 kB/s 100 kbit/s 12.5 kB/s
CDMA2000 1×RTT 153 kbit/s 18 kB/s 153 kbit/s 18 kB/s
EDGE (2.75G) (type 1 MS) 236.8 kbit/s 29.6 kB/s 236.8 kbit/s 29.6 kB/s 2002
UMTS 3G 384 kbit/s 48 kB/s 384 kbit/s 48 kB/s
EDGE (type 2 MS) 473.6 kbit/s 59.2 kB/s 473.6 kbit/s 59.2 kB/s
EDGE Evolution (type 1 MS) 1184 kbit/s 148 kB/s 474 kbit/s 59 kB/s
EDGE Evolution (type 2 MS) 1894 kbit/s 237 kB/s 947 kbit/s 118 kB/s
1×EV-DO rev. 0 2457 kbit/s 307.2 kB/s 153 kbit/s 19 kB/s
1×EV-DO rev. A 3.1 Mbit/s 397 kB/s 1.8 Mbit/s 230 kB/s
LTE Cat 1 10 Mbit/s 1250 kB/s 5.2 Mbit/s 650 kB/s
1×EV-DO rev. B 14.7 Mbit/s 1837 kB/s 5.4 Mbit/s 675 kB/s
HSPA (3.5G) 13.98 Mbit/s 1706 kB/s 5.760 Mbit/s 720 kB/s
4×EV-DO Enhancements (2×2 MIMO) 34.4 Mbit/s 4.3 MB/s 12.4 Mbit/s 1.55 MB/s
HSPA+ (2×2 MIMO) 42 Mbit/s 5.25 MB/s 11.5 Mbit/s 1.437 MB/s
LTE Cat 2 50 Mbit/s 6.25 MB/s 25 Mbit/s 3.375 MB/s
15×EV-DO rev. B 73.5 Mbit/s 9.2 MB/s 27 Mbit/s 3.375 MB/s
LTE Cat 3 100 Mbit/s 12.5 MB/s 50 Mbit/s 6.25 MB/s
UMB (2×2 MIMO) 140 Mbit/s 17.5 MB/s 34 Mbit/s 4.250 MB/s
LTE Cat 4 150 Mbit/s 18.75 MB/s 50 Mbit/s 6.25 MB/s
LTE (2×2 MIMO) 173 Mbit/s 21.625 MB/s 58 Mbit/s 7.25 MB/s 2004
UMB (4×4 MIMO) 280 Mbit/s 35 MB/s 68 Mbit/s 8.5 MB/s
EV-DO rev. C 280 Mbit/s 35 MB/s 75 Mbit/s MB/s
LTE Cat 5 300 Mbit/s 37.5 MB/s 50 Mbit/s 6.25 MB/s
LTE Cat 6 300 Mbit/s 37.5 MB/s 75 Mbit/s 9.375 MB/s
LTE Cat 7 300 Mbit/s 37.5 MB/s 100 Mbit/s 12.5 MB/s
LTE (4×4 MIMO) 326 Mbit/s 40.750 MB/s 86 Mbit/s 10.750 MB/s
LTE Cat 13 390 Mbit/s 48.75 MB/s 150 Mbit/s 18.75 MB/s
LTE Cat 9 450 Mbit/s 56.25 MB/s 50 Mbit/s 6.25 MB/s
LTE Cat 10 450 Mbit/s 56.25 MB/s 100 Mbit/s 12.5 MB/s
LTE Cat 11 600 Mbit/s 75 MB/s 50 Mbit/s 6.25 MB/s
LTE Cat 12 600 Mbit/s 75 MB/s 100 Mbit/s 12.5 MB/s
LTE Cat 16 1000 Mbit/s 125 MB/s 50 Mbit/s 6.25 MB/s
LTE Cat 18 1200 Mbit/s 150 MB/s 150 Mbit/s 18.75 MB/s
LTE Cat 21 1400 Mbit/s 175 MB/s 300 Mbit/s 37.5 MB/s
LTE Cat 20 2000 Mbit/s 250 MB/s 300 Mbit/s 37.5 MB/s
LTE Cat 8 Gbit/s 375 MB/s 1.5 Gbit/s 187 MB/s
LTE Cat 14 3.9 Gbit/s 487 MB/s 1.5 Gbit/s 187 MB/s
5G NR ? ? ? ? ?

Wide area networks Edit

Technology Rate Year
56k line 56 kbit/s KB/s 1990
DS0 64 kbit/s KB/s
G.lite (a.k.a. ADSL Lite) 1.536/0.512 Mbit/s 0.192/0.064 MB/s
DS1 / T1 (and ISDN Primary Rate Interface) 1.544 Mbit/s 0.192 MB/s 1990
E1 (and ISDN Primary Rate Interface) 2.048 Mbit/s 0.256 MB/s
G.SHDSL 2.304 Mbit/s 0.288 MB/s
SDSL[26] 2.32 Mbit/s 0.29 MB/s
LR-VDSL2 (4 to 5 km [long-]range) (symmetry optional) 4 Mbit/s 0.512 MB/s
T2 6.312 Mbit/s 0.789 MB/s
ADSL[27] 8.0/1.024 Mbit/s 1.0/0.128 MB/s
E2 8.448 Mbit/s 1.056 MB/s
ADSL2 12/3.5 Mbit/s 1.5/0.448 MB/s
Satellite Internet[28] 16/1 Mbit/s 2.0/0.128 MB/s
ADSL2+ 24/3.5 Mbit/s 3.0/0.448 MB/s
E3 34.368 Mbit/s 4.296 MB/s
DOCSIS 1.0 (cable modem)[17] 38/9 Mbit/s 4.75/1.125 MB/s 1997
DOCSIS 2.0 (cable modem)[18] 38/27 Mbit/s 4.75/3.38 MB/s 2002
DS3 / T3 ('45 Meg') 44.736 Mbit/s 5.5925 MB/s
STS-1 / OC-1 / STM-0 51.84 Mbit/s 6.48 MB/s
VDSL (symmetry optional) 100 Mbit/s 12.5 MB/s
OC-3 / STM-1 155.52 Mbit/s 19.44 MB/s
VDSL2 (symmetry optional) 250 Mbit/s 31.25 MB/s
T4 274.176 Mbit/s 34.272 MB/s
T5 400.352 Mbit/s 50.044 MB/s
OC-9 466.56 Mbit/s 58.32 MB/s
OC-12 / STM-4 622.08 Mbit/s 77.76 MB/s
OC-18 933.12 Mbit/s 116.64 MB/s
DOCSIS 3.0 (cable modem)[20] 1216/216 Mbit/s 152/27 MB/s 2006
OC-24 1.244 Gbit/s 155.5 MB/s
OC-36 1.900 Gbit/s 237.5 MB/s
OC-48 / STM-16 2.488 Gbit/s 311.04 MB/s
OC-96 4.976 Gbit/s 622.08 MB/s
OC-192 / STM-64 9.953 Gbit/s 1.244125 GB/s
10 Gigabit Ethernet WAN PHY 9.953 Gbit/s 1.244125 GB/s
DOCSIS 3.1 (cable modem) 10/2 Gbit/s 1.25/0.25 GB/s 2013
DOCSIS 4.0 (cable modem) 10/6 Gbit/s 1.25/0.75 GB/s 2017
OC-256 13.271 Gbit/s 1.659 GB/s
OC-768 / STM-256 39.813 Gbit/s 4.976 GB/s
OC-1536 / STM-512 79.626 Gbit/s 9.953 GB/s
OC-3072 / STM-1024 159.252 Gbit/s 19.907 GB/s

Local area networks Edit

Technology Rate Year
LocalTalk 230 kbit/s 28.8 kB/s 1988
Econet 800 kbit/s 100 kB/s 1981
Omninet 1 Mbit/s 125 kB/s 1980
IBM PC Network 2 Mbit/s 250 kB/s 1985
ARCNET (Standard) 2.5 Mbit/s 312.5 kB/s 1977
Chaosnet (Original) 4 Mbit/s 3.0 Mbit/s 1971
Token Ring (Original) 4 Mbit/s 500 kB/s 1985
Ethernet (10BASE-X) 10 Mbit/s 1.25 MB/s 1980 (1985 IEEE Standard)
Token Ring (Later) 16 Mbit/s MB/s 1989
ARCnet Plus 20 Mbit/s 2.5 MB/s 1992
TCNS 100 Mbit/s 12.5 MB/s 1993?
100VG 100 Mbit/s 12.5 MB/s 1995
Token Ring IEEE 802.5t 100 Mbit/s 12.5 MB/s
Fast Ethernet (100BASE-X) 100 Mbit/s 12.5 MB/s 1995
FDDI 100 Mbit/s 12.5 MB/s
MoCA 1.0[29] 100 Mbit/s 12.5 MB/s
MoCA 1.1[29] 175 Mbit/s 21.875 MB/s
HomePlug AV 200 Mbit/s 25 MB/s 2005
FireWire (IEEE 1394) 400[30][31] 400 Mbit/s 50 MB/s 1995
MoCa 2.0 500 Mbit/s 2016
HIPPI 800 Mbit/s 100 MB/s
IEEE 1901 1000 Mbit/s 125 MB/s 2010
Token Ring IEEE 802.5v 1 Gbit/s 125 MB/s 2001
Gigabit Ethernet (1000BASE-X) 1 Gbit/s 125 MB/s 1998
Reflective memory or (1.25 µs latency) 2 Gbit/s 170 MB/s 2017
Myrinet 2000 2 Gbit/s 250 MB/s
InfiniBand SDR 1×[32] 2 Gbit/s 250 MB/s 2001
RapidIO Gen1 1× 2.5 Gbit/s 312.5 MB/s 2000
2.5 Gigabit Ethernet (2.5GBASE-T) 2.5 Gbit/s 312.5 MB/s 2016
Quadrics QsNetI 3.6 Gbit/s 450 MB/s
InfiniBand DDR 1×[32] 4 Gbit/s 500 MB/s 2005
RapidIO Gen2 1× 5 Gbit/s 625 MB/s 2008
5 Gigabit Ethernet (5GBASE-T) 5 Gbit/s 625 MB/s 2016
InfiniBand QDR 1×[32] 8 Gbit/s GB/s 2007
InfiniBand SDR 4×[32] 8 Gbit/s GB/s
Quadrics QsNetII 8 Gbit/s GB/s
RapidIO Gen1 4x 10 Gbit/s 1.25 GB/s
RapidIO Gen2 2x 10 Gbit/s 1.25 GB/s 2008
10 Gigabit Ethernet (10GBASE-X) 10 Gbit/s 1.25 GB/s 2002-2006
Myri 10G 10 Gbit/s 1.25 GB/s
InfiniBand FDR-10 1×[33] 10.31 Gbit/s 1.29 GB/s
NUMAlink 3 12.8 Gbit/s 1.6 GB/s 2004
InfiniBand FDR 1×[33] 13.64 Gbit/s 1.7 GB/s 2011
InfiniBand DDR 4×[32] 16 Gbit/s GB/s 2005
RapidIO Gen2 4x 20 Gbit/s 2.5 GB/s 2008
Scalable Coherent Interface (SCI) Dual Channel SCI, x8 PCIe 20 Gbit/s 2.5 GB/s
InfiniBand SDR 12×[32] 24 Gbit/s GB/s
RapidIO Gen4 1× 24.63 Gbit/s 3.079 GB/s 2016
InfiniBand EDR 1×[33] 25 Gbit/s 3.125 GB/s 2014
25 Gigabit Ethernet (25GBASE-X) 25 Gbit/s 3.125 GB/s 2016
NUMAlink 4 25.6 Gbit/s 3.2 GB/s 2004
InfiniBand QDR 4×[32] 32 Gbit/s GB/s 2007
RapidIO Gen2 8x 40 Gbit/s GB/s 2008
40 Gigabit Ethernet (40GBASE-X) 4× 40 Gbit/s GB/s 2010
InfiniBand FDR-10 4×[33] 41.25 Gbit/s 5.16 GB/s
InfiniBand DDR 12×[32] 48 Gbit/s GB/s 2005
InfiniBand HDR 1×[34] 50 Gbit/s 6.250 GB/s[33] 2017
50 Gigabit Ethernet (50GBASE-X) 50 Gbit/s 6.25 GB/s 2016
NUMAlink 6 53.6 Gbit/s 6.7 GB/s 2012
InfiniBand FDR 4×[33] 54.54 Gbit/s 6.82 GB/s 2011
RapidIO Gen2 16× 80 Gbit/s 10 GB/s 2008
InfiniBand QDR 12×[32] 96 Gbit/s 12 GB/s 2007
InfiniBand EDR 4×[33] 100 Gbit/s 12.5 GB/s 2014
100 Gigabit Ethernet (100GBASE-X) 10×/4× 100 Gbit/s 12.5 GB/s 2010/2018
Omni-Path 100 Gbit/s 12.5 GB/s 2015
InfiniBand FDR-10 12×[33] 123.75 Gbit/s 15.47 GB/s
NUMAlink 7 159.52 Gbit/s 19.94 GB/s 2014
InfiniBand FDR 12×[33] 163.64 Gbit/s 20.45 GB/s 2011
InfiniBand HDR 4×[34] 200 Gbit/s 25 GB/s[33] 2017
200 Gigabit Ethernet (200GBASE-X) 200 Gbit/s 25 GB/s 2017
InfiniBand EDR 12×[33] 300 Gbit/s 37.5 GB/s 2014
400 Gigabit Ethernet (400GBASE-X) 400 Gbit/s 50 GB/s 2017
InfiniBand HDR 12×[34] 600 Gbit/s 75 GB/s[33] 2017

Wireless networks Edit

802.11 networks in infrastructure mode are half-duplex; all stations share the medium. In infrastructure or access point mode, all traffic has to pass through an Access Point (AP). Thus, two stations on the same access point that are communicating with each other must have each and every frame transmitted twice: from the sender to the access point, then from the access point to the receiver. This approximately halves the effective bandwidth.

802.11 networks in ad hoc mode are still half-duplex, but devices communicate directly rather than through an access point. In this mode all devices must be able to "see" each other, instead of only having to be able to "see" the access point.

Standard Rate Year
Classic WaveLAN Mbit/s 250 kB/s 1988
IEEE 802.11 2 Mbit/s 250 kB/s 1997
RONJA (full duplex) 10 Mbit/s 1.25 MB/s 2001
IEEE 802.11a 54 Mbit/s 6.75 MB/s 1999
IEEE 802.11b 11 Mbit/s 1.375 MB/s 1999
IEEE 802.11g 54 Mbit/s 6.75 MB/s 2003
IEEE 802.16 (WiMAX) 70 Mbit/s 8.75 MB/s 2004
IEEE 802.11g with Super G by Atheros 108 Mbit/s 13.5 MB/s 2003
IEEE 802.11g with 125 High Speed Mode by Broadcom 125 Mbit/s 15.625 MB/s 2003
IEEE 802.11g with Nitro by Conexant 140 Mbit/s 17.5 MB/s 2003
IEEE 802.11n (aka Wi-Fi 4) 600 Mbit/s 75 MB/s 2009
IEEE 802.11ac (aka Wi-Fi 5) 6.8–6.93 Gbit/s 850–866.25 MB/s 2012
IEEE 802.11ad 7.14–7.2 Gbit/s 892.5–900 MB/s 2011
IEEE 802.11ax (aka Wi-Fi 6) 11 Gbit/s 1375 MB/s 2019
IEEE 802.11be (aka Wi-Fi 7) 40 Gbit/s expected 5000 MB/s expected 2021 draft

Wireless personal area networks Edit

Technology Rate Year
ANT 20 kbit/s 2.5 kB/s
IrDA-Control 72 kbit/s kB/s
IrDA-SIR 115.2 kbit/s 14 kB/s
802.15.4 (2.4 GHz) 250 kbit/s 31.25 kB/s
Bluetooth 1.1 1 Mbit/s 125 kB/s 2002
Bluetooth 2.0+EDR 3 Mbit/s 375 kB/s 2004
IrDA-FIR 4 Mbit/s 500 kB/s
IrDA-VFIR 16 Mbit/s MB/s
Bluetooth 3.0 25 Mbit/s 3.125 MB/s 2009
Bluetooth 4.0 25 Mbit/s 3.125 MB/s 2010
Bluetooth 5.0 50 Mbit/s 6.25 MB/s 2016
IrDA-UFIR 96 Mbit/s 12 MB/s
WUSB-UWB 480 Mbit/s 60 MB/s
IrDA-Giga-IR 1024 Mbit/s 128 MB/s

