fbpx
Wikipedia

Lhasa terrane

The Lhasa terrane is a terrane, or fragment of crustal material, sutured to the Eurasian Plate during the Cretaceous that forms present-day southern Tibet. It takes its name from the city of Lhasa in the Tibet Autonomous Region, China. The northern part may have originated in the East African Orogeny, while the southern part appears to have once been part of Australia. The two parts joined, were later attached to Asia, and then were impacted by the collision of the Indian Plate that formed the Himalayas.

Lhasa terrane
Portion of the terrane, Namtso lake to the north above Nyenchen Tanglha Mountains (white)
Coordinates: 30°N 91°E / 30°N 91°E / 30; 91
LocationTibet Autonomous Region, China

Location edit

 
Tectonic units of the Himalaya. Green is the Indus-Yarlung suture zone. Red is the Transhimalaya. Lhasa terrane and Lhasa city in the eastern part of Transhimalaya (Red).
 
Transhimalaya and Lhasa terrane, Qiangtang terrane, Bangong-Nujiang Suture Zone. South of Indus-Yarlung suture zone is Himalayas.

The Lhasa terrane is separated from the Himalayas to the south by the Yarlung-Tsangpo suture, and from the Qiangtang terrane to the north by the Bangong-Nujiang suture.[1] The Lhasa terrane has a Precambrian crystalline basement overlaid with sedimentary strata from the Paleozoic (c. 541–252 Ma[a]) and Mesozoic (c. 252–66 Ma) and containing magmatic rocks from the Paleozoic to Cenozoic (66 Ma to the present). It is thought to be the last crustal block to accrete to the Eurasian plate before it collided with the Indian plate in the Cenozoic.[2]

Origins edit

The Lhasa terrane consisted of two blocks before the Mesozoic, the North Lhasa Block and the South Lhasa Block.[3] The two blocks have lithology and detrital zircon ages similar to the Qiangtang terrane and to Tethyan strata in the Himalaya, which suggests these areas were nearby in Gondwana. The detrital zircon ages differ somewhat between the North and South Lhasa terranes.[4] The South Lhasa terrane appears to have evolved as part of Australia in the late Precambrian and early Paleozoic. Isotopic analysis of detrital zircons of c. 1170 Ma from Paleozoic metasedimentary rocks in the Lhasa terrane shows identical values to detrital zircons of the same age from Western Australia. The detrital zircons probably came from southwest Australia's Albany-Fraser belt.[5]

The North Lhasa terrane may have been formed in part from the northern part of the East African Orogeny. Neoproterozoic oceanic crustal rocks are included in the crystalline basement of the North Lhasa terrane, which are probably from the Mozambique Ocean that formed when the Rodinia super-continent broke up. In the Late Cryogenian, around 650 Ma, the oceanic crustal basement of North Lhasa experienced HP metamorphism in the subduction zone associated with the closing of the Mozambique ocean. In the Early Paleozoic around 485 Ma it experienced MP metamorphism associated with the amalgamation of Eastern and Western Gondwana.[2]

In the Early Paleozoic the North and South Lhasa terranes and the Qiangtang terrane experienced magmatism that seems to have been the result of an Andean-type orogeny caused when the Proto-Tethys Ocean was subducted after Gondwana was finally amalgamated. In the Middle Paleozoic around 360 Ma the Lhasa and Qiangtang terranes again experienced magmatism, apparently due to the subduction of the Paleo-Tethys Ocean.[2]

Formation and evolution edit

 
Lhasa terrane approach to Qiangtang terrane
 
More detailed view of the tectonic evolution of the Bangong suture zone

The Lhasa terrane was formed from the North and South Lhasa terranes, which were at first separated by the Paleo-Tethys Ocean, and were joined in a suture zone in the Late Paleozoic.[2] The Paleo-Tethys Ocean that separated the North and South Lhasa terranes closed, and around 260 Ma in the Late Permian an HP metamorphic belt formed between the two blocks. Around 220 Ma in the Triassic an MP metamorphic belt formed.[2]

