fbpx
Wikipedia

Leafcutter ant

Leafcutter ants, a non-generic name, are any of 47 species[1] of leaf-chewing ants belonging to the two genera Atta and Acromyrmex. These species of tropical, fungus-growing ants are all endemic to South and Central America, Mexico, and parts of the southern United States.[2] Leafcutter ants can carry twenty times their body weight[3] and cut and process fresh vegetation (leaves, flowers, and grasses) to serve as the nutritional substrate for their fungal cultivates.[4]

Atta cephalotes, Wilhelma Zoo, Stuttgart

Acromyrmex and Atta ants have much in common anatomically; however, the two can be identified by their external differences. Atta ants have three pairs of spines and a smooth exoskeleton on the upper surface of the thorax, while Acromyrmex ants have four pairs and a rough exoskeleton.[5] The exoskeleton itself is covered in a thin layer of mineral coating, composed of rhombohedral crystals that are generated by the ants.[6]

Next to humans, leafcutter ants form some of the largest and most complex animal societies on Earth. In a few years, the central mound of their underground nests can grow to more than 30 m (98 ft) across, with smaller radiating mounds extending out to a radius of 80 m (260 ft), taking up 30 to 600 m2 (320 to 6,460 sq ft) and containing eight million individuals.[2]

The lifecycle of a leafcutter ant colony edit

Reproduction and colony founding edit

 
Atta colombica, queen with larvae and workers on substrate

Winged females and males leave their respective nests en masse and engage in a nuptial flight known as the revoada (Portuguese) or vuelo nupcial (Spanish). Each female mates with multiple males to collect the 300 million sperm she needs to set up a colony.[7]

Once on the ground, the female loses her wings and searches for a suitable underground lair in which to found her colony. The success rate of these young queens is very low, and only 2.5% will go on to establish a long-lived colony. To start her own fungus garden, the queen stores bits of the parental fungus garden mycelium in her infrabuccal pocket, which is located within her oral cavity.[8] Colonies are generally founded by individual queens – haplometrosis.[9]: 125  Because colonies with multiple queens over the lifespan of the colony have been found by a large number of investigators – by Weber 1937, Jonkman 1977, Huber 1907, Moser & Lewis 1981, Mariconi & Zamith 1963, Moser 1963, and Walter et al 1938 – it is believable that some colonies have multiple foundresses – termed pleometrosis.[9]: 125  Pleometrosis is confirmed only for Atta texana by Vinson 1985.[9]: 125 

Colony hierarchy edit

In leafcutter colonies, ants are divided into castes, based mostly on size, that perform different functions. Acromyrmex and Atta exhibit a high degree of biological polymorphism, four castes being present in established colonies—minims, minors, mediae, and majors. Majors are also known as soldiers or dinergates. Atta ants are more polymorphic than Acromyrmex, meaning comparatively less difference occurs in size from the smallest to largest types of Acromyrmex.

 
Leafcutter ant Atta cephalotes
  • Minims are the smallest workers, and tend to the growing brood or care for the fungus gardens. Head width is less than 1 mm.
  • Minors are slightly larger than minima workers, and are present in large numbers in and around foraging columns. These ants are the first line of defense and continuously patrol the surrounding terrain and vigorously attack any enemies that threaten the foraging lines. Head width is around 1.8–2.2 mm.
  • Mediae are the generalized foragers, which cut leaves and bring the leaf fragments back to the nest.
  • Majors, the largest worker ants, act as soldiers, defending the nest from intruders, although recent evidence indicates majors participate in other activities, such as clearing the main foraging trails of large debris and carrying bulky items back to the nest. The largest soldiers (Atta laevigata) may have total body lengths up to 16 mm and head widths of 7 mm.