Computer buses Edit

Main buses Edit

Technology Rate Year
I²C 3.4 Mbit/s 425 kB/s 1992 (standardized)
Apple II series (incl. Apple IIGS) 8-bit/1 MHz 8 Mbit/s MB/s[35][36] 1977
SS-50 Bus 8-bit/1(?) MHz 8 Mbit/s MB/s 1975
STD-80 8-bit/8 MHz 16 Mbit/s MB/s
ISA 8-Bit/4.77 MHz 0 W/S: every 4 clocks 8 bits
1 W/S: every 5 clocks 8 bits
0 W/S: every 4 clocks 1 byte
1 W/S: every 5 clocks 1 byte
1981 (created)
STD-80 16-bit/8 MHz 32 Mbit/s MB/s
I3C (HDR mode)[37] 33.3 Mbit/s 4.16 MB/s 2017
Zorro II 16-bit/7.14 MHz[38] 42.4 Mbit/s 5.3 MB/s 1986
ISA 16-Bit/8.33 MHz 66.64 Mbit/s 8.33 MB/s 1984 (created)
Europe Card Bus 8-Bit/10 MHz 66.7 Mbit/s 8.33 MB/s 1977 (created)
S-100 bus 8-bit/10 MHz 80 Mbit/s 10 MB/s 1976 (published)
Serial Peripheral Interface (Up to 100 MHz) 100 Mbit/s 12.5 MB/s 1989
Low Pin Count 125 Mbit/s 15.63 MB/s [x] 2002
STEbus 8-Bit/16 MHz 128 Mbit/s 16 MB/s 1987 (standardized)
C-Bus 16-bit/10 MHz 160 Mbit/s 20 MB/s[39] 1982
HP Precision Bus 184 Mbit/s 23 MB/s
STD-32 32-bit/8 MHz 256 Mbit/s 32 MB/s[40]
NESA 32-bit/8 MHz 256 Mbit/s 32 MB/s[41]
EISA 32-bit/8.33 MHz 266.56 Mbit/s 33.32 MB/s 1988
VME64 32-64bit 400 Mbit/s 40 MB/s 1981
MCA 32bit/10 MHz 400 Mbit/s 40 MB/s 1987
NuBus 10 MHz 400 Mbit/s 40 MB/s 1987 (standardized)
DEC TURBOchannel 32-bit/12.5 MHz 400 Mbit/s 50 MB/s
NuBus90 20 MHz 800 Mbit/s 80 MB/s 1991
MCA 32bit/20 MHz 800 Mbit/s 80 MB/s[42] 1992
APbus 32-bit/25(?) MHz 800 Mbit/s 100 MB/s[43]
Sbus 32-bit/25 MHz 800 Mbit/s 100 MB/s 1989
DEC TURBOchannel 32-bit/25 MHz 800 Mbit/s 100 MB/s
Local Bus 98 32-bit/33 MHz 1056 Mbit/s 132 MB/s[44]
VESA Local Bus (VLB) 32-bit/33 MHz 1067 Mbit/s 133.33 MB/s 1992
PCI 32-bit/33 MHz 1067 Mbit/s 133.33 MB/s 1993
HP GSC-1X 1136 Mbit/s 142 MB/s
Zorro III 32-bit/async (eq. 37.5 MHz)[45][46] 1200 Mbit/s 150 MB/s[47] 1990
VESA Local Bus (VLB) 32-bit/40 MHz 1280 Mbit/s 160 MB/s 1992
Sbus 64-bit/25 MHz 1.6 Gbit/s 200 MB/s 1995
HP GSC-2X 2.048 Gbit/s 256 MB/s
PCI 64-bit/33 MHz 2.133 Gbit/s 266.7 MB/s 1993
PCI 32-bit/66 MHz 2.133 Gbit/s 266.7 MB/s 1995
AGP 2.133 Gbit/s 266.7 MB/s 1997
PCI Express 1.0 (×1 link)[48] 2.5 Gbit/s 250 MB/s [z] 2004
RapidIO Gen1 1× 2.5 Gbit/s 312.5 MB/s
HIO bus 2.560 Gbit/s 320 MB/s
GIO64 64-bit/40 MHz 2.560 Gbit/s 320 MB/s
PCI Express 2.0 (×1 link)[49] 5 Gbit/s 500 MB/s [z] 2007
AGP 2× 4.266 Gbit/s 533.3 MB/s 1997
PCI 64-bit/66 MHz 4.266 Gbit/s 533.3 MB/s
PCI-X DDR 16-bit 4.266 Gbit/s 533.3 MB/s
RapidIO Gen2 1× 5 Gbit/s 625 MB/s
PCI 64-bit/100 MHz 6.4 Gbit/s 800 MB/s
PCI Express 3.0 (×1 link)[50] 8 Gbit/s 984.6 MB/s [y] 2011
Unified Media Interface (UMI) (×4 link) 10 Gbit/s GB/s [z] 2011
Direct Media Interface (DMI) (×4 link) 10 Gbit/s GB/s [z] 2004
Enterprise Southbridge Interface (ESI) 8 Gbit/s GB/s
PCI Express 1.0 (×4 link)[48] 10 Gbit/s GB/s [z] 2004
AGP 4× 8.533 Gbit/s 1.067 GB/s 1998
PCI-X 133 8.533 Gbit/s 1.067 GB/s
PCI-X QDR 16-bit 8.533 Gbit/s 1.067 GB/s
InfiniBand single 4×[32] 8 Gbit/s GB/s [z]
RapidIO Gen1 4× 10 Gbit/s 1.25 GB/s
RapidIO Gen2 2× 10 Gbit/s 1.25 GB/s
UPA 15.360 Gbit/s 1.92 GB/s
Unified Media Interface 2.0 (UMI 2.0; ×4 link) 20 Gbit/s GB/s [z] 2012
Direct Media Interface 2.0 (DMI 2.0; ×4 link) 20 Gbit/s GB/s [z] 2011
PCI Express 1.0 (×8 link)[48] 20 Gbit/s GB/s [z] 2004
PCI Express 2.0 (×4 link)[49] 20 Gbit/s GB/s [z] 2007
AGP 8× 17.066 Gbit/s 2.133 GB/s 2002
PCI-X DDR 17.066 Gbit/s 2.133 GB/s
RapidIO Gen2 4× 20 Gbit/s 2.5 GB/s
Sun JBus (200 MHz) 20.48 Gbit/s 2.56 GB/s 2003
HyperTransport (800 MHz, 16-pair) 25.6 Gbit/s 3.2 GB/s 2001
PCI Express 3.0 (×4 link)[50] 32 Gbit/s 3.94 GB/s [y] 2011
HyperTransport (1 GHz, 16-pair) 32 Gbit/s GB/s
PCI Express 1.0 (×16 link)[48] 40 Gbit/s GB/s [z] 2004
PCI Express 2.0 (×8 link)[49] 40 Gbit/s GB/s [z] 2007
PCI-X QDR 34.133 Gbit/s 4.266 GB/s
AGP 8× 64-bit 34.133 Gbit/s 4.266 GB/s
RapidIO Gen2 8x 40 Gbit/s GB/s
Direct Media Interface 3.0 (DMI 3.0; ×4 link) 40 Gbit/s 3.94 GB/s [y] 2015
PCI Express 3.0 (×8 link)[50] 64 Gbit/s 7.88 GB/s [y] 2011
PCI Express 2.0 (×16 link)[49] 80 Gbit/s GB/s [z] 2007
RapidIO Gen2 16x 80 Gbit/s 10 GB/s
PCI Express 5.0 (×4 link) 128 Gbit/s 15.75 GB/s[y] 2019
PCI Express 3.0 (×16 link)[50] 128 Gbit/s 15.75 GB/s [y] 2011
CAPI 128 Gbit/s 15.75 GB/s [y] 2014
QPI (4.80GT/s, 2.40 GHz) 153.6 Gbit/s 19.2 GB/s
HyperTransport 2.0 (1.4 GHz, 32-pair) 179.2 Gbit/s 22.4 GB/s 2004
QPI (5.86GT/s, 2.93 GHz) 187.52 Gbit/s 23.44 GB/s
QPI (6.40GT/s, 3.20 GHz) 204.8 Gbit/s 25.6 GB/s
QPI (7.2GT/s, 3.6 GHz) 230.4 Gbit/s 28.8 GB/s 2012
PCI Express 6.0 (×4 link) 242 Gbit/s 30.25 GB/s[w] 2022
PCI Express 4.0 (×16 link)[51] 256 Gbit/s 31.51 GB/s[y] 2018
CAPI 2 256 Gbit/s 31.51 GB/s[y] 2016
QPI (8.0GT/s, 4.0 GHz) 256.0 Gbit/s 32.0 GB/s 2012
QPI (9.6GT/s, 4.8 GHz) 307.2 Gbit/s 38.4 GB/s 2014
HyperTransport 3.0 (2.6 GHz, 32-pair) 332.8 Gbit/s 41.6 GB/s 2006
HyperTransport 3.1 (3.2 GHz, 32-pair) 409.6 Gbit/s 51.2 GB/s 2008
CXL Specification 1.x (×16 link) 512 Gbit/s 63.02 GB/s 2019
PCI Express 5.0 (×16 link) [52] 512 Gbit/s 63.02 GB/s[y] 2019
NVLink 1.0 640 Gbit/s 80 GB/s 2016
PCI Express 6.0 (×16 link) [53] 968 Gbit/s 121 GB/s[w] 2022
NVLink 2.0 1.2 Tbit/s 150 GB/s 2017
Infinity Fabric (Max. theoretical) 4.096 Tbit/s 512 GB/s 2017

x LPC protocol includes high overhead. While the gross data rate equals 33.3 million 4-bit-transfers per second (or 16.67 MB/s), the fastest transfer, firmware read, results in 15.63 MB/s. The next fastest bus cycle, 32-bit ISA-style DMA write, yields only 6.67 MB/s. Other transfers may be as low as MB/s.[54]

y Uses 128b/130b encoding, meaning that about 1.54% of each transfer is used for error detection instead of carrying data between the hardware components at each end of the interface. For example, a single link PCIe 3.0 interface has an 8 Gbit/s transfer rate, yet its usable bandwidth is only about 7.88 Gbit/s.

z Uses 8b/10b encoding, meaning that 20% of each transfer is used by the interface instead of carrying data from between the hardware components at each end of the interface. For example, a single link PCIe 1.0 has a 2.5 Gbit/s transfer rate, yet its usable bandwidth is only 2 Gbit/s (250 MB/s).

w Uses PAM-4 encoding and a 256 bytes FLIT block, of which 14 bytes are FEC and CRC, meaning that 5.47% of total data rate is used for error detection and correction instead of carrying data. For example, a single link PCIe 6.0 interface has an 64 Gbit/s total transfer rate, yet its usable bandwidth is only 60.5 Gbit/s.

Portable Edit

Technology Rate Year
PC Card 16-bit 255 ns byte mode 31.36 Mbit/s 3.92 MB/s
PC Card 16-bit 255 ns word mode 62.72 Mbit/s 7.84 MB/s
PC Card 16-bit 100 ns byte mode 80 Mbit/s 10 MB/s
PC Card 16-bit 100 ns word mode 160 Mbit/s 20 MB/s
PC Card 32-bit (CardBus) byte mode 267 Mbit/s 33.33 MB/s
ExpressCard 1.2 USB 2.0 mode 480 Mbit/s 60 MB/s
PC Card 32-bit (CardBus) word mode 533 Mbit/s 66.66 MB/s
PC Card 32-bit (CardBus) doubleword mode 1067 Mbit/s 133.33 MB/s
ExpressCard 1.2 PCI Express mode 2500 Mbit/s 250 MB/s
ExpressCard 2.0 USB 3.0 mode 4800 Mbit/s 600 MB/s
ExpressCard 2.0 PCI Express mode 5000 Mbit/s 625 MB/s

Storage Edit

Technology Rate Year
Teletype Model 33 paper tape 80 bit/s 10 B/s 1963
TRS-80 Model 1 Level 1 BASIC cassette tape interface 250 bit/s 32 B/s 1977
C2N Commodore Datasette 1530 cassette tape interface 300 bit/s 15 B/s 1977
Apple 2 cassette tape interface 1.5 kbit/s 200 B/s 1977
Amstrad CPC tape 2.0 kbit/s 250 B/s 1984
Single Density 8-inch FM Floppy Disk Controller (160 KB) 250 kbit/s 31 KB/s 1973
Single Density 5.25-inch FM Floppy Disk Controller (180 KB) 125 kbit/s 15.5 KB/s 1978
High Density MFM Floppy Disk Controller (1.2 MB/1.44 MB) 250 kbit/s 31 KB/s 1984
CD Controller (1×) 1.171 Mbit/s 0.146 MB/s 1988
MFM hard disk 5 Mbit/s 0.625 MB/s 1980
RLL hard disk 7.5 Mbit/s 0.937 MB/s
DVD Controller (1×) 11.1 Mbit/s 1.32 MB/s
ESDI 24 Mbit/s MB/s
ATA PIO Mode 0 26.4 Mbit/s 3.3 MB/s 1986
HD DVD Controller (1×) 36 Mbit/s 4.5 MB/s
Blu-ray Controller (1×) 36 Mbit/s 4.5 MB/s
SCSI (Narrow SCSI) (5 MHz)[55] 40 Mbit/s MB/s 1986
ATA PIO Mode 1 41.6 Mbit/s 5.2 MB/s 1994
ATA PIO Mode 2 66.4 Mbit/s 8.3 MB/s 1994
Fast SCSI (8 bits/10 MHz) 80 Mbit/s 10 MB/s
ATA PIO Mode 3 88.8 Mbit/s 11.1 MB/s 1996
AoE over Fast Ethernet[56] 100 Mbit/s 11.9 MB/s 2009
iSCSI over Fast Ethernet[57] 100 Mbit/s 11.9 MB/s 2004
ATA PIO Mode 4 133.3 Mbit/s 16.7 MB/s 1996
Fast Wide SCSI (16 bits/10 MHz) 160 Mbit/s 20 MB/s
Ultra SCSI (Fast-20 SCSI) (8 bits/20 MHz) 160 Mbit/s 20 MB/s
SD (High Speed) 200 Mbit/s 25 MB/s
Ultra DMA ATA 33 264 Mbit/s 33 MB/s 1998
Ultra Wide SCSI (16 bits/20 MHz) 320 Mbit/s 40 MB/s
Ultra-2 SCSI 40 (Fast-40 SCSI) (8 bits/40 MHz) 320 Mbit/s 40 MB/s
SDHC/SDXC/SDUC (UHS-I Full Duplex) 400 Mbit/s 50 MB/s
Ultra DMA ATA 66 533.6 Mbit/s 66.7 MB/s 2000
Blu-ray Controller (16×) 576 Mbit/s 72 MB/s
Ultra-2 wide SCSI (16 bits/40 MHz) 640 Mbit/s 80 MB/s
Serial Storage Architecture SSA 640 Mbit/s 80 MB/s 1990
Ultra DMA ATA 100 800 Mbit/s 100 MB/s 2002
Fibre Channel 1GFC (1.0625 GHz)[58] 850 Mbit/s 103.23 MB/s 1997
AoE over gigabit Ethernet, jumbo frames[59] 1 Gbit/s 124.2 MB/s 2009
iSCSI over gigabit Ethernet, jumbo frames[60] 1 Gbit/s 123.9 MB/s 2004
Ultra DMA ATA 133 1.064 Gbit/s 133 MB/s 2005
SDHC/SDXC/SDUC (UHS-II Full Duplex) 1.25 Gbit/s 156 MB/s
Ultra-3 SCSI (Ultra 160 SCSI; Fast-80 Wide SCSI) (16 bits/40 MHz DDR) 1.28 Gbit/s 160 MB/s
SATA revision 1.0[61] 1.500 Gbit/s 150 MB/s [a] 2003
Fibre Channel 2GFC (2.125 GHz)[58] 1.700 Gbit/s 206.5 MB/s 2001
Ultra-320 SCSI (Ultra4 SCSI) (16 bits/80 MHz DDR) 2.560 Gbit/s 320 MB/s
Serial Attached SCSI (SAS) SAS-1[61] 3 Gbit/s 300 MB/s [a] 2004
SATA Revision 2.0[61] 3 Gbit/s 300 MB/s [a] 2004
SDHC/SDXC/SDUC (UHS-III Full Duplex) 2.5 Gbit/s 312 MB/s
Fibre Channel 4GFC (4.25 GHz)[58] 3.4 Gbit/s 413 MB/s 2004
Serial Attached SCSI (SAS) SAS-2[61] 6 Gbit/s 600 MB/s [a] 2009
SATA Revision 3.0[61] 6 Gbit/s 600 MB/s [a] 2008
Fibre Channel 8GFC (8.50 GHz)[58] 6.8 Gbit/s 826 MB/s 2005
SDHC/SDXC/SDUC (SD Express) 7.9 Gbit/s 985 MB/s
AoE over 10GbE[59] 10 Gbit/s 1.242 GB/s 2009
iSCSI over 10GbE[60] 10 Gbit/s 1.239 GB/s 2004
FCoE over 10GbE[62] 10 Gbit/s 1.206 GB/s 2009
Serial Attached SCSI (SAS) SAS-3[61] 12 Gbit/s 1.2 GB/s 2013
Fibre Channel 16GFC (14.025 GHz)[58] 13.6 Gbit/s 1.652 GB/s [b] 2011
SATA Express 16 Gbit/s GB/s 2013
Serial Attached SCSI (SAS) SAS-4 22.5 Gbit/s 2.4 GB/s [c] 2017
UFS (version 3.0) 23.2 Gbit/s 2.9 GB/s 2018
Fibre Channel 32GFC (28.05 GHz)[58] 26.424 Gbit/s 3.303 GB/s [b] 2016
NVMe over M.2 or U.2 (using PCI Express 3.0 ×4 link)[50] 32 Gbit/s 3.938 GB/s 2013
iSCSI over InfiniBand 32 Gbit/s GB/s 2007
NVMe over M.2 or U.2 (using PCI Express 4.0 ×4 link) 64 Gbit/s 7.876 GB/s 2017
iSCSI over 100G Ethernet[60] 100 Gbit/s 12.392 GB/s 2010
FCoE over 100G Ethernet[62] 100 Gbit/s 12.064 GB/s 2010
NVMe over M.2, U.2, U.3 or EDSFF (using PCI Express 5.0 ×4 link) 128 Gbit/s 15.754 GB/s 2019