The Tibetan Plateau was formed from a number of continental terranes that rifted from northern Gondwana in the Paleozoic and Mesozoic, moved northward and accreted to southern Asia. The Lhasa terrane is the farthest south of these terranes.[3] The Lhasa terrane moved northward and collided with the Qiangtang terrane along the Banggongco-Nujiang Suture.[6][7] The collision began towards the end of the late Jurassic (c. 163–145 Ma), and collision activity continued until the early Late Cretaceous (c. 100–66) Ma . During this period the terrane may have been shortened by at least 180 kilometres (110 mi).[1] Strata from the Lower Jurassic in the Bangong suture between the Lhasa and Qiangtang terranes differ from the rocks in the Lhasa terrane and appear to have a unique source.[8]

The collision with the Qiangtang terrane caused a peripheral foreland basin to form in the north part of the Lhasa terrane, which persisted into the Early Cretaceous. In some parts of the foreland basin the north-dipping subduction of the Neotethyan oceanic crust below the Lhasa terrane caused volcanism. The Gangdese volcanic arc was formed as this subduction continued along the southern margin of the Lhasa terrane.[9] The Gangdese batholith intrudes the southern half of the Lhasa terrain.[10] There is evidence that by the end of the Cretaceous the Southern Tibet crust was approximately twice as thick as normal.[11]

Clastic sediments found in the terrane were deposited in shallow waters during the Early Cretaceous (c. 146–100 Ma.) In northern Lhasa these sediments formed in the foreland basin created during the Lhasa–Qiangtang collision. They are overlaid by marine limestone from the Aptian-Albian period, deposited in a shallow continental seaway. The Takena Formation developed in the Late Cretaceous in the foreland basin to the north of the Gangdese magmatic arc, and consists of marine limestone overlaid by fluvial red beds.[8] Outcropped folds in the Takena Formation between Lhasa and Yangbajain are upright or lean slightly to the north or south, and indicate 30% to 50% shortening in the Late Cretaceous before the Indian collision.[10]

India–Asia collision edit

 
India-Eurasia collision 70-0 Ma

Contact with Indian Plate began along the Yarlung-Zangbo suture around 50 Ma during the Eocene, and the two continents continue to converge. Magmatism continued in the Gangdese arc until as late as 40 Ma.[10] There are competing hypotheses about the details of the tectonic processes during the collision between the Indian and Eurasian plates.[4] At one extreme, some consider that during the collision the Indian crust was underthrust beneath the southern Asian crust, or injected into this crust. At the other extreme, some consider that the convergence was mostly accommodated by shortening of the Asian crust.[12]

The results of seismic reflection profiling, reported in 1998, indicate that there may be a midcrustal partial-melt zone under the length of the Yangbajain-Damxung graben starting at a depth of 12 to 18 kilometres (7.5 to 11.2 mi). The reflection undulates, so the melt zone may have been tectonically deformed. North-dipping reflections deep in the crust below the Gangdese batholith at a depth of 40 to 60 kilometres (25 to 37 mi) may mark the downdip of the Yarlung-Zangbo suture, or may mark a more recent reverse fault. Taken together, the results indicate that the upper crust of the Lhasa terrane was moderately shortened by the collision, with melting in the middle crust. They neither support nor rule out underthrusting or fluid injection of the Indian continental crust below the Lhasa terrane.[12]

The Linzizong Formation is distributed widely along the Gangdese Belt. It was emplaced between 69 and 43 Ma near Lhasa and between 54 and 37 Ma in southwestern Tibet. It is slightly folded and slopes gently to the north. The formation is unconformably underlain by Cretaceous sedimentary sequences more than 3,000 metres (9,800 ft) thick, which are strongly folded.[13] The results of palaeomagnetic studies of the Linzizong Formation in the Linzhou Basin and the Takena Formation reported in 2009 indicate that there was little movement of the Lhasa terrane in the Cretaceous and Early Eocene. The measurements give a northward movement of the Lhasa terrane since then of 1,847 ± 763 kilometres (1,148 ± 474 mi). This implies that there was significant crustal shortening as the collision progressed.[14] The South Lhasa terrane experienced metamorphism and magmatism in the Early Cenozoic (55–45 Ma) and metamorphism in the Late Eocene (40–30 Ma), presumably due to the collision between the continents of India and Eurasia.[2]