Ant–fungus mutualism edit

Their societies are based on an ant–fungus mutualism, and different species of ants use different species of fungus, but all of the fungi the ants use are members of the family Lepiotaceae. The ants actively cultivate their fungus, feeding it with freshly cut plant material and keeping it free from pests and molds. This mutualistic relationship is further augmented by another symbiotic partner, a bacterium that grows on the ants and secretes chemicals; essentially, the ants use portable antimicrobials. Leaf cutter ants are sensitive enough to adapt to the fungi's reaction to different plant material, apparently detecting chemical signals from the fungus. If a particular type of leaf is toxic to the fungus, the colony will no longer collect it. The only two other groups of insects to use fungus-based agriculture are ambrosia beetles and termites. The fungus cultivated by the adults is used to feed the ant larvae, and the adult ants feed on leaf sap. The fungus needs the ants to stay alive, and the larvae need the fungus to stay alive, so mutualism is obligatory.

The fungi used by the higher attine ants no longer produce spores. These ants fully domesticated their fungal partner 15 million years ago, a process that took 30 million years to complete.[10] Their fungi produce nutritious and swollen hyphal tips (gongylidia) that grow in bundles called staphylae, to specifically feed the ants.[11] Leucoagaricus gongylophorus is the most commonly documented fungi farmed by higher attine ant species.[12][13]

Waste management edit

 
Workers of Atta colombica at work
 
Leafcutter ant in Costa Rica

Leafcutter ants have very specific roles in taking care of the fungal garden and dumping the refuse. Waste management is a key role for each colony's longevity. The necrotrophic parasitic fungus Escovopsis threatens the ants' food source and thus is a constant danger to the ants. The waste transporters and waste-heap workers are the older, more dispensable leafcutter ants, ensuring the healthier and younger ants can work on the fungal garden. The Atta colombica species, unusually for the Attine tribe, have an external waste heap. Waste transporters take the waste, which consists of used substrate and discarded fungus, to the waste heap. Once dropped off at the refuse dump, the heap workers organise the waste and constantly shuffle it around to aid decomposition. A compelling observation of A. colombica was the dead ants placed around the perimeter of the waste heap.[14][15]

In addition to feeding the fungal garden with foraged food, mainly consisting of leaves, it is protected from Escovopsis by the antibiotic secretions of Actinomycetota (genus Pseudonocardia). This mutualistic micro-organism lives in the metapleural glands of the ant.[16] Actinomycetota are responsible for producing the majority of the world's antibiotics today.

Parasitism edit

When the ants are out collecting leaves, they are at risk of attack by some species of phorid flies, parasitoids that lay eggs into the crevices of the worker ants' heads. Often, a minim will sit on a worker ant and ward off any attack.[17]

Also, the wrong type of fungus can grow during cultivation. Escovopsis, a highly virulent fungus, has the potential to devastate an ant garden, as it is horizontally transmitted. Escovopsis was cultured, during colony foundation, in 6.6% of colonies.[18] However, in one- to two-year-old colonies, almost 60% had Escovopsis growing in the fungal garden.[19]

Nevertheless, leafcutter ants have many adaptive mechanisms to recognize and control infections by Escovopsis and other micro-organisms.[20] The most common known behaviors rely on workers reducing the number of fungal spores by grooming, or removing an infected piece of the fungus garden and throwing it away at the waste dump (described as weeding).[21]

Communication edit

Leafcutter ants use chemical communication and stridulation (substrate-borne vibrations) to communicate with each other.[22]

Prey plants edit

Leafcutter ants prefer disturbed habitats, likely due to higher concentrations of pioneer plant species. These are more attractive food sources because pioneer plants have lower levels of secondary metabolites and higher nutrient concentrations than the shade-tolerant species that will come later.[23]

Interactions with humans edit

In some parts of their range, leafcutter ants can be a serious agricultural pest, defoliating crops and damaging roads and farmland with their nest-making activities.[7] For example, some Atta species are capable of defoliating an entire citrus tree in less than 24 hours. A promising approach to deterring attacks of the leafcutter ant Acromyrmex lobicornis on crops has been demonstrated. Collecting the refuse from the nest and placing it over seedlings or around crops resulted in a deterrent effect over a period of 30 days.[24]