a Uses 8b/10b encoding b Uses 64b/66b encoding c Uses 128b/150b encoding

Peripheral Edit

Technology Rate Year
Apple Desktop Bus 10.0 kbit/s 1.25 kB/s 1986
PS/2 port 12.0 kbit/s 1.5 kB/s 1987
Serial MIDI 31.25 kbit/s 3.9 kB/s 1983
CBM Bus max[63][64] 41.6 kbit/s 5.1 kB/s 1981
Serial RS-232 max 230.4 kbit/s 28.8 kB/s 1962
Serial DMX512A 250.0 kbit/s 31.25 kB/s 1998
Parallel (Centronics/IEEE 1284) Mbit/s 125 kB/s 1970 (standardized 1994)
Serial 16550 UART max 1.5 Mbit/s 187.5 kB/s
USB 1.0 low speed 1.536 Mbit/s 192 kB/s 1996
Serial UART max 2.7648 Mbit/s 345.6 kB/s
GPIB/HPIB (IEEE-488.1) IEEE-488 max. 8 Mbit/s MB/s Late 1960s (standardized 1976)
Serial EIA-422 max. 10 Mbit/s 1.25 MB/s
USB 1.0 full speed 12 Mbit/s 1.5 MB/s 1996
Parallel (Centronics/IEEE 1284) EPP (Enhanced Parallel Port) 16 Mbit/s MB/s 1992
Parallel (Centronics/IEEE 1284) ECP (Extended Capability Port) 20 Mbit/s 2.5 MB/s 1994
Serial EIA-485 max. 35 Mbit/s 4.375 MB/s
GPIB/HPIB (IEEE-488.1-2003) IEEE-488 max. 64 Mbit/s MB/s
FireWire (IEEE 1394) 100 98.304 Mbit/s 12.288 MB/s 1995
FireWire (IEEE 1394) 200 196.608 Mbit/s 24.576 MB/s 1995
FireWire (IEEE 1394) 400 393.216 Mbit/s 49.152 MB/s 1995
USB 2.0 high speed 480 Mbit/s 60 MB/s 2000
FireWire (IEEE 1394b) 800[65] 786.432 Mbit/s 98.304 MB/s 2002
Fibre Channel 1 Gb SCSI 1.0625 Gbit/s 100 MB/s
FireWire (IEEE 1394b) 1600[65] 1.573 Gbit/s 196.6 MB/s 2007
Fibre Channel 2 Gb SCSI 2.125 Gbit/s 200 MB/s
eSATA (SATA 300) 3 Gbit/s 300 MB/s 2004
CoaXPress Base (up and down bidirectional link) 3.125 Gbit/s + 20.833 Mbit/s 390 MB/s 2009
FireWire (IEEE 1394b) 3200[65] 3.1457 Gbit/s 393.216 MB/s 2007
External PCI Express 2.0 ×1 4 Gbit/s 500 MB/s
Fibre Channel 4 Gb SCSI 4.25 Gbit/s 531.25 MB/s
USB 3.0 SuperSpeed (aka USB 3.1 Gen 1) 5 Gbit/s 500 MB/s 2010
eSATA (SATA 600) 6 Gbit/s 600 MB/s 2011
CoaXPress full (up and down bidirectional link) 6.25 Gbit/s + 20.833 Mbit/s 781 MB/s 2009
External PCI Express 2.0 ×2 8 Gbit/s GB/s
USB 3.1 SuperSpeed+ (aka USB 3.1 Gen 2) 10 Gbit/s 1.212 GB/s 2013
External PCI Express 2.0 ×4 16 Gbit/s GB/s
Thunderbolt 2 × 10 Gbit/s 2 × 1.25 GB/s 2011
USB 3.2 SuperSpeed+[66] (aka USB 3.2 Gen 2×2) 20 Gbit/s 2.424 GB/s 2017
Thunderbolt 2 20 Gbit/s 2.5 GB/s 2013
FPGA Mezzanine Card Plus (FMC+)[67] 28 Gbit/s 3.5 GB/s 2019
External PCI Express 2.0 ×8 32 Gbit/s GB/s
USB4 Gen 3×2[68] 40 Gbit/s 4.8 GB/s 2019
Thunderbolt 3 two links 40 Gbit/s GB/s 2015
Thunderbolt 4 40 Gbit/s GB/s 2020
External PCI Express 2.0 ×16 64 Gbit/s GB/s
USB4 Gen 4×2[69] 80 Gbit/s 9.6 GB/s 2022
USB4 Gen 4×2 Asymmetric 120 Gbit/s 14.4 GB/s 2022

MAC to PHY Edit

Technology Channels Bits MGT Lanes Rate Year
Count Encoding Rate
Media Independent Interface (MII) 1 4 100 Mbit/s 12.5 MB/s
Reduced MII (RMII) 1 2 100 Mbit/s 12.5 MB/s
Serial MII (SMII) 1 1 100 Mbit/s 12.5 MB/s
Gigabit MII (GMII) 1 8 1.0 Gbit/s 125 MB/s
Reduced gigabit/s MII (RGMII) 1 4 1.0 Gbit/s 125 MB/s
Ten-bit interface (TBI) 1 10 1.0 Gbit/s 125 MB/s
Serial gigabit/s MII (SGMII) 1 1 8b/10b 1.25 Gbit/s 1.0 Gbit/s 125 MB/s
Reduced serial gigabit/s MII (RSGMII) 2 1 8b/10b 2.5 Gbit/s 2.0 Gbit/s 250 MB/s
Reduced serial gigabit/s MII plus (RSGMII-PLUS) 4 1 8b/10b 5.0 Gbit/s 4.0 Gbit/s 500 MB/s
Quad serial gigabit/s MII (QSGMII) 4 1 8b/10b 5.0 Gbit/s 4.0 Gbit/s 500 MB/s
10 gigabit/s MII (XGMII) 1 32 10.0 Gbit/s 1.25 GB/s
XGMII attachment unit interface (XAUI) 1 4 8b/10b 3.125 Gbit/s 10.0 Gbit/s 1.25 GB/s
Reduced Pin XAUI (RXAUI) 1 2 8b/10b 6.25 Gbit/s 10.0 Gbit/s 1.25 GB/s
XFI/SFI 1 1 64b/66b 10.3125 Gbit/s 10.0 Gbit/s 1.25 GB/s
40 gigabit/s MII (XLGMII, on-chip only) 1 40.0 Gbit/s GB/s
100 gigabit/s MII (CGMII, on-chip only) 1 100.0 Gbit/s 12.5 GB/s 2008
100G AUI (CAUI-10) 1 10 64b/66b 10.3125 Gbit/s 100.0 Gbit/s 12.5 GB/s
100G AUI (CAUI-4) 1 4 64b/66b 25.78125 Gbit/s 100.0 Gbit/s 12.5 GB/s

PHY to XPDR Edit

Technology Rate Year
10 gigabit/s 16-bit interface (XSBI; 16 lanes) 0.995 Gbit/s 0.124 GB/s

Dynamic random-access memory Edit

The table below shows values for PC memory module types. These modules usually combine multiple chips on one circuit board. SIMM modules connect to the computer via an 8-bit- or 32-bit-wide interface. RIMM modules used by RDRAM are 16-bit- or 32-bit-wide.[70] DIMM modules connect to the computer via a 64-bit-wide interface. Some other computer architectures use different modules with a different bus width.

In a single-channel configuration, only one module at a time can transfer information to the CPU. In multi-channel configurations, multiple modules can transfer information to the CPU at the same time, in parallel. FPM, EDO, SDR, and RDRAM memory was not commonly installed in a dual-channel configuration. DDR and DDR2 memory is usually installed in single- or dual-channel configuration. DDR3 memory is installed in single-, dual-, tri-, and quad-channel configurations. Bit rates of multi-channel configurations are the product of the module bit-rate (given below) and the number of channels.

Module type Chip type Internal clock[a] Bus clock Bus speed[b] Transfer rate
FPM DRAM 70 ns tRAC 22 MHz 22 MHz 0.0177 GT/s 1.416 Gbit/s 177 MB/s
EDO DRAM (486 CPU) 60 ns tRAC 33 MHz 33 MHz 0.0266 GT/s 2.128 Gbit/s 266 MB/s
EDO DRAM (Pentium CPU) 60 ns tRAC 66 MHz 66 MHz 0.066 GT/s 4.264 Gbit/s 533 MB/s
PC-66 SDR SDRAM 10/15 ns 66 MHz 66 MHz 0.066 GT/s 4.264 Gbit/s 533 MB/s
PC-100 SDR SDRAM 8 ns 100 MHz 100 MHz 0.100 GT/s 6.4 Gbit/s 800 MB/s
PC-133 SDR SDRAM 7/7.5 ns 133 MHz 133 MHz 0.133 GT/s 8.528 Gbit/s 1.066 GB/s
RIMM-1200 RDRAM PC600 75 MHz 300 MHz 0.600 GT/s 9.6 Gbit/s 1.2 GB/s
RIMM-1400 RDRAM PC700 87.5 MHz 350 MHz 0.700 GT/s 11.2 Gbit/s 1.4 GB/s
RIMM-1600 RDRAM PC800 100 MHz 400 MHz 0.800 GT/s 12.8 Gbit/s 1.6 GB/s
PC-1600 DDR SDRAM DDR-200 100 MHz 100 MHz 0.200 GT/s 12.8 Gbit/s 1.6 GB/s
RIMM-2100 RDRAM PC1066 133 MHz 533 MHz 1.066 GT/s 17.034 Gbit/s 2.133 GB/s
PC-2100 DDR SDRAM DDR-266 133 MHz 133 MHz 0.266 GT/s 17.034 Gbit/s 2.133 GB/s
RIMM-2400 RDRAM PC1200 150 MHz 600 MHz 1.2 GT/s 19.2 Gbit/s 2.4 GB/s
PC-2700 DDR SDRAM DDR-333 166 MHz 166 MHz 0.333 GT/s 21.336 Gbit/s 2.667 GB/s
PC-3200 DDR SDRAM DDR-400 200 MHz 200 MHz 0.400 GT/s 25.6 Gbit/s 3.2 GB/s
PC2-3200 DDR2 SDRAM DDR2-400 100 MHz 200 MHz 0.400 GT/s 25.6 Gbit/s 3.2 GB/s
PC-3500 DDR SDRAM DDR-433 216 MHz 216 MHz 0.433 GT/s 27.728 Gbit/s 3.466 GB/s
PC-3700 DDR SDRAM DDR-466 233 MHz 233 MHz 0.466 GT/s 29.864 Gbit/s 3.733 GB/s
PC-4000 DDR SDRAM DDR-500 250 MHz 250 MHz 0.500 GT/s 32 Gbit/s GB/s
PC-4200 DDR SDRAM DDR-533 266 MHz 266 MHz 0.533 GT/s 34.128 Gbit/s 4.266 GB/s
PC2-4200 DDR2 SDRAM DDR2-533 133 MHz 266 MHz 0.533 GT/s 34.128 Gbit/s 4.266 GB/s
PC-4400 DDR SDRAM DDR-550 275 MHz 275 MHz 0.550 GT/s 35.2 Gbit/s 4.4 GB/s
PC-4800 DDR SDRAM DDR-600 300 MHz 300 MHz 0.600 GT/s 38.4 Gbit/s 4.8 GB/s
PC2-5300 DDR2 SDRAM DDR2-667 166 MHz 333 MHz 0.667 GT/s 42.664 Gbit/s 5.333 GB/s
PC2-6000 DDR2 SDRAM DDR2-750 188 MHz 375 MHz 0.750 GT/s 48 Gbit/s GB/s
PC2-6400 DDR2 SDRAM DDR2-800 200 MHz 400 MHz 0.800 GT/s 51.2 Gbit/s 6.4 GB/s
PC3-6400 DDR3 SDRAM DDR3-800 100 MHz 400 MHz 0.800 GT/s 51.2 Gbit/s 6.4 GB/s
PC2-7200 DDR2 SDRAM DDR2-900 225 MHz 450 MHz 0.900 GT/s 57.6 Gbit/s 7.2 GB/s
PC2-8000 DDR2 SDRAM DDR2-1000 250 MHz 500 MHz GT/s 64 Gbit/s GB/s
PC2-8500 DDR2 SDRAM DDR2-1066 266 MHz 533 MHz 1.066 GT/s 68 Gbit/s 8.5 GB/s
PC3-8500 DDR3 SDRAM DDR3-1066 133 MHz 533 MHz 1.066 GT/s 68 Gbit/s 8.5 GB/s
PC2-8800 DDR2 SDRAM DDR2-1100 275 MHz 550 MHz 1.1 GT/s 70.4 Gbit/s 8.8 GB/s
PC2-9200 DDR2 SDRAM DDR2-1150 288 MHz 575 MHz 1.15 GT/s 73.6 Gbit/s 9.2 GB/s
PC2-9600 DDR2 SDRAM DDR2-1200 300 MHz 600 MHz 1.2 GT/s 76.8 Gbit/s 9.6 GB/s
PC2-10000 DDR2 SDRAM DDR2-1250 312 MHz 625 MHz 1.25 GT/s 80 Gbit/s 10 GB/s
PC3-10600 DDR3 SDRAM DDR3-1333 167 MHz 667 MHz 1.333 GT/s 85.336 Gbit/s 10.667 GB/s
PC3-11000 DDR3 SDRAM DDR3-1375 172 MHz 688 MHz 1.375 GT/s 88 Gbit/s 11 GB/s
PC3-12800 DDR3 SDRAM DDR3-1600 200 MHz 800 MHz 1.6 GT/s 102.4 Gbit/s 12.8 GB/s
PC3-13000 DDR3 SDRAM DDR3-1625 203 MHz 813 MHz 1.625 GT/s 104 Gbit/s 13 GB/s
PC3-14400 DDR3 SDRAM DDR3-1800 225 MHz 900 MHz 1.8 GT/s 115.2 Gbit/s 14.4 GB/s
PC3-14900 DDR3 SDRAM DDR3-1866 233 MHz 933 MHz 1.866 GT/s 119.464 Gbit/s 14.933 GB/s
PC3-16000 DDR3 SDRAM DDR3-2000 250 MHz 1000 MHz GT/s 128 Gbit/s 16 GB/s
PC3-17000 DDR3 SDRAM DDR3-2133 267 MHz 1067 MHz 2.133 GT/s 136.528 Gbit/s 17.066 GB/s
PC4-17000 DDR4 SDRAM DDR4-2133 267 MHz 1067 MHz 2.133 GT/s 136.5 Gbit/s 17 GB/s
PC3-17600 DDR3 SDRAM DDR3-2200 275 MHz 1100 MHz 2.2 GT/s 140.8 Gbit/s 17.6 GB/s
PC3-19200 DDR3 SDRAM DDR3-2400 300 MHz 1200 MHz 2.4 GT/s 153.6 Gbit/s 19.2 GB/s
PC4-19200 DDR4 SDRAM DDR4-2400 300 MHz 1200 MHz 2.4 GT/s 153.6 Gbit/s 19.2 GB/s
PC3-21300 DDR3 SDRAM DDR3-2666 333 MHz 1333 MHz 2.666 GT/s 170.5 Gbit/s 21.3 GB/s
PC4-21300 DDR4 SDRAM DDR4-2666 333 MHz 1333 MHz 2.666 GT/s 170.5 Gbit/s 21.3 GB/s
PC3-24000 DDR3 SDRAM DDR3-3000 375 MHz 1500 MHz 3.0 GT/s 192 Gbit/s 24 GB/s
PC4-24000 DDR4 SDRAM DDR4-3000 375 MHz 1500 MHz 3.0 GT/s 192 Gbit/s 24 GB/s
PC4-25600 DDR4 SDRAM DDR4-3200 400 MHz 1600 MHz 3.2 GT/s 204.8 Gbit/s 25.6 GB/s
PC5-41600 DDR5 SDRAM DDR5-5200 650 MHz 2600 MHz 5.2 GT/s 332.8 Gbit/s 41.6 GB/s
PC5-44800 DDR5 SDRAM DDR5-5600 700 MHz 2800 MHz 5.6 GT/s 358.4 Gbit/s 44.8 GB/s
PC5-51200 DDR5 SDRAM DDR5-6400 800 MHz 3200 MHz 6.4 GT/s 409.6 Gbit/s 51.2 GB/s

a The clock rate at which DRAM memory cells operate. The memory latency is largely determined by this rate. Note that until the introduction of DDR4 the internal clock rate saw relatively slow progress. DDR/DDR2/DDR3 memory uses 2n/4n/8n (respectively) prefetch buffer to provide higher throughput, while the internal memory speed remains similar to that of the previous generation.

b The "memory speed/clock" advertised by manufactures and suppliers usually refers to this rate (with 1 GT/s = 1 GHz). Note that modern types of memory use DDR bus with two transfers per clock.

Graphics processing units' RAM Edit

RAM memory modules are also utilised by graphics processing units; however, memory modules for those differ somewhat from standard computer memory, particularly with lower power requirements, and are specialised to serve GPUs: for example, GDDR3 was fundamentally based on DDR2. Every graphics memory chip is directly connected to the GPU (point-to-point). The total GPU memory bus width varies with the number of memory chips and the number of lanes per chip. For example, GDDR5 specifies either 16 or 32 lanes per "device" (chip), while GDDR5X specifies 64 lanes per chip. Over the years, bus widths rose from 64-bit to 512-bit and beyond: e.g. HBM is 1024 bits wide.[71] Because of this variability, graphics memory speeds are sometimes compared per pin. For direct comparison to the values for 64-bit modules shown above, video RAM is compared here in 64-lane lots, corresponding to two chips for those devices with 32-bit widths. In 2012, high-end GPUs used 8 or even 12 chips with 32 lanes each, for a total memory bus width of 256 or 384 bits. Combined with a transfer rate per pin of 5 GT/s or more, such cards could reach 240 GB/s or more.

RAM frequencies used for a given chip technology vary greatly. Where single values are given below, they are examples from high-end cards.[72] Since many cards have more than one pair of chips, the total bandwidth is correspondingly higher. For example, high-end cards often have eight chips, each 32 bits wide, so the total bandwidth for such cards is four times the value given below.