Strata edit

Sedimentary strata from the Palaeozoic are mainly Carboniferous sandstone, metasandstone, shale and phyllite, and lesser Ordovician, Silurian and Permian limestone. Precambrian strata are rarely exposed. Rocks from the Triassic include inter-bedded limestone and basaltic volcanic units, most common along the terrane's southern margin. In the northern terrane the Jurassic strata are deepwater sandstone and shale, often with ophiolitic assemblages. In the southern terrane the Jurassic strata are marine limestone and mudstone. Strata from the Lower Cretaceous are clastic mudstone, sandstone and local conglomerate units. The Lower Cretaceous clastic units are overlaid by a shallow marine limestone from the Aptian-Albian period, exposed in many places, which in some places holds Cenomanian fossils. The strata from the Upper Cretaceous are successions of arkosic fluvial sandstone and mudstone.[9]

See also edit

Lhasa Terrane related (from south to north)

References edit

  1. ^ Ma – Millions of years ago
  1. ^ a b Ozacar 2015.
  2. ^ a b c d e f Zhang et al. 2014, p. 170–171.
  3. ^ a b Wan 2010, p. 139.
  4. ^ a b Leier et al. 2007, p. 361.
  5. ^ Di et al. 2011.
  6. ^ Wan 2010, p. 210.
  7. ^ Metcalfe 1994, pp. 97–111.
  8. ^ a b Leier 2005.
  9. ^ a b Leier et al. 2007, p. 363.
  10. ^ a b c Alsdorf, BrownNelson & Makovsky 1998, p. 502.
  11. ^ Leier et al. 2007, p. 363–364.
  12. ^ a b Alsdorf, BrownNelson & Makovsky 1998, p. 501.
  13. ^ Liebke et al. 2010, p. 1200.
  14. ^ Liebke et al. 2010, p. 1199.

Sources edit

  • Alsdorf, Douglas; Brown, Larry; Nelson, K. Douglas; Makovsky, Yizhaq; Klemperer, Simon; Zhao, Wenjin (August 1998). "Crustal deformation of the Lhasa terrane, Tibet plateau from Project INDEPTH deep seismic reflection profiles". Tectonics. 17 (4): 501–519. Bibcode:1998Tecto..17..501A. doi:10.1029/98tc01315. S2CID 128481049. Retrieved 2015-02-19.
  • Di, Cheng Zhu; Zhi, Dan Zhao; Niu, Yaoling; Dilek, Yildirim; Mo, Xuan-Xue (2011-03-13). "Lhasa terrane in southern Tibet came from Australia". Geology. 39 (8). Geological Society of America: 727–730. Bibcode:2011Geo....39..727Z. doi:10.1130/g31895.1.
  • Leier, Andrew (2005). The Cretaceous Evolution of the Lhasa Terrane, Southern Tibet (PhD thesis). The University of Arizona. hdl:10150/193796.
  • Leier, Andrew L.; Kapp, Paul; Gehrels, George E.; DeCelles, Peter G. (2007). "Detrital zircon geochronology of Carboniferous–Cretaceous strata in the Lhasa terrane, Southern Tibet" (PDF). Basin Research. 19 (3): 361–378. Bibcode:2007BasR...19..361L. doi:10.1111/j.1365-2117.2007.00330.x. S2CID 140611605. Archived from the original (PDF) on 2013-01-07. Retrieved 2015-02-19.
  • Liebke, Ursina; Appel, Erwin; Ding, Lin; Neumann, Udo; Antolin, Borja; Xu, Qiang (2010). "Position of the Lhasa terrane prior to India–Asia collision derived from palaeomagnetic inclinations of 53 Ma old dykes of the Linzhou Basin: constraints on the age of collision and post-collisional shortening within the Tibetan Plateau". Geophysical Journal International. 182 (3): 1199–1215. Bibcode:2010GeoJI.182.1199L. doi:10.1111/j.1365-246x.2010.04698.x.
  • Metcalfe, I (1994). "Late Paleozoic and Mesozoic paleogeography of eastern Pangea and Thethys". In Embry, Ashton F.; Beauchamp, Benoit; Glass, Donald J. (eds.). Pangea: Global Environments and Resources. Calgary, Alberta, Canada: Canadian Society of Petroleum Geologists. ISBN 978-0-920230-57-2.
  • Ozacar, Arda (2015). . Archived from the original on 2015-02-18. Retrieved 2015-02-18.
  • Wan, Tianfeng (2010). The Tectonics of China: Data, Maps and Evolution. Berlin: Springer. ISBN 978-3-642-11866-1.
  • Zhang, Z.M.; Dong, X.; Santosh, M.; Zhao, G.C (January 2014). "Metamorphism and tectonic evolution of the Lhasa terrane, Central Tibet". Gondwana Research. 25 (1): 170–189. Bibcode:2014GondR..25..170Z. doi:10.1016/j.gr.2012.08.024.