See also edit

References edit

  1. ^ Speight, Martin R.; Watt, Allan D.; Hunter, Mark D. (1999). Ecology of Insects. Blackwell Science. p. 156. ISBN 978-0-86542-745-7..
  2. ^ a b Piper 2007, pp. 11–13.
  3. ^ (PDF). Archived from the original (PDF) on February 23, 2018.
  4. ^ Schultz, T. R.; Brady, S. G. (2008). "Major evolutionary transitions in ant agriculture". Proceedings of the National Academy of Sciences of the United States of America. 105 (14): 5435–5440. Bibcode:2008PNAS..105.5435S. doi:10.1073/pnas.0711024105. PMC 2291119. PMID 18362345.
  5. ^ Hedlund, Kye S. (March 2005). . Archived from the original on August 24, 2007.
  6. ^ Li, Hongjie & Sun, Chang-yu (2020), "Biomineral armor in leaf-cutter ants", Nature Communications, 11 (11): 5792, doi:10.1038/s41467-020-19566-3, PMC 7686325, PMID 33235196.
  7. ^ a b Piper, Ross (2007), Extraordinary Animals: An Encyclopedia of Curious and Unusual Animals, Greenwood Press, p. 298, ISBN 978-0-313-33922-6.
  8. ^ Weber, Neal A. (1972), Gardening Ants, The Attines, The American Philosophical Society, pp. 14, 34, ISBN 978-0-87169-092-0.
  9. ^ a b c Lofgren, Clifford; Meer, Robert K. Vander, eds. (2018). Fire Ants and Leaf-cutting Ants : Biology and Management. New York, NY: Routledge. pp. xv+435. ISBN 978-0-429-03826-6. OCLC 1090012991.
  10. ^ Crop Domestication Is a Balancing Act
  11. ^ For Leaf-Cutter Ants, Farm Life Isn't So Simple
  12. ^ "Leucoagaricus - an overview | ScienceDirect Topics". www.sciencedirect.com. Retrieved 2022-07-08.
  13. ^ Benjamin, RICHARD K.; Blackwell, MEREDITH; Chapela, IGNACIO H.; Humber, RICHARD A.; Jones, KEVIN G.; Klepzig, KIER D.; Lichtwardt, ROBERT W.; Malloch, DAVID; Noda, HIROAKI (2004-01-01), Mueller, GREGORY M.; Bills, GERALD F.; Foster, MERCEDES S. (eds.), "Insect- and Other Arthropod-Associated Fungi", Biodiversity of Fungi, Burlington: Academic Press, pp. 395–433, doi:10.1016/b978-012509551-8/50021-0, ISBN 978-0-12-509551-8, retrieved 2022-07-08
  14. ^ Hart, A. G. & Ratnieks, F. L. W. (2002), "Waste management in the leaf-cutting ant Atta colombica", Behavioral Ecology, 13 (2): 224–231, doi:10.1093/beheco/13.2.224.