Chip type Module type Memory clock Transfers/s Bandwidth
DDR 64 lanes 350 MHz 0.7 GT/s 44.8 Gbit/s 5.6 GB/s
DDR2 64 lanes 250 MHz GT/s 64 Gbit/s GB/s
GDDR3 64 lanes 625 MHz 2.5 GT/s 159 Gbit/s 19.9 GB/s
GDDR4 64 lanes 275 MHz 2.2 GT/s 140.8 Gbit/s 17.6 GB/s
GDDR5[73] 64 lanes 625–1125 MHz 5–9 GT/s 320–576 Gbit/s 40–72 GB/s
GDDR5X[74] 64 lanes 625–875 MHz 10–12 GT/s 640–768 Gbit/s 80–96 GB/s
GDDR6 64 lanes 875–1125 MHz 14–18 GT/s 896–1152 Gbit/s 112–144 GB/s
GDDR6X[75] 64 lanes 594–656 MHz 19–21 GT/s 1216–1344 Gbit/s 152–168 GB/s
HBM[76] 1024 lanes (8 channels @ 128 lanes ea) 500 MHz GT/s 1024 Gbit/s 128 GB/s
HBM2[76] 1024 lanes (8 channels @ 128 lanes ea) 1000 MHz GT/s 2048 Gbit/s 256 GB/s
HBM2e[77] 1024 lanes (8 channels @ 128 lanes ea) 1800 MHz 3.6 GT/s 3686.4 Gbit/s 460.8 GB/s
HBM3[77][78] 1024 lanes (16 channels @ 64 lanes ea) 3200 MHz 6.4 GT/s 6553.6 Gbit/s 819.2 GB/s
HMC 128 lanes (8 links @ 16 lanes ea) (internal) 10 GT/s 2560 Gbit/s 320 GB/s
HMC2 64 lanes (4 links @ 16 lanes ea) (internal) 30 GT/s 3840 Gbit/s 480 GB/s

Digital audio Edit

Device Rate
CD Audio (16-bit PCM) 1.411 Mbit/s 176.4 kB/s
I²S 2.250 Mbit/s @ 24bit/48 kHz 0.281 MB/s
AES/EBU 2.625 Mbit/s @ 24-bit/48 kHz 0.328 MB/s
S/PDIF fs 48kHz 3.072 Mbit/s 0.384 MB/s
ADAT Lightpipe (Type I) 9.216 Mbit/s 1.152 MB/s
AC'97 12.288 Mbit/s 1.536 MB/s
HDMI 36.864 Mbit/s 4.608 MB/s
DisplayPort 36.864 Mbit/s 4.608 MB/s
Intel High Definition Audio rev. 1.0[79] 48 Mbit/s outbound; 24 Mbit/s inbound MB/s outbound; 3 MB/s inbound
MADI 100 Mbit/s 12.5 MB/s

Digital video interconnects Edit

Data rates given are from the video source (e.g., video card) to receiving device (e.g., monitor) only. Out of band and reverse signaling channels are not included.

Device Rate Year
HD-SDI (SMPTE 292M) 1.485 Gbit/s 0.186 GB/s
Camera Link Base (single) 24-bit 85 MHz 2.040 Gbit/s 0.255 GB/s
LVDS Display Interface[80] 2.80 Gbit/s 0.35 GB/s
3G-SDI (SMPTE 424M) 2.97 Gbit/s 0.371 GB/s 2006
Single link DVI 4.95 Gbit/s 0.619 GB/s [a] 1999
HDMI 1.0[81] 4.95 Gbit/s 0.619 GB/s [a] 2002
Camera Link full (dual) 64-bit 85 MHz 5.44 Gbit/s 0.680 GB/s
6G-SDI (SMPTE 2081) 5.94 Gbit/s 0.75 GB/s 2015
DisplayPort 1.0 (4-lane Reduced Bit Rate)[82] 6.48 Gbit/s 0.810 GB/s [a] 2006
Dual link DVI 9.90 Gbit/s 1.238 GB/s [a] 1999
Thunderbolt 2 × 10 Gbit/s 2 × 1.25 GB/s 2011
HDMI 1.3[83] 10.2 Gbit/s 1.275 GB/s [a] 2006
Dual High-Speed LVDS Display Interface 10.5 Gbit/s 1.312 GB/s
DisplayPort 1.0 (4-lane High Bit Rate)[82] 10.8 Gbit/s 1.35 GB/s [a] 2006
12G-SDI (SMPTE 2082) 11.88 Gbit/s 1.5 GB/s 2015
HDMI 2.0[84] 18.0 Gbit/s 2.25 GB/s [a] 2013
Thunderbolt 2 20 Gbit/s 2.5 GB/s 2013
DisplayPort 1.2 (4-lane High Bit Rate 2)[82] 21.6 Gbit/s 2.7 GB/s [a] 2009
DisplayPort 1.3 (4-lane High Bit Rate 3) 32.4 Gbit/s 4.05 GB/s [a] 2014 (2016)
DisplayPort 1.4/1.4a 32.4 Gbit/s 4.05 GB/s 2016 (2018)
superMHL 36 Gbit/s 4.5 GB/s 2015
Thunderbolt 3 40 Gbit/s GB/s 2015
HDMI 2.1[85] 48 Gbit/s GB/s [b] 2017
DisplayPort 2.0/2.1 (4-lane)[86] 80 Gbit/s 10 GB/s [c] 2019 (2022)
SMPTE 2110 over 100 Gigabit Ethernet 100 Gbit/s 12.5 GB/s 2017

a Uses 8b/10b encoding (20% coding overhead) b Uses 16b/18b encoding (11% overhead) c Uses 128b/132b encoding (3% overhead)

See also Edit

Notes Edit

  1. ^ NIST-Enhanced-WWVB-Broadcast-Format-sept-2012-Radio-Station-staff, By John Lowe, September 2012, nist.gov
  2. ^ http://tf.nist.gov/timefreq/general/pdf/2422.pdf
  3. ^ TTY uses a Baudot code, not ASCII. This uses 5 bits per character instead of 8, plus one start and approx. 1.5 stop bits (7.5 total bits per character sent).
  4. ^ "ITU-T Recommendation database".
  5. ^ . www.ncicap.org. Archived from the original on 19 July 2011.
  6. ^ Morse can transport 26 alphabetic, 10 numeric and one interword gap plaintext symbols. Transmitting 37 different symbols requires 5.21 bits of information (25.21=37). A skilled operator encoding the benchmark "PARIS" plus an interword gap (equal to 31.26 bits) at 40 wpm is operating at an equivalence of 20.84 bit/s.
  7. ^ WPM, or Words Per Minute, is the number of times the word "PARIS" is transferred per minute. Strictly speaking the code is quinary, accounting inter-element, inter-letter, and inter-word gaps, yielding 50 binary elements (bits) per one word. Counting characters, including inter-word gaps, gives six characters per word or 240 characters per minute, and finally four characters per second.
  8. ^ "Human Speech May Have a Universal Transmission Rate: 39 Bits Per Second". science.org. 2019-09-04. Retrieved 2022-06-24.
  9. ^ a b c d e f g h i j All modems are wrongly assumed to be in serial operation with 1 start bit, 8 data bits, no parity, and 1 stop bit (2 stop bits for 110-baud modems). Therefore, currently modems are wrongly calculated with transmission of 10 bits per 8-bit byte (11 bits for 110-baud modems). Although the serial port is nearly always used to connect a modem and has equivalent data rates, the protocols, modulations and error correction differ completely.
  10. ^ a b , Daxal Communications, 2003-12-16, archived from the original on 2008-10-08, retrieved 2009-04-16
  11. ^ a b c d e f g "ITU-T Recommendations: V Series: Data communication over the telephone network". ITU.
  12. ^ a b c 56K modems: V.90 and V.92 have just 5% overhead for the protocol signalling. The maximum capacity can only be achieved when the upstream (service provider) end of the connection is digital, i.e. a DS0 channel.
  13. ^ Note that effective aggregate bandwidth for an ISDN installation is typically higher than the rates shown for a single channel due to the use of multiple channels. A basic rate interface (BRI) provides two "B" channels and one "D" channel. Each B channel provides 64 kBit/s bandwidth and the "D" channel carries signaling (call setup) information. B channels can be bonded to provide a 128 kbit/s data rate. Primary rate interfaces (PRI) vary depending on whether the region uses E1 (Europe, world) or T1 (North America) bearers. In E1 regions, the PRI carries 30 B-channels and one D-channel; in T1 regions the PRI carries 23 B-channels and one D-channel. The D-channel has different bandwidth on the two interfaces.
  14. ^ Massey, David (2006-07-04), "Timeline of Telecommunications", Telephone Tribute, retrieved 2009-04-16
  15. ^ Adam.com.au
  16. ^ "Recommendation G.991.1 (10/98)". ITU.
  17. ^ a b DOCSIS 1.0 2006-06-13 at the Wayback Machine includes technology which first became available around 1995–1996, and has since become very widely deployed. DOCSIS 1.1 2006-06-13 at the Wayback Machine introduces some security improvements and quality of service (QoS).
  18. ^ a b DOCSIS 2.0 2009-09-04 at the Wayback Machine specifications provide increased upstream throughput for symmetric services.
  19. ^ "G.983.2". ITU.
  20. ^ a b DOCSIS 3.0 2006-06-19 at the Wayback Machine includes support for channel bonding and IPv6.
  21. ^ "G.984.4 : Gigabit-capable passive optical networks (G-PON)". ITU.
  22. ^ DOCSIS 3.1 2015-03-13 at the Wayback Machine is currently in development by the Cablelabs Consortium
  23. ^ "G.987 : 10-Gigabit-capable passive optical network (XG-PON) systems". ITU.
  24. ^ "G.989 : 40-Gigabit-capable passive optical networks (NG-PON2)". ITU.
  25. ^ Most operators only support up to 9600bit/s
  26. ^ SDSL is available in various speeds.
  27. ^ ADSL connections will vary in throughput from 64 kbit/s to several Mbit/s depending on configuration. Most are commonly below 2 Mbit/s. Some ADSL and SDSL connections have a higher digital bandwidth than T1 but their rate is not guaranteed, and will drop when the system gets overloaded, whereas the T1 type connections are usually guaranteed and have no contention ratios.
  28. ^ Satellite internet may have a high bandwidth but also has a high latency due to the distance between the modem, satellite and hub. One-way satellite connections exist where all the downstream traffic is handled by satellite and the upstream traffic by land-based connections such as 56K modems and ISDN.
  29. ^ a b "MoCA 1.1 improves throughput" over coaxial cable to 175 Mbits/s versus the 100 Mbits/s provided by the MoCA 1.0 specification.
  30. ^ FireWire natively supports TCP/IP, and is often used at an alternative to Ethernet when connecting 2 nodes. Tweaktown.com
  31. ^ Data rate comparison between FW and Giganet shows that FW's lower overhead has nearly the same throughput as Giganet. Unibrain.com 2008-02-07 at the Wayback Machine
  32. ^ a b c d e f g h i j InfiniBand SDR, DDR and QDR use an 8b/10b encoding scheme.
  33. ^ a b c d e f g h i j k l InfiniBand FDR-10, FDR and EDR use a 64b/66b encoding scheme.
  34. ^ a b c Lee, Bill. . IBTA Blog. IBTA. Archived from the original on 2018-06-25. Retrieved 25 June 2018.
  35. ^ Mac History
  36. ^ VAW: Apple IIgs Specs 2011-01-10 at the Wayback Machine
  37. ^ "After 35 years of I2C, I3C Improves Capability and Performance | Sensors and MEMS". eecatalog.com. Retrieved 2019-06-26.
  38. ^ The Zorro II bus use 4 clocks per 16-Bit of data transferred. See the Zorro III technical specification 2012-07-16 at the Wayback Machine for more information.
  39. ^ Japan wikipedia article, Bus used in early NEC PC-9800 series and compatible systems
  40. ^ STD 32 Bus Specification and Designer's Guide
  41. ^ Japan wikipedia article, Bus used in later NEC PC-9800 series and compatible systems
  42. ^ RISC System/6000 POWERstation/POWERserver 580
  43. ^ Local Area Networks Newsletter by Paul Polishuk, September 1992, Page 7 (APbus used in Sony NeWS and NEC UP4800 workstations and NEC EWS4800 servers after VMEbus and before switch to PCI)
  44. ^ Japan wikipedia article, Bus used in NEC PC-9821 series
  45. ^ Dave Haynie, designer of the Zorro III bus, claims in this posting that the theoretical max of the Zorro III bus can be derived by the timing information given in chapter 5 of the Zorro III technical specification 2012-07-16 at the Wayback Machine.
  46. ^ Dave Haynie, designer of the Zorro III bus, states in this posting that Zorro III is an asynchronous bus and therefore does not have a classical MHz rating. A maximum theoretical MHz value may be derived by examining timing constraints detailed in the Zorro III technical specification 2012-07-16 at the Wayback Machine, which should yield about 37.5 MHz. No existing implementation performs to this level.
  47. ^ Dave Haynie, designer of the Zorro III bus, claims in this posting that Zorro III has a max burst rate of 150 MB/s.
  48. ^ a b c d Note that PCI Express 1.0/2.0 lanes use an 8b/10b encoding scheme.
  49. ^ a b c d PCIe 2.0 effectively doubles the bus standard's bandwidth from 2.5 GT/s to 5 GT/s
  50. ^ a b c d e PCIe 3.0 increases the bandwidth from 5 GT/s to 8 GT/s and switches to 128b-130b encoding
  51. ^ Born, Eric (8 June 2017). "PCIe 4.0 specification finally out with 16 GT/s on tap". Tech Report. Retrieved 21 February 2018.
  52. ^ Smith, Ryan. "PCI-SIG Finalizes PCIe 5.0 Specification: x16 Slots to Reach 64GB/sec". www.anandtech.com. Retrieved 2019-06-26.
  53. ^ "PCI Express 6.0 Specification Finalized: X16 Slots to Reach 128GBps".
  54. ^ Intel LPC Interface Specification 1.1
  55. ^ SCSI-1, SCSI-2 and SCSI-3 are signaling protocols and do not explicitly refer to a specific rate. Narrow SCSI exists using SCSI-1 and SCSI-2. Higher rates use SCSI-2 or later.
  56. ^ minimum overhead is 38 byte L1/L2, 14 byte AoE per 1024 byte user data
  57. ^ minimum overhead is 38 byte L1/L2, 20 byte IP, 20 byte TCP per 1460 byte user data
  58. ^ a b c d e f Fibre Channel 1GFC, 2GFC, 4GFC use an 8b/10b encoding scheme. Fibre Channel 10GFC, which uses a 64B/66B encoding scheme, is not compatible with 1GFC, 2GFC and 4GFC, and is used only to interconnect switches.
  59. ^ a b minimum overhead is 38 byte L1/L2, 14 byte AoE per 8192 byte user data
  60. ^ a b c minimum overhead is 38 byte L1/L2, 20 byte IP, 20 byte TCP per 8960 byte user data
  61. ^ a b c d e f SATA and SAS use an 8b/10b encoding scheme.
  62. ^ a b minimum overhead is 38 byte L1/L2, 36 byte FC per 2048 byte user data
  63. ^ proprietary serial version of IEEE-488 by Commodore International
  64. ^ "CCOM - Diskettenlaufwerke und Festplatten".
  65. ^ a b c FireWire (IEEE 1394b) uses an 8b/10b encoding scheme.
  66. ^ Dent, Steve (26 July 2017). "USB 3.2 doubles your connection speeds with the same port". Engadget. Retrieved 26 July 2017.
  67. ^ "VITA - Online store product". www.vita.com. Retrieved 2022-03-23.
  68. ^ Shilov, Anton. "USB4 Specification Announced: Adopting Thunderbolt 3 Protocol for 40 Gbps USB". www.anandtech.com. Retrieved 2019-06-26.
  69. ^ "USB Promoter Group Announces USB4® Version 2.0". www.businesswire.com. Retrieved 2022-09-01.
  70. ^ "RDRAM Memory Architecture".
  71. ^ Comparison of AMD graphics processing units
  72. ^ Comparison of Nvidia graphics processing units
  73. ^ "GRAPHICS DOUBLE DATA RATE (GDDR5) SGRAM STANDARD JESD212C". JEDEC. 2016-02-01. Retrieved 2016-08-10.
  74. ^ "GRAPHICS DOUBLE DATA RATE (GDDR5X) SGRAM STANDARD JESD232". JEDEC. 2015-11-01. Retrieved 2016-08-10.
  75. ^ "Doubling I/O Performance with PAM4 - Micron Innovates GDDR6X to Accelerate Graphics Memory". Micron. Retrieved 11 September 2020.
  76. ^ a b Shilov, Anton (20 January 2016). "JEDEC Publishes HBM2 Specification". Anandtech. Retrieved 16 May 2017.
  77. ^ a b Harding, Scharon (15 April 2021). "What Are HBM, HBM2 and HBM2E? A Basic Definition". Tom's Hardware. Retrieved 4 May 2022.
  78. ^ Prickett Morgan, Timothy (6 April 2022). "The HBM3 roadmap is just getting started". TheNextPlatform. Retrieved 4 May 2022.
  79. ^ High Definition Audio Specification, Revision 1.0a, 2010
  80. ^ Videsignline.com, Panel display interfaces and bandwidth: From TTL, LVDS, TDMS to DisplayPort
  81. ^ . Octavainc.com. Archived from the original on 2008-12-05. Retrieved 2008-10-20.
  82. ^ a b c Displayport Technical Overview 2011-07-26 at the Wayback Machine, May 2010
  83. ^ . Archived from the original on 2018-02-22. Retrieved 2008-10-20.
  84. ^ . Archived from the original on 2019-01-05. Retrieved 2013-11-07.
  85. ^ . Archived from the original on 2017-01-06. Retrieved 2017-01-10.
  86. ^ . Archived from the original on 2022-11-23. Retrieved 2023-01-19.