External links edit

lhasa, terrane, terrane, fragment, crustal, material, sutured, eurasian, plate, during, cretaceous, that, forms, present, southern, tibet, takes, name, from, city, lhasa, tibet, autonomous, region, china, northern, part, have, originated, east, african, orogen. The Lhasa terrane is a terrane or fragment of crustal material sutured to the Eurasian Plate during the Cretaceous that forms present day southern Tibet It takes its name from the city of Lhasa in the Tibet Autonomous Region China The northern part may have originated in the East African Orogeny while the southern part appears to have once been part of Australia The two parts joined were later attached to Asia and then were impacted by the collision of the Indian Plate that formed the Himalayas Lhasa terraneTerranePortion of the terrane Namtso lake to the north above Nyenchen Tanglha Mountains white Coordinates 30 N 91 E 30 N 91 E 30 91LocationTibet Autonomous Region China Contents 1 Location 2 Origins 3 Formation and evolution 4 India Asia collision 5 Strata 6 See also 7 References 8 Sources 9 External linksLocation edit nbsp Tectonic units of the Himalaya Green is the Indus Yarlung suture zone Red is the Transhimalaya Lhasa terrane and Lhasa city in the eastern part of Transhimalaya Red nbsp Transhimalaya and Lhasa terrane Qiangtang terrane Bangong Nujiang Suture Zone South of Indus Yarlung suture zone is Himalayas The Lhasa terrane is separated from the Himalayas to the south by the Yarlung Tsangpo suture and from the Qiangtang terrane to the north by the Bangong Nujiang suture 1 The Lhasa terrane has a Precambrian crystalline basement overlaid with sedimentary strata from the Paleozoic c 541 252 Ma a and Mesozoic c 252 66 Ma and containing magmatic rocks from the Paleozoic to Cenozoic 66 Ma to the present It is thought to be the last crustal block to accrete to the Eurasian plate before it collided with the Indian plate in the Cenozoic 2 Origins editThe Lhasa terrane consisted of two blocks before the Mesozoic the North Lhasa Block and the South Lhasa Block 3 The two blocks have lithology and detrital zircon ages similar to the Qiangtang terrane and to Tethyan strata in the Himalaya which suggests these areas were nearby in Gondwana The detrital zircon ages differ somewhat between the North and South Lhasa terranes 4 The South Lhasa terrane appears to have evolved as part of Australia in the late Precambrian and early Paleozoic Isotopic analysis of detrital zircons of c 1170 Ma from Paleozoic metasedimentary rocks in the Lhasa terrane shows identical values to detrital zircons of the same age from Western Australia The detrital zircons probably came from southwest Australia s Albany Fraser belt 5 The North Lhasa terrane may have been formed in part from the northern part of the East African Orogeny Neoproterozoic oceanic crustal rocks are included in the crystalline basement of the North Lhasa terrane which are probably from the Mozambique Ocean that formed when the Rodinia super continent broke up In the Late Cryogenian around 650 Ma the oceanic crustal basement of North Lhasa experienced HP metamorphism in the subduction zone associated with the closing of the Mozambique ocean In the Early Paleozoic around 485 Ma it experienced MP metamorphism associated with the amalgamation of Eastern and Western Gondwana 2 In the Early Paleozoic the North and South Lhasa terranes and the Qiangtang terrane experienced magmatism that seems to have been the result of an Andean type orogeny caused when the Proto Tethys Ocean was subducted after Gondwana was finally amalgamated In the Middle Paleozoic around 360 Ma the Lhasa and Qiangtang terranes again experienced magmatism apparently due to the subduction of the Paleo Tethys Ocean 2 Formation and evolution edit nbsp Lhasa terrane approach to Qiangtang terrane nbsp More detailed view of the tectonic evolution of the Bangong suture zoneThe Lhasa terrane was formed from the North and South Lhasa terranes which were at first separated by the Paleo Tethys Ocean and were joined in a suture zone in the Late Paleozoic 2 The Paleo Tethys Ocean that separated the North and South Lhasa terranes closed and around 260 Ma in the Late Permian an HP metamorphic belt formed between the two blocks Around 220 Ma in the Triassic