  15. ^ Bot, A. N. M.; Currie, C. R.; Hart, A. G. & Boomsma, J. J. (2001), "Waste Management in Leaf-cutting Ants", Ethology Ecology and Evolution, 13 (3): 225–237, doi:10.1080/08927014.2001.9522772, S2CID 18918574.
  16. ^ Zhang, M. M.; Poulsen, M. & Currie, C. R. (2007), "Symbiont recognition of mutualistic bacteria by Acromyrmex leaf-cutting ants", The ISME Journal, 1 (4): 313–320, doi:10.1038/ismej.2007.41, PMID 18043642.
  17. ^ , Lincoln Park Zoo, archived from the original on 2008-05-16
  18. ^ Currie, C. R.; Mueller, U. G. & Malloch, D. (1999), "The agricultural pathology of ant fungus gardens", PNAS, 96 (14): 7998–8002, Bibcode:1999PNAS...96.7998C, doi:10.1073/pnas.96.14.7998, PMC 22176, PMID 10393936.
  19. ^ Reynolds, H. T. & Currie, C. R. (2004), "Pathogenicity of Escovopsis weberi: The parasite of the attine ant-microbe symbiosis directly consumes the ant-cultivated fungus", Mycologia, 96 (5): 955–959, doi:10.2307/3762079, JSTOR 3762079, PMID 21148916.
  20. ^ Goes, A. C.; Barcoto, M. O.; Kooij, P. W.; Bueno, O. C.; & Rodrigues, A. (2020), "How do leaf-cutting ants recognize antagonistic microbes in their fungal crops?", Frontiers in Ecology and Evolution, 8 (95): 1–12, doi:10.3389/fevo.2020.00095.
  21. ^ Currie, C. R.; & Stuart, A. E. (2001), "Weeding and grooming of pathogens in agriculture by ants", Proceedings of the Royal Society of London B, 268 (1471): 1033–1039, doi:10.1098/rspb.2001.1605, PMC 1088705, PMID 11375087.
  22. ^ Hager, Felix A.; Kirchner, Lea; Kirchner, Wolfgang H. (2017-12-15). "Directional vibration sensing in the leafcutter ant Atta sexdens". Biology Open. 6 (12): 1949–1952. doi:10.1242/bio.029587. ISSN 2046-6390. PMC 5769659. PMID 29247049.
  23. ^ Farji-Brener, Alejandro G. (2001). "Why are leaf-cutting ants more common in early secondary forests than in old-growth tropical forests? An evaluation of the palatable forage hypothesis". Oikos. 92 (1). Nordic Society Oikos (Wiley): 169–177. doi:10.1034/j.1600-0706.2001.920120.x. hdl:10088/1425. ISSN 0030-1299.
  24. ^ Ballari, S. A. & Farji-Brener, A. G. (2006), "Refuse dumps of the leaf-cutting ants as a deterrent for ant herbivory: does refuse age matter?", The Netherlands Entomological Society, 121 (3): 215–219, doi:10.1111/j.1570-8703.2006.00475.x, S2CID 85410418.