External links Edit

  • Interconnection Speeds Compared
  • LTE Categories 1
  • LTE Categories 2
  • – A graph illustrating digital bandwidths. Digital Silence, 2004 (archived).

list, interface, rates, this, article, needs, additional, citations, verification, please, help, improve, this, article, adding, citations, reliable, sources, unsourced, material, challenged, removed, find, sources, news, newspapers, books, scholar, jstor, mar. This article needs additional citations for verification Please help improve this article by adding citations to reliable sources Unsourced material may be challenged and removed Find sources List of interface bit rates news newspapers books scholar JSTOR March 2011 Learn how and when to remove this template message This is a list of interface bit rates is a measure of information transfer rates or digital bandwidth capacity at which digital interfaces in a computer or network can communicate over various kinds of buses and channels The distinction can be arbitrary between a computer bus often closer in space and larger telecommunications networks Many device interfaces or protocols e g SATA USB SAS PCIe are used both inside many device boxes such as a PC and one device boxes such as a hard drive enclosure Accordingly this page lists both the internal ribbon and external communications cable standards together in one sortable table Contents 1 Factors limiting actual performance criteria for real decisions 2 Conventions 3 Bandwidths 3 1 Time Signal Station to Radio Clock 3 2 Teletypewriter TTY or telecommunications device for the deaf TDD 3 3 Modems narrowband and broadband 3 3 1 Narrowband POTS 4 kHz channel 3 3 2 Broadband hundreds of kHz to GHz wide 3 4 Mobile telephone interfaces 3 5 Wide area networks 3 6 Local area networks 3 7 Wireless networks 3 8 Wireless personal area networks 3 9 Computer buses 3 9 1 Main buses 3 9 2 Portable 3 9 3 Storage 3 9 4 Peripheral 3 9 5 MAC to PHY 3 9 6 PHY to XPDR 3 10 Dynamic random access memory 3 11 Graphics processing units RAM 3 12 Digital audio 3 13 Digital video interconnects 4 See also 5 Notes 6 External linksFactors limiting actual performance criteria for real decisions EditMost of the listed rates are theoretical maximum throughput measures in practice the actual effective throughput is almost inevitably lower in proportion to the load from other devices network bus contention physical or temporal distances and other overhead in data link layer protocols etc The maximum goodput for example the file transfer rate may be even lower due to higher layer protocol overhead and data packet retransmissions caused by line noise or interference such as crosstalk or lost packets in congested intermediate network nodes All protocols lose something and the more robust ones that deal resiliently with very many failure situations tend to lose more maximum throughput to get higher total long term rates Device interfaces where one bus transfers data via another will be limited to the throughput of the slowest interface at best For instance SATA revision 3 0 6 Gbit s controllers on one PCI Express 2 0 5 Gbit s channel will be limited to the 5 Gbit s rate and have to employ more channels to get around this problem Early implementations of new protocols very often have this kind of problem The physical phenomena on which the device relies such as spinning platters in a hard drive will also impose limits for instance no spinning platter shipping in 2009 saturates SATA revision 2 0 3 Gbit s so moving from this 3 Gbit s interface to USB 3 0 at 4 8 Gbit s for one spinning drive will result in no increase in realized transfer rate Contention in a wireless or noisy spectrum where the physical medium is entirely out of the control of those who specify the protocol requires measures that also use up throughput Wireless devices BPL and modems may produce a higher line rate or gross bit rate due to error correcting codes and other physical layer overhead It is extremely common for throughput to be far less than half of theoretical maximum though the more recent technologies notably BPL employ preemptive spectrum analysis to avoid this and so have much more potential to reach actual gigabit rates in practice than prior modems Another factor reducing throughput is deliberate policy decisions made by Internet service providers that are made for contractual risk management aggregation saturation or marketing reasons Examples are rate limiting bandwidth throttling and the assignment of IP addresses to groups These practices tend to minimize the throughput available to every user but maximize the number of users that can be supported on one backbone Furthermore chips are often not available in order to implement the fastest rates AMD for instance does not support the 32 bit HyperTransport interface on any CPU it has shipped as of the end of 2009 Additionally WiMAX service providers in the US typically support only up to 4 Mbit s as of the end of 2009 Choosing service providers or interfaces based on theoretical maxima is unwise especially for commercial needs A good example is large scale data centers which should be more concerned with price per port to support the interface wattage and heat considerations and total cost of the solution Because some protocols such as SCSI and Ethernet now operate many orders of magnitude faster than when originally deployed scalability of the interface is one major factor as it prevents costly shifts to technologies that are not backward compatible Underscoring this is the fact that these shifts often happen involuntarily or by surprise especially when a vendor abandons support for a proprietary system Conventions EditBy convention bus and network data rates are denoted either in bits per second bit s or bytes per second B s In general parallel interfaces are quoted in B s and serial in bit s The more commonly used is shown below in bold type On devices like modems bytes may be more than 8 bits long because they may be individually padded out with additional start and stop bits the figures below will reflect this Where channels use line codes such as Ethernet Serial ATA and PCI Express quoted rates are for the decoded signal The figures below are simplex data rates which may conflict with the duplex rates vendors sometimes use in promotional materials Where two values are listed the first value is the downstream rate and the second value is the upstream rate The use of decimal prefixes is standard in data communications Bandwidths EditThe figures below are grouped by network or bus type then sorted within each group from lowest to highest bandwidth gray shading indicates a lack of known implementations As stated above all quoted bandwidths are for each direction Therefore for duplex interfaces capable of simultaneous transmission both ways the stated values are simplex one way speeds rather than total upstream downstream Time Signal Station to Radio Clock Edit Technology Max rate YearIRIG and related 1 bit s 0 125 characters s 1 2 Teletypewriter TTY or telecommunications device for the deaf TDD Edit Technology Max rate YearTTY V 18 45 4545 bit s 6 characters s 3 1994 4 TTY V 18 50 bit s 6 6 characters s 1994NTSC Line 21 Closed Captioning 1 kbit s 100 characters s 1976 5 Modems narrowband and broadband Edit Narrowband POTS 4 kHz channel Edit Technology Rate Rate ex overhead YearMorse code skilled operator 0 021 kbit s 6 4 characters per second cps 40 wpm 7 1844Normal Human Speech 0 039 kbit s 8 prehistoricTeleprinter 50 baud 0 05 kbit s 404 operations per minute 1940xModem 110 baud Bell 101 0 11 kbit s 0 010 kB s 10 cps 9 1959Modem 300 300 baud Bell 103 or V 21 0 3 kbit s 0 03 kB s 30 cps 9 1962 10 Modem 1200 75 600 baud V 23 1 2 0 075 kbit s 0 12 0 0075 kB s 120 cps 9 1964 11 Modem 1200 600 baud Vadic VA3400 Bell 212A or V 22 1 2 kbit s 0 12 kB s 120 cps 9 1976Modem 1200 Bell 202C 202D 1 2 kbit s 0 15 kB s 150 cps Modem 2000 Bell 201A 2 kbit s 0 25 kB s 250 cps Modem 2400 Bell 201B 2 4 kbit s 0 3 kB s 300 cps Modem 2400 600 baud V 22bis 2 4 kbit s 0 3 kB s 9 1984 11 Modem 4800 75 1600 baud V 27ter 4 8 0 075 kbit s 0 6 0 0075 kB s 9 1976 11 Modem 4800 1600 baud Bell 208A 208B 4 8 kbit s 0 6 kB sModem 9600 2400 baud V 32 9 6 kbit s 1 2 kB s 9 1984 11 Modem 14 4 2400 baud V 32bis 14 4 kbit s 1 8 kB s 9 1991 10 Modem 28 8 3200 baud V 34 1994 28 8 kbit s 3 6 kB s 9 1994Modem 33 6 3429 baud V 34 1996 98 33 6 kbit s 4 2 kB s 9 1996 11 Modem 56k 8000 3429 baud V 90 56 0 33 6 kbit s 12 7 4 2 kB s 1998Modem 56k 8000 8000 baud V 92 56 0 48 0 kbit s 12 7 6 kB s 2001Modem data compression variable V 92 V 44 56 0 320 0 kbit s 12 7 40 kB s 2000 11 ISP side text image compression variable 56 0 1000 0 kbit s 7 125 kB s 1998 11 ISDN Basic Rate Interface single dual channel 64 128 kbit s 13 8 16 kB s 1986 14 IDSL dual ISDN 16 kbit s data channels 144 kbit s 18 kB s 2000 15 Broadband hundreds of kHz to GHz wide Edit Technology Rate Rate ex overhead YearADSL G lite 1536 512 kbit s 192 64 kB s 1998HDSL ITU G 991 1 a k a DS1 1544 kbit s 193 kB s 1998 16 MSDSL 2000 kbit s 250 kB s SDSL 2320 kbit s 290 kB s SHDSL ITU G 991 2 5690 kbit s 711 kB s 2001ADSL G dmt ITU G 992 1 8192 1024 kbit s 1024 128 kB s 1999ADSL2 ITU G 992 3 4 12288 1440 kbit s 1536 180 kB s 2002ADSL2 ITU G 992 5 24576 3584 kbit s 3072 448 kB s 2003DOCSIS 1 0 17 cable modem 38 9 Mbit s 4 75 1 125 MB s 1997DOCSIS 2 0 18 cable modem 38 27 Mbit s 4 75 3 375 MB s 2002VDSL ITU G 993 1 52 Mbit s 7 MB s 2001VDSL2 ITU G 993 2 100 Mbit s 12 5 MB s 2006Uni DSL 200 Mbit s 25 MB s 2006VDSL2 ITU G 993 2 Amendment 1 11 15 300 Mbit s 37 5 MB s 2015BPON G 983 fiber optic service 622 155 Mbit s 77 7 19 3 MB s 2005 19 G fast ITU G 9700 1000 Mbit s 125 MB s 2014EPON 802 3ah fiber optic service 1000 1000 Mbit s 125 125 MB s 2008DOCSIS 3 0 20 cable modem 1216 216 Mbit s 152 27 MB s 2006GPON G 984 fiber optic service 2488 1244 Mbit s 311 155 5 MB s 2008 21 DOCSIS 3 1 22 cable modem 10 2 Gbit s 1 25 0 25 GB s 201310G PON G 987 fiber optic service 10 2 5 Gbit s 1 25 0 3125 GB s 2012 23 DOCSIS 4 0 cable modem 10 6 Gbit s 1 25 0 75 GB s 2017XGS PON G 9807 1 fiber optic service 10 10 Gbit s 1 25 1 25 GB s 2016NG PON2 G 989 fiber optic service 40 10 Gbit s 5 1 25 GB s 2015 24 Mobile telephone interfaces Edit Technology Download rate Upload rate YearGSM CSD 2G 14 4 kbit s 25 1 8 kB s 14 4 kbit s 1 8 kB sHSCSD 57 6 kbit s 5 4 kB s 14 4 kbit s 1 8 kB sGPRS 2 5G 57 6 kbit s 7 2 kB s 28 8 kbit s 3 6 kB sWiDEN 100 kbit s 12 5 kB s 100 kbit s 12 5 kB sCDMA2000 1 RTT 153 kbit s 18 kB s 153 kbit s 18 kB sEDGE 2 75G type 1 MS 236 8 kbit s 29 6 kB s 236 8 kbit s 29 6 kB s 2002UMTS 3G 384 kbit s 48 kB s 384 kbit s 48 kB sEDGE type 2 MS 473 6 kbit s 59 2 kB s 473 6 kbit s 59 2 kB sEDGE Evolution type 1 MS 1184 kbit s 148 kB s 474 kbit s 59 kB sEDGE Evolution type 2 MS 1894 kbit s 237 kB s 947 kbit s 118 kB s1 EV DO rev 0 2457 kbit s 307 2 kB s 153 kbit s 19 kB s1 EV DO rev A 3 1 Mbit s 397 kB s 1 8 Mbit s 230 kB sLTE Cat 1 10 Mbit s 1250 kB s 5 2 Mbit s 650 kB s1 EV DO rev B 14 7 Mbit s 1837 kB s 5 4 Mbit s 675 kB sHSPA 3 5G 13 98 Mbit s 1706 kB s 5 760 Mbit s 720 kB s4 EV DO Enhancements 2 2 MIMO 34 4 Mbit s 4 3 MB s 12 4 Mbit s 1 55 MB sHSPA 2 2 MIMO 42 Mbit s 5 25 MB s 11 5 Mbit s 1 437 MB sLTE Cat 2 50 Mbit s 6 25 MB s 25 Mbit s 3 375 MB s15 EV DO rev B 73 5 Mbit s 9 2 MB s 27 Mbit s 3 375 MB sLTE Cat 3 100 Mbit s 12 5 MB s 50 Mbit s 6 25 MB sUMB 2 2 MIMO 140 Mbit s 17 5 MB s 34 Mbit s 4 250 MB sLTE Cat 4 150 Mbit s 18 75 MB s 50 Mbit s 6 25 MB sLTE 2 2 MIMO 173 Mbit s 21 625 MB s 58 Mbit s 7 25 MB s 2004UMB 4 4 MIMO 280 Mbit s 35 MB s 68 Mbit s 8 5 MB sEV DO rev C 280 Mbit s 35 MB s 75 Mbit s 9 MB sLTE Cat 5 300 Mbit s 37 5 MB s 50 Mbit s 6 25 MB sLTE Cat 6 300 Mbit s 37 5 MB s 75 Mbit s 9 375 MB sLTE Cat 7 300 Mbit s 37 5 MB s 100 Mbit s 12 5 MB sLTE 4 4 MIMO 326 Mbit s 40 750 MB s 86 Mbit s 10 750 MB sLTE Cat 13 390 Mbit s 48 75 MB s 150 Mbit s 18 75 MB sLTE Cat 9 450 Mbit s 56 25 MB s 50 Mbit s 6 25 MB sLTE Cat 10 450 Mbit s 56 25 MB s 100 Mbit s 12 5 MB sLTE Cat 11 600 Mbit s 75 MB s 50 Mbit s 6 25 MB sLTE Cat 12 600 Mbit s 75 MB s 100 Mbit s 12 5 MB sLTE Cat 16 1000 Mbit s 125 MB s 50 Mbit s 6 25 MB sLTE Cat 18 1200 Mbit s 150 MB s 150 Mbit s 18 75 MB sLTE Cat 21 1400 Mbit s 175 MB s 300 Mbit s 37 5 MB sLTE Cat 20 2000 Mbit s 250 MB s 300 Mbit s 37 5 MB sLTE Cat 8 3 Gbit s 375 MB s 1 5 Gbit s 187 MB sLTE Cat 14 3 9 Gbit s 487 MB s 1 5 Gbit s 187 MB s5G NR Wide area networks Edit Technology Rate Year56k line 56 kbit s 7 KB s 1990DS0 64 kbit s 8 KB sG lite a k a ADSL Lite 1 536 0 512 Mbit s 0 192 0 064 MB sDS1 T1 and ISDN Primary Rate Interface 1 544 Mbit s 0 192 MB s 1990E1 and ISDN Primary Rate Interface 2 048 Mbit s 0 256 MB sG SHDSL 2 304 Mbit s 0 288 MB sSDSL 26 2 32 Mbit s 0 29 MB sLR VDSL2 4 to 5 km long range symmetry optional 4 Mbit s 0 512 MB sT2 6 312 Mbit s 0 789 MB sADSL 27 8 0 1 024 Mbit s 1 0 0 128 MB sE2 8 448 Mbit s 1 056 MB sADSL2 12 3 5 Mbit s 1 5 0 448 MB sSatellite Internet 28 16 1 Mbit s 2 0 0 128 MB sADSL2 24 3 5 Mbit s 3 0 0 448 MB sE3 34 368 Mbit s 4 296 MB sDOCSIS 1 0 cable modem 17 38 9 Mbit s 4 75 1 125 MB s 1997DOCSIS 2 0 cable modem 18 38 27 Mbit s 4 75 3 38 MB s 2002DS3 T3 45 Meg 44 736 Mbit s 5 5925 MB sSTS 1 OC 1 STM 0 51 84 Mbit s 6 48 MB sVDSL symmetry optional 100 Mbit s 12 5 MB sOC 3 STM 1 155 52 Mbit s 19 44 MB sVDSL2 symmetry optional 250 Mbit s 31 25 MB sT4 274 176 Mbit s 34 272 MB sT5 400 352 Mbit s 50 044 MB sOC 9 466 56 Mbit s 58 32 MB sOC 12 STM 4 622 08 Mbit s 77 76 MB sOC 18 933 12 Mbit s 116 64 MB sDOCSIS 3 0 cable modem 20 1216 216 Mbit s 152 