an MP metamorphic belt formed 2 The Tibetan Plateau was formed from a number of continental terranes that rifted from northern Gondwana in the Paleozoic and Mesozoic moved northward and accreted to southern Asia The Lhasa terrane is the farthest south of these terranes 3 The Lhasa terrane moved northward and collided with the Qiangtang terrane along the Banggongco Nujiang Suture 6 7 The collision began towards the end of the late Jurassic c 163 145 Ma and collision activity continued until the early Late Cretaceous c 100 66 Ma During this period the terrane may have been shortened by at least 180 kilometres 110 mi 1 Strata from the Lower Jurassic in the Bangong suture between the Lhasa and Qiangtang terranes differ from the rocks in the Lhasa terrane and appear to have a unique source 8 The collision with the Qiangtang terrane caused a peripheral foreland basin to form in the north part of the Lhasa terrane which persisted into the Early Cretaceous In some parts of the foreland basin the north dipping subduction of the Neotethyan oceanic crust below the Lhasa terrane caused volcanism The Gangdese volcanic arc was formed as this subduction continued along the southern margin of the Lhasa terrane 9 The Gangdese batholith intrudes the southern half of the Lhasa terrain 10 There is evidence that by the end of the Cretaceous the Southern Tibet crust was approximately twice as thick as normal 11 Clastic sediments found in the terrane were deposited in shallow waters during the Early Cretaceous c 146 100 Ma In northern Lhasa these sediments formed in the foreland basin created during the Lhasa Qiangtang collision They are overlaid by marine limestone from the Aptian Albian period deposited in a shallow continental seaway The Takena Formation developed in the Late Cretaceous in the foreland basin to the north of the Gangdese magmatic arc and consists of marine limestone overlaid by fluvial red beds 8 Outcropped folds in the Takena Formation between Lhasa and Yangbajain are upright or lean slightly to the north or south and indicate 30 to 50 shortening in the Late Cretaceous before the Indian collision 10 India Asia collision editSee also Geology of the Himalaya Karakoram fault system and Transhimalaya nbsp India Eurasia collision 70 0 MaContact with Indian Plate began along the Yarlung Zangbo suture around 50 Ma during the Eocene and the two continents continue to converge Magmatism continued in the Gangdese arc until as late as 40 Ma 10 There are competing hypotheses about the details of the tectonic processes during the collision between the Indian and Eurasian plates 4 At one extreme some consider that during the collision the Indian crust was underthrust beneath the southern Asian crust or injected into this crust At the other extreme some consider that the convergence was mostly accommodated by shortening of the Asian crust 12 The results of seismic reflection profiling reported in 1998 indicate that there may be a midcrustal partial melt zone under the length of the Yangbajain Damxung graben starting at a depth of 12 to 18 kilometres 7 5 to 11 2 mi The reflection undulates so the melt zone may have been tectonically deformed North dipping reflections deep in the crust below the Gangdese batholith at a depth of 40 to 60 kilometres 25 to 37 mi may mark the downdip of the Yarlung Zangbo suture or may mark a more recent reverse fault Taken together the results indicate that the upper crust of the Lhasa terrane was moderately shortened by the collision with melting in the middle crust They neither support nor rule out underthrusting or fluid injection of the Indian continental crust below the Lhasa terrane 12 The Linzizong Formation is distributed widely along the Gangdese Belt It was emplaced between 69 and 43 Ma near Lhasa and between 54 and 37 Ma in southwestern Tibet It is slightly folded and slopes gently to the north The formation is unconformably underlain by Cretaceous sedimentary sequences more than 3 000 metres 9 800 ft thick which are strongly folded 13 The results of palaeomagnetic studies of the Linzizong Formation in the Linzhou Basin and the Takena Formation reported in 2009 indicate that there was little movement of the Lhasa terrane in the Cretaceous and Early Eocene The measurements give a northward movement of