External links edit

  • . Bristol Zoo Gardens. Archived from the original on 2010-03-27. Retrieved 2006-05-12.
  • "Ancient Farmers of the Amazon". PBS Evolution Library. Retrieved 2009-02-22.
  • The Lurker's Guide to Leafcutter Ants

leafcutter, generic, name, species, leaf, chewing, ants, belonging, genera, atta, acromyrmex, these, species, tropical, fungus, growing, ants, endemic, south, central, america, mexico, parts, southern, united, states, carry, twenty, times, their, body, weight,. Leafcutter ants a non generic name are any of 47 species 1 of leaf chewing ants belonging to the two genera Atta and Acromyrmex These species of tropical fungus growing ants are all endemic to South and Central America Mexico and parts of the southern United States 2 Leafcutter ants can carry twenty times their body weight 3 and cut and process fresh vegetation leaves flowers and grasses to serve as the nutritional substrate for their fungal cultivates 4 Atta cephalotes Wilhelma Zoo StuttgartAcromyrmex and Atta ants have much in common anatomically however the two can be identified by their external differences Atta ants have three pairs of spines and a smooth exoskeleton on the upper surface of the thorax while Acromyrmex ants have four pairs and a rough exoskeleton 5 The exoskeleton itself is covered in a thin layer of mineral coating composed of rhombohedral crystals that are generated by the ants 6 Next to humans leafcutter ants form some of the largest and most complex animal societies on Earth In a few years the central mound of their underground nests can grow to more than 30 m 98 ft across with smaller radiating mounds extending out to a radius of 80 m 260 ft taking up 30 to 600 m2 320 to 6 460 sq ft and containing eight million individuals 2 Contents 1 The lifecycle of a leafcutter ant colony 1 1 Reproduction and colony founding 1 2 Colony hierarchy 2 Ant fungus mutualism 2 1 Waste management 2 2 Parasitism 3 Communication 4 Prey plants 5 Interactions with humans 6 See also 7 References 8 External linksThe lifecycle of a leafcutter ant colony editReproduction and colony founding edit nbsp Atta colombica queen with larvae and workers on substrateWinged females and males leave their respective nests en masse and engage in a nuptial flight known as the revoada Portuguese or vuelo nupcial Spanish Each female mates with multiple males to collect the 300 million sperm she needs to set up a colony 7 Once on the ground the female loses her wings and searches for a suitable underground lair in which to found her colony The success rate of these young queens is very low and only 2 5 will go on to establish a long lived colony To start her own fungus garden the queen stores bits of the parental fungus garden mycelium in her infrabuccal pocket which is located within her oral cavity 8 Colonies are generally founded by individual queens haplometrosis 9 125 Because colonies with multiple queens over the lifespan of the colony have been found by a large number of investigators by Weber 1937 Jonkman 1977 Huber 1907 Moser amp Lewis 1981 Mariconi amp Zamith 1963 Moser 1963 and Walter et al 1938 it is believable that some colonies have multiple foundresses termed pleometrosis 9 125 Pleometrosis is confirmed only for Atta texana by Vinson 1985 9 125 Colony hierarchy edit In leafcutter colonies ants are divided into castes based mostly on size that perform different functions Acromyrmex and Atta exhibit a high degree of biological polymorphism four castes being present in established colonies minims minors mediae and majors Majors are also known as soldiers or dinergates Atta ants are more polymorphic than Acromyrmex meaning comparatively less difference occurs in size from the smallest to largest types of Acromyrmex nbsp Leafcutter ant Atta cephalotesMinims are the smallest workers and tend to the growing brood or care for the fungus gardens Head width is less than 1 mm Minors are slightly larger than minima workers and are present in large numbers in and around foraging columns These ants are the first line of defense and continuously patrol the surrounding terrain and vigorously attack any enemies that threaten the foraging lines Head width is around 1 8 2 2 mm Mediae are the generalized foragers which cut leaves and bring the leaf fragments back to the nest Majors the largest worker ants act as soldiers defending the nest from intruders although recent evidence indicates majors participate in other activities such as clearing the main foraging trails of large debris and carrying bulky items back to the nest The largest soldiers Atta laevigata may have total body lengths up