27 MB s 2006OC 24 1 244 Gbit s 155 5 MB sOC 36 1 900 Gbit s 237 5 MB sOC 48 STM 16 2 488 Gbit s 311 04 MB sOC 96 4 976 Gbit s 622 08 MB sOC 192 STM 64 9 953 Gbit s 1 244125 GB s10 Gigabit Ethernet WAN PHY 9 953 Gbit s 1 244125 GB sDOCSIS 3 1 cable modem 10 2 Gbit s 1 25 0 25 GB s 2013DOCSIS 4 0 cable modem 10 6 Gbit s 1 25 0 75 GB s 2017OC 256 13 271 Gbit s 1 659 GB sOC 768 STM 256 39 813 Gbit s 4 976 GB sOC 1536 STM 512 79 626 Gbit s 9 953 GB sOC 3072 STM 1024 159 252 Gbit s 19 907 GB sLocal area networks Edit Technology Rate YearLocalTalk 230 kbit s 28 8 kB s 1988Econet 800 kbit s 100 kB s 1981Omninet 1 Mbit s 125 kB s 1980IBM PC Network 2 Mbit s 250 kB s 1985ARCNET Standard 2 5 Mbit s 312 5 kB s 1977Chaosnet Original 4 Mbit s 3 0 Mbit s 1971Token Ring Original 4 Mbit s 500 kB s 1985Ethernet 10BASE X 10 Mbit s 1 25 MB s 1980 1985 IEEE Standard Token Ring Later 16 Mbit s 2 MB s 1989ARCnet Plus 20 Mbit s 2 5 MB s 1992TCNS 100 Mbit s 12 5 MB s 1993 100VG 100 Mbit s 12 5 MB s 1995Token Ring IEEE 802 5t 100 Mbit s 12 5 MB sFast Ethernet 100BASE X 100 Mbit s 12 5 MB s 1995FDDI 100 Mbit s 12 5 MB sMoCA 1 0 29 100 Mbit s 12 5 MB sMoCA 1 1 29 175 Mbit s 21 875 MB sHomePlug AV 200 Mbit s 25 MB s 2005FireWire IEEE 1394 400 30 31 400 Mbit s 50 MB s 1995MoCa 2 0 500 Mbit s 2016HIPPI 800 Mbit s 100 MB sIEEE 1901 1000 Mbit s 125 MB s 2010Token Ring IEEE 802 5v 1 Gbit s 125 MB s 2001Gigabit Ethernet 1000BASE X 1 Gbit s 125 MB s 1998Reflective memory or RFM2 1 25 µs latency 2 Gbit s 170 MB s 2017Myrinet 2000 2 Gbit s 250 MB sInfiniBand SDR 1 32 2 Gbit s 250 MB s 2001RapidIO Gen1 1 2 5 Gbit s 312 5 MB s 20002 5 Gigabit Ethernet 2 5GBASE T 2 5 Gbit s 312 5 MB s 2016Quadrics QsNetI 3 6 Gbit s 450 MB sInfiniBand DDR 1 32 4 Gbit s 500 MB s 2005RapidIO Gen2 1 5 Gbit s 625 MB s 20085 Gigabit Ethernet 5GBASE T 5 Gbit s 625 MB s 2016InfiniBand QDR 1 32 8 Gbit s 1 GB s 2007InfiniBand SDR 4 32 8 Gbit s 1 GB sQuadrics QsNetII 8 Gbit s 1 GB sRapidIO Gen1 4x 10 Gbit s 1 25 GB sRapidIO Gen2 2x 10 Gbit s 1 25 GB s 200810 Gigabit Ethernet 10GBASE X 10 Gbit s 1 25 GB s 2002 2006Myri 10G 10 Gbit s 1 25 GB sInfiniBand FDR 10 1 33 10 31 Gbit s 1 29 GB sNUMAlink 3 12 8 Gbit s 1 6 GB s 2004InfiniBand FDR 1 33 13 64 Gbit s 1 7 GB s 2011InfiniBand DDR 4 32 16 Gbit s 2 GB s 2005RapidIO Gen2 4x 20 Gbit s 2 5 GB s 2008Scalable Coherent Interface SCI Dual Channel SCI x8 PCIe 20 Gbit s 2 5 GB sInfiniBand SDR 12 32 24 Gbit s 3 GB sRapidIO Gen4 1 24 63 Gbit s 3 079 GB s 2016InfiniBand EDR 1 33 25 Gbit s 3 125 GB s 201425 Gigabit Ethernet 25GBASE X 25 Gbit s 3 125 GB s 2016NUMAlink 4 25 6 Gbit s 3 2 GB s 2004InfiniBand QDR 4 32 32 Gbit s 4 GB s 2007RapidIO Gen2 8x 40 Gbit s 5 GB s 200840 Gigabit Ethernet 40GBASE X 4 40 Gbit s 5 GB s 2010InfiniBand FDR 10 4 33 41 25 Gbit s 5 16 GB sInfiniBand DDR 12 32 48 Gbit s 6 GB s 2005InfiniBand HDR 1 34 50 Gbit s 6 250 GB s 33 201750 Gigabit Ethernet 50GBASE X 50 Gbit s 6 25 GB s 2016NUMAlink 6 53 6 Gbit s 6 7 GB s 2012InfiniBand FDR 4 33 54 54 Gbit s 6 82 GB s 2011RapidIO Gen2 16 80 Gbit s 10 GB s 2008InfiniBand QDR 12 32 96 Gbit s 12 GB s 2007InfiniBand EDR 4 33 100 Gbit s 12 5 GB s 2014100 Gigabit Ethernet 100GBASE X 10 4 100 Gbit s 12 5 GB s 2010 2018Omni Path 100 Gbit s 12 5 GB s 2015InfiniBand FDR 10 12 33 123 75 Gbit s 15 47 GB sNUMAlink 7 159 52 Gbit s 19 94 GB s 2014InfiniBand FDR 12 33 163 64 Gbit s 20 45 GB s 2011InfiniBand HDR 4 34 200 Gbit s 25 GB s 33 2017200 Gigabit Ethernet 200GBASE X 200 Gbit s 25 GB s 2017InfiniBand EDR 12 33 300 Gbit s 37 5 GB s 2014400 Gigabit Ethernet 400GBASE X 400 Gbit s 50 GB s 2017InfiniBand HDR 12 34 600 Gbit s 75 GB s 33 2017Wireless networks Edit 802 11 networks in infrastructure mode are half duplex all stations share the medium In infrastructure or access point mode all traffic has to pass through an Access Point AP Thus two stations on the same access point that are communicating with each other must have each and every frame transmitted twice from the sender to the access point then from the access point to the receiver This approximately halves the effective bandwidth 802 11 networks in ad hoc mode are still half duplex but devices communicate directly rather than through an access point In this mode all devices must be able to see each other instead of only having to be able to see the access point Standard Rate YearClassic WaveLAN 2 Mbit s 250 kB s 1988IEEE 802 11 2 Mbit s 250 kB s 1997RONJA full duplex 10 Mbit s 1 25 MB s 2001IEEE 802 11a 54 Mbit s 6 75 MB s 1999IEEE 802 11b 11 Mbit s 1 375 MB s 1999IEEE 802 11g 54 Mbit s 6 75 MB s 2003IEEE 802 16 WiMAX 70 Mbit s 8 75 MB s 2004IEEE 802 11g with Super G by Atheros 108 Mbit s 13 5 MB s 2003IEEE 802 11g with 125 High Speed Mode by Broadcom 125 Mbit s 15 625 MB s 2003IEEE 802 11g with Nitro by Conexant 140 Mbit s 17 5 MB s 2003IEEE 802 11n aka Wi Fi 4 600 Mbit s 75 MB s 2009IEEE 802 11ac aka Wi Fi 5 6 8 6 93 Gbit s 850 866 25 MB s 2012IEEE 802 11ad 7 14 7 2 Gbit s 892 5 900 MB s 2011IEEE 802 11ax aka Wi Fi 6 11 Gbit s 1375 MB s 2019IEEE 802 11be aka Wi Fi 7 40 Gbit s expected 5000 MB s expected 2021 draftWireless personal area networks Edit Technology Rate YearANT 20 kbit s 2 5 kB sIrDA Control 72 kbit s 9 kB sIrDA SIR 115 2 kbit s 14 kB s802 15 4 2 4 GHz 250 kbit s 31 25 kB sBluetooth 1 1 1 Mbit s 125 kB s 2002Bluetooth 2 0 EDR 3 Mbit s 375 kB s 2004IrDA FIR 4 Mbit s 500 kB sIrDA VFIR 16 Mbit s 2 MB sBluetooth 3 0 25 Mbit s 3 125 MB s 2009Bluetooth 4 0 25 Mbit s 3 125 MB s 2010Bluetooth 5 0 50 Mbit s 6 25 MB s 2016IrDA UFIR 96 Mbit s 12 MB sWUSB UWB 480 Mbit s 60 MB sIrDA Giga IR 1024 Mbit s 128 MB sComputer buses Edit Main buses Edit Technology Rate YearI C 3 4 Mbit s 425 kB s 1992 standardized Apple II series incl Apple IIGS 8 bit 1 MHz 8 Mbit s 1 MB s 35 36 1977SS 50 Bus 8 bit 1 MHz 8 Mbit s 1 MB s 1975STD 80 8 bit 8 MHz 16 Mbit s 2 MB sISA 8 Bit 4 77 MHz 0 W S every 4 clocks 8 bits1 W S every 5 clocks 8 bits 0 W S every 4 clocks 1 byte1 W S every 5 clocks 1 byte 1981 created STD 80 16 bit 8 MHz 32 Mbit s 4 MB sI3C HDR mode 37 33 3 Mbit s 4 16 MB s 2017Zorro II 16 bit 7 14 MHz 38 42 4 Mbit s 5 3 MB s 1986ISA 16 Bit 8 33 MHz 66 64 Mbit s 8 33 MB s 1984 created Europe Card Bus 8 Bit 10 MHz 66 7 Mbit s 8 33 MB s 1977 created S 100 bus 8 bit 10 MHz 80 Mbit s 10 MB s 1976 published Serial Peripheral Interface Up to 100 MHz 100 Mbit s 12 5 MB s 1989Low Pin Count 125 Mbit s 15 63 MB s x 2002STEbus 8 Bit 16 MHz 128 Mbit s 16 MB s 1987 standardized C Bus 16 bit 10 MHz 160 Mbit s 20 MB s 39 1982HP Precision Bus 184 Mbit s 23 MB sSTD 32 32 bit 8 MHz 256 Mbit s 32 MB s 40 NESA 32 bit 8 MHz 256 Mbit s 32 MB s 41 EISA 32 bit 8 33 MHz 266 56 Mbit s 33 32 MB s 1988VME64 32 64bit 400 Mbit s 40 MB s 1981MCA 32bit 10 MHz 400 Mbit s 40 MB s 1987NuBus 10 MHz 400 Mbit s 40 MB s 1987 standardized DEC TURBOchannel 32 bit 12 5 MHz 400 Mbit s 50 MB sNuBus90 20 MHz 800 Mbit s 80 MB s 1991MCA 32bit 20 MHz 800 Mbit s 80 MB s 42 1992APbus 32 bit 25 MHz 800 Mbit s 100 MB s 43 Sbus 32 bit 25 MHz 800 Mbit s 100 MB s 1989DEC TURBOchannel 32 bit 25 MHz 800 Mbit s 100 MB sLocal Bus 98 32 bit 33 MHz 1056 Mbit s 132 MB s 44 VESA Local Bus VLB 32 bit 33 MHz 1067 Mbit s 133 33 MB s 1992PCI 32 bit 33 MHz 1067 Mbit s 133 33 MB s 1993HP GSC 1X 1136 Mbit s 142 MB sZorro III 32 bit async eq 37 5 MHz 45 46 1200 Mbit s 150 MB s 47 1990VESA Local Bus VLB 32 bit 40 MHz 1280 Mbit s 160 MB s 1992Sbus 64 bit 25 MHz 1 6 Gbit s 200 MB s 1995HP GSC 2X 2 048 Gbit s 256 MB sPCI 64 bit 33 MHz 2 133 Gbit s 266 7 MB s 1993PCI 32 bit 66 MHz 2 133 Gbit s 266 7 MB s 1995AGP 1 2 133 Gbit s 266 7 MB s 1997PCI Express 1 0 1 link 48 2 5 Gbit s 250 MB s z 2004RapidIO Gen1 1 2 5 Gbit s 312 5 MB sHIO bus 2 560 Gbit s 320 MB sGIO64 64 bit 40 MHz 2 560 Gbit s 320 MB sPCI Express 2 0 1 link 49 5 Gbit s 500 MB s z 2007AGP 2 4 266 Gbit s 533 3 MB s 1997PCI 64 bit 66 MHz 4 266 Gbit s 533 3 MB sPCI X DDR 16 bit 4 266 Gbit s 533 3 MB sRapidIO Gen2 1 5 Gbit s 625 MB sPCI 64 bit 100 MHz 6 4 Gbit s 800 MB sPCI Express 3 0 1 link 50 8 Gbit s 984 6 MB s y 2011Unified Media Interface UMI 4 link 10 Gbit s 1 GB s z 2011Direct Media Interface DMI 4 link 10 Gbit s 1 GB s z 2004Enterprise Southbridge Interface ESI 8 Gbit s 1 GB sPCI Express 1 0 4 link 48 10 Gbit s 1 GB s z 2004AGP 4 8 533 Gbit s 1 067 GB s 1998PCI X 133 8 533 Gbit s 1 067 GB sPCI X QDR 16 bit 8 533 Gbit s 1 067 GB sInfiniBand single 4 32 8 Gbit s 1 GB s z RapidIO Gen1 4 10 Gbit s 1 25 GB sRapidIO Gen2 2 10 Gbit s 1 25 GB sUPA 15 360 Gbit s 1 92 GB sUnified Media Interface 2 0 UMI 2 0 4 link 20 Gbit s 2 GB s z 2012Direct Media Interface 2 0 DMI 2 0 4 link 20 Gbit s 2 GB s z 2011PCI Express 1 0 8 link 48 20 Gbit s 2 GB s z 2004PCI Express 2 0 4 link 49 20 Gbit s 2 GB s z 2007AGP 8 17 066 Gbit s 2 133 GB s 2002PCI X DDR 17 066 Gbit s 2 133 GB sRapidIO Gen2 4 20 Gbit s 2 5 GB sSun JBus 200 MHz 20 48 Gbit s 2 56 GB s 2003HyperTransport 800 MHz 16 pair 25 6 Gbit s 3 2 GB s 2001PCI Express 3 0 4 link 50 32 Gbit s 3 94 GB s y 2011HyperTransport 1 GHz 16 pair 32 Gbit s 4 GB sPCI Express 1 0 16 link 48 40 Gbit s 4 GB s z 2004PCI Express 2 0 8 link 49 40 Gbit s 4 GB s z 2007PCI X QDR 34 133 Gbit s 4 266 GB sAGP 8 64 bit 34 133 Gbit s 4 266 GB sRapidIO Gen2 8x 40 Gbit s 5 GB sDirect Media Interface 3 0 DMI 3 0 4 link 40 Gbit s 3 94 GB s y 2015PCI Express 3 0 8 link 50 64 Gbit s 7 88 GB s y 2011PCI Express 2 0 16 link 49 80 Gbit s 8 GB s z 2007RapidIO Gen2 16x 80 Gbit s 10 GB sPCI Express 5 0 4 link 128 Gbit s 15 75 GB s y 2019PCI Express 3 0 16 link 50 128 Gbit s 15 75 GB s y 2011CAPI 128 Gbit s 15 75 GB s y 2014QPI 4 80GT s 2 40 GHz 153 6 Gbit s 19 2 GB sHyperTransport 2 0 1 4 GHz 32 pair 179 2 Gbit s 22 4 GB s 2004QPI 5 86GT s 2 93 GHz 187 52 Gbit s 23 44 GB sQPI 6 40GT s 3 20 GHz 204 8 Gbit s 25 6 GB sQPI 7 2GT s 3 6 GHz 230 4 Gbit s 28 8 GB s 2012PCI Express 6 0 4 link 242 Gbit s 30 25 GB s w 2022PCI Express 4 0 16 link 51 256 Gbit s 31 51 GB s y 2018CAPI 2 256 Gbit s 31 51 GB s y 2016QPI 8 0GT s 4 0 GHz 256 0 Gbit s 32 0 GB s 2012QPI 9 6GT s 4 8 GHz 307 2 Gbit s 38 4 GB s 2014HyperTransport 3 0 2 6 GHz 32 pair 332 8 Gbit s 41 6 GB s 2006HyperTransport 3 1 3 2 GHz 32 pair 409 6 Gbit s 51 2 GB s 2008CXL Specification 1 x 16 link 512 Gbit s 63 02 GB s 2019PCI Express 5 0 16 link 52 512 Gbit s 63 02 GB s y 2019NVLink 1 0 640 Gbit s 80 GB s 2016PCI Express 6 0 16 link 53 968 Gbit s 121 GB s w 2022NVLink 2 0 1 2 Tbit s 150 GB s 2017Infinity Fabric Max theoretical 4 096 Tbit s 512 GB s 2017x LPC protocol includes high overhead While the gross data rate equals 33 3 million 4 bit transfers per second or 16 67 MB s the fastest transfer firmware read results in 15 63 MB s The next fastest bus cycle 32 bit ISA style DMA write yields only 6 67 MB s Other transfers may be as low as 2 MB s 54 y Uses 128b 130b encoding meaning that about 1 54 of each transfer is used for error detection instead of carrying data between the hardware components at each end of the interface For example a single link PCIe 3 0 interface has an 8 Gbit s transfer rate yet its usable bandwidth is only about 7 88 Gbit s z Uses 8b 10b encoding meaning that 20 of each transfer is used by the interface instead of carrying data from between the hardware components at each end of the interface For example a single link PCIe 1 0 has a 2 5 Gbit s transfer rate yet its usable bandwidth is only 2 Gbit s 250 MB s w Uses PAM 4 encoding and a 256 bytes FLIT block of which 14 bytes are FEC and CRC meaning that 5 47 of total data rate is used for error detection and correction instead of carrying data For example a single link PCIe 6 0 interface has an 64 Gbit s total transfer rate yet its usable bandwidth is only 60 5 Gbit s Portable Edit Technology Rate YearPC Card 16 bit 255 ns byte mode 31 36 Mbit s 3 92 MB sPC Card 16 bit 255 ns word mode 62 72 Mbit s 7 84 MB sPC Card 16 bit 100 ns byte mode 80 Mbit s 10 MB sPC Card 16 bit 100 ns word mode 160 Mbit s 20 MB sPC Card 32 bit CardBus byte mode 267 Mbit s 33 33 MB sExpressCard 1 2 USB 2 0 mode 480 Mbit s 60 MB sPC Card 32 bit CardBus word mode 533 Mbit s 66 66 MB sPC Card 32 bit CardBus doubleword mode 1067 Mbit s 133 33 MB sExpressCard 1 2 PCI Express mode 2500 Mbit s 250 MB sExpressCard 2 0 USB 3 0 mode 4800 Mbit s 600 MB sExpressCard 2 0 PCI Express mode 5000 Mbit s 625 MB sStorage Edit Technology Rate YearTeletype Model 33 paper tape 80 bit s 10 B s 1963TRS 80 Model 1 Level 1 BASIC cassette tape interface 250 bit s 32 B s 1977C2N Commodore Datasette 1530 cassette tape interface 300 bit s 15 B s 1977Apple 2 cassette tape interface 1 5 kbit s 200 B s 1977Amstrad CPC tape 2 0 kbit s 250 B s 1984Single Density 8 inch FM Floppy Disk Controller 160 KB 250 kbit s 31 KB s 1973Single Density 5 25 inch FM Floppy Disk Controller 180 KB 125 kbit s 15 5 KB s 1978High Density MFM Floppy Disk Controller 1 2 MB 1 44 MB 250 kbit s 31 KB s 1984CD Controller 1 1 171 Mbit s 0 146 MB s 1988MFM hard disk 5 Mbit s 0 625 MB s 1980RLL hard disk 7 5 Mbit s 0 937 MB sDVD Controller 1 11 1 Mbit s 1 32 MB sESDI 24 Mbit s 3 MB sATA PIO Mode 0 26 4 Mbit s 3 3 MB s 1986HD DVD Controller 1 36 Mbit s 4 5 MB sBlu ray Controller 1 36 Mbit s 4 5 MB sSCSI Narrow SCSI 5 MHz 55 40 Mbit s 5 MB s 1986ATA PIO Mode 1 41 6 Mbit s 5 2 MB s 1994ATA PIO Mode 2 66 4 Mbit s 8 3 MB s 1994Fast SCSI 8 bits 10 MHz 80 Mbit s 10 MB sATA PIO Mode 3 88 8 Mbit s 11 1 MB s 1996AoE over Fast Ethernet 56 100 Mbit s 11 9 MB s 2009iSCSI over Fast Ethernet 57 100 Mbit s 11 9 MB s 2004ATA PIO Mode 4 133 3 Mbit s 16 7 MB s 1996Fast Wide SCSI 16 bits 10 MHz 160 Mbit s 20 MB sUltra SCSI Fast 20 SCSI 8 bits 20 MHz 160 Mbit s 20 MB sSD High Speed 200 Mbit s 25 MB sUltra DMA ATA 33 264 