the Lhasa terrane since then of 1 847 763 kilometres 1 148 474 mi This implies that there was significant crustal shortening as the collision progressed 14 The South Lhasa terrane experienced metamorphism and magmatism in the Early Cenozoic 55 45 Ma and metamorphism in the Late Eocene 40 30 Ma presumably due to the collision between the continents of India and Eurasia 2 Strata editSedimentary strata from the Palaeozoic are mainly Carboniferous sandstone metasandstone shale and phyllite and lesser Ordovician Silurian and Permian limestone Precambrian strata are rarely exposed Rocks from the Triassic include inter bedded limestone and basaltic volcanic units most common along the terrane s southern margin In the northern terrane the Jurassic strata are deepwater sandstone and shale often with ophiolitic assemblages In the southern terrane the Jurassic strata are marine limestone and mudstone Strata from the Lower Cretaceous are clastic mudstone sandstone and local conglomerate units The Lower Cretaceous clastic units are overlaid by a shallow marine limestone from the Aptian Albian period exposed in many places which in some places holds Cenomanian fossils The strata from the Upper Cretaceous are successions of arkosic fluvial sandstone and mudstone 9 See also editLhasa Terrane related from south to north Geology of the Himalaya Indus Suture Zone Transhimalaya includes Lhasa terrane and Karakoram fault system High pressure metamorphic terranes along the Bangong Nujiang Suture Zone Qiangtang terraneReferences edit Ma Millions of years ago a b Ozacar 2015 a b c d e f Zhang et al 2014 p 170 171 a b Wan 2010 p 139 a b Leier et al 2007 p 361 Di et al 2011 Wan 2010 p 210 Metcalfe 1994 pp 97 111 a b Leier 2005 a b Leier et al 2007 p 363 a b c Alsdorf BrownNelson amp Makovsky 1998 p 502 Leier et al 2007 p 363 364 a b Alsdorf BrownNelson amp Makovsky 1998 p 501 Liebke et al 2010 p 1200 Liebke et al 2010 p 1199 Sources editAlsdorf Douglas Brown Larry Nelson K Douglas Makovsky Yizhaq Klemperer Simon Zhao Wenjin August 1998 Crustal deformation of the Lhasa terrane Tibet plateau from Project INDEPTH deep seismic reflection profiles Tectonics 17 4 501 519 Bibcode 1998Tecto 17 501A doi 10 1029 98tc01315 S2CID 128481049 Retrieved 2015 02 19 Di Cheng Zhu Zhi Dan Zhao Niu Yaoling Dilek Yildirim Mo Xuan Xue 2011 03 13 Lhasa terrane in southern Tibet came from Australia Geology 39 8 Geological Society of America 727 730 Bibcode 2011Geo 39 727Z doi 10 1130 g31895 1 Leier Andrew 2005 The Cretaceous Evolution of the Lhasa Terrane Southern Tibet PhD thesis The University of Arizona hdl 10150 193796 Leier Andrew L Kapp Paul Gehrels George E DeCelles Peter G 2007 Detrital zircon geochronology of Carboniferous Cretaceous strata in the Lhasa terrane Southern Tibet PDF Basin Research 19 3 361 378 Bibcode 2007BasR 19 361L doi 10 1111 j 1365 2117 2007 00330 x S2CID 140611605 Archived from the original PDF on 2013 01 07 Retrieved 2015 02 19 Liebke Ursina Appel Erwin Ding Lin Neumann Udo Antolin Borja Xu Qiang 2010 Position of the Lhasa terrane prior to India Asia collision derived from palaeomagnetic inclinations of 53 Ma old dykes of the Linzhou Basin constraints on the age of collision and post collisional shortening within the Tibetan Plateau Geophysical Journal International 182 3 1199 1215 Bibcode 2010GeoJI 182 1199L doi 10 1111 j 1365 246x 2010 04698 x Metcalfe I 1994 Late Paleozoic and Mesozoic paleogeography of eastern Pangea and Thethys In Embry Ashton F Beauchamp Benoit Glass Donald J eds Pangea Global Environments and Resources Calgary Alberta Canada Canadian Society of Petroleum Geologists ISBN 978 0 920230 57 2 Ozacar Arda 2015 Paleotectonic Evolution of Tibet Archived from the original on 2015 02 18 Retrieved 2015 02 18 Wan Tianfeng 2010 The Tectonics of China Data Maps and Evolution Berlin Springer ISBN 978 3 642 11866 1 Zhang Z M Dong X Santosh M Zhao G C January 2014 Metamorphism and tectonic evolution of the Lhasa terrane Central Tibet Gondwana Research 25 1 170 189 Bibcode 2014GondR 25 170Z doi 10 1016 j gr 2012 08 024 External links editIndia Asia Continental Collision animations by Tanya Atwater Retrieved from https en wikipedia org w index php title Lhasa terrane amp oldid 1179925586, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.