to 16 mm and head widths of 7 mm Ant fungus mutualism editTheir societies are based on an ant fungus mutualism and different species of ants use different species of fungus but all of the fungi the ants use are members of the family Lepiotaceae The ants actively cultivate their fungus feeding it with freshly cut plant material and keeping it free from pests and molds This mutualistic relationship is further augmented by another symbiotic partner a bacterium that grows on the ants and secretes chemicals essentially the ants use portable antimicrobials Leaf cutter ants are sensitive enough to adapt to the fungi s reaction to different plant material apparently detecting chemical signals from the fungus If a particular type of leaf is toxic to the fungus the colony will no longer collect it The only two other groups of insects to use fungus based agriculture are ambrosia beetles and termites The fungus cultivated by the adults is used to feed the ant larvae and the adult ants feed on leaf sap The fungus needs the ants to stay alive and the larvae need the fungus to stay alive so mutualism is obligatory The fungi used by the higher attine ants no longer produce spores These ants fully domesticated their fungal partner 15 million years ago a process that took 30 million years to complete 10 Their fungi produce nutritious and swollen hyphal tips gongylidia that grow in bundles called staphylae to specifically feed the ants 11 Leucoagaricus gongylophorus is the most commonly documented fungi farmed by higher attine ant species 12 13 Waste management edit nbsp Workers of Atta colombica at work nbsp Leafcutter ant in Costa RicaLeafcutter ants have very specific roles in taking care of the fungal garden and dumping the refuse Waste management is a key role for each colony s longevity The necrotrophic parasitic fungus Escovopsis threatens the ants food source and thus is a constant danger to the ants The waste transporters and waste heap workers are the older more dispensable leafcutter ants ensuring the healthier and younger ants can work on the fungal garden The Atta colombica species unusually for the Attine tribe have an external waste heap Waste transporters take the waste which consists of used substrate and discarded fungus to the waste heap Once dropped off at the refuse dump the heap workers organise the waste and constantly shuffle it around to aid decomposition A compelling observation of A colombica was the dead ants placed around the perimeter of the waste heap 14 15 In addition to feeding the fungal garden with foraged food mainly consisting of leaves it is protected from Escovopsis by the antibiotic secretions of Actinomycetota genus Pseudonocardia This mutualistic micro organism lives in the metapleural glands of the ant 16 Actinomycetota are responsible for producing the majority of the world s antibiotics today Parasitism edit When the ants are out collecting leaves they are at risk of attack by some species of phorid flies parasitoids that lay eggs into the crevices of the worker ants heads Often a minim will sit on a worker ant and ward off any attack 17 Also the wrong type of fungus can grow during cultivation Escovopsis a highly virulent fungus has the potential to devastate an ant garden as it is horizontally transmitted Escovopsis was cultured during colony foundation in 6 6 of colonies 18 However in one to two year old colonies almost 60 had Escovopsis growing in the fungal garden 19 Nevertheless leafcutter ants have many adaptive mechanisms to recognize and control infections by Escovopsis and other micro organisms 20 The most common known behaviors rely on workers reducing the number of fungal spores by grooming or removing an infected piece of the fungus garden and throwing it away at the waste dump described as weeding 21 Communication editLeafcutter ants use chemical communication and stridulation substrate borne vibrations to communicate with each other 22 Prey plants editLeafcutter ants prefer disturbed habitats likely due to higher concentrations of pioneer plant species These are more attractive food sources because pioneer plants have lower levels of secondary metabolites and higher nutrient concentrations than the shade tolerant species that will come later 23 Interactions with humans editIn some parts of their range leafcutter ants can be a serious agricultural pest defoliating crops and damaging roads and farmland with their nest making activities 7 For example some Atta species are capable of defoliating an entire citrus tree in less than 24 hours A promising approach to deterring attacks of the leafcutter ant Acromyrmex lobicornis