Mbit s 33 MB s 1998Ultra Wide SCSI 16 bits 20 MHz 320 Mbit s 40 MB sUltra 2 SCSI 40 Fast 40 SCSI 8 bits 40 MHz 320 Mbit s 40 MB sSDHC SDXC SDUC UHS I Full Duplex 400 Mbit s 50 MB sUltra DMA ATA 66 533 6 Mbit s 66 7 MB s 2000Blu ray Controller 16 576 Mbit s 72 MB sUltra 2 wide SCSI 16 bits 40 MHz 640 Mbit s 80 MB sSerial Storage Architecture SSA 640 Mbit s 80 MB s 1990Ultra DMA ATA 100 800 Mbit s 100 MB s 2002Fibre Channel 1GFC 1 0625 GHz 58 850 Mbit s 103 23 MB s 1997AoE over gigabit Ethernet jumbo frames 59 1 Gbit s 124 2 MB s 2009iSCSI over gigabit Ethernet jumbo frames 60 1 Gbit s 123 9 MB s 2004Ultra DMA ATA 133 1 064 Gbit s 133 MB s 2005SDHC SDXC SDUC UHS II Full Duplex 1 25 Gbit s 156 MB sUltra 3 SCSI Ultra 160 SCSI Fast 80 Wide SCSI 16 bits 40 MHz DDR 1 28 Gbit s 160 MB sSATA revision 1 0 61 1 500 Gbit s 150 MB s a 2003Fibre Channel 2GFC 2 125 GHz 58 1 700 Gbit s 206 5 MB s 2001Ultra 320 SCSI Ultra4 SCSI 16 bits 80 MHz DDR 2 560 Gbit s 320 MB sSerial Attached SCSI SAS SAS 1 61 3 Gbit s 300 MB s a 2004SATA Revision 2 0 61 3 Gbit s 300 MB s a 2004SDHC SDXC SDUC UHS III Full Duplex 2 5 Gbit s 312 MB sFibre Channel 4GFC 4 25 GHz 58 3 4 Gbit s 413 MB s 2004Serial Attached SCSI SAS SAS 2 61 6 Gbit s 600 MB s a 2009SATA Revision 3 0 61 6 Gbit s 600 MB s a 2008Fibre Channel 8GFC 8 50 GHz 58 6 8 Gbit s 826 MB s 2005SDHC SDXC SDUC SD Express 7 9 Gbit s 985 MB sAoE over 10GbE 59 10 Gbit s 1 242 GB s 2009iSCSI over 10GbE 60 10 Gbit s 1 239 GB s 2004FCoE over 10GbE 62 10 Gbit s 1 206 GB s 2009Serial Attached SCSI SAS SAS 3 61 12 Gbit s 1 2 GB s 2013Fibre Channel 16GFC 14 025 GHz 58 13 6 Gbit s 1 652 GB s b 2011SATA Express 16 Gbit s 2 GB s 2013Serial Attached SCSI SAS SAS 4 22 5 Gbit s 2 4 GB s c 2017UFS version 3 0 23 2 Gbit s 2 9 GB s 2018Fibre Channel 32GFC 28 05 GHz 58 26 424 Gbit s 3 303 GB s b 2016NVMe over M 2 or U 2 using PCI Express 3 0 4 link 50 32 Gbit s 3 938 GB s 2013iSCSI over InfiniBand 4 32 Gbit s 4 GB s 2007NVMe over M 2 or U 2 using PCI Express 4 0 4 link 64 Gbit s 7 876 GB s 2017iSCSI over 100G Ethernet 60 100 Gbit s 12 392 GB s 2010FCoE over 100G Ethernet 62 100 Gbit s 12 064 GB s 2010NVMe over M 2 U 2 U 3 or EDSFF using PCI Express 5 0 4 link 128 Gbit s 15 754 GB s 2019a Uses 8b 10b encoding b Uses 64b 66b encoding c Uses 128b 150b encoding Peripheral Edit Technology Rate YearApple Desktop Bus 10 0 kbit s 1 25 kB s 1986PS 2 port 12 0 kbit s 1 5 kB s 1987Serial MIDI 31 25 kbit s 3 9 kB s 1983CBM Bus max 63 64 41 6 kbit s 5 1 kB s 1981Serial RS 232 max 230 4 kbit s 28 8 kB s 1962Serial DMX512A 250 0 kbit s 31 25 kB s 1998Parallel Centronics IEEE 1284 1 Mbit s 125 kB s 1970 standardized 1994 Serial 16550 UART max 1 5 Mbit s 187 5 kB sUSB 1 0 low speed 1 536 Mbit s 192 kB s 1996Serial UART max 2 7648 Mbit s 345 6 kB sGPIB HPIB IEEE 488 1 IEEE 488 max 8 Mbit s 1 MB s Late 1960s standardized 1976 Serial EIA 422 max 10 Mbit s 1 25 MB sUSB 1 0 full speed 12 Mbit s 1 5 MB s 1996Parallel Centronics IEEE 1284 EPP Enhanced Parallel Port 16 Mbit s 2 MB s 1992Parallel Centronics IEEE 1284 ECP Extended Capability Port 20 Mbit s 2 5 MB s 1994Serial EIA 485 max 35 Mbit s 4 375 MB sGPIB HPIB IEEE 488 1 2003 IEEE 488 max 64 Mbit s 8 MB sFireWire IEEE 1394 100 98 304 Mbit s 12 288 MB s 1995FireWire IEEE 1394 200 196 608 Mbit s 24 576 MB s 1995FireWire IEEE 1394 400 393 216 Mbit s 49 152 MB s 1995USB 2 0 high speed 480 Mbit s 60 MB s 2000FireWire IEEE 1394b 800 65 786 432 Mbit s 98 304 MB s 2002Fibre Channel 1 Gb SCSI 1 0625 Gbit s 100 MB sFireWire IEEE 1394b 1600 65 1 573 Gbit s 196 6 MB s 2007Fibre Channel 2 Gb SCSI 2 125 Gbit s 200 MB seSATA SATA 300 3 Gbit s 300 MB s 2004CoaXPress Base up and down bidirectional link 3 125 Gbit s 20 833 Mbit s 390 MB s 2009FireWire IEEE 1394b 3200 65 3 1457 Gbit s 393 216 MB s 2007External PCI Express 2 0 1 4 Gbit s 500 MB sFibre Channel 4 Gb SCSI 4 25 Gbit s 531 25 MB sUSB 3 0 SuperSpeed aka USB 3 1 Gen 1 5 Gbit s 500 MB s 2010eSATA SATA 600 6 Gbit s 600 MB s 2011CoaXPress full up and down bidirectional link 6 25 Gbit s 20 833 Mbit s 781 MB s 2009External PCI Express 2 0 2 8 Gbit s 1 GB sUSB 3 1 SuperSpeed aka USB 3 1 Gen 2 10 Gbit s 1 212 GB s 2013External PCI Express 2 0 4 16 Gbit s 2 GB sThunderbolt 2 10 Gbit s 2 1 25 GB s 2011USB 3 2 SuperSpeed 66 aka USB 3 2 Gen 2 2 20 Gbit s 2 424 GB s 2017Thunderbolt 2 20 Gbit s 2 5 GB s 2013FPGA Mezzanine Card Plus FMC 67 28 Gbit s 3 5 GB s 2019External PCI Express 2 0 8 32 Gbit s 4 GB sUSB4 Gen 3 2 68 40 Gbit s 4 8 GB s 2019Thunderbolt 3 two links 40 Gbit s 5 GB s 2015Thunderbolt 4 40 Gbit s 5 GB s 2020External PCI Express 2 0 16 64 Gbit s 8 GB sUSB4 Gen 4 2 69 80 Gbit s 9 6 GB s 2022USB4 Gen 4 2 Asymmetric 120 Gbit s 14 4 GB s 2022MAC to PHY Edit Technology Channels Bits MGT Lanes Rate YearCount Encoding RateMedia Independent Interface MII 1 4 100 Mbit s 12 5 MB sReduced MII RMII 1 2 100 Mbit s 12 5 MB sSerial MII SMII 1 1 100 Mbit s 12 5 MB sGigabit MII GMII 1 8 1 0 Gbit s 125 MB sReduced gigabit s MII RGMII 1 4 1 0 Gbit s 125 MB sTen bit interface TBI 1 10 1 0 Gbit s 125 MB sSerial gigabit s MII SGMII 1 1 8b 10b 1 25 Gbit s 1 0 Gbit s 125 MB sReduced serial gigabit s MII RSGMII 2 1 8b 10b 2 5 Gbit s 2 0 Gbit s 250 MB sReduced serial gigabit s MII plus RSGMII PLUS 4 1 8b 10b 5 0 Gbit s 4 0 Gbit s 500 MB sQuad serial gigabit s MII QSGMII 4 1 8b 10b 5 0 Gbit s 4 0 Gbit s 500 MB s10 gigabit s MII XGMII 1 32 10 0 Gbit s 1 25 GB sXGMII attachment unit interface XAUI 1 4 8b 10b 3 125 Gbit s 10 0 Gbit s 1 25 GB sReduced Pin XAUI RXAUI 1 2 8b 10b 6 25 Gbit s 10 0 Gbit s 1 25 GB sXFI SFI 1 1 64b 66b 10 3125 Gbit s 10 0 Gbit s 1 25 GB s40 gigabit s MII XLGMII on chip only 1 40 0 Gbit s 5 GB s100 gigabit s MII CGMII on chip only 1 100 0 Gbit s 12 5 GB s 2008100G AUI CAUI 10 1 10 64b 66b 10 3125 Gbit s 100 0 Gbit s 12 5 GB s100G AUI CAUI 4 1 4 64b 66b 25 78125 Gbit s 100 0 Gbit s 12 5 GB sPHY to XPDR Edit Technology Rate Year10 gigabit s 16 bit interface XSBI 16 lanes 0 995 Gbit s 0 124 GB sDynamic random access memory Edit The table below shows values for PC memory module types These modules usually combine multiple chips on one circuit board SIMM modules connect to the computer via an 8 bit or 32 bit wide interface RIMM modules used by RDRAM are 16 bit or 32 bit wide 70 DIMM modules connect to the computer via a 64 bit wide interface Some other computer architectures use different modules with a different bus width In a single channel configuration only one module at a time can transfer information to the CPU In multi channel configurations multiple modules can transfer information to the CPU at the same time in parallel FPM EDO SDR and RDRAM memory was not commonly installed in a dual channel configuration DDR and DDR2 memory is usually installed in single or dual channel configuration DDR3 memory is installed in single dual tri and quad channel configurations Bit rates of multi channel configurations are the product of the module bit rate given below and the number of channels Module type Chip type Internal clock a Bus clock Bus speed b Transfer rateFPM DRAM 70 ns tRAC 22 MHz 22 MHz 0 0177 GT s 1 416 Gbit s 177 MB sEDO DRAM 486 CPU 60 ns tRAC 33 MHz 33 MHz 0 0266 GT s 2 128 Gbit s 266 MB sEDO DRAM Pentium CPU 60 ns tRAC 66 MHz 66 MHz 0 066 GT s 4 264 Gbit s 533 MB sPC 66 SDR SDRAM 10 15 ns 66 MHz 66 MHz 0 066 GT s 4 264 Gbit s 533 MB sPC 100 SDR SDRAM 8 ns 100 MHz 100 MHz 0 100 GT s 6 4 Gbit s 800 MB sPC 133 SDR SDRAM 7 7 5 ns 133 MHz 133 MHz 0 133 GT s 8 528 Gbit s 1 066 GB sRIMM 1200 RDRAM PC600 75 MHz 300 MHz 0 600 GT s 9 6 Gbit s 1 2 GB sRIMM 1400 RDRAM PC700 87 5 MHz 350 MHz 0 700 GT s 11 2 Gbit s 1 4 GB sRIMM 1600 RDRAM PC800 100 MHz 400 MHz 0 800 GT s 12 8 Gbit s 1 6 GB sPC 1600 DDR SDRAM DDR 200 100 MHz 100 MHz 0 200 GT s 12 8 Gbit s 1 6 GB sRIMM 2100 RDRAM PC1066 133 MHz 533 MHz 1 066 GT s 17 034 Gbit s 2 133 GB sPC 2100 DDR SDRAM DDR 266 133 MHz 133 MHz 0 266 GT s 17 034 Gbit s 2 133 GB sRIMM 2400 RDRAM PC1200 150 MHz 600 MHz 1 2 GT s 19 2 Gbit s 2 4 GB sPC 2700 DDR SDRAM DDR 333 166 MHz 166 MHz 0 333 GT s 21 336 Gbit s 2 667 GB sPC 3200 DDR SDRAM DDR 400 200 MHz 200 MHz 0 400 GT s 25 6 Gbit s 3 2 GB sPC2 3200 DDR2 SDRAM DDR2 400 100 MHz 200 MHz 0 400 GT s 25 6 Gbit s 3 2 GB sPC 3500 DDR SDRAM DDR 433 216 MHz 216 MHz 0 433 GT s 27 728 Gbit s 3 466 GB sPC 3700 DDR SDRAM DDR 466 233 MHz 233 MHz 0 466 GT s 29 864 Gbit s 3 733 GB sPC 4000 DDR SDRAM DDR 500 250 MHz 250 MHz 0 500 GT s 32 Gbit s 4 GB sPC 4200 DDR SDRAM DDR 533 266 MHz 266 MHz 0 533 GT s 34 128 Gbit s 4 266 GB sPC2 4200 DDR2 SDRAM DDR2 533 133 MHz 266 MHz 0 533 GT s 34 128 Gbit s 4 266 GB sPC 4400 DDR SDRAM DDR 550 275 MHz 275 MHz 0 550 GT s 35 2 Gbit s 4 4 GB sPC 4800 DDR SDRAM DDR 600 300 MHz 300 MHz 0 600 GT s 38 4 Gbit s 4 8 GB sPC2 5300 DDR2 SDRAM DDR2 667 166 MHz 333 MHz 0 667 GT s 42 664 Gbit s 5 333 GB sPC2 6000 DDR2 SDRAM DDR2 750 188 MHz 375 MHz 0 750 GT s 48 Gbit s 6 GB sPC2 6400 DDR2 SDRAM DDR2 800 200 MHz 400 MHz 0 800 GT s 51 2 Gbit s 6 4 GB sPC3 6400 DDR3 SDRAM DDR3 800 100 MHz 400 MHz 0 800 GT s 51 2 Gbit s 6 4 GB sPC2 7200 DDR2 SDRAM DDR2 900 225 MHz 450 MHz 0 900 GT s 57 6 Gbit s 7 2 GB sPC2 8000 DDR2 SDRAM DDR2 1000 250 MHz 500 MHz 1 GT s 64 Gbit s 8 GB sPC2 8500 DDR2 SDRAM DDR2 1066 266 MHz 533 MHz 1 066 GT s 68 Gbit s 8 5 GB sPC3 8500 DDR3 SDRAM DDR3 1066 133 MHz 533 MHz 1 066 GT s 68 Gbit s 8 5 GB sPC2 8800 DDR2 SDRAM DDR2 1100 275 MHz 550 MHz 1 1 GT s 70 4 Gbit s 8 8 GB sPC2 9200 DDR2 SDRAM DDR2 1150 288 MHz 575 MHz 1 15 GT s 73 6 Gbit s 9 2 GB sPC2 9600 DDR2 SDRAM DDR2 1200 300 MHz 600 MHz 1 2 GT s 76 8 Gbit s 9 6 GB sPC2 10000 DDR2 SDRAM DDR2 1250 312 MHz 625 MHz 1 25 GT s 80 Gbit s 10 GB sPC3 10600 DDR3 SDRAM DDR3 1333 167 MHz 667 MHz 1 333 GT s 85 336 Gbit s 10 667 GB sPC3 11000 DDR3 SDRAM DDR3 1375 172 MHz 688 MHz 1 375 GT s 88 Gbit s 11 GB sPC3 12800 DDR3 SDRAM DDR3 1600 200 MHz 800 MHz 1 6 GT s 102 4 Gbit s 12 8 GB sPC3 13000 DDR3 SDRAM DDR3 1625 203 MHz 813 MHz 1 625 GT s 104 Gbit s 13 GB sPC3 14400 DDR3 SDRAM DDR3 1800 225 MHz 900 MHz 1 8 GT s 115 2 Gbit s 14 4 GB sPC3 14900 DDR3 SDRAM DDR3 1866 233 MHz 933 MHz 1 866 GT s 119 464 Gbit s 14 933 GB sPC3 16000 DDR3 SDRAM DDR3 2000 250 MHz 1000 MHz 2 GT s 128 Gbit s 16 GB sPC3 17000 DDR3 SDRAM DDR3 2133 267 MHz 1067 MHz 2 133 GT s 136 528 Gbit s 17 066 GB sPC4 17000 DDR4 SDRAM DDR4 2133 267 MHz 1067 MHz 2 133 GT s 136 5 Gbit s 17 GB sPC3 17600 DDR3 SDRAM DDR3 2200 275 MHz 1100 MHz 2 2 GT s 140 8 Gbit s 17 6 GB sPC3 19200 DDR3 SDRAM DDR3 2400 300 MHz 1200 MHz 2 4 GT s 153 6 Gbit s 19 2 GB sPC4 19200 DDR4 SDRAM DDR4 2400 300 MHz 1200 MHz 2 4 GT s 153 6 Gbit s 19 2 GB sPC3 21300 DDR3 SDRAM DDR3 2666 333 MHz 1333 MHz 2 666 GT s 170 5 Gbit s 21 3 GB sPC4 21300 DDR4 SDRAM DDR4 2666 333 MHz 1333 MHz 2 666 GT s 170 5 Gbit s 21 3 GB sPC3 24000 DDR3 SDRAM DDR3 3000 375 MHz 1500 MHz 3 0 GT s 192 Gbit s 24 GB sPC4 24000 DDR4 SDRAM DDR4 3000 375 MHz 1500 MHz 3 0 GT s 192 Gbit s 24 GB sPC4 25600 DDR4 SDRAM DDR4 3200 400 MHz 1600 MHz 3 2 GT s 204 8 Gbit s 25 6 GB sPC5 41600 DDR5 SDRAM DDR5 5200 650 MHz 2600 MHz 5 2 GT s 332 8 Gbit s 41 6 GB sPC5 44800 DDR5 SDRAM DDR5 5600 700 MHz 2800 MHz 5 6 GT s 358 4 Gbit s 44 8 GB sPC5 51200 DDR5 SDRAM DDR5 6400 800 MHz 3200 MHz 6 4 GT s 409 6 Gbit s 51 2 GB sa The clock rate at which DRAM memory cells operate The memory latency is largely determined by this rate Note that until the introduction of DDR4 the internal clock rate saw relatively slow progress DDR DDR2 DDR3 memory uses 2n 4n 8n respectively prefetch buffer to provide higher throughput while the internal memory speed remains similar to that of the previous generation b The memory speed clock advertised by manufactures and suppliers usually refers to this rate with 1 GT s 1 GHz Note that modern types of memory use DDR bus with two transfers per clock Graphics processing units RAM Edit RAM memory modules are also utilised by graphics processing units however memory modules for those differ somewhat from standard computer memory particularly with lower power requirements and are specialised to serve GPUs for example GDDR3 was fundamentally based on DDR2 Every graphics memory chip is directly connected to the GPU point to point The total GPU memory bus width varies with the number of memory chips and the number of lanes per chip For example GDDR5 specifies either 16 or 32 lanes per device chip while GDDR5X specifies 64 lanes per chip Over the years bus widths rose from 64 bit to 512 bit and beyond e g HBM is 1024 bits wide 71 Because of this variability graphics memory speeds are sometimes compared per pin For direct comparison to the values for 64 bit modules shown above video RAM is compared here in 64 lane lots corresponding to two chips for those devices with 32 bit widths In 2012 high end GPUs used 8 or even 12 chips with 32 lanes each for a total memory bus width of 256 or 384 bits Combined with a transfer rate per pin of 5 GT s or more such cards could reach 240 GB s or more RAM frequencies used for a given chip technology vary greatly Where single values are given below they are examples from high end cards 72 Since many cards have more than one pair of chips the total bandwidth is correspondingly higher For example high end cards often have eight chips each 32 bits wide so the total bandwidth for such cards is four times the value given below Chip type Module type Memory clock Transfers s BandwidthDDR 64 lanes 350 MHz 0 7 GT s 44 8 Gbit s 5 6 GB sDDR2 64 lanes 250 MHz 1 GT s 64 Gbit s 8 GB sGDDR3 64 lanes 625 MHz 2 5 GT s 159 Gbit s 19 9 GB sGDDR4 64 lanes 275 MHz 2 2 GT s 140 8 Gbit s 17 6 GB sGDDR5 73 64 lanes 625 1125 MHz 5 9 GT s 320 576 Gbit s 40 72 GB sGDDR5X 74 64 lanes 625 875 MHz 10 12 GT s 640 768 Gbit s 80 96 GB sGDDR6 64 lanes 875 1125 MHz 14 18 GT s 896 1152 Gbit s 112 144 GB sGDDR6X 75 64 lanes 594 656 MHz 19 21 GT s 1216 1344 Gbit s 152 168 GB sHBM 76 1024 lanes 8 channels 128 lanes ea 500 MHz 1 GT s 1024 Gbit s 128 GB sHBM2 76 1024 lanes 8 channels 128 lanes ea 1000 MHz 2 GT s 2048 Gbit s 256 GB sHBM2e 77 1024 lanes 8 channels 128 lanes ea 1800 MHz 3 6 GT s 3686 4 Gbit s 460 8 GB sHBM3 77 78 1024 lanes 16 channels 64 lanes ea 3200 MHz 6 4 GT s 6553 6 Gbit s 819 2 GB sHMC 128 lanes 8 links 16 lanes ea internal 10 GT s 2560 Gbit s 320 GB sHMC2 64 lanes 4 links 16 lanes ea internal 30 GT s 3840 Gbit s 480 GB sDigital audio Edit Device RateCD Audio 16 bit PCM 1 411 Mbit s 176 4 kB sI S 2 250 Mbit s 24bit 48 kHz 0 281 MB sAES EBU 2 625 Mbit s 24 bit 48 kHz 0 328 MB sS PDIF fs 48kHz 3 072 Mbit s 0 384 MB sADAT Lightpipe Type I 9 216 Mbit s 1 152 MB sAC 97 12 288 Mbit s 1 536 MB sHDMI 36 864 Mbit s 4 608 MB sDisplayPort 36 864 Mbit s 4 608 MB sIntel High Definition Audio rev 1 0 79 48 Mbit s outbound 24 Mbit s inbound 6 MB s outbound 3 MB s inboundMADI 100 Mbit s 12 5 MB sDigital video interconnects Edit Data rates given are from the video source e g video card to receiving device e g monitor only Out of band and reverse signaling channels are not included Device Rate YearHD SDI SMPTE 292M 1 485 Gbit s 0 186 GB sCamera Link Base single 24 bit 85 MHz 2 040 Gbit s 0 255 GB sLVDS Display Interface 80 2 80 Gbit s 0 35 GB s3G SDI SMPTE 424M 2 97 Gbit s 0 371 GB s 2006Single link DVI 4 95 Gbit s 0 619 GB s a 1999HDMI 1 0 81 4 95 Gbit s 0 619 GB s a 2002Camera Link full dual 64 bit 85 MHz 5 44 Gbit s 0 680 GB s6G SDI SMPTE 2081 5 94 Gbit s 0 75 GB s 2015DisplayPort 1 0 4 lane Reduced Bit Rate 82 6 48 Gbit s 0 810 GB s a 2006Dual link DVI 9 90 Gbit s 1 238 GB s a 1999Thunderbolt 2 10 Gbit s 2 1 25 GB s 2011HDMI 1 3 83 10 2 Gbit s 1 275 GB s a 2006Dual High Speed LVDS Display Interface 10 5 Gbit s 1 312 GB sDisplayPort 1 0 4 lane High Bit Rate 82 10 8 Gbit s 1 35 GB s a 200612G SDI SMPTE 2082 11 88 Gbit s 1 5 GB s 2015HDMI 2 0 84 18 0 Gbit s 2 25 GB s a 2013Thunderbolt 2 20 Gbit s 2 5 GB s 2013DisplayPort 1 2 4 lane High Bit Rate 2 82 21 6 Gbit s 2 7 GB s a 2009DisplayPort 1 3 4 lane High Bit Rate 3 32 4 Gbit s 4 05 GB s a 2014 2016 DisplayPort 1 4 1 4a 32 4 Gbit s 4 05 GB s 2016 2018 superMHL 36 Gbit s 4 5 GB s 2015Thunderbolt 3 40 Gbit s 5 GB s 2015HDMI 2 1 85 48 Gbit s 6 GB s b 2017DisplayPort 2 0 2 1 4 lane 86 80 Gbit s 10 GB s c 2019 2022 SMPTE 2110 over 100 Gigabit Ethernet 100 Gbit s 12 5 GB s 2017a Uses 8b 10b encoding 20 coding overhead b Uses 16b 18b encoding 11 overhead c Uses 128b 132b encoding 3 overhead See also EditList of Internet access technology bit rates Bitrates in multimedia Comparison of mobile phone standards Comparison of wireless data standards OFDM system comparison table Optical Carrier transmission rates Orders of magnitude bit rate Sneakernet Spectral efficiency comparison tableNotes Edit NIST Enhanced WWVB Broadcast Format sept 2012 Radio Station staff By John Lowe September 2012 nist gov http tf nist gov timefreq general pdf 2422 pdf Archived version TTY uses a Baudot code not ASCII This uses 5 bits per character instead of 8 plus one start and approx 1 5 stop bits 7 5 total bits per character sent ITU T Recommendation database A Brief History of Captioned Television www ncicap org Archived from the original on 19 July 2011 Morse can transport 26 alphabetic 10 numeric and one interword gap plaintext symbols Transmitting 37 different symbols requires 5 21 bits of information 25 21 37 A skilled operator encoding the benchmark PARIS plus an interword gap equal to 31 26 bits at 40 wpm is operating at an equivalence of 20 84 bit s WPM or Words Per Minute is the number of times the word PARIS is transferred per minute Strictly speaking the code is quinary accounting inter element inter letter and inter word gaps yielding 50 binary elements bits per one word Counting characters including inter word gaps gives six characters per word or 240 characters per minute and finally four characters per second Human Speech May Have a Universal Transmission Rate 39 Bits Per Second science org 2019 09 04 Retrieved 2022 06 24 a b c d e f g h i j All modems are wrongly assumed to be in serial operation with 1 start bit 8 data bits no parity and 1 stop bit 2 stop bits for 110 baud modems Therefore currently modems are wrongly calculated with transmission of 10 bits per 8 bit byte 11 bits for 110 baud modems Although the serial port is nearly always used to connect a modem and has equivalent data rates the protocols modulations and error correction differ completely a b Modem Types and Timeline Daxal Communications 2003 12 16 archived from the original on 2008 10 08 retrieved 2009 04 16 a b c d e f g ITU T Recommendations V Series Data communication over the telephone network ITU a b c 56K modems V 90 and V 92 have just 5 overhead for the protocol signalling The maximum capacity can only be achieved when the upstream service provider end of the connection is digital i e a DS0 channel Note that effective aggregate bandwidth for an ISDN installation is typically higher than the rates shown for a single channel due to the use of multiple channels A basic rate interface BRI provides two B channels and one D channel Each B channel provides 64 kBit s bandwidth and the D channel carries signaling call setup information B channels can be bonded to provide a 128 kbit s data rate Primary rate interfaces PRI vary depending on whether the region uses E1 Europe world or T1 North America bearers In E1 regions the PRI carries 30 B channels and one D channel in T1 regions the PRI carries 23 B channels and one D channel The D channel has different bandwidth on the two interfaces Massey David 2006 07 04 Timeline of Telecommunications Telephone Tribute retrieved 2009 04 16 Adam com au Recommendation G 991 1 10 98 ITU a b DOCSIS 1 0 Archived 2006 06 13 at the Wayback Machine includes technology which first became available around 1995 1996 and has since become very widely deployed DOCSIS 1 1 Archived 2006 06 13 at the Wayback Machine introduces some security improvements and quality of service QoS a b DOCSIS 2 0 Archived 2009 09 04 at the Wayback Machine specifications provide increased upstream throughput for symmetric services G 983 2 ITU a b DOCSIS 3 0 Archived 2006 06 19 at the Wayback Machine includes support for channel bonding and IPv6 G 984 4 Gigabit capable passive optical networks G PON ITU DOCSIS 3 1 Archived 2015 03 13 at the Wayback Machine is currently in development by the Cablelabs Consortium G 987 10 Gigabit capable passive optical network XG PON systems ITU G 989 40 Gigabit capable passive optical networks NG PON2 ITU Most operators only support up to 9600bit s SDSL is available in various speeds ADSL connections will vary in throughput from 64 kbit s to several Mbit s depending on configuration Most are commonly below 2 Mbit s Some ADSL and SDSL connections have a higher digital bandwidth than T1 but their rate is not guaranteed and will drop when the system gets overloaded whereas the T1 type connections are usually guaranteed and have no contention ratios Satellite internet may have a high bandwidth but also has a high latency due to the distance between the modem satellite and hub One way satellite connections exist where all the downstream traffic is handled by satellite and the upstream traffic by land based connections such as 56K modems and ISDN a b MoCA 1 1 improves throughput over coaxial cable to 175 Mbits s versus the 100 Mbits s provided by the MoCA 1 0 specification FireWire natively supports TCP IP and is often used at an alternative to Ethernet when connecting 2 nodes Tweaktown com Data rate comparison between FW and Giganet shows that FW s lower overhead has nearly the same throughput as Giganet Unibrain com Archived 2008 02 07 at the Wayback Machine a b c d e f g h i j InfiniBand SDR DDR and QDR use an 8b 10b encoding scheme a b c d e f g h i j k l InfiniBand FDR 10 FDR and EDR use a 64b 66b encoding scheme a b c Lee Bill Chair of marketing working group IBTA Blog IBTA Archived from the original on 2018 06 25 Retrieved 25 June 2018 Mac History VAW Apple IIgs Specs Archived 2011 01 10 at the Wayback Machine After 35 years of I2C I3C Improves Capability and Performance Sensors and MEMS eecatalog com Retrieved 2019 06 26 The Zorro II bus use 4 clocks per 16 Bit of data transferred See the Zorro III technical specification Archived 2012 07 16 at the Wayback Machine for more information Japan wikipedia article Bus used in early NEC PC 9800 series and compatible systems STD 32 Bus Specification and Designer s Guide Japan wikipedia article Bus used in later NEC PC 9800 series and compatible systems RISC System 6000 POWERstation POWERserver 580 Local Area Networks Newsletter by Paul Polishuk September 1992 Page 7 APbus used in Sony NeWS and NEC UP4800 workstations and NEC EWS4800 servers after VMEbus and before switch to PCI Japan wikipedia article Bus used in NEC PC 9821 series Dave Haynie designer of the Zorro III bus claims in this posting that the theoretical max of the Zorro III bus can be derived by the timing information given in chapter 5 of the Zorro III technical specification Archived 2012 07 16 at the Wayback Machine Dave Haynie designer of the Zorro III bus states in this posting that Zorro III is an asynchronous bus and therefore does not have a classical MHz rating A maximum theoretical MHz value may be derived by examining timing constraints detailed in the Zorro III technical specification Archived 2012 07 16 at the Wayback Machine which should yield about 37 5 MHz No existing implementation performs to this level Dave Haynie designer of the Zorro III bus claims in this posting that Zorro III has a max burst rate of 150 MB s a b c d Note that PCI Express 1 0 2 0 lanes use an 8b 10b encoding scheme a b c d PCIe 2 0 effectively doubles the bus standard s bandwidth from 2 5 GT s to 5 GT s a b c d e PCIe 3 0 increases the bandwidth from 5 GT s to 8 GT s and switches to 128b 130b encoding Born Eric 8 June 2017 PCIe 4 0 specification finally out with 16 GT s on tap Tech Report Retrieved 21 February 2018 Smith Ryan PCI SIG Finalizes PCIe 5 0 Specification x16 Slots to Reach 64GB sec www anandtech com Retrieved 2019 06 26 PCI Express 6 0 Specification Finalized X16 Slots to Reach 128GBps Intel LPC Interface Specification 1 1 SCSI 1 SCSI 2 and SCSI 3 are signaling protocols and do not explicitly refer to a specific rate Narrow SCSI exists using SCSI 1 and SCSI 2 Higher rates use SCSI 2 or later minimum overhead is 38 byte L1 L2 14 byte AoE per 1024 byte user data minimum overhead is 38 byte L1 L2 20 byte IP 20 byte TCP per 1460 byte user data a b c d e f Fibre Channel 1GFC 2GFC 4GFC use an 8b 10b encoding scheme Fibre Channel 10GFC which uses a 64B 66B encoding scheme is not compatible with 1GFC 2GFC and 4GFC and is used only to interconnect switches a b minimum overhead is 38 byte L1 L2 14 byte AoE per 8192 byte user data a b c minimum overhead is 38 byte L1 L2 20 byte IP 20 byte TCP per 8960 byte user data a b c d e f SATA and SAS use an 8b 10b encoding scheme a b minimum overhead is 38 byte L1 L2 36 byte FC per 2048 byte user data proprietary serial version of IEEE 488 by Commodore International CCOM Diskettenlaufwerke und Festplatten a b c FireWire IEEE 1394b uses an 8b 10b encoding scheme Dent Steve 26 July 2017 USB 3 2 doubles your connection speeds with the same port Engadget Retrieved 26 July 2017 VITA Online store product www vita com Retrieved 2022 03 23 Shilov Anton USB4 Specification Announced Adopting Thunderbolt 3 Protocol for 40 Gbps USB www anandtech com Retrieved 2019 06 26 USB Promoter Group Announces USB4 Version 2 0 www businesswire com Retrieved 2022 09 01 RDRAM Memory Architecture Comparison of AMD graphics processing units Comparison of Nvidia graphics processing units GRAPHICS DOUBLE DATA RATE GDDR5 SGRAM STANDARD JESD212C JEDEC 2016 02 01 Retrieved 2016 08 10 GRAPHICS DOUBLE DATA RATE GDDR5X SGRAM STANDARD JESD232 JEDEC 2015 11 01 Retrieved 2016 08 10 Doubling I O Performance with PAM4 Micron Innovates GDDR6X to Accelerate Graphics Memory Micron Retrieved 11 September 2020 a b Shilov Anton 20 January 2016 JEDEC Publishes HBM2 Specification Anandtech Retrieved 16 May 2017 a b Harding Scharon 15 April 2021 What Are HBM HBM2 and HBM2E A Basic Definition Tom s Hardware Retrieved 4 May 2022 Prickett Morgan Timothy 6 April 2022 The HBM3 roadmap is just getting started TheNextPlatform Retrieved 4 May 2022 High Definition Audio Specification Revision 1 0a 2010 Videsignline com Panel display interfaces and bandwidth From TTL LVDS TDMS to DisplayPort HDMI 1 3 What you need to know htm Octavainc com Archived from the original on 2008 12 05 Retrieved 2008 10 20 a b c Displayport Technical Overview Archived 2011 07 26 at the Wayback Machine May 2010 HDMI org Archived from the original on 2018 02 22 Retrieved 2008 10 20 HDMI org Archived from the original on 2019 01 05 Retrieved 2013 11 07 HDMI org Archived from the original on 2017 01 06 Retrieved 2017 01 10 VESA Releases DisplayPort 2 1 Specification Archived from the original on 2022 11 23 Retrieved 2023 01 19 External links EditInterconnection Speeds Compared LTE Categories 1 LTE Categories 2 Need for Speed Theoretical Bandwidth Comparison A graph illustrating digital bandwidths Digital Silence 2004 archived Retrieved from https en wikipedia org w index php title List of interface bit rates amp oldid 1176605314, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.