on crops has been demonstrated Collecting the refuse from the nest and placing it over seedlings or around crops resulted in a deterrent effect over a period of 30 days 24 See also editList of leafcutter ants Atta sexdens LepiotaceaeReferences edit Speight Martin R Watt Allan D Hunter Mark D 1999 Ecology of Insects Blackwell Science p 156 ISBN 978 0 86542 745 7 a b Piper 2007 pp 11 13 Leafcutter Ant PDF Archived from the original PDF on February 23 2018 Schultz T R Brady S G 2008 Major evolutionary transitions in ant agriculture Proceedings of the National Academy of Sciences of the United States of America 105 14 5435 5440 Bibcode 2008PNAS 105 5435S doi 10 1073 pnas 0711024105 PMC 2291119 PMID 18362345 Hedlund Kye S March 2005 Diagnoses of the North American Ant Genera Hymenoptera Formicidae Archived from the original on August 24 2007 Li Hongjie amp Sun Chang yu 2020 Biomineral armor in leaf cutter ants Nature Communications 11 11 5792 doi 10 1038 s41467 020 19566 3 PMC 7686325 PMID 33235196 a b Piper Ross 2007 Extraordinary Animals An Encyclopedia of Curious and Unusual Animals Greenwood Press p 298 ISBN 978 0 313 33922 6 Weber Neal A 1972 Gardening Ants The Attines The American Philosophical Society pp 14 34 ISBN 978 0 87169 092 0 a b c Lofgren Clifford Meer Robert K Vander eds 2018 Fire Ants and Leaf cutting Ants Biology and Management New York NY Routledge pp xv 435 ISBN 978 0 429 03826 6 OCLC 1090012991 Crop Domestication Is a Balancing Act For Leaf Cutter Ants Farm Life Isn t So Simple Leucoagaricus an overview ScienceDirect Topics www sciencedirect com Retrieved 2022 07 08 Benjamin RICHARD K Blackwell MEREDITH Chapela IGNACIO H Humber RICHARD A Jones KEVIN G Klepzig KIER D Lichtwardt ROBERT W Malloch DAVID Noda HIROAKI 2004 01 01 Mueller GREGORY M Bills GERALD F Foster MERCEDES S eds Insect and Other Arthropod Associated Fungi Biodiversity of Fungi Burlington Academic Press pp 395 433 doi 10 1016 b978 012509551 8 50021 0 ISBN 978 0 12 509551 8 retrieved 2022 07 08 Hart A G amp Ratnieks F L W 2002 Waste management in the leaf cutting ant Atta colombica Behavioral Ecology 13 2 224 231 doi 10 1093 beheco 13 2 224 Bot A N M Currie C R Hart A G amp Boomsma J J 2001 Waste Management in Leaf cutting Ants Ethology Ecology and Evolution 13 3 225 237 doi 10 1080 08927014 2001 9522772 S2CID 18918574 Zhang M M Poulsen M amp Currie C R 2007 Symbiont recognition of mutualistic bacteria by Acromyrmex leaf cutting ants The ISME Journal 1 4 313 320 doi 10 1038 ismej 2007 41 PMID 18043642 Leafcutter Ants Lincoln Park Zoo archived from the original on 2008 05 16 Currie C R Mueller U G amp Malloch D 1999 The agricultural pathology of ant fungus gardens PNAS 96 14 7998 8002 Bibcode 1999PNAS 96 7998C doi 10 1073 pnas 96 14 7998 PMC 22176 PMID 10393936 Reynolds H T amp Currie C R 2004 Pathogenicity of Escovopsis weberi The parasite of the attine ant microbe symbiosis directly consumes the ant cultivated fungus Mycologia 96 5 955 959 doi 10 2307 3762079 JSTOR 3762079 PMID 21148916 Goes A C Barcoto M O Kooij P W Bueno O C amp Rodrigues A 2020 How do leaf cutting ants recognize antagonistic microbes in their fungal crops Frontiers in Ecology and Evolution 8 95 1 12 doi 10 3389 fevo 2020 00095 Currie C R amp Stuart A E 2001 Weeding and grooming of pathogens in agriculture by ants Proceedings of the Royal Society of London B 268 1471 1033 1039 doi 10 1098 rspb 2001 1605 PMC 1088705 PMID 11375087 Hager Felix A Kirchner Lea Kirchner Wolfgang H 2017 12 15 Directional vibration sensing in the leafcutter ant Atta sexdens Biology Open 6 12 1949 1952 doi 10 1242 bio 029587 ISSN 2046 6390 PMC 5769659 PMID 29247049 Farji Brener Alejandro G 2001 Why are leaf cutting ants more common in early secondary forests than in old growth tropical forests An evaluation of the palatable forage hypothesis Oikos 92 1 Nordic Society Oikos Wiley 169 177 doi 10 1034 j 1600 0706 2001 920120 x hdl 10088 1425 ISSN 0030 1299 Ballari S A amp Farji Brener A G 2006 Refuse dumps of the leaf cutting ants as a deterrent for ant herbivory does refuse age matter The Netherlands Entomological Society 121 3 215 219 doi 10 1111 j 1570 8703 2006 00475 x S2CID 85410418 External links edit nbsp Wikimedia Commons has media related to Leafcutter ants Leaf cutter ant Atta cephalotes Bristol Zoo Gardens Archived from the original on 2010 03 27 Retrieved 2006 05 12 Ancient Farmers of the Amazon PBS Evolution Library Retrieved 2009 02 22 The Lurker s Guide to Leafcutter Ants Retrieved from https en wikipedia org w index php title Leafcutter ant amp oldid